
Graceful Degradation Via Versions:
Specifications and Implementations

Lidong Zhou, Vijayan Prabhakaran, Venugopalan Ramasubramanian,
Roy Levin, and Chandramohan A. Thekkath

Microsoft Research Silicon Valley
Mountain View, CA, USA

{lidongz,vijayanp,rama,roylevin,thekkath}@microsoft.com

ABSTRACT
Correctness of a fault-tolerant system hinges on the failure
model, which typically constrains the number of concurrent
failures in the system. These assumptions are sometimes
violated in practice, inevitably leading to degraded system
behavior that deviates from the system’s specification and
even causing complete unavailability of the system.

This paper advocates the notion of graceful degradation
as a complementary mechanism to fault tolerance in the
design of highly available distributed systems. It provides
three specifications for meaningful system behavior under
degradation. The different specifications capture different
tradeoffs between the gracefulness of degradation and the
semantics preserved by a degraded view. The paper further
demonstrates the practical relevance of the specifications by
presenting three designs of versioned distributed storage sys-
tems that implement the specifications.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault-tolerance;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems

General Terms
Design, Reliability

Keywords
graceful degradation, fault tolerance, version, linearizability

1. INTRODUCTION
Fault tolerant systems are traditionally designed to oper-

ate correctly under a limited failure model. They guarantee
correct system behavior as long as the number and type of
failures are within the assumed limits. However, when the
assumptions are violated, a fault-tolerant system either sim-
ply stops functioning or operates incorrectly. For example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

replicated storage systems often maintain a small number of
replicas of each data item in order to tolerate failures, but
risk data loss if the number of failures exceeds the antici-
pated threshold.

It might seem that one could reduce the probability of
such violations by increasing the level of redundancies in
the system. Unfortunately, unanticipated and correlated
failures do occur in practice. For example, subtle software
bugs might get triggered at nodes running the same imple-
mentation of the software [5], a manufacturing defect might
affect a large batch of devices such as disks, and a network
or power outage might take down a large number of nodes.
Tolerating such large-scale failures through over replication
is impractical due to the prohibitively high cost it incurs in
terms of not only storage and I/O resources, but also high
complexity in performing consistent updates.

This paper advocates the notion of graceful degradation
for system behavior under excessive, unanticipated failures.
Although any system can claim to degrade gracefully by
just not shutting itself off completely when facing excessive
failures, it is crucial that the system continues to provide
meaningful behavior in its degraded states.

A key contribution of this paper is to provide a series of
specifications that define different notions of “correct” be-
havior in the degraded mode. These specifications apply
to general systems modeled as deterministic state machines,
rather than to systems with specific application semantics;
they are natural extensions to the well-known notion of lin-
earizability [6]. The specifications offer meaningful degrada-
tion semantics to clients, so that the clients can make use
of the system even when it is degraded. Moreover, they de-
fine a measure of gracefulness, which quantifies the extent
of degradation in the system.

The paper discusses the practical significance of these
specifications in the context of a degradable versioned dis-
tributed storage system. It presents a set of system designs
for implementing the specifications of degraded behavior in
a versioned distributed storage system and proves that the
designs meet the specifications. The semantics provided by
these degradable systems have important practical implica-
tions and reveal an interesting tradeoff between gracefulness
of degradation and usefulness of the semantics.

This paper is organized as follows. Section 2 defines the
three specifications of degraded behavior, while Section 3
applies these specifications to a versioned distributed storage
system. Further discussions on graceful degradation appear
in Section 4. The paper surveys the related work in Section 5
and concludes in Section 6.

2. GRACEFUL DEGRADATION:
SPECIFICATIONS

Deterministic state machines are a well-known approach
for modeling the semantics of a system. In a state machine
model, the system starts with an initial state s0, processes a
sequence of commands serially, produces a response to each
command, and transitions to a new state if the command
demands it. We call the commands that cause state transi-
tions updates and the commands that do not queries. The
system state consists of a set of objects. Each command
c reads a set of objects, denoted as its read set c.rs , and
updates a set of objects, denoted as its write set c.ws .

Clients issue commands and might do so concurrently. We
assume that the system’s execution of commands is serial-
izable [6, 12, 16]. For an execution E consisting of a set C

of commands, a total order ≺ on commands in C defines
a serialization Es, which represents a serial execution of all
commands in C in the total order. A serialization Es of E is
valid if and only of Es and E lead to identical final states and
each command c ∈ C reads the same values and produces
the same response in the two executions. We use a sequence
of commands (c1, c2, . . . , cn) to represent an execution that
processes c1, c2, . . . , cn serially in this order.

Linearizability imposes an additional real-time ordering
constraint. For an execution E consisting of a set of com-
mands C, a valid linearization of E is a valid serialization of
E with a total order ≺ that satisfies the following property:
if a command c1 ∈ C completes before another command
c2 ∈ C starts in E , then c1 ≺ c2 holds.

In this paper, we focus on systems that achieve lineariz-
ability when non-degraded. Consequently, each execution
E has a valid linearization El that defines an equivalent
serial execution. We therefore use El to represent E for
convenience. For example, (c1, c2, . . . , cn) describes an ex-
ecution that has a valid linearization with a total order
c1 ≺ c2 ≺ . . . ≺ cn. We further use M(c1, c2, . . . , ci) to
denote the state of the system implementing state machine
M after executing c1, c2, . . . , ci serially. As a special case,
for an empty sequence, M(φ) = s0, the initial state of the
system.

Given an execution E = (c1, c2, . . . , cn) starting with an
initial state s0 and resulting in a state sn, any command
issued to the system after the completion of E will be exe-
cuted on state sn. However, under excessive failures, the lat-
est values of the objects required by a command might not
be available, and traditional fault tolerant systems would
simply fail the command.

Rather than having the system fail the command, we
propose a notion of graceful degradation, where the sys-
tem could execute commands on some coherent intermediate
state when the latest state is unavailable. We call this co-
herent intermediate state a valid degraded state. In this pa-
per, we provide three specifications of valid degraded states
for queries. Our specifications of valid degraded states en-
able the system to provide “meaningful” responses to queries
even under excessive failures. Allowing degraded updates
raises challenging issues, which we discuss in Section 4.

Common to all the specifications is the intuition that a
valid degraded state reflects some partial history of the sys-
tem execution. Natural definitions of a partial history in-
clude a prefix or a subsequence of an equivalent serial exe-
cution. However, not every subsequence constitutes a rea-

sonable partial history: A partial history must preserve the
semantics of its operations in the actual execution in that
the commands in the partial history should read the same
values from the system state, produce the same output, and
make the same updates as in the original execution. We
define the notion of valid subsequence as follows:

Definition 2.1. (Valid Subsequence) For an execu-
tion E = (c1, c2, . . . , cn), a subsequence E ′ = (cj1 , cj2 , . . . , cjk

)
with 1 ≤ j1 < j2 < . . . < jk ≤ n is valid if and only
if for each cji

with 1 ≤ i ≤ k and for each object o ∈
cji

.ws ∪ cji
.rs, the value of o before the execution of cji

in
E is the same as before the execution of cji

in E ′; that is,
let l be the index of cji

in E , the value of o is the same af-
ter executing c1, c2, . . . , cl−1 as the value of o after executing
cj1 , cj2 , . . . , cj(i−1)

.

The following presents the precise definitions of the spec-
ifications: Prefix Linearizability captures any state that is
the result of executing a prefix of the linearization; Prefix Se-
rializability captures any state that is the result of executing
a prefix of any valid serialization; Subsequence Linearizabil-
ity captures any state that is the result of executing a valid
subsequence of the linearization.

Definition 2.2. (Prefix Linearizability) For execution
E = (c1, c2, . . . , cn), any state M(c1, c2, . . . , ck) for 1 ≤ k ≤
n is considered a valid degraded state.

Definition 2.3. (Prefix Serializability) Given an ex-
ecution E = (c1, c2, . . . , cn) and a valid serialization (ci1 ,

ci2 , . . . , cin
) of E , any state M(ci1 , ci2 , . . . , cik

) for 1 ≤ k ≤
n is considered a valid degraded state.

Definition 2.4. (Subsequence Linearizability) Given
an execution E = (c1, c2, . . . , cn), any state M(cj1 , cj2 , . . . , cjk

)
for a valid subsequence (cj1 , cj2 , . . . , cjk

) with k ≥ 0 and
1 ≤ j1 < j2 < . . . < jk ≤ n is considered a valid degraded
state.

We could have defined Subsequence Serializability as yet
another definition, but it turns out to be the same as Sub-
sequence Linearizability.

It is clear that Prefix Linearizability is stronger than both
Prefix Serializability and Subsequence Linearizability as any
valid degraded state with respect to Prefix Linearizability is
valid with respect to Prefix Serializability and Subsequence
Linearizability. This is because the valid linearization is
a valid serialization and its prefix is by definition a valid
subsequence.

The difference between Prefix Serializability and Subse-
quence Linearizability is subtle. Any command in a valid
subsequence has the same effect as in the original execution;
the same is true for any command in a valid serialization
(or any of its prefixes.) However, unlike a valid serializa-
tion, the valid subsequence does not impose any constraints
on commands that are excluded from the subsequence: it is
as if those excluded commands were undone from the orig-
inal execution. It might not be feasible to extend a valid
subsequence into a valid serialization.

In all three specifications, n − k indicates the number
of commands the valid degraded state fails to reflect. We
call n − k the degradation degree and use it to quantify the
gracefulness of a degraded state. This metric facilitates ap-
plications to evaluate different implementations of graceful
degradation.

3. GRACEFUL DEGRADATION VIA
VERSIONS

A specification is useful only if interesting new systems
that conform to the specification can be designed. This sec-
tion presents three different designs, each for a particular
one of the three specifications.

The intuition behind the specifications for valid degraded
states is to provide clients with some state reflecting a par-
tial execution (hence the use of the execution prefix and
subsequence) when the most up-to-date view is unavailable.
The maintenance of multiple versions for each piece of data
makes it possible to expose such a state. Our designs are for
such versioned systems; as will be noted in Section 5, there
are many such practical versioned systems.

In a versioned system, each update creates new versions of
objects, rather than overwriting the current versions. Ver-
sion v of an object o is referred to as object version 〈o, v〉.
In a distributed versioned system, different versions of the
same object could reside on different sets of storage servers
to reduce the chances of all versions of an object being un-
available due to server failures.

Valid Degraded State and Coherency: A degraded state
consists of a set of object versions, one for each object. It
might seem that one could simply define the degraded state
to include all the most recent available object versions, one
for each object. This could lead to states that are clearly un-
reasonable. For example, consider an execution E = (c1, c2),
where c1 creates 〈o1, 1〉 and 〈o2, 1〉, and c2 creates 〈o1, 2〉 and
〈o2, 2〉. Consider the case where 〈o1, 2〉 becomes unavailable.
A degraded state consisting of the most recent available ver-
sions would be {〈o1, 1〉, 〈o2, 2〉}; this state is problematic be-
cause it reflects a partial completion of c2, and violates the
atomicity of command c2.

From a practical point of view, when some latest object
versions become unavailable, for a query, the system wants
to find the most recent and available versions of the re-
quested objects that are coherent. With a specification for
valid degraded states, a set of object versions is coherent if
and only if all these object versions co-exist in some valid
degraded state.

At a given system state, there might be multiple coherent
sets for a given set of objects. We define a more-recent
relation among the coherent sets for the same system state
and the same set of objects. The discussions in the rest of
the paper are always on a particular system state and often
on a particular set of objects, so we omit mentioning those
when the context is clear. Given two coherent sets S1 and
S2 for a set O of objects, we define S1 to be more recent
than S2 if and only if the following holds: for any o ∈ O,
let 〈o, v1〉 ∈ S1 and 〈o, v2〉 ∈ S2 be the corresponding object
versions in the two coherent sets, v1 ≥ v2 holds. Given a
set O of objects at a given system state, a coherent set is
called most recent if no other coherent sets are more recent.
There might not be a unique most recent set because more-
recent relation for a given set of coherent sets might not
constitute a total order. We further assume that each object
has an initial version (version number 0) when the system
starts. Any set of those initial object versions is defined to
be coherent.

In the rest of this section, we present three designs; for
each design, we present a scheme that allows the system to
check whether a set of object versions are coherent, prove

that the coherency is consistent with one of the three spec-
ifications, and show how to find a most recent coherent set.

3.1 Timestamp-Based Design
The most natural design for checking the coherency of an

object version set is to see whether those object versions
co-exist at some (real) time in the past. This can easily be
achieved if each object version records one timestamp to in-
dicate when it is created and another timestamp to indicate
when a newer version of the same object is created. The
two timestamps specify the time interval during which the
object version exists. A set of object versions are coherent
as long as the time intervals of all object versions overlap;
that is, there exists a time that falls into the interval of every
object version in the set.

How the timestamps are assigned demands care. We can-
not simply use the real-time values at which object versions
are created even if we assume that all servers in the system
have perfectly synchronized clocks. For example, consider
an execution of two commands. Command c1 creates object
version 〈o2, 1〉 at time t2, while command c2 creates object
version 〈o1, 1〉 at t1 and 〈o2, 2〉 (without reading 〈o2, 1〉) at
t3. With t1 < t2 < t3, (c1, c2) forms a valid linearization.
Using those timestamps, {〈o1, 1〉, 〈o2, 1〉} might be consid-
ered coherent because they co-exist at t2. However, the set
reflects a partial execution of c2 and violates atomicity. The
problem arises because t2 is in the middle of the execution
of c2. So, timestamps must be assigned to reflect the lin-
earization order, but also make sure that they do not divide
the execution of any command.

The timestamp-based concurrency control techniques [1],
a well-known approach to serialization in database systems,
can be used for creating such timestamps. In the basic
scheme, each transaction is assigned a timestamp. The ex-
ecution of committed transactions must be equivalent to an
execution of those in the serialized order based on the as-
signed timestamps. This can be enforced if the system main-
tains a read timestamp o.rt and a write timestamp o.wt for
each object o, where the read (resp. write) timestamp tracks
the highest timestamp among the transactions read (resp.
write) the object. Any transaction with timestamp t, de-
noted by Tt, will be aborted if it attempts to write to an
object o with o.rt > t or read an object o with o.wt > t.

Multiversion concurrency control (MVCC) [17] is an im-
provement over the basic scheme by maintaining multiple
versions for each object. For each object version 〈o, v〉,
〈o, v〉.rt records the timestamps of all transactions reading
that object version and 〈o, v〉.wt records the timestamp of
the transaction that creates that object version. A trans-
action Tt reading an object o will read the highest object
version 〈o, v〉 with 〈o, v〉.wt < t. A write by a transaction Tt

will be rejected if there exists a read timestamp tr ∈ 〈o, v〉.rt
for some v, such that tr > t and tr < 〈o, v′〉.wt for the low-
est version 〈o, v′〉 with 〈o, v′〉.wt > t. Using the timestamps
at the starting time for each transaction, MVCC yields a
valid linearization of all committed transactions based on
the timestamps.

We can extend MVCC to define coherency as follows. For
an object version 〈o, v〉, denote its previous and next versions
as 〈o, v〉.prev and 〈o, v〉.succ respectively. The system stores
with each object version 〈o, v〉 not only 〈o, v〉.wt but also
〈o, v〉.succ.wt ; we set 〈o, v〉.succ.wt to ∞ for any 〈o, v〉.succ
that does not yet exist.

Definition 3.1. (Timestamp-Based Coherency) A
set S of object versions is coherent if and only if there ex-
ists a timestamp t, such that for each 〈o, v〉 ∈ S, condition
〈o, v〉.wt ≤ t < 〈o, v〉.succ.wt holds.

It is straightforward to show that this definition of co-
herency satisfies Prefix Linearizability. The time t in the
definition can be associated with a coherent set; it is obvi-
ous that the most recent coherent set is the one with the
highest timestamp t.

Theorem 3.1. Timestamp-Based Coherency satisfies Pre-
fix Linearizability.

Proof. If a set S of object versions satisfies Timestamp-
Based Coherency, then there exists a timestamp t such that,
for each 〈o, v〉 ∈ S, condition 〈o, v〉.wt ≤ t < 〈o, v〉.succ.wt
holds. For the valid linearization based on the timestamps,
consider the prefix p that includes all commands (transac-
tions) with timestamps up to t. For each 〈o, v〉 ∈ S, the
command creating this version has been executed, but the
command creating its next version has not. Therefore, 〈o, v〉
is in the state after executing p.

Finding the Most Recent Coherent Set: To find the most
recent coherent set for a set O of objects, starting with a
set S of the most recent available versions of the objects
in O. Let 〈o, v〉 be the object version in S with the high-
est timestamp t. If there exists an 〈o′, v′〉 ∈ S such that
t ≥ 〈o′, v′〉.succ.wt , replace 〈o, v〉 in S with o’s highest avail-
able version that has a timestamp lower than t. Repeat this
process until no such 〈o′, v′〉 is found. This is guaranteed to
terminate because each object has a finite number of ver-
sions and each iteration reduces the version of an object in
O.

Timestamp-Based Coherency conveys a simple degrada-
tion semantics: it provides a state that existed sometime in
the past. The system simply lets clients “time-travel” [14]
to the latest point in the past where the requested view is
completely preserved. This is a well-defined semantics that
clients can easily make use of: clients clearly understand the
semantics of the state because it was the up-to-date state
sometime in the past.

However, Timestamp-Based Coherency is rather strong.
Consider the example in Figure 1, which shows an execu-
tion (c1, c2, c3, c4, c5). For each command, Figure 1 shows
the set of object versions it reads, referred to as the read
version set, and the set of object versions it creates, referred
to as the write version set. In the case where all object
versions except 〈o1, 2〉 are available, with Timestamp-Based
Coherency, the most recent coherent set for all objects will
be {〈o1, 1〉, 〈o2, 0〉, 〈o3, 1〉}; that is, the state after execut-
ing c1 only. Command c3 has to be excluded even though
it operates on an unrelated object o2; this could exacerbate
data loss when the system tries to recover to a coherent state
after suffering permanent loss of some object versions.

Consider a concrete example with a system that maintains
the source code tree of a large piece of software (e.g., Linux
or Cygwin.) If the latest version of a file created in March of
2006 becomes unavailable and the last update was in Febru-
ary of 2006, Timestamp-Based Coherency will present the
source tree view in February of 2006 to the clients. The
clients will be able to build this source tree and obtain an
old version of the software.

Figure 1: An example execution (c1, c2, c3, c4, c5). The
read version set and the write version set are shown
for each command.

There might be independent packages (e.g., packages for
python and perl) in the source tree. Suppose the python
package was updated in February and April of 2006, where
the perl package was updated in January and March of 2006.
The loss of the March-2006 version of the perl package ide-
ally should not force the use of the old version of python
in February of 2006, as Timestamp-Based Coherency man-
dates. Prefix Serialization does allow the view with the Jan-
uary 2006 version of perl and April 2006 version of python,
thereby allowing a more graceful degradation. Next section
shows how this can be realized.

3.2 Dependency-Based Design
In the example of Figure 1, Prefix Serialization allows a

view that reflects the execution of more commands. Note
that (c1, c3, c2, c4, c5) constitutes a valid serialization. With
the loss of 〈o1, 2〉, a prefix (c1, c3) of the serialization yields
a state with {〈o1, 1〉, 〈o2, 1〉, 〈o3, 1〉 }. Observe that a valid
serialization can be obtained by swapping c2 and c3 in the
linearized execution. This is because c2 and c3 are indepen-
dent as defined below.

We use c.rs and c.ws to denote the set of objects that a
command c reads and writes. We further use c.rvs (read
version set) and c.wvs (write version set) for the object ver-
sions c reads and writes. Two commands c and c′ (c ≺ c′)
are defined to be conflicting if c.rs ∩ c′.ws 6= φ (Read-
Write Conflict), c.ws ∩ c′.ws 6= φ (Write-Write Conflict),
or c.ws ∩ c′.rs 6= φ (Write-Read Conflict) holds. Otherwise,
they are independent.

It is easy to see that, starting with a valid linearization of
an execution, swapping two consecutive independent com-
mands one or more times leads to a valid serialization. This
is because each command in the new sequence will be read-
ing the same set of object versions and creating the same
set of object versions as in the original execution.

In order to check whether a set of object versions satisfies
the coherency consistent with Prefix Serialization, for each
object version ov , the system maintains two sets ov .Dep and
ov .Equiv during an execution E as follows.

When executing a command c in E , for each object version
in its write version set, its Dep is set to be the union of the
following: c’s write version set, the Dep sets of the object
versions in c’s read version set, the Equiv sets of the previous
versions of those in c’s write version set, and the Dep sets of
the previous versions of those in c’s write version set. The
Equiv for each object version in c’s write set is set to empty.

∀ov ∈ c.wvs , ov .Dep := c.wvs (1)

∪
[

rov∈c.rvs

(rov .Dep) (2)

∪
[

wov∈c.wvs

(wov .prev .Equiv) (3)

∪
[

wov∈c.wvs

(wov .prev .Dep) (4)

ov .Equiv := φ (5)

For each object version in c’s read version set, set its Equiv
set to be the union of the current value of its Equiv set, the
Dep sets for the object versions in c’s read version set, and
the Dep sets for the previous versions of those in c’s write
version set.

∀ov ∈ c.rvs , ov .Equiv := ov .Equiv (6)

∪
[

rov∈c.rvs

(rov .Dep) (7)

∪
[

wov∈c.wvs

(wov .prev .Dep) (8)

Intuitively, ov .Dep captures the set of object versions that
ov depends on: any lower versions for those objects can
never co-exist with ov . Also, note that both Dep and Equiv
are reflective. We define the coherency condition as follows.

Definition 3.2. (Dependency-Based Coherency) A
set S of object versions is coherent with respect to an exe-
cution E if and only if for any object versions 〈o1, v1〉 ∈
S and 〈o2, v2〉 ∈ S, the following holds: if ∃v, 〈o1, v〉 ∈
〈o2, v2〉.Dep, then v ≤ v1 holds; similarly, if ∃v, 〈o2, v〉 ∈
〈o1, v1〉.Dep, then v ≤ v2 holds.

Before we prove that Dependency-Based Coherency satis-
fies Prefix Serializability, we first prove a lemma that relates
Dep with valid serializations.

Lemma 3.1. Given an execution E , consider any valid se-
rialization Es of E that is the result of swapping consecutive
independent commands one or more times, if Es contains a
consecutive sequence of commands c1, c2, . . . , ck

1 with k ≥ 1,
such that ci and ci+1 are conflicting for any 1 ≤ i < k, then
the following holds:

∀ov ∈ c1.wvs , ∀ov ′ ∈ ck.wvs , ov ∈ ov ′.Dep

Proof. Prove by induction on k.
Induction Basis: Consider the case with k = 1; that is,
c1 = ck holds. For any ov ∈ c1.wvs and ov ′ ∈ ck.wvs ,
condition ov ∈ ov ′.Dep holds.2

ov ∈ c1.wvs (Assumption)

= ck.wvs (k = 1)

⊆ ov ′
.Dep. (1)

1Note that c1, c2, . . . , ck is a continuous subsequence of Es,
but not necessarily in the original execution E .
2In the proof, we provide the justifications for each step (by
referring to the definitions of Dep and Equiv or the previous
assumptions) in the parenthesis on the right-hand side of
the proof steps.

Induction Step: assume that the condition holds for any
sequence with length less than k for some k > 1, we want
to show that the condition holds for a sequence of length k.

We look at the last two commands ck−1 and ck in any
sequence of length k. By definition, the two commands are
conflicting. We therefore consider the following three cases.
Case I (Write/Read Conflict:) ck−1 and ck are conflicting
because ck−1.ws ∩ ck.rs 6= φ. Because ck−1 and ck are con-
secutive in a valid serialization that is obtained by swapping
consecutive independent operations one or more times, there
exists ov , such that the following holds:

ov ∈ ck−1.wvs (9)

ov ∈ ck.rvs (10)

For any ov1 ∈ c1.wvs and any ovk ∈ ck.wvs ,

ov1 ∈ ov .Dep (Induction Hypothesis, 9)

⊆ ovk.Dep. (10, 2)

Case II (Write/Write Conflict:) ck−1 and ck are conflict-
ing because ck−1.ws ∩ ck.ws 6= φ. Because ck−1 and ck are
consecutive in a valid serialization that is obtained by swap-
ping consecutive independent commands one or more times,
there exists ov , such that the following holds:

ov ∈ ck.wvs (11)

ov .prev ∈ ck−1.wvs (12)

For any ov1 ∈ c1.wvs and any ovk ∈ ck.wvs ,

ov1 ∈ (ov .prev).Dep (Induction Hypothesis, 12)

⊆ ovk.Dep (11, 4)

Case III (Read/Write Conflict:) ck−1 and ck are conflict-
ing because ck−1.rs ∩ ck.ws 6= φ. Because ck−1 and ck are
consecutive in a valid serialization that is obtained by swap-
ping consecutive independent operations one or more times,
there exists ov , such that the following holds:

ov .prev ∈ ck−1.rvs (13)

ov ∈ ck.wvs (14)

We consider two subcases depending on whether ck−1.wvs =
φ holds.

Subcase III.A: Consider the case where ck−1.wvs = φ

holds. In this case, the only way that ck−1 and ck−2 can be
conflicting is because there exists ov ′, such that the following
holds (Write/Read Conflict:)

ov ′ ∈ ck−2.wvs (15)

ov ′ ∈ ck−1.rvs (16)

Given any ov1 ∈ c1.wvs and any ovk ∈ ck.wvs ,

ov1 ∈ ov ′
.Dep (Induction Hypothesis, 15)

⊆ ov .prev .Equiv (13, 16, 6, 7)

⊆ ov .Dep (14, 3)

⊆ ovk.Dep (14, 1)

Subcase III.B: Consider the case where ck−1.wvs = φ

does not hold. Choose an arbitrary ovk−1 ∈ ck−1.wvs .

Given any ov1 ∈ c1.wvs and any ovk ∈ ck.wvs ,

ov1 ∈ ovk−1.Dep (Induction Hypothesis)

⊆ ov .prev .Equiv (13, 6, 8)

⊆ ovk.Dep (14, 3)

This concludes the induction step.

Theorem 3.2. Dependency-Based Coherency satisfies Pre-
fix Serializability.

Proof. It suffices to show that, if two object versions ov1

and ov2 are coherent with respect to an execution E , then
there exists a valid serialization of that execution, such that
the two object versions co-exist after executing a prefix of
that serialization.

Proof by contradiction: If there does not exist a valid
serialization such that the two object versions co-exist after
executing a prefix of that serialization, we want to show that
ov1 and ov2 are not coherent.

Let c be the command creating ov1 and c′ be the com-
mand creating ov2. Without loss of generality, we assume
that c precedes c′ in E . Let cs be the command creating
ov1.succ. According to our assumption, because E is a valid
serialization, ov1 and ov2 do not co-exist after executing any
prefix of E . Therefore, cs must precede c′ in E .

We then claim that there must exist a valid serialization Es

that contains a consecutive sequence cs = cj1, cj2, . . . , cjk =
c′ for some k ≥ 1, such that cji and cj(i+1) are conflicting,
for any 1 ≤ i ≤ k − 1. This is because, otherwise, a series
of swapping between consecutive independent commands on
E will lead to a valid serialization with c′ preceding cs (but
remain after c). In that valid serialization, executing the
prefix up to c′ will yield a state with both ov1 and ov2

because the update to ov1 in cs is after c′. This creates a
contradiction to our assumption.

Applying Lemma 3.1 on the consecutive sequence in Es,
we have ov1.succ ∈ ov2.Dep holds, which implies that ov1

and ov2 are not coherent. Contradiction.

Finding a Most Recent Coherent Set: To find a most re-
cent coherent set for a given set O of objects, start with the
set S of the most recent available versions for objects in O,
and perform the following step repeatedly until a coherent
set is found: If there exists 〈o1, v1〉 ∈ S, 〈o2, v2〉 ∈ S, and
〈o1, v〉 ∈ 〈o2, v2〉.Dep such that v1 < v, replace 〈o2, v2〉 with
the highest available version of o2 that is lower than v2.

Note that different orders of choosing conflicting pairs
could lead to different results; that is, there could be multi-
ple most recent coherent sets that are not comparable.

3.3 Weak-Dependency-Based Design
Dependency-Based Coherency can be weakened; interest-

ingly, one weakened definition achieves Subsequence Lin-
earizability and has practical relevance. The weakened co-
herency definition uses the following Depw instead of Dep.

∀ov ∈ c.wvs , ov .Depw := c.wvs

∪
[

rov∈c.rvs

(rov .Depw)

∪
[

wov∈c.wvs

(wov .prev .Depw)

By definition of Depw, the following lemma trivially holds.

Lemma 3.2. Given a command c in an execution E , for
any ov ∈ (c.wvs ∪ c.rvs) and ov ′ ∈ c.wvs, ov .Depw ⊆
ov ′.Depw holds.

We define Weak-Dependency-Based Coherency as follows.

Definition 3.3. (Weak-Dependency-Based
Coherency) For a given execution E , a set S of object
versions is coherent if and only if for any object versions
〈o1, v1〉 and 〈o2, v2〉 in S, the following holds: if ∃v, 〈o1, v〉 ∈
〈o2, v2〉.Depw, then v ≤ v1 holds; if ∃v, 〈o2, v〉 ∈ 〈o1, v1〉.Depw,
then v ≤ v2 holds.

To show that Weak-Dependency-Based Coherency achieves
Subsequence Linearizability, we further introduce an undo
construction to create valid subsequences. Intuitively, the
undo-subsequence of ov removes every command with an
object version in its read version set or its write version set
that depends on ov based on Depw.

Definition 3.4. (Undo-Subsequence) An
Undo-Subsequence with respect to an execution E and an
object version ov is a subsequence of E that excludes every
command c′ with ov ∈ ov ′.Depw for some ov ′ ∈ (c′.wvs ∪
c′.rvs).

Lemma 3.3. Any prefix of an Undo-Subsequence is a valid
subsequence.

Proof. To show that a subsequence of an execution E
is valid, it suffices to show that, for each command c in
the subsequence, any object version rov ∈ c.rvs3 is in the
set of object versions generated in a previous command in
the subsequence, and for any object version wov ∈ c.wvs ,
wov .prev is in the set of object versions created in a previous
command in the subsequence.

Proof by induction on the length of a prefix of an undo-
subsequence:

Induction Basis: Any undo-subsequence prefix with length
0 is by definition valid.

Induction Step: Assume that any undo-subsequence prefix
of length less than k ≥ 1 is valid. We show that an undo-
subsequence prefix of length k is valid. Assume otherwise.
Let the kth command on the offending subsequence be ck.
Due to induction hypothesis, the prefix of length k − 1 is
valid. Therefore, ck is the command that causes the prefix
of length k not to be valid.

There are two cases for ck to cause the violation. In Case I,
one of the object versions in ck’s read version set is generated
by a command that is excluded from the undo-subsequence.
That is, there exists an ov ′ ∈ ck.rvs such that the command
c with ov ′ ∈ c.wvs is excluded from the subsequence during
construction. Because c is excluded, we have ov ∈ ov ′′.Depw

for some ov ′′ ∈ (c.wvs ∪ c.rvs). Because of ov ′ ∈ c.wvs , by
construction of Depw, ov ′′.Depw ⊆ ov ′.Depw holds. There-
fore, ov ∈ ov ′.Depw holds and ck should be removed from
the undo-subsequence. Contradiction.

In Case II, the command that generates the previous ver-
sion of some object version in ck’s write version set is ex-
cluded from the undo-subsequence. That is, there exists
ov ′ ∈ ck.wvs such that the command c with ov ′.prev ∈ c.wvs
is removed from the subsequence during construction. Be-
cause c does not exist in the undo-subsequence, we have

3Note that c.rvs and c.wvs are defined with respect to the
original execution E , not the execution of the subsequence.

ov ∈ ov ′′.Depw for some ov ′′ ∈ (c.wvs ∪ c.rvs). Due to
Lemma 3.2, ov ′′.Depw ⊆ ov ′.prev .Depw holds. By defi-
nition of Depw, we also have ov ′.prev .Depw ⊆ ov ′.Depw .
Again, ck should be removed from the undo-subsequence.
Contradiction.

To show that Weak-Dependency-Based Coherency satis-
fies Subsequence Linearizability, we construct a valid subse-
quence that is obtained by “undoing” the commands that
create the object versions that are unavailable due to fail-
ures. A formal proof follows.

Theorem 3.3. Weak-Dependency-Based Coherency sat-
isfies Subsequence Linearizability.

Proof. It suffices to show that, given an execution E ,
if a pair of object versions ov1 and ov2 satisfies Weak-
Dependency-Based Coherency, then there exists a valid sub-
sequence whose execution will yield a state containing the
pair of object versions.

Without loss of generality, we assume that the command
c1 that creates ov1 precedes the command c2 that creates
ov2. If ov1.succ does not exist, then ov1 is the last version
for the object. Therefore, ov1 and ov2 will co-exist after
executing the prefix of E up to c2.

If ov1.succ does exist, let s be the undo-subsequence with
respect to E and ov1.succ. Clearly, s contains c1. Because
ov1 and ov2 satisfy Weak-Dependency-Based Coherency,
ov1.succ 6∈ ov2.Depw holds. Due to Lemma 3.2 and the def-
inition of undo-subsequence, s also contains c2. Let ov1 =
〈o1, v1〉. By definition of Depw, s excludes any commands
that create object version 〈o1, v〉 with v > v1.

Consider the prefix p of s up to command o2. By Lemma 3.3,
p is a valid subsequence. We now show that ov1 and ov2 co-
exist in the state after executing p. The state contains ov1

because p contains o1, but not commands creating higher
versions of the same object. The state also contains ov2 be-
cause o2, the last command in the sequence, creates ov2.

Finding a Most Recent Coherent Set: We can use a similar
algorithm as in Section 3.2, replacing Dep with Depw. To
find the most recent coherent set for a given set O of objects,
start with the set S of the most recent available versions
for objects in O and performs the following step repeatedly
until a coherent set is found: If there exists 〈o1, v1〉 ∈ S,
〈o2, v2〉 ∈ S, and 〈o1, v〉 ∈ 〈o2, v2〉.Depw such that v1 < v,
replace 〈o2, v2〉 with the highest available version of o2 that
is lower than v2.

3.4 A Comparison of Three Approaches
Because Prefix Linearizability is stronger than Prefix Se-

rializability and Subsequence Linearizability, Timestamp-
Based Coherency is stronger than Dependency-Based Co-
herency and Weak-Dependency-Based Coherency: a set of
object versions that satisfies Timestamp-Based Coherency
is guaranteed to satisfy Dependency-Based Coherency and
Weak-Dependency-Based Coherency for the same execution.

It is also clear that, by the constructions of Dep and
Depw, for the same execution E and for any object ver-
sion ov , ov .Depw ⊆ ov .Dep holds. Therefore, Dependency-
Based Coherency is stronger than Weak-Dependency-Based
Coherency.

Consequently, given any system state, there exists a most
recent coherent set S1 for Weak-Dependency-Based Coherency,

a most recent coherent set S2 for Dependency-Based Co-
herency, and the most recent coherent set S3 for Timestamp-
Based Coherency, such that S1 is more recent than S2, which
is in turn more recent than S3. If the protocols for finding a
most recent coherent set for Dependency-Based Coherency
or Weak-Dependency-Based Coherency always choose to roll
back object versions with the highest timestamp and break
ties in the same deterministic way, then the resulting most
recent coherent sets will obey the more-recent relation. We
assume the use of such protocols in the rest of this section.

A stronger coherency condition translates into a higher
degradation degree. This is illustrated in the example shown
in Figure 1. When object version 〈o1, 2〉 becomes unavail-
able, the most recent coherent set according to Timestamp-
Based Coherency is {〈o1, 1〉, 〈o2, 0〉, 〈o3, 1〉 }, reflecting only
c1, and therefore a degradation degree of 4. The most recent
coherent set according to Dependency-Based Coherency is
{〈o1, 1〉, 〈o2, 1〉, 〈o3, 1〉 }, reflecting c1 and c3, and therefore
a degradation degree of 3. The most recent coherent set ac-
cording to Weak-Dependency-Based Coherency is {〈o1, 1〉,
〈o2, 2〉, 〈o3, 3〉 }, reflecting c1, c3, and c5, and therefore a
degradation degree of 2.

The difference between the set for Dependency-Based Co-
herency and the set for Weak-Dependency-Based Coherency
is due to c4, which conflicts with c2 and c5. This makes it im-
possible to move c5 before c2 in any valid serialization. But
for Weak-Dependency-Based Coherency, both c2 and c5 are
removed from the subsequence and the coherency condition
has no obligation for the subsequence to be extended to in-
clude c2 and c5 with the guarantee that they execute in the
same states as in the original execution.

It is evident that there is an inherent tradeoff between
the semantics ensured by the valid degraded states and the
degradation degree. Usually, the stronger the semantics,
the higher the degradation degree. A client can choose the
weakest semantics that it can live with in order to get a less
degraded view of the system.

For Timestamp-Based Coherency, the system provides an
accurate time-travel capability. It provides a strong seman-
tics, but at the expense of potentially higher degradation
degree.

For Dependency-Based Coherency, the system provides
a virtual time-travel capability in that the system has the
freedom to assign virtual timestamps to decide in which or-
der commands are executed, while preserving the responses
from the system and the final state of the system. Going
back to the example of maintaining a source code tree for a
large piece of software, clients might notice that the system
returns an April version of python, but with the old January
version of perl. Those two versions never co-existed as the
up-to-date versions in the history of the source code tree.
Any real dependencies not captured by Dep might lead to
anomalies: for example, the April version of python might
implicitly depend on new features that are only available in
the March version of perl. In this case, the resulting co-
herent set according to Prefix Serializability might not be
consistent in clients’ view.

For Weak-Dependency-Based Coherency, the system pro-
vides an undo capability to remove the effects of certain
commands. In the example of maintaining the source code
tree, further assume that at the end of March a command
c is executed to collect statistics about the entire source
code tree. Such a command will make the April version of

python depend on the March version of perl according to
Dep, because the execution of the command has the Febru-
ary version of python and March version of perl in its read
version set. Even Prefix Serializability will force the state
to contain only the February version of python. However, if
we use Weak-Dependency-Based Coherency, that command
c can simply be “undone”, making it possible to return the
April version of python. Certainly, clients might observe
more anomalies in this case; in particular, the statistics col-
lected by c might not make sense any more; among other
things, the statistics might indicate a higher version of perl
with a lower version of python.

From a practical point of view, there is also a consid-
eration of overhead in maintaining the metadata to check
whether a set of object versions are coherent or not. In
all three schemes we present, the metadata for an object
version is maintained when the object version is created
or read. Dependency-Based Coherency requires the most
amount of metadata, which is a superset of what Weak-
dependency-Based Coherency requires. The Timestamp-
Based Coherency requires only two timestamps. It is there-
fore possible to support all three at about the same overhead
as the one for Dependency-Based Coherency, giving clients
the flexibility to choose the right semantics at different oc-
casions.

4. DISCUSSIONS
In this section, we discuss additional issues related to

graceful degradation.

4.1 Supporting Degraded Updates
We have so far limited our attention to degraded queries.

Extending the semantics to include degraded updates would
provide clients with greater functionality in the degraded
mode. However, allowing updates on valid degraded states
introduces challenges.

The characteristics of failures that lead to degradation in-
fluence how updates are handled during degradation. If the
failures that lead to degradation are known to be permanent,
irrecoverable data loss occurs. In this case, the system can
use the mechanisms described in Section 3 to find a most-
recent coherent state with respect to a chosen specification.
The system then accepts the loss, continues with this coher-
ent state as the current non-degraded state, and proceeds to
take updates.

If the failures are transient and data loss is recoverable,
degraded updates on older versions of data might create con-
flicting versions. This leads to new branches from the origi-
nal linear sequence of versions. Conflicting branches can be
merged into a new version when the system recovers from
the degraded mode. The merge operation could be applica-
tion dependent; for example, an application can choose to
make the latest version on one of the branches as the new
version. In general, the state after a merge operation can
be assumed to represent the result of applying a series of
updates on some previous valid state. The natural effect
of a merge operation is to restore the linear progression of
versions by eliminating conflicting branches.

A consequence of branching is that version numbers no
longer form a total order, but a partial order. More precisely,
versions of an object form a partial order ≺p, where v1 ≺p

v2 indicates that v2 evolves from v1. Partial ordering is
transitive. That is, v1 ≺p v2 holds if there exists a v such

that v1 ≺p v and v ≺p v2 hold. However, If neither v1 ≺p v2

nor v2 ≺p v1 holds, then v1 and v2 belong to two conflicting
branches.

We propose a mechanism for representing branched ver-
sions and the associated partial order ≺p. Implicitly, we
assume that ≺p is transitive.

1. The first version of an object has version number 1.

2. A new version created from v as the ith branch has the
version number v ◦ i. Here v ≺p v ◦ i holds.

3. A new version created from merging a list of versions
v1, v2, . . . , vk has the version number [v1, v2, . . . , vk].
Here, vi ≺p [v1, v2, . . . , vk] holds for any 1 ≤ i ≤ k.

Supporting branched versions have been extensively stud-
ied in the context of optimistic replication schemes, such
as Coda [11] and Bayou [24]. Version vectors are a well-
known mechanism to capture branched versions created con-
currently by different replicas, enable detection of conflicts,
and represent merged branches. However, version vectors
are not suitable for representing branched versions arising
out of degraded updates, rather than concurrent updates.
In optimistic replication, branching happens due to concur-
rency: two users on two servers might be updating the same
file without knowing the action of the other party. There-
fore, using version vectors, with one element reserved for
each participating server, it is sufficient to encode versions
for conflict detection. In our case, arbitrary branching might
occur, depending on how massive failures happen and how
users choose to proceed. Since the number of dimensions
is unknown and unbounded, version vectors are no longer
appropriate.

Furthermore, in our case, branching occurs only when de-
graded. Branches should be merged and resolved appropri-
ately when the system returns to a normal state. In con-
trast, optimistic replication comes with a weak consistency
guarantee.

4.2 Practical Considerations
This paper has focused mainly on the theoretical aspect

of the notion of graceful degradation and has attempted to
lay out a foundation for further investigation. We discuss
some of the practical considerations in this section.

We have looked at how the semantics of valid degraded
states could influence the gracefulness of degradation. How
we store different versions of objects and how we co-locate
object versions also have significant impact on the graceful-
ness of the degradation. For example, different versions of an
object should often be placed on different set of servers, so
that it is unlikely that they become unavailable at the same
time. Also, object versions that are created by the same
command are better co-located because a coherent set often
cannot contain only a subset of those object versions while
not also including the others. A placement strategy that
takes into account those considerations and finds a reason-
able compromise is important for achieving better graceful
degradation in practice.

Maintaining multiple versions of each object, as well as
the extra information associated with each object version,
introduces overhead to a system. Depending on the appli-
cations and how they are configured, such overhead could
be significant and could influence the practicality of the ap-
proach. While we have not yet been able to evaluate the

overhead, some recent work in practical (database) systems
gives us reasons to believe that our proposed approaches can
be made practical.

The most relevant work is on Immortal databases [14, 15].
An immortal database is a transaction time database that
retains and provides access to prior states of a database by
maintaining old versions of database records. The system
is designed to support “time travel” and allow queries on
records that are current at some time in the past. As in
MVCC, versions are stamped with the times of their updat-
ing transactions and transactions are linearized based on the
timestamp order.

Immortal databases have been demonstrated to be prac-
tical and can be incorporated into a commercial database.
Supporting graceful degradation with Timestamp-Based Co-
herency in Immortal databases is straightforward, assum-
ing the availability of the various index structures. It is
also possible to incorporate Dependency-Based and Weak-
Dependency-Based Coherency into Immortal databases. In
fact, the recent extension [15] to Immortal databases that al-
low operations to be undone is the same as Weak-Dependency-
Based Coherency, although it was proposed to undo “bad”
transactions rather than for graceful degradation.

Despite the optimism, there are challenges that remain
to be addressed. For example, a truly gracefully degrad-
able system must cope with the unavailability of not only
the recent object versions, but also the system metadata
that allows the access to object versions. Examples of such
metadata include any index structure that maps objects to
their versions and their locations. Databases tend to main-
tain more index structures for performance reasons. Care
must be taken so that the system can still offer the normal
or degraded semantics when such system metadata becomes
unavailable due to excessive failures.

4.3 Degradation and Transaction Aborts
Transactional systems usually have a mechanism to abort

transactions. This has the effect of removing any changes
related to aborted transactions. Graceful degradation might
seem similar to transactional aborts; for example, for Subse-
quence Linearizability, a coherent state corresponds to one
where a set of transactions are undone. However, there is
a fundamental difference between them. For graceful degra-
dation, undone transactions during excessive failures have
already been committed, whereas for traditional transaction
mechanisms only uncommitted transactions can be aborted.

5. RELATED WORK
Recognizing the importance of graceful degradation for

complex programs, Herlihy and Wing [7] studied the prob-
lem of specifying graceful degradation. Their work char-
acterizes graceful degradation as relaxations of application-
dependent constraints that the system satisfies. A relax-
ation lattice method is proposed for specifying the behavior
of graceful degradation. Each specification in the lattice is
parameterized by a set of constraints, where stronger con-
straints are more restrictive. The method is used to specify
programs that can tolerate faults, timing anomalies, syn-
chronization conflicts, and security breaches.

Graceful degradation has also been considered in many
different contexts. Often, it refers to degradation under
heavy load, as noted by Brewer [2]. Fox and Brewer [4]
propose the notion of harvest (the fraction of data reflected

in a response) and yield (the probability of completing a
request) as measures for graceful degradation and discuss
the tradeoffs between them. They identify good engineer-
ing principles, such as failure isolation through orthogonal
mechanisms and replacing hard state with soft state. Our
work can also be considered as offering new types of trade-
offs with respect to the fundamental CAP principle, which
makes explicit tradeoffs among Consistency, Availability
and Partition-resilience, while designing distributed systems.

Weaker semantics can sometimes be provided for better
system availability. Yu and Vahdat [26] propose the con-
tinuous consistency model. The model can be thought of
as providing guaranteed bounded degradation. Numerical
error, order error, and staleness are three types of degrada-
tion studied. BFT2F [13] offers graceful degradation with
a weaker consistency model called the Fork* consistency,
when the number of Byzantine failures exceeds f , but not
2f , in a system with 3f +1 servers. In both cases, the notion
of consistency applies to the states on a set of replicas.

Besides database systems that maintain multiple versions,
as mentioned in Section 4, creating multiple file versions to
improve availability has been in use for decades. Schroeder
et al. describe a programming environment with multiple
file versions, where they employ clever techniques to reuse
a deleted version of a file to create a new one [21]. Over
the years, work has been done on versioned file systems [20],
whole system snapshots [9], software configuration manage-
ment [8, 25], and metadata minimization in versioned sys-
tems [23].

Orthogonal to versioning, fault containment and isolation
(e.g., [18, 10, 19, 22]) are well-known techniques for graceful
degradation. For example, Archipelago [10] is a file system
consisting of self-contained file servers called islands. Its de-
sign is based on the one-island principle, which states that
as many operations as possible should involve exactly one
island. Similarly, D-GRAID [22] uses file-system semantics
to fault-isolate logically related data on separate disks and
replicate critical data on multiple disks, resulting in a stor-
age system that gracefully degrades with the number of disk
failures.

6. CONCLUDING REMARKS
The study of graceful degradation represents a different

mind set than the traditional approach to fault tolerance,
where a system is assumed to work within the specified sys-
tem model. It forces system designers to understand system
behaviors when assumptions are invalidated; the result is of-
ten a more robust system. For example, with a system that
has the notion of valid degraded states, it is easy for the sys-
tem to recover from permanent loss of some data and pro-
ceed with a coherent state. This paper lays out a theoretical
foundation for specifying meaningful semantics for graceful
degradation in a general distributed system, and provides
practical designs that conform to the specifications.

Combining graceful degradation with traditional fault-
tolerance mechanisms introduces a new dimension to the de-
sign of highly available distributed systems. Graceful degra-
dation removes the cliff that a fault-tolerant system expe-
riences when facing excessive failures. Moreover, it offers
the opportunity to weaken semantics for reduced overhead
and better performance. For example, one could choose to
reduce the level of redundancies in the fault-tolerant mecha-
nism to gain better performance. At one extreme, one could

eliminate redundancies entirely and maintain one copy of
each object version, thereby simplifying the system design.
The benefits come at the cost of weakened semantics: when
failures happen, the system might provide a degraded view.

Graceful degradation is a natural next step to fault tol-
erance in the design of highly available distributed systems.
We believe that it opens up new and potentially fruitful re-
search avenues both in theory and in practice.

7. ACKNOWLEDGMENTS
We would like to thank Phil A. Bernstein, Mihai Budiu,

John MacCormick, Dahlia Malkhi, and Nick Murphy for
interesting discussions related to the topic of this paper. We
also thank John Douceur and the anonymous reviewers for
their comments on the paper.

8. REFERENCES
[1] P. A. Bernstein and N. Goodman. Concurrency

Control in Distributed Database Systems. ACM
Computing Surveys (CSUR), 13(2):185–221, 1981.

[2] E. Brewer. Lessons from giant-scale services. vol. 5,
no. 4. pp. 46-55. july/august 2001. IEEE Internet
Computing, 5(4):46–55, July/August 2001.

[3] B. Fitzpatrick. Power-loss post-mortem, January 2005.
http://www.livejournal.com/community/lj dev/
670215.html.

[4] A. Fox and E. A. Brewer. Harvest, yield and scalable
tolerant systems. In Proc. of the 7th Workshop on Hot
Topics in Operating Systems, pages 174–178, March
1999.

[5] S. D. Gribble. Robustness in complex systems. In
Proc. of the 8th Workshop on Hop Topics in Operating
Systems, pages 21–26, May 2001.

[6] M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems, 12(3):463–492, 1990.

[7] M. P. Herlihy and J. M. Wing. Specifying graceful
degradation. IEEE Transactions on Parallel and
Distributed Systems, 2(1):93–104, July 1991.

[8] A. Heydon, R. Levin, T. Mann, and Y. Yu. Software
Configuration Management Using Vesta. Monographs
in Computer Science. Springer Verlag, February 2006.

[9] D. Hitz, J. Lau, and M. Malcolm. File system design
for an NFS file server appliance. In Proc. of the
USENIX Winter 1994 Technical Conference, pages
235–246, 1994.

[10] M. Ji, E. Felten, R. Wang, and J. Singh. Archipelago:
An island-based file system for highly available and
scalable Internet services. In Proc. 4th USENIX
Windows Systems Symposium, August 2000.

[11] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. In Proc. of the 13th
ACM Symposium on Operating Systems Principles,
pages 213–225, 1991.

[12] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computer, C-28(9):690–691,
September 1979.

[13] J. Li and D. Mazières. Beyond one-third faulty replicas
in byzantine fault tolerant systems. In Proceedings of

the 4th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’2007), 2007.

[14] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Immortal DB: transaction time
support for SQL server. In SIGMOD ’05: Proceedings
of the 2005 ACM SIGMOD international conference
on Management of data, pages 939–941, New York,
NY, USA, 2005. ACM Press.

[15] D. Lomet, Z. Vagena, and R. Barga. Recovery from
“bad” user transactions. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference
on Management of data, pages 337–346, New York,
NY, USA, 2006. ACM Press.

[16] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–653,
October 1979.

[17] D. P. Reed. Naming and Synchronization in a
Decentralized Computer System. Ph.D. Dissertation,
Massachusetts Institute of Technology, Cambridge,
MA, USA, 1978.

[18] Y. Saito, B. Bershad, and H. M. Levy. Manageability,
availability and performance in Porcupine: A highly
scalable, cluster-based mail service. In Proc. of the
17th ACM Symposium on Operating Systems
Principles, pages 1–15, December 1999.

[19] Y. Saito, C. Karamonolis, M. Karlsson, and
M. Mahalingam. Taming aggressive replication in the
Pangaea wide-area file system. In Proc. of the 5th
Symposium on Operating Systems Design and
Implementation, pages 15–30, December 2002.

[20] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, and J. Ofir. Deciding when to
forget in the Elephant file system. In Proc. of the 17th
ACM Symposium on Operating Systems Principles,
pages 110–123, 1999.

[21] M. D. Schroeder, D. K. Gifford, and R. M. Needham.
A caching file system for a programmer’s workstation.
In Proc. of the 10th ACM Symposium on Operating
Systems Principles, pages 25–34, 1985.

[22] M. Sivathanu, V. Prabhakaran, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. Improving storage system
availability with D-GRAID. In Proc. of the 3rd
USENIX Conference on File and Storage
Technologies, pages 15–30, March 2004.

[23] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata Efficiency in a
Comprehensive Versioning File System. In Proc. of the
2nd FAST, 2003.

[24] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected
replicated storage system. In Proc. of the 15th ACM
Symposium on Operating Systems Principles, pages
172–183, December 1995.

[25] W. F. Tichy. RCS – A system for version control.
Software Practice and Experience, 15(7):637–654,
1985.

[26] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for
replicated services. ACM Trans. Comput. Syst.,
20(3):239–182, 2002.

