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ABSTRACT 

Flashcard systems typically help students learn facts (e.g., 

definitions, names, and dates), relying on intense initial 

memoriztion with subsequent tests delayed up to days later. 

This approach does not exploit the short, sparse, and mobile 

opportunities for microlearning throughout the day, nor 

does it support learners who need the motivation that comes 

from successful study sessions. In contrast, our MemReflex 

system of adaptive flashcards gives fast-feedback by 

retesting new items in quick succession, dynamically 

scheduling future tests according to a model of the learner’s 

memory. We evaluate MemReflex across three user studies. 

In the first two studies, we demonstrate its effectiveness for 

both audio and text modalities, even while walking and 

distracted. In the third study of second-language vocabulary 

learning, we show how MemReflex enhanced learner 

accuracy, confidence, and perceptions of control and 

success. Overall, the work suggests new directions for 

mobile microlearning and “micro activities” in general. 

Author Keywords 

Mobile Flashcards; Adaptive Systems; Language Learning 

ACM Classification Keywords 

H.5 Information interfaces and presentation: User Interfaces 

General Terms 

Algorithms; Design; Experimentation; Human Factors 

INTRODUCTION 

The mobile phone is the ideal platform for long-term 

learning, being portable, individual, unobtrusive, available, 

adaptable, persistent, and useful [22]. In particular, mobile 

phones can support microlearning [13] in fragments of free 

time throughout the day. Previous work in HCI has 

examined how flashcards can support mobile microlearning 

of second-language phrases presented in context, 

investigating what material should be studied where [12]. 

However, relatively little attention has been paid to when 

items should be introduced and reviewed based on how the 

learner has performed in past microlearning sessions, 

especially in terms of how this relates to learner motivation. 

 

Figure 1.  Adaptive flashcards. A cue (left) triggers recall of 

target information (right). Adaptive scheduling of cued recall 

tests raises response accuracies towards a goal level, e.g., 90%. 

We believe mobile learning should be context-aware in a 

broad sense – sensitive to learner history as well as the 

immediate cues of time, location, and motion. We also 

believe that both text and audio interaction modalities are 

important to engage learners with different learning styles, 

as well as learners who move between contexts where 

different modalities are most appropriate (for example, it 

might be safer to listen via headphones when navigating 

busy public spaces, but politer to read from the screen in 

social situations where some conversation is anticipated). 

This paper presents a systematic investigation of how 

learner motivation for microlearning using mobile 

flashcards is affected by adaptation to past performances, as 

well as how learner performance “on the move” is affected 

by the selection of interaction modality. The contribution to 

mobile HCI is a demonstration of how adaptive flashcards 

can support text and audio-based mobile learning even 

when walking, and how such adaptation helps drive learner 

motivation both in the moment and over the longer-term. 

We begin with a literature review that motivates system 

features, before illustrating how existing flashcard systems 

do not account for the special characteristics of mobile 

microlearning.  Next, we present the algorithm and 

interface design of our adaptive flashcard system, which we 

call MemReflex. These flashcards present cues from which 

learners attempt to recall the target information, with tests 

scheduled according to a model of the learner’s memory 

(see Figure 1). We end with three user studies that show the 

effectiveness of MemReflex from the immediate to the 

longer-term, using either audio or text modalities, even 

while distracted by the demands of learning on the move.  
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RELATED WORK 

In this section, we survey both the findings of learning 

research and the learning systems that aim to exploit them. 

Although we focus on approaches to learning that can be 

exploited in mobile contexts, our contribution itself is to the 

larger body of work on mobile learning or m-learning
1
. 

Learning Research 

Learning is not a single process, but a hierarchy of 

processes reflecting progressive orders of change [2]. Zero 

order learning is characterized by responses without 

correction; first order learning by correction of errors within 

sets of alternatives; and second order learning by a change 

in the sets of alternatives or the distribution of first order 

learning over time (also known as “learning to learn”).  

Reviewing a physical flashcard is an example of first order 

learning: the front side of the card acts as a cue for the 

target on the reverse. When a learner attempts to recall the 

target given such a cue, the learning style is called cued 

recall and has been studied extensively in the learning 

literature. In contrast, our investigation of how to motivate 

learners to appropriate time for microlearning is a question 

of second order learning that has yet to be fully explored. 

The testing effect 

Much research into learning investigates and exploits the 

testing effect – that tests strengthen memory more than 

extra opportunities to study, even when mental retrieval is 

not accompanied by an outward response. Such test-

directed learning can therefore take place in contexts where 

it is undesirable to produce overt responses, such as in 

public places. Moreover, it has been demonstrated across a 

variety of domains, including the learning of vocabulary in 

native and second languages, face–name associations, 

general facts, text passages, word lists, and even maps [6]. 

Cued recall tests of the form A? have also been shown to 

enhance retention in the opposite direction B?, as well as 

enhancing free recall of all cues (As) and targets (Bs) [7]. 

The spacing effect 

The spacing effect is that when learning a set of items, 

superior retention results from multiple shorter 

presentations than from a single “massed” presentation. The 

time separating different study episodes of the same 

material is known as the inter-study interval or ISI. Studies 

of the spacing effect typically manipulate the ISI of two 

study episodes, and compare their effect on a later test that 

occurs after a fixed retention interval. In a review of 427 

articles on cued recall learning, it was found that the 

optimal ISI increases as the retention interval increases [8]. 

For example, the optimum ISI for a 1-minute retention 

interval was less than 1 minute, whereas for retention 

intervals of 6 months or more it was at least 1 month. The 

implication is that multiple study episodes are needed for 

continuous retention, as shown in Figure 2. 

                                                           

1
 See the m-learning website at http://www.m-learning.org/. 

 

Figure 2.  Adaptive spaced-repetition learning 

The forgetting curve 

The forgetting curve, discovered in 1885 [11], describes the 

inverse exponential nature of forgetting. In the presence of 

repeated, spaced repetitions as described above, the 

strength of a memory is increased, resulting in a more 

gradual process of forgetting. The most sophisticated 

psychological modeling of this process is derived from the 

ACT-R activation-based model of declarative memory, 

with each test of an item introducing a new memory trace 

whose decay rate is a power law function of all traces for 

the item at the time of the test [17]. In this model, the 

higher an item’s activation, the smaller the effect any 

additional tests will have on its long-term retention.  

Overlearning 

Once a learner correctly recalls an item using cued recall, 

any further testing of the same item in the same session is 

described as overlearning. In two experiments and a review 

of the overlearning literature, Rohrer et al. [20] show that 

within a single learning session, doubling the number of 

tests for each item typically more than doubles the 

percentage of correct responses when tested again one week 

later. They suggest that such overlearning is necessary for 

short-term retention in situations such as preparing for an 

exam later in the day or learning foreign language 

vocabulary in advance of planned conversations. However, 

these benefits diminish for longer retention intervals. 

Learning Systems 

Since 1967, the dominant approach to audio language 

learning has been the Pimsleur System [19]. This is a series 

of 30-minute audio lessons in which basic vocabulary and 

phrases are introduced and reviewed in cued-recall fashion 

according to a schedule of graduated interval recall. This is 

a progressive series of exponentially expanding intervals 

(repetitions after 5
1
s = 5 seconds, 5

2
s = 25 seconds, 5

3
s  2 

minutes, 5
4
s  10 minutes) both within and (roughly) across 

lessons. The advantages are that it uses deliberate 

overlearning to breed confidence and support immediate 

language use. The disadvantages of such lessons, however, 

are that repetitions are not scheduled in real-time, there is 

no adaptation to user feedback, lesson-length chunks of free 

time must be available, and ultimately the learner will run 

out of lessons. This latter difficulty is addressed by Gradint 

[14], which allows learners to make their own Pimsleur-like 

recordings using text-to-speech.  



 

Developed at the same time as the Pimsleur system, the 

Leitner System [15] for physical flashcards is also based on 

spaced repetition. Using numbered flashcard piles P1–PN, 

each subsequent pile represents flashcards of both 

increasing memory strength and increasing inter-study 

intervals (e.g., on day D of study, test all flashcards in pile 

PX where D is a multiple of X). Cards are promoted one pile 

if correct or else returned to the first pile for relearning. The 

advantage of this approach is that more difficult items are 

reviewed more often. The disadvantages are that there is no 

support for deciding when to introduce new flashcards into 

the first pile, and that the volumes of flashcards scheduled 

for review can quickly become unmanageable. 

A computer-assisted approach to managing and scheduling 

the review of digital flashcards was popularized by the 

SuperMemo algorithm that targets a fixed retention rate 

[24]. In SuperMemo, the optimum interval IR following a 

repetition R of an item is calculated as the product of IR–1 

and the “optimum factor” for items of that “easiness” at 

repetition R. The table of optimum factors is updated over 

time, in response to achieved recall rates, aiming to 

converge on a long-term recall rate of 95%. Self-assessment 

on a 6-point scale updates the easiness of the current item 

and in the case of a low score, resets the repetition count of 

the item to be relearned. The advantage of adaptive spaced 

repetition in SuperMemo is that it evolves according to the 

learner’s performance over time. The disadvantage is that it 

does not support initial learning, with the first test following 

item introduction not typically occurring for at least 5 days. 

SuperMemo has inspired a whole family of algorithms, 

including the currently popular Anki system [1]. Anki has 

three distinguishing features: cards support multiple 

directions of cued recall between multi-attribute “facts” 

(e.g., the meaning, pronunciation, and appearance of a 

Chinese character); tests are scheduled each day at a fixed 

learner-specified rate; and after being tested on a card the 

learner selects one of four options indicating when they 

want to be tested on it next. These all increase learner load 

in terms of deciding which attributes to test, keeping up 

with scheduled sessions, and judging recall performance.  

Finally, the FaCT system for Fact and Concept Training 

[18] uses the ACT-R cognitive model to predict the best 

item to test at any point in time, introducing new items 

when no existing items are near their optimum point for 

review. This aims to maximize the long-term recall gains of 

each review, rather than to keep the recall likelihood of all 

items above a threshold level. This system also incorporates 

structural models of the domains being studied; e.g., cued 

recall in one direction can have a calculated carryover on 

the probability of recall in the opposite direction. As with 

SuperMemo, however, the primarily visual content leads to 

a distinction between initial “study” trials – massed 

presentations of items to learn – and subsequent “drills” of 

cued recall tests. As such, it takes no account of shorter-

term learner experience or of study for immediate use. 

Summary 

Cued recall learning is a powerful tool for acquiring the 

kind of domain knowledge that is often fundamental for 

participation in higher-level activities (e.g., in the domain 

of second language learning, vocabulary is a prerequisite 

for conversation). Since spaced repetition of cued recall 

tests enhances learner performance, cued recall is an ideal 

candidate for distributed sessions of microlearning. 

Flashcards are the prototypical medium for cued recall, but 

existing systems impose time or structural constraints that 

do not satisfy the demands of mobile microlearning. 

Adaptive systems help, since matching perceived 

challenged to perceived skills can result in a psychological 

state of flow [10,16] as well as enhance learner motivation 

in the moment and over the long-term [3]. However, learner 

adaptation has typically focused on long-term retention 

rather than short-term experience, with little consideration 

for learners struggling to learn new items (e.g., a 

microlearning session could easily be dominated by failed 

attempts to correctly recall new items for the first time). 

A more “micro” form of adaptation is thus required to 

facilitate positive experiences in even the shortest learning 

sessions, without requiring intense visual “memorization” 

of new items. The next section describes how we designed 

a system to support such adaptive mobile microlearning.  

ALGORITHM DESIGN 

The foundation of our algorithm is the exponential intervals 

(5 seconds, 25 seconds, 2 minutes, etc.) of the Pimsleur 

language system because of the uniform emphasis they 

place on short-term overlearning and long-term retention. 

Our first refinement is to incorporate Leitner-style binary 

feedback from the user after a cue has been presented, 

indicating whether the target was recalled correctly or not. 

Such binary feedback is more suitable for lightweight 

mobile input than the more numerous choices used by 

SuperMemo and Anki and the text input used by FaCT.  

Our second refinement, following SuperMemo, is to 

adaptively manipulate inter-test intervals according to 

learner performance, attempting to converge on a goal 

recall success rate of 90% at all stages of retention for any 

given item (as shown in Figure 2). In any session, given 

sufficient learning ability and appropriately spaced prior 

sessions, the learner should therefore be expected to 

correctly recall 90% of the items tested. This adaptive 

matching of challenges to demonstrated skills should help 

facilitate the short-term experience of flow. The corollary 

of this for longer-term motivation is that whenever the 

learner needs to, they should also be able to correctly recall 

and use 90% of all items they have ever studied. 

Our third refinement, as in the FaCT system, is to identify 

opportune moments to introduce new items when there are 

no other items due for review. In our algorithm, such 

moments occur when there are no items with less than a 

90% chance of being remembered at that point in time, 

according to our model of the learner’s memory. 



 

Our hypothesis is that this design will be successful at 

motivating learners through high recall accuracies whatever 

the learning modality, even when mobile microlearning. 

Adaptive Spaced Repetition Algorithm 

Our algorithm models a learner’s knowledge of a set of 

items represented as cue-target pairs. For each item, a 

learnedness value l reflects the algorithm’s estimate of the 

strength of the association of the cue-target pair at the time 

immediately following the learner’s last response. 

Exponentially-expanding inter-study intervals 

The inter-study interval    is calculated based on   : 

     
    

When the next item is required, the algorithm selects the 

most overdue item according to the ratio of actual time 

elapsed to ideal inter-study interval. If no items are due, a 

new item is introduced from a queue of items to learn. 

For correct responses, l is incremented by a base increase 

value b. In our algorithm, we initially set b to 0.1 to 

replicate the Pimsleur intervals of 5s, 25s, 125s, etc. For 

incorrect responses, l is reset to this initial value of 0.1. 

The human forgetting curve [11] models retention as:  

 (      )    
 
 ⁄  

where t is the time that has elapsed since the last 

presentation of the item and s is the strength of the learner’s 

memory for that item directly following its presentation. 

We can rewrite this equation to represent memory strength 

as a fixed scaling of the inter-study interval    as follows: 

 (      )   
 

 
      (    )     

 
   

The scale factor was chosen such that when items are tested 

on time (    ), they have a 90% probability of success. 

Substituting another base in the final expression above 

adjusts the goal success rate (e.g., 0.95 would target 95%).  

Adapting inter-study intervals to reach goal accuracies 

The algorithm adjusts base increase values according to a 

learner’s history across all items of similar learnedness. 

First, responses are grouped into buckets of size 0.1 based 

on their item’s learnedness, each with their own base 

increase value. After a response to an item in a particular 

bucket, we compare the actual proportion of correct 

responses in that bucket to the goal proportion of 90%. If 

the correct responses for a bucket fall below this goal, it 

means the last increases in learnedness for items in that 

bucket were too large, resulting in excess forgetting. 

Conversely, a proportion of correct responses above this 

goal indicates that the last increases in learnedness were too 

small, resulting in insufficient forgetting and over-practice. 

To adapt to the learner’s history following a response to an 

item, we therefore update the base increase value of the 

item’s previous bucket in the direction and degree that 

would, in retrospect, have resulted in the 90% goal 

accuracy if it had been used after the last response. 

To safeguard against inappropriate adaption in various 

instances, we set the following requirements for adaptation: 

1. The item must have had at least a 60% recall probability 

(to adapt to forgetting, not delays between sessions). 

2. The item’s bucket must contain at least five responses 

(to provide a solid initial basis for adaptation). 

3. The base increase value b of a bucket is confined by 

flexible bounds within the range [0, 0.2] (to avoid over-

adjustment of b in the case of unusual response history).  

Such stratified adjustments do not account for variations in 

item difficulty. We therefore added two refinements: first, 

“hard” items that have received multiple incorrect 

responses appear more frequently; second, “easy” items 

recalled many times before an error quickly return to their 

prior level if subsequent recall attempts are successful.  

Simulations 

We ran several stochastic discrete-event simulations of our 

learning algorithm. Results indicated that learning 

efficiency would increase with more and longer sessions, 

but with minimal gains after 40 repetitions per session or 4 

sessions per day.  Given a fixed number of daily repetitions, 

efficiency was highest when they were broken up into 

multiple sessions, supporting the strategy of microlearning. 

MEMREFLEX FLASHCARDS 

The interface design of our MemReflex mobile application 

communicates the underlying memory modeling of our 

novel adaptive algorithm. Figure 1 illustrates the primary 

interaction mechanic using second-language vocabulary 

taken from our third study: the learner attempts to recall the 

Chinese translation of “friend” before pressing “check” 

(left); On seeing and hearing the correct answer of “péng 

you”, the learner indicates whether they were correct, 

incorrect, or would like to replay the audio pronunciation 

(right). They also see several key pieces of feedback: 

1. The number of items due for review now, or else a 

countdown of when the next item will become due. 

2. The learner’s response history for the current item. 

3. The estimated chance of the learner correctly recalling 

the current item, calculated from a memory model. 

4. The estimated number of items that will be remembered 

in a minute, hour, day, week, month, and year. 

This feedback, which updates in real-time, helps the learner 

understand how past interactions have helped to build up 

his or her memory and how this will be retained into the 

future. As they study, learners can see their knowledge 

shifting from shorter- to longer-term memory. When they 

are not studying, however, the same feedback shows the 

extent of forgetting that is expected to have occurred. Every 

20 flashcard repetitions, the learner sees summary statistics 

of both that “microlearning” session and overall. 

EVALUATION 

In this section, we describe how we systematically broke 

down and validated the concept of adaptive flashcards for 

mobile microlearning. Our research questions were: 



 

1. Do short, sparse microlearning sessions result in 

retention beyond the sessions themselves? 

2. How does fixed progression, Pimsleur-like learning 

compare to adaptive learning? 

3. Are both screen-text and eyes-free audio appropriate 

interaction modalities for mobile microlearning? 

4. Does adaptive microlearning create new opportunities 

for short-term mobile learning, such as while walking? 

5. How does mobile microlearning support motivation in 

the longer-term, e.g., for second language learning? 

We addressed these five research questions with three user 

studies tackling questions 1–3, 3–4, and 1–5 respectively. 

In the first two studies, we use dates and ages as learning 

material to support controlled testing of precision recall for 

facts that are interesting but previously unknown. Since 

numbers are typically difficult to remember, reported 

results are potentially lower than what might be expected in 

non-numeric domains. In the third and final study we 

evaluate real use of the system for language learning. 

Participants were recruited from international visitors to our 

lab as well as the local expatriate community. Backgrounds 

included engineering, design, teaching, PR, and admin.  

All statistical analysis was conducted at significance level p 

< 0.05, with the Bonferroni correction applied to planned 

post-hoc comparisons. For clarity, we present results using 

the notation sample-mean units (standard-deviation) and 

show standard error bars on charts highlighting results. We 

also predefine the common measures used across studies: 

1. Items Introduced. The total number of new items 

introduced to the learner by the learning algorithm. 

2. Repetition Accuracy. The percentage of correct 

responses given by the learner during system use. 

3. Items Retained. The total number of items correctly 

recalled on the post-test following system use. 

4. Retention Accuracy. The percentage of items introduced 

during system use correctly recalled on the post-test. 

STUDY 1: NON-MOBILE AUDIO MICROLEARNING 

Our first study tested two hypotheses:  that a generalization 

of the audio-only Pimsleur system could work for audio 

learning beyond second languages and that our adaptive 

algorithm could successfully adjust the spacing between 

repetitions to raise the accuracy of a learner’s responses. 

For this initial study, we used a desktop rather than a 

mobile system so we could focus on algorithm performance 

and reduce variation due to differences in learning context.  

Study Design 

We recruited 14 participants (4 females) with a mean age of 

25 for our study. Participants used a desktop application on 

Windows 7 to learn the years of inventions of technologies 

through audio-only cued recall. Sounds were synthesized 

using text-to-speech and on hearing the target, participants 

clicked a button indicating whether they had recalled it 

correctly. A replay button repeated the last sound. 

Each participant used three algorithms but did not know 

multiple algorithms were being tested. The mapping of data 

to algorithm across users and algorithm order across users 

and sessions were counterbalanced. The algorithms were: 

1. Progressive. Used a fixed progression of exponentially 

increasing intervals as in the Pimsleur system. 

2. Responsive. As progressive, but with item relearning on 

incorrect responses (returning to the first interval). 

3. Adaptive. Used adaptive intervals as described 

previously to raise success rates towards 90%. 

Participants completed one session per weekday, resulting 

in 9 sessions over 11 days. Each took about 10 minutes and 

comprised 60 repetitions. We scheduled only 20 repetitions 

(around 2 or 3 minutes) per algorithm per day to induce the 

kind of forgetting and relearning that might be expected in 

real use. One week after the final session, participants were 

each given a post-test of all items introduced to them. 

Results 

Results are shown in Figure 3. We ran one-way repeated-

measures ANOVA analyses over the factor of Algorithm 

(with Progressive, Responsive, and Adaptive levels) for the 

dependent measures of Items Introduced, Repetition 

Accuracy, Items Retained, and Retention Accuracy. 

 

Figure 3.  Main Results of Study 1 

There were significant differences (F2,26 = 91.8, p < 0.001) 

in the numbers of Items Introduced, with means of 20 (0), 

11.9 (3.2), and 9.4 (2.7) for the Progressive, Responsive 

and Adaptive algorithms respectively. There were also 

significant differences in Repetition Accuracy (F2,26 = 38.0, 

p < 0.001) with means of 45.7% (15.4), 59.0% (13.0) and 

70.0% (7.9) for the Progressive, Responsive and Adaptive 

algorithms. In both cases, post-hoc tests showed pairwise 

differences between all three algorithms. 

In the post-test 1-week after system use had ended, there 

were no significant differences in Items Retained with 

means of 4.8 (4.2), 4.5 (3.3) and 4.2 (3.0) for the 

Progressive, Responsive and Adaptive algorithms. There 

was a significant difference in Retention Accuracy (F2,26 = 

4.61, p < 0.05), with means of 23.9% (20.9), 35.9% (20.9) 

and 40.9% (23.9). Post-hoc comparisons showed an 

advantage of Adaptive over Progressive. 

Discussion 

This first study validated our generalization of Pimsleur-

like audio learning to other domains. It also demonstrated 
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the ability of an Adaptive system to raise recall success 

rates beyond those resulting from fixed progression along a 

series of expanding intervals (Progressive) or progression 

with relearning (Responsive). Although there was no 

significant difference between algorithms for the number of 

items recalled after the one-week retention interval, the fact 

that participants could precisely recall facts studied using 

all methods shows clear potential for the strategy of 

microlearning even when sessions are sparse. 

STUDY 2: MOBILE LEARNING IN MOTION 

An important faculty of mobile devices is their ability to 

support interaction “on the move” [23], and many 

opportunities for microlearning are likely to occur while the 

learner is walking. However, previous studies in mobile 

HCI have shown the negative effects of walking on visual 

selection and reading performance [21]. The trade-off 

between walking speed and interaction performance has 

also been investigated, with the finding that visual target 

acquisition plateaus at 40–80% of the user’s preferred 

walking speed [4]. As an alternative to visual feedback, 

audio feedback while walking has been shown to result in 

higher interaction accuracy as well as lower mental and 

physical demands [23]. However, no prior work has 

investigated the effects of motion and modality on the 

effectiveness of mobile learning, rather than selection.  

In this second study, we tested hypotheses about mobile 

microlearning with adaptive flashcards: that they can 

support high recall accuracy in both text and audio 

modalities, even while the learner is walking and distracted. 

Study Design 

We recruited 12 participants (5 females) with a mean age of 

28 for our study. Participants used a Windows Phone 7 

mobile application on an HTC HD7 to learn animal 

lifespans through either audio-only or text-only cued recall, 

with audio recordings provided by a native English speaker. 

Data were divided into two sets balanced for complexity 

and paired with interaction modalities for each user. These 

pairings and the order of modalities between participants 

were counterbalanced. The two modalities were: 

1. Audio. Participants hear audio cues and targets though 

headphones but see no item text on the screen. 

2. Text. Participants see text cues and targets on the phone 

screen but hear no item audio. 

The Adaptive algorithm from the first study was used for 

both because of its confirmed ability to control the rate of 

introduction of new items according to demonstrated 

learner performance. To support eyes-free interaction using 

audio, we implemented a button-free, gestural interaction 

style: tap to play the target of a cue, flick left if the learner 

could not recall or incorrectly recalled the target, flick right 

if the learner recalled the target correctly, and flick down to 

replay the last sound heard. For consistency, the same 

method was also used for text-only interaction. 

The study began with a guided walk of an approximately 

280 meter lap around an office floor, pointing out the 65 

desk and room nameplates that are used in the experiment. 

This was followed by an introduction to learning through 

cued recall, using invention dates from the first study. 

The first Continuous task for each interaction modality was 

to use it for 5 minutes of learning while walking in a 15m 

length figure-of-eight path around two pairs of adjacent 

chairs (a standard setup for interaction-while-walking tasks, 

e.g., as in [23]). Participants were instructed to focus on 

learning continuously, walking as fast as this would allow. 

The second Interrupted task for each interaction modality 

was 5 minutes of learning while walking 280m laps around 

an office floor, performing the dual task of checking 

nameplates for a glanceable but unfamiliar property 

(colored dots attached to nameplates). By replicating the 

kind of cognitive load that might be experienced in a highly 

distracting environment, we could examine how this 

influenced interaction strategies and learning outcomes 

across the two modalities. Ten colored dots were added to 

randomly spaced nameplates, alternating between blue and 

green. Participants were instructed to check as many 

nameplates as possible in 5 minutes, always pointing out 

dots of a particular color and learning as continuously as 

this would allow. Colors were assigned randomly and 

switched for the second interaction modality. Each modality 

condition began with the learner training to proficiency in 

that modality. The first task, second task, and post-test then 

followed, each separated by a two-minute break. 

Results 

We ran repeated measures ANOVA analyses over the two 

factors of Modality (Audio and Text) and Task (Continuous 

and Interrupted) for each of the dependent measures Items 

Introduced, Repetition Accuracy, Mean Repetition 

Duration, and Walking Speed. Mean Repetition Duration 

was calculated by dividing the task time by the total number 

of repetitions, and Walking Speed by dividing the total 

distance travelled by the task time. We also used paired, 

two-tailed t-tests to compare the number of Items Retained 

and the Retention Accuracy as measured in the post-tests. 

There were significant main effects of Task for all 

dependent measures. From the Continuous task to the 

Interrupted task, this represents fewer Items Introduced 

with F1,44 = 145, p < 0.001 from means of 10.8 (2.7) and 3.3 

(1.5), longer Mean Repetition Durations with F1,44 = 15.9, p 

< 0.001 from means of 5.8s (2.1) and 8.5s (2.7), lower 

Repetition Accuracy with F1,44 = 13.3, p < 0.001 from 

means of 81.2% (9.2) and 70.5%  (12.0), and slower 

Walking Speed with F1,44 = 15.2, p < 0.001 from means of 

4.41km/h (0.64) and 3.82km/h (0.55). 

For Items Introduced, there were no significant main effects 

for Modality or any interaction effects. For Mean Repetition 

Durations, there was a significant main effect for Modality 

with longer repetitions for Audio than Text, with F1,44 = 



 

4.20, p < 0.05 from means of 7.8s (2.3) and 6.4s (3.0), but 

no interaction effect. For Repetition Accuracy, there was no 

significant main effect for Modality but there was a 

significant interaction effect (F1,44 = 4.64, p < 0.05). Post-

hoc tests revealed that Continuous Audio learning with 

mean 86.3% (5.2) had significantly higher accuracy levels 

than Continuous Text learning with mean 76.2% (9.7), 

Interrupted Audio learning with mean 69.2% (14.7), and 

Interrupted Text learning with a mean of 71.8% (9.0). There 

was a significant main effect of Modality for Walking 

Speed, with Audio faster than Text (F1, 44 = 14.3, p < 0.001) 

from means of 4.40km/h (0.66) and 3.83km/h (0.55). These 

results best highlight the characteristics of mobile 

microlearning across modalities and are shown in Figure 4. 

 

Figure 4.  Main Results of Study 2 

There was no significant difference in the Items Retained or 

the Retention Accuracy on the Audio and Text post-tests, 

with Items Retained means of 11.6 (3.7) and 11.7 (3.1) and 

Retention Accuracy means of 83.8% (19.4) and 83.6% 

(12.3). These accuracies represent the small amounts of 

forgetting below the 90% goal that would be expected 

during the 2-minute delay that preceded the post-tests. 

Discussion 

This second study demonstrated a substantial effect of 

interaction modality on the walking speeds of mobile 

learners, with eyes-free audio learning increasing walking 

speeds by 15% over text-based learning. The implication is 

that audiogestural interaction creates new opportunities for 

mobile learning while walking when compared with visual 

flashcard interaction, which typically requires many more 

repetitions for the same overall level of retention. This is 

supported by the fact that in our Continuous walking task, 

the mean walking speed with audio learning was as high as 

88% of the benchmark 5km/h adult walking speed even 

while maintaining a mean repetition accuracy level of 86% 

(compared to 73% and 76% with text-based learning).  

In the presence of visual distractions, audio learning 

maintains its advantage in terms of walking speed but loses 

its accuracy advantage since it becomes more difficult to 

regain audio context (by issuing a command to repeat the 

last sound) than text context (by glancing at the phone). 

Given that the need to pay visual attention to the 

environment is typically greater and more persistent than 

the need to listen, our Interrupted task was more 

representative of mobile navigation “in the wild”. However, 

there is a relatively greater drop in Repetition Accuracy for 

Audio than for Text when moving from Continuous to 

Interrupted tasks (Figure 4), indicating a crossover point at 

which competing stimuli result in too much cognitive 

interference for productive audio learning. The conclusion 

is that we should allow real-time switching between 

modalities according to contextual demands. 

Overall, the high levels of repetition and retention accuracy 

across both modalities in this second study suggest that 

adaptive flashcards can support short-term learning using 

either text or audio, even while attending to the demands of 

real-world navigation. Even in these sub-optimal learning 

conditions, especially when using audio-only in the absence 

of visual distractions, several participants remarked that 

they “got in the zone”. Understanding how similar 

microlearning experiences can sustain motivation in long-

term, high-value activities such as language learning is the 

question we address with the third and final user study. 

STUDY 3: SELF-DIRECTED LANGUAGE LEARNING 

Our third study tested hypotheses regarding longer-term, 

learner-directed system use for second language vocabulary 

learning: that adaptive flashcards can support high recall 

accuracy in this more challenging context; that such high 

accuracies are motivating; and that mobile microlearning is 

an effective strategy for second language learning. 

Study Design 

We recruited 12 Mandarin Chinese learners (3 females) 

with a mean age of 28 from our local expatriate community 

to participate in a 3-week long user study. Participants used 

a mobile application on an HTC HC7 Windows Phone 7 to 

learn Chinese words mined from the Web.  

The vocabulary data were taken from the top 2000 two-

character Chinese words online, divided into two sets 

balanced for frequency. To assess the value of adapting to 

learners’ memories in ways that facilitate high recall 

accuracies, we compared the Progressive and Adaptive 

algorithms from study one. To support learner speech and 

exploit the fast flipping of text flashcards observed in study 

two, we used text flashcards with English definition cues 

and Chinese translation targets. To exploit focused attention 

to audio flashcards, we also played the pronunciation of 

Chinese words automatically when they appeared, as well 

as any time the learner pressed a button to replay the word. 

Learners alternate between Progressive and Adaptive every 

20 repetitions, which do not include the display of flashcard 

candidates whenever there are no items due. In such cases, 

the next most frequent word in the current set is presented 

as both definition and translation. The learner then chooses 

one of three options: to learn the word using the current 

algorithm, to indicate that they already know the word, or to 

skip the word if it is unappealing. At the end of each session 

of 20 repetitions, learners see a feedback screen of session 

statistics as well as overall statistics for both algorithms 

(simply called “A” and “B”). These are the statistics of 
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Items Introduced, Test Repetitions, and Repetition 

Accuracy. On this screen, learners give a subjective Session 

Rating of how the session felt on a scale of 1 (bad) to 5 

(great). The mapping of dataset to algorithm and algorithm 

order were both counterbalanced across participants. 

The Progressive and Adaptive interfaces shared the same 

basic elements: the session repetition count (out of 20), the 

number of items due or the time until an item will become 

due; the English definition cue and Chinese translation 

target; the item history as “X% of previous Y answers 

correct”; and the check, correct, incorrect, and replay 

buttons. The Adaptive interface (Figure 1) added two extra 

elements: an “X% chance of remembering now” estimate 

from the learner model and visualized estimates of how 

many words the learner should remember for how long. 

Participants were free to use the flashcards as much or as 

little as they desired. We recommended that they complete 

at least one “A” and “B” session each weekday, or 300 

repetitions per test in total, but compensation (a small gift) 

did not depend on this. A post-test of all items introduced 

and a semi-structured interview completed the study. 

Results 

Detailed results from study 3 are shown in Table 1. We ran 

two-tailed paired-sample t-tests between Progressive and 

Adaptive methods for the dependent measures of Items 

Introduced, Repetition Accuracy, Items Retained, Retention 

Accuracy, and Mean Session Rating. 

User 

ID 

Reps./ 

method 

Progressive method Adaptive method 

II RA

% 

IR IR% MSR II RA

% 

IR IR% MSR 

P1 740 98 23 30 31 1.8 30 71 28 93 3.9 

P2 640 95 14 11 12 1.1 19 64 17 89 3.1 

P3 540 87 46 29 33 3.1 31 75 27 87 3.8 

P4 520 75 53 41 55 3.0 22 78 21 95 3.7 

P5 480 76 34 32 42 1.8 22 68 21 95 3.9 

P6 400 70 42 20 29 2.3 13 63 9 69 3.3 

P7 340 45 7 3 7 1.2 5 24 4 80 2.7 

P8 320 53 13 8 15 1.9 9 58 6 67 2.7 

P9 300 55 66 35 64 4.0 23 84 19 83 3.9 

P10 260 49 29 11 22 2.0 17 68 16 94 3.7 

P11 220 45 43 22 49 1.8 18 74 16 89 3.9 

P12 160 32 27 13 41 2.6 7 44 7 100 2.4 

mean 

(sd) 

410 

(176) 

65 

(22) 

33 

(18) 

21 

(12) 

32 

(17) 

2.2 

(0.8) 

18   

(8) 

64 

(16) 

16   

(8) 

87 

(10) 

3.4 

(0.6) 

Table 1.  Detailed Results of Study 3. II = Items Introduced; 

RA% = Repetition Accuracy; IR = Items Retained; IR% = 

Retention Accuracy; MSR = Mean Session Rating (1– 5)  

From Progressive to Adaptive, there were significant 

differences in Items Introduced (t11 = 10.0, p < 0.001) from 

means of 65.0 (21.6) and 18.0 (8.4); Repetition Accuracy 

(t11 = 8.9, p < 0.001) from means of 33.1% (17.7) and 

64.3% (16.3); Retention Accuracy (t11 = 11.5, p < 0.001) 

from means of 32.4% (17.1) and 86.9% (10.5); and Mean 

Session Rating (t11 = 4.9, p < 0.001) from means of 2.22 

(0.84) and 3.42 (0.56). For Items Retained, there was almost 

a significant difference (t11 = 2.2, p = 0.054), with means of 

20.9 (12.1) for Progressive and 15.9 (8.0) for Adaptive. 

To summarize, the Adaptive method doubled learners’ 

repetition accuracy over one quarter as many introduced 

items, improving the learner experience of each session. In 

addition, whereas Repetition Accuracy predicts Retention 

Accuracy for Progressive (means of 33% and 32%), for 

Adaptive this number increases from 64% to 87%. This 

again indicates stronger, more selective learning with 

Adaptive. All participants also preferred Adaptive and all 

but one (who would rather manage their own rote approach) 

would continue to use it for their second language learning. 

To gain an insight into the possible long-term experience of 

using both methods, we plotted learners’ session accuracies 

over time. Representative results are shown in Figure 5 

(only the four heaviest users are shown for clarity).  

 

Figure 5. Accuracy over multiple sessions of 20 repetitions 

Overall, Adaptive succeeds in raising session accuracy 

levels and holding them high over time. As we shall see in 

the next section, adapting to abilities, memories, and study 

schedules is critical in facilitating successful flashcard 

sessions and for maintaining language learning motivation.   

Discussion 

In the post-study interview, participants were asked to 

compare the Progressive and Adaptive methods in terms of 

learning experience in the moment and how this relates to 

their motivation. Participants were also asked to provide 

feedback on the “mobile microlearning” strategy. We frame 

our discussion around the themes that arose from these 

interviews and which provide implications for the future 

design of such flashcard-based learning systems. 

Accuracy motivates by creating a sense of success 

Participants widely associated session accuracies with 

feelings of success. The high accuracies of Adaptive 

sessions were described as creating “the feeling of doing 

something right” [P6], while positive feedback from session 

percentages amplified the “rewarding” feel of the 

experience itself, encouraging learners to “invest more 

time” [P1]. The additional statistics of Adaptive were also 

appreciated, with the probability of a correct answer 

“pushing” learners to try harder [P5] and the display of 
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“how things will stay with you in the long term” motivating 

learners in the moment [P1]. However, lower accuracies 

with Progressive, especially from many successive failures, 

led leaners to feel like they “don't know anything” [P3]. 

Repeating difficult items creates a feeling of control 

The predictable approach to item relearning in the Adaptive 

approach gave learners a “reason” to try and remember 

because they understood items would “come back again 

soon” [P3]. The expectation of coming success encouraged 

learners to keep items “in the background” of their mind 

and consequently feel “in control” [P5]. This helped 

learners “remember more difficult words more easily” [P4]. 

In contrast, Progressive was like “seeing items and then 

discarding them” [P5], or even feeling “flooded” [P6]. 

New items should feel deserved, not forced 

One common complaint with Progressive was that new 

items would be added before existing items had been 

learned, leading to feelings of reaching a “tipping point” 

and ultimately ending up “in a hole” with too many items 

[P8]. In contrast, the Adaptive method gave learners the 

ability to “hold on” to items until they could remember 

them [P7], giving learners “the right to move on” [P9]. The 

expectation of “absolutely going to remember” all Adaptive 

items was so powerful it made them feel “precious” [P1]. 

Encourage learning well, not learning more 

Most participants (8/11) retained more items with 

Progressive than Adaptive, yet all preferred Adaptive. 

Learners thought that choosing “just a few words” that they 

“really want to learn” helped them to learn better [P7], and 

that “knowing everything really well is so much more 

important” than the total items learned [P5]. Adaptive 

helped learners to feel “secure and confident” in the items 

they knew since they had been “ingrained” [P1]. In 

contrast, one learner suggested it was just the “volume of 

words” that meant they learnt more with the “unpleasant” 

Progressive method [P6], while another described how the 

possibility of learning less than half of the taught words 

made it feel “random” and “not very goal-oriented” [P4]. 

Facilitate self-paced training of fast, automatic recall 

In comparison with Adaptive, the Progressive method often 

felt slower, “like it went on forever” [P1]. It also felt more 

difficult and “forced” [P9] compared to the “easier way” 

[P4]. In contrast, Adaptive was “a lot more satisfying” 

because it supported learning at “the right speed” [P3] and 

resulted in “instant” recall [P5]. For one learner whose prior 

experience of language learning was to take “one or two 

minutes” trying to remember each word from a list, the 

Adaptive method helped him to “answer quickly” even 

though he “thought nothing”, indicating automaticity of 

recall that is “especially helpful for daily life” [P10]. 

Support flexible learning that can fill any time available 

Participants appreciated the “flexible” and “modular” 

nature of mobile microlearning that could fit into their life, 

preferring it to the “30 minute lessons” of Pimsleur and 

Rosetta Stone [P3]. Mobile microlearning helped learners 

to make “good use of time” in situations like walking, 

shopping, or taking a bus [P4], as well as in “coffee breaks” 

with “5 minutes to spare” [P2]. One learner remarked that 

by adding new cards every day, Progressive felt like “what 

other applications already do”, which was why he stopped 

using those applications [P9]. Another learner gave the 

example of Anki as being “so painful” for the same reason: 

“if you don’t study every day, you will never recover” [P3]. 

Summary 

The main finding of study three is that by adapting to the 

learner’s patterns of responses over time, we can 

significantly raise recall accuracies compared with 

graduated interval recall based on the Pimsleur intervals. 

These higher accuracies were found to enhance learner 

control, confidence, and perception of success. 

OVERALL DISCUSSION 

The overarching message is that microlearning can work 

across interaction modalities, when mobile and on the 

move, in ways that enhance learner motivation. The caveat 

is that small differences in the design of microlearning 

systems can preclude flexible switching between modalities 

(e.g., by requiring extended periods of visual attention) as 

well as negatively impact the learner experience when the 

focus is on the quantity, not the quality, of learning. 

Designing for “Micro Activities” 

The implications of this work can be expressed as a set of 

six design considerations for when transforming a user 

activity, such as learning, to be more “micro” in nature: 

1. Fixed  Mobile. Support modality switching because 

user-context changes more frequently and unexpectedly. 

2. Structured  Streamed. Blend sub-activities (e.g., 

studying, testing) because sessions can end at any time. 

3. Units  Bursts. Deliver success quickly because early 

experiences motivate further and future use. 

4. Scripted  Adaptive. Let user data drive content 

delivery, because users and usage develop over time. 

5. Quantity  Quality. Give users control over the pace of 

progression, because needs vary over time and users. 

6. Scoring  Modeling. Offer time-based ability estimates, 

because scores do not convey the effects of inaction. 

Limitations and Future Directions 

Neither flashcards nor microlearning are tools to be used in 

isolation. Future work is required to connect this 

fundamentally behaviorist approach to more situated, 

constructivist, and collaborative pedagogical methods.  

For short-term learning, a promising direction for language 

learning is the explicit preparation of learners for upcoming 

conversations with native speakers. A similar approach to 

preparation could also support the rehearsal of material to 

be delivered in any kind of public speaking or presentation.  

For longer-term learning, adaptive flashcards could be used 

to help people remember all of the interesting things they 

read online or in eBooks, using some kind of “clipping” 

functionality to capture content worthy of retention.  



 

Expanding beyond the individual learner, we would like to 

derive large-scale insights from aggregate use of our 

adaptive learning algorithm, both in terms of parameters 

and content. We have already taken our first step in this 

direction, by incorporating our adaptive flashcard algorithm 

into a desktop application for language lookup and adaptive 

flashcard microlearning [5]. There are currently over 

100,000 English as Second Language (ESL) learners using 

this application each day, and we will continue to evolve 

our system as we learn about its use in practice. 

CONCLUSION 

We began this paper by highlighting the opportunity for 

mobile microlearning, before introducing theories, studies, 

and systems based on cued recall, which we used to 

motivate the design of our MemReflex adaptive flashcards. 

Our evaluation was then set around five research questions. 

The first question addressed the effectiveness of 

microlearning as a strategy. In both study one and study 

three, the items retained in each method suggests that this 

strategy is a worthwhile addition to a learner’s repertoire. 

The second question targeted the relative benefit of 

adaptive learning over learning with a fixed progression, 

and in this case the higher repetition accuracies for the 

adaptive approach in both study one and study three 

suggests that adaptation makes a substantial difference. 

The third question investigated the appropriateness of audio 

and text as interaction modalities for flashcards. Study one 

made an initial contribution by demonstrating the 

effectiveness of audio flashcard learning, while study two 

built on this by showing equivalent retention for audio-only 

and text-only flashcards in mobile learning while walking. 

The fourth question built on the third by seeking evidence 

for new mobile learning opportunities opened up by the 

flexible nature of adaptive flashcards. The quantitative 

results of study two and the usage pattern descriptions from 

study three provide compelling evidence in support of this. 

The fifth and final question about the longer-term 

motivational effects of mobile microlearning was tackled 

solely by study three, which conclusively established the 

relationship between recall accuracy and learner 

satisfaction. By matching learning challenges to 

demonstrated learner skills, our adaptive flashcards were 

strongly preferred to a fixed progression modeled on the 

popular Pimsleur method.  

We have only just begun to explore how technology can 

mediate and connect all forms of learning – from the micro 

to the macro, the mobile to the ubiquitous, and the personal 

to the social – but this paper demonstrates how mobile HCI 

can successfully transform a challenging activity into 

something more mobile, micro, and motivational in nature. 
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