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Abstract. Measuring the quality of recommendations produced by a recommender
system (RS) is challenging. Labels used for evaluation are typically obtained from
users of a RS, by asking for explicit feedback, or inferring labels from implicit
feedback. Both approaches can introduce significant biases in the evaluation process.
We investigate biases that may affect labels inferred from implicit feedback. Implicit
feedback is easy to collect but can be prone to biases, such as position bias. We
examine this bias using click models, and show how bias following these models
would affect the outcomes of RS evaluation. We find that evaluation based on
implicit and explicit feedback can agree well, but only when the evaluation metrics
are designed to take user behavior and preferences into account, stressing the
importance of understanding user behavior in deployed RSs.

1 Introduction and Related Work
Recommender systems (RSs) aim to recommend to their users items of interest, such
as movies, news articles, or music. Despite the success and popularity of such systems,
measuring the quality of an RS is a challenge. In this paper, we examine how bias in user
interactions, when used as implicit feedback, may affect RS evaluation.

Traditionally, RS evaluation has built upon explicit feedback, often in the form of
user ratings, and error-based metrics such as Mean Absolute Error (MAE) or Root
Mean Squared Error (RMSE) [9]. Recently, ranking-based metrics, such as precision,
or normalized Discounted Cumulative Gain (nDCG) are being considered [1]. In both
cases, ground truth typically comes in the form of user ratings for items. Creating explicit
ratings for RS evaluation requires substantial user effort. In some applications, such as
movie recommenders, users may be willing to expend that effort, especially when the
rating process is embedded in an engaging interface. However, in applications such as
news or music recommendation, explicit ratings are typically sparse and hard to obtain.

To increase the amount of data available for evaluation (or learning), researchers and
practitioners have started to consider implicit feedback. Implicit feedback is a natural side-
product of user interactions: labels are inferred based on, e.g., how many times an item
has been clicked, viewed, or purchased [6, 8]. Given access to a deployed RS, collecting
implicit feedback is typically easier, and the amount of data more plentiful, than for
explicit feedback. However, accurately interpreting implicit feedback is non-trivial [7, 8].

In this paper we investigate how RS evaluation based on implicit feedback relates to
traditional rating-based evaluation, and how evaluation outcomes may be affected by bias
in user behavior. Unlike ratings, click feedback does not capture negative feedback, as it



conflates items that were not clicked because they were not examined and items that were
examined but not clicked because they were disliked. Interpreting user interactions as
feedback therefore requires a good model of how users interact with the system and how
those interactions reflect experienced system quality. Here, we specifically focus on the
well-known position bias [7]. We investigate this effect using bias models that capture
how user behavior is hypothesized to be affected by the rank and quality of previously
viewed items. We investigate how the estimated quality of a set of standard retrieval
models is affected by these models, compared to the unbiased rating-based estimates.

In our idealized experimental setup, bias in user behavior can strongly affect the in-
ferred outcomes of evaluation. Good agreement between evaluation based on implicit and
explicit information can be achieved when metrics reflect user behavior and expectations.

2 Approach
To investigate bias in RS evaluation with implicit feedback, we need a way to generate
implicit feedback under varying models of bias. Here, we leverage a simulation setup
that was previously proposed for assessing IR evaluation methods [5]. It simulates the
interactions between an interactive system and its users, so that the behavior of the system
can be tested under varying assumptions about user behavior. We simulate the interactions
between a representative set of RSs and user models that capture key aspects of position
bias. The RSs are first trained on a representative data set, and then “deployed” to
interact with the generative user models. The models simulate interactions that reflect the
assumptions under which we want to examine RS evaluation. All simulated interactions
are recorded and applied to evaluate each system. Finally, we compare the evaluation
outcomes to each other and to ground truth evaluations to identify cases where bias
affects outcomes. Next, we detail our user models and their assumptions on user behavior.
2.1 User models. We describe the implemented user models and how they capture
user behavior and position bias. These models have been developed for the IR domain,
and have been evaluated in large-scale evaluations using click log data [2–4]. We start
with the simplest possible model, and build up complexity to cover assumptions that
may affect evaluation outcomes based on the resulting clicks on recommended items. We
phrase models in terms of clicks, but other user actions could be interpreted in the same
way, e.g., watching a recommended movie, saving an item as a favorite, or rating it.

We consider three click models, which we refer to as examination, cascade, and
browsing model. All models capture the probability of a click on a given item,P (C = 1|i),
by decomposing this probability into examination and relevance components: P (C =
1|i) = P (E = 1|i)P (R = 1|i). Here, P (E = 1|i) is the probability that item i is
examined by the user. This may depend on several factors, as will be shown below. The
second component, P (R = 1|i), captures the relevance of the item for a given user. Items
that are not examined are never clicked, i.e., Ei = 0⇒ P (Ci) = 0.

The user models differ in how they capture items’ examination probabilities (see
Table 1). In the examination model [10], the examination probability depends on the
position of an item (represented by ap), and it is independent of the examination probabil-
ities of all other items. The browsing model (based on the User Browsing Model, UBM
[3]) represents examination probabilities as a function of the distance from the closest
previously clicked item: users may be more motivated to continue examining items if
they liked the previous items. The cascade model [2] (cf., the extension for multiple



Table 1. User model specifications and definitions of examination probabilities.
model intuition parameters definition

examination examination probability item position (ap) P (E = 1|p(i)) = ap
[10] depends only on item position

browsing users give up examination distance from previous P (C = 1|0) = 1
[3] after seeing many bad items clicked item (ad) P (E = 1|d) = ad

cascade user step through a list satisfaction with previous P (E = 1|p(i) = 1) = 1
[2, 4] of items from top to bottom, item (si−1) P (E = 1|i, si−1) = 1− si−1

stop when satisfied

clicks [4]) relaxes this independence assumption, and posits a linear examination order.
Users are assumed to examine one item at a time, clicking on promising ones, until a
clicked item was found to be satisfactory (si−1 captures the satisfaction probability of
the previous item). A special case of all three click models is the no-bias model, which
sets the examination probability of all items to 1. We use this special case as baseline.
2.2 Ground truth and metrics. Metrics are used in two ways. First, we choose the
metrics for implicit and explicit evaluation to reflect a typical RS evaluation setup. Second,
we detail how the results are compared to each other, to assess differences and similarities
in how the explicit and implicit evaluation metrics judge RS performance.

We assess the following explicit metrics, based on explicit user-item ratings provided
with our data set: (1) Precision at N (P@N ), the portion of highly rated items in the
top N recommended items; (2) NDCG@N , a commonly used IR metric that rewards
systems for showing highly rated items as high as possible in a recommendation list. We
compare these metrics for explicit ratings to the implicit click through rate (CTR) at N ,
the ratio of clicked to non-clicked items in the top N recommended items.

We compare the outcomes obtained using different metrics as follows: (a) Rank the
RSs by their evaluation score and compare the resulting rankings; (b) Consider the task
of predicting performance based on implicit ratings from those obtained using explicit
ratings. We train linear regression models for this prediction task and compare how well
the performance under each user model (in terms of CTR) can be predicted from explicit
rating scores. We estimate the fit of such a model using the residual standard error (RSE,
i.e., how much the predicted performance deviates from actual performance).

3 Experiments
We describe the RSs we used, the data sets and the parameter settings.
3.1 Recommender systems. We compare the following types of recommender:(1) Two
non-personalized methods serve as baselines: a random (RND) recommender and a
popularity-based recommender (ItemPop) that ranks the item according to the observed
popularity in the training set. (2) An item-based (IB) collaborative filtering recommender;
we use Pearson’s correlation as similarity between the items [9]. (3) A matrix factorization
(MF) method as implemented in Mahout4 using the Expectation Maximization algorithm.
We used 100 iterations and 50 features, leaving the rest of the parameters as default (i.e.,
0.005 as learning rate, 0.02 as regularization parameter, and 0.005 as random noise).
(4) A user-based (UB) collaborative filtering method using 50 neighbors and Pearson’s

4 http://mahout.apache.org
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correlation as similarity metric [9]. These four types of recommender (ignoring RND)
are among the best performing ones in the literature [9].
3.2 Data. We obtain the ground truth and train the recommenders on the corresponding
test and training splits (in an 80–20 ratio) derived from a version of the Movielens dataset;5
we used Movielens 1M, with 1 million ratings by 6, 040 users to 3, 900 items.
3.3 Parameter settings. For each RS, we obtain the recommendations for all users
in the test set. We simulate user interactions with these recommendations for each user
model and record the generated interactions. We then compute the performance of each
method using this data, and average results over 25 repetitions. We compare the resulting
evaluation scores across models and systems, and also compare to ground truth scores
based on the explicit ratings provided with the data sets as described in §2.2. We assume
that users examine a maximum of 10 items and we compute all metrics on the top N = 10
item. P@10 and nDCG@10 are computed using only highly rated items (labels 4 and 5).

We instantiate the parameters of the user models (cf., §2.1) to capture a wide spec-
trum of possible user behavior. For the examination model we use logarithmic (log)
(ap = 1/ log2(p + 1)) or quadratic (quad) (ap = 1/2(p−1)) decay, p > 0. For the
cascade model we use, for a previous item, if it is non-clicked, si−1 = 0; otherwise,
we instantiate the satisfaction si−1(r), depending on the rating r of that item as fol-
lows; (low): si−1(2) = 0.2, si−1(3) = 0.3, si−1(4) = 0.4, and si−1(5) = 0.5; (high):
si−1(2) = 0.3, si−1(3) = 0.5, si−1(4) = 0.7, and si−1(5) = 0.9. For the browsing
model, ad decays with the distance from the closest click above item i with logarithmic
or quadratic decay, as defined for the examination model. All models use the same in-
stantiations of probabilities P (R = 1|i) = ci(r) for examined items i with rating r, viz.
ci(1) = 0.0, ci(2) = 0.1, ci(3) = 0.2, ci(4) = 0.8, and ci(5) = 1.0 (chosen to reflect
the quadratic gain values of nDCG). Unrated items are not clicked.6

4 Results
Table 2 shows the evaluation scores for each RS under the different evaluation approaches.
For rating-based evaluation, we see good agreement between system performance under
nDCG and Precision. In line with the RS literature, ItemPop achieves the highest scores.
IB performs lowest: it recommends a high portion of items for which no ratings are
available, a well-known problem. Good agreement is also observed between rating-based
precision and CTR under the no-bias model (RSE = 0.00017). Thus, when no position
bias is present, precision can be used as an almost perfect predictor of CTR.

When position bias is present, agreement with explicit scores can still be high, if the
assumptions about user behavior underlying the metric properly reflect user behavior. This
can be seen for the browse-log and exam-log models, which both show good agreement
with nDCG. Both models and nDCG assume that users are more likely to examine,
and therefore benefit from, highly-ranked items. However, the decay in examination
probability is weak (logarithmic). As expected, the fit between explicit metrics and CTR
worsens as assumptions about user behavior deviate. This can be seen for the exam-quad
and browse-quad models, where position bias is much stronger than assumed by nDCG.

5 http://www.grouplens.org/node/73
6 All our code is open source and available at https://bitbucket.org/ilps/lerot [11].
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Table 2. Performance of systems when measured using clicks produced by several click models,
compared to the rating-based equivalent. Changes in system rank with respect to rating-based
evaluation, and models with the highest RSE per metric are highlighted in bold.

Rating-based Click-based (CTR)
nDCG Precision no-bias exam-log exam-quad browse-log browse-quad cascade-low cascade-high

ItemPop 1 (0.150) 1 (0.146) 1 (0.139) 1 (0.081) 1 (0.020) 1 (0.088) 1 (0.020) 1 (0.087) 1 (0.067)
MF 2 (0.043) 2 (0.049) 2 (0.048) 2 (0.023) 3 (0.001) 2 (0.025) 3 (0.001) 2 (0.039) 2 (0.034)
UB 3 (0.023) 3 (0.028) 3 (0.026) 3 (0.014) 2 (0.003) 3 (0.015) 2 (0.003) 3 (0.022) 3 (0.020)
RND 4 (0.005) 4 (0.006) 4 (0.006) 4 (0.003) 4 (0.000) 4 (0.003) 4 (0.000) 4 (0.006) 4 (0.006)
IB 5 (0.000) 5 (0.000) 5 (0.001) 5 (0.000) 5 (0.000) 5 (0.000) 5 (0.000) 5 (0.001) 5 (0.001)

RSE nDCG 0.00363 0.00083 0.00242 0.00070 0.00242 0.00683 0.00711
RSE Precision 0.00017 0.00197 0.00286 0.00254 0.00286 0.00471 0.00550

The RSE when predicting CTR under quadratic decay in examination probabilities is
up to 3.5 times (0.00254) higher than under the log decay. In addition, two RSs, viz.
MF and UB, switch ranks under these models. This means that, if explicit-rating scores
were used to decide which of these models to use in production, the decision may not
agree with the performance that would be observed under implicit feedback. The worst
fit is observed under the cascade model, where the examination probabilities depend on
whether users were satisfied with higher-ranked items. Neither the strong position bias
nor the dependencies between items are captured by the rating-based metrics.

Fig. 1 examines the fit of CTR under no-bias, cascade-high, and browse-quad. We can
see the good agreement between precision and CTR for the no-bias model. These setups
agree in the magnitude of the scores; the residuals are close to zero for all systems. But if
user behavior is best reflected by the cascade model and high satisfaction probability, pre-
cision systematically over-estimates system performance. The system for which predicted
performance deviates most from the observed CTR is MF, but relatively high residuals
are observed for all systems. Performance would be most strongly over-estimated in
cases where the browse-quad model best reflects user behavior. Under this model, the
performance of MF is most strongly affected, with precision over-estimating the score
(this reflects that MF is not trained specifically for ranking [6]).

Agreement between explicit rating-based evaluation and click-based evaluation de-
pends on the degree to which assumptions about user behavior are captured by evaluation
metrics. We found best agreement between precision and CTR when no position bias
is present. Best agreement with nDCG was observed for the exam-log and browse-log
models. Despite the small number of systems compared, we observe changes in system
rankings under the browse-quad and exam-quad user models. The lowest agreement was
between explicit ratings and the cascade model.

5 Conclusion
We studied the effect of position bias on RS evaluation using implicit user feedback. We
modeled position bias using click models that capture key aspects of user behavior, and
compared RS performance under these models to that obtained under traditional, rating-
based evaluation. Good agreement between click-based and rating-based evaluation is
possible if rating-based metrics properly reflect user behavior. System performance can
be under- or over-estimated when user behavior strongly deviates from the assumptions
underlying the metrics; this effect was strongest under steep position bias.
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Fig. 1. Precision and CTR scores for selected user models with fitted linear model and residuals.
Our results have implications for theory and practice of rating-based and click-based

RS evaluation. First, they highlight the importance of understanding user behavior in
deployed systems. Only when interactions are well understood can we design metrics
that accurately reflect users’ perception of RS quality. A direction for future work is to
investigate how bias affects RS when implicit feedback is used for training.
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