
Adaptive Contract Design for Crowdsourcing Markets:
Bandit Algorithms for Repeated Principal-Agent Problems

CHIEN-JU HO, UCLA, Los Angeles, CA, USA
ALEKSANDRS SLIVKINS, Microsoft Research, New York, NY, USA
JENNIFER WORTMAN VAUGHAN, Microsoft Research, New York, NY, USA

Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to
complete. The payment for a particular task is typically set by the task’s requester, and may be adjusted
based on the quality of the completed work, for example, through the use of “bonus” payments. In this
paper, we study the requester’s problem of dynamically adjusting quality-contingent payments for tasks. We
consider a multi-round version of the well-known principal-agent model, whereby in each round a worker
makes a strategic choice of the effort level which is not directly observable by the requester. In particular,
our formulation significantly generalizes the budget-free online task pricing problems studied in prior work.

We treat this problem as a multi-armed bandit problem, with each “arm” representing a potential
contract. To cope with the large (and in fact, infinite) number of arms, we propose a new algorithm,
AgnosticZooming, which discretizes the contract space into a finite number of regions, effectively treat-
ing each region as a single arm. This discretization is adaptively refined, so that more promising regions
of the contract space are eventually discretized more finely. We provide a full analysis of this algorithm,
showing that it achieves regret sublinear in the time horizon and substantially improves over non-adaptive
discretization (which is the only competing approach in the literature).

Categories and Subject Descriptors: F.1.2 [Modes of Computation]: Online Computation; J.4 [Social and
Behavioral Sciences]: Economics

Additional Key Words and Phrases: Crowdsourcing; principal-agent; dynamic pricing; multi-armed bandits;
regret

1. INTRODUCTION
Crowdsourcing harnesses human intelligence and common sense to complete tasks
that are difficult to accomplish using computers alone. Crowdsourcing markets, such
as Amazon Mechanical Turk and Microsoft’s Universal Human Relevance System, are
platforms designed to match available human workers with tasks to complete. Using
these platforms, requesters may post tasks that they would like completed, along with
the amount of money they are willing to pay. Workers then choose whether or not to
accept the available tasks and complete the work.

Of course not all human workers are equal, nor is all human-produced work. Some
tasks, such as proofreading English text, are easier for some workers than others, re-

All missing proofs and the plots for the simulations can be found in the full version, which is available
at arxiv.org. The full version also presents an application to dynamic pricing of tasks, a more detailed
discussion of related work, and other supplementary material.
Much of this research was completed while Ho was an intern at Microsoft Research. This research was
partially supported by the NSF under grant IIS-1054911. Any opinions, findings, conclusions, or recommen-
dations are those of the authors alone.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EC’14, June 8–12, 2014, Stanford, CA, USA. ACM 978-1-4503-2565-3/14/06 ...$15.00.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2600057.2602880

quiring less effort to produce high quality results. Additionally, some workers are more
dedicated than others, willing to spend extra time to make sure a task is completed
properly. To encourage high quality results, requesters may set quality-contingent
“bonus” payments on top of the base payment for each task, rewarding workers for
producing valuable output. This can be viewed as offering workers a “contract” that
specifies how much they will be paid based on the quality of their output.1

We examine the requester’s problem of dynamically setting quality-contingent pay-
ments for tasks. We consider a setting in which time evolves in rounds. In each round,
the requester posts a new contract, a performance-contingent payment rule which
specifies different levels of payment for different levels of output. A random, uniden-
tifiable worker then arrives in the market and strategically decides whether to accept
the requester’s task and how much effort to exert; the choice of effort level is not di-
rectly observable by the requester. After the worker completes the task (or chooses not
to complete it), the requester observes the worker’s output, pays the worker according
to the offered contract, and adjusts the contract for the next round. The goal of the re-
quester is to maximize his expected utility, the value he receives from completed work
minus the payments made. We call it the dynamic contract design problem.

We treat this problem as a multi-armed bandit (MAB) problem, with each arm rep-
resenting a potential contract. Since the action space is large (potentially infinite) and
has a well-defined real-valued structure, it is natural to consider an algorithm that
uses discretization. Our algorithm, AgnosticZooming, divides the action space into re-
gions, and chooses among these regions, effectively treating each region as a single
“meta-arm.” The discretization is defined adaptively, so that the more promising ar-
eas of the action space are eventually discretized more finely than the less promising
areas. While the general idea of adaptive discretization has appeared in prior work
on MAB [Bubeck et al. 2011; Kleinberg et al. 2008; Slivkins 2011a,b], our approach
to adaptive discretization is new and problem-specific. The main difficulty, compared
to this prior work, is that an algorithm is not given any information that links the
observable numerical structure of contracts and the expected utilities thereof.

To analyze performance, we propose a concept called “width dimension” which mea-
sures how “nice” a particular problem instance is. We show that AgnosticZooming
achieves regret sublinear in the time horizon for problem instances with small width
dimension. In particular, if the width dimension is d, it achieves regret O(log T ·
T (d+1)/(d+2)) after T rounds. For problem instances with large width dimension,
AgnosticZooming matches the performance of the naive algorithm which uniformly
discretizes the space and runs a standard bandit algorithm. We illustrate our gen-
eral results via some special cases, including an improvement over the prior work on
dynamic task pricing. We support the theoretical results with simulations.

Our contributions can be summarized as follows. We define a broad, practically im-
portant setting; identify novel problem-specific structure, for both the algorithm and
the regret bounds; distill ideas from prior work to work with these structures; argue
that our approach is productive by deriving corollaries and comparing to prior work;
and identify and analyze specific examples where our theory applies. The main con-
ceptual contribution is the adaptive discretization approach mentioned above.

Related work. Our work builds on three areas of research. First, our model can be
viewed as a multi-round version of the classical principal-agent model from contract

1For some tasks, such as labeling websites as relevant to a particular search query or not, verifying the
quality of work may be as difficult as completing the task. These tasks can be assigned in batches, with each
batch containing one or more instances in which the correct answer is already known. Quality-contingent
payments can then be based on the known instances.

theory [Laffont and Martimort 2002]: the single round of our model corresponds to the
basic principal-agent setting. However, our techniques are very different from those
employed in contract theory.

Second, our methods build on those developed in the rich literature on MAB with
continuous outcome spaces. The closest line of work is that on Lipschitz MAB [Klein-
berg et al. 2008], in which the algorithm is given a distance function on the arms,
and the expected rewards of the arms are assumed to satisfy Lipschitz-continuity (or
a relaxation thereof) with respect to this distance function, [Agrawal 1995; Auer et al.
2007; Bubeck et al. 2011; Kleinberg 2004; Kleinberg et al. 2008; Slivkins 2011a]. Most
related to our techniques is the idea of adaptive discretization [Bubeck et al. 2011;
Kleinberg et al. 2008; Slivkins 2011a], and in particular, the zooming algorithm [Klein-
berg et al. 2008; Slivkins 2011a]. However, the zooming algorithm cannot be applied
directly in our setting because the required numerical similarity information is not
immediately available. This problem also arises in web search and advertising, where
it is natural to assume that an algorithm can only observe a tree-shaped taxonomy
on arms [Kocsis and Szepesvari 2006; Munos and Coquelin 2007; Pandey et al. 2007]
which can be used to explicitly reconstruct relevant parts of the underlying metric
space [Slivkins 2011b]. We take a different approach, using a notion of “virtual width”
to estimate similarity information. Explicit comparisons between our results and prior
MAB work are made throughout the paper.

Finally, our work follows several other theoretical papers on pricing in crowdsourc-
ing markets. The problem closest to ours which has been studied in this context is
dynamic task pricing , which is essentially the special case of our setting where in
each round a worker is offered to perform a task at a specified price, and can either ac-
cept or reject this offer [Badanidiyuru et al. 2012, 2013; Kleinberg and Leighton 2003;
Singer and Mittal 2013; Singla and Krause 2013]. 2 In particular, in this setting the
worker’s strategic choice is directly observable.

A more thorough literature review can be found in the full version.

2. OUR SETTING: THE DYNAMIC CONTRACT DESIGN PROBLEM
In this section, we formally define the problem that we set out to solve. We start by
describing a static model, which captures what happens in a single round of interac-
tion between a requester and a worker. As described above, this is a version of the
standard principal-agent model [Laffont and Martimort 2002]. We then define our dy-
namic model, an extension of the static model to multiple rounds, with a new worker
arriving each round. We then detail the objective of our pricing algorithm and the
simplifying assumptions that we make throughout the paper. Finally, we compare our
setting to the classic multi-armed bandit problem.

Static model. We begin with a description of what occurs during each interaction
between the requester and a single worker. The requester first posts a task which may
be completed by the worker, and a contract specifying how the worker will be paid
if she completes the task. If the task is completed, the requester pays the worker as
specified in the contract, and the requester derives value from the completed task; for
normalization, we assume that the value derived is in [0, 1]. The requester’s utility
from a given task is this value minus the payment to the worker.

When the worker observes the contract and decides whether or not to complete the
task, she also chooses a level of effort to exert, which in turn determines her cost (in
terms of time, energy, or missed opportunities) and a distribution over the quality of
her work. To model quality, we assume that there is a (small) finite set of possible

2In Badanidiyuru et al. [2013], this problem is called “dynamic procurement”.

outcomes that result from the worker completing the task (or choosing not to complete
it), and that the realized outcome determines the value that the requester derives from
the task. The realized outcome is observed by the requester, and the contract that the
requester offers is a mapping from outcomes to payments for the worker.

We emphasize two crucial (and related) features of the principal-agent model: that
the mapping from effort level to outcomes can be randomized, and that the effort level
is not directly observed by the requester. This is in line with a standard observation in
crowdsourcing that even honest, high-effort workers occasionally make errors.

The worker’s utility from a given task is the payment from the requester minus the
cost corresponding to her chosen effort level. Given the contract she is offered, the
worker chooses her effort level strategically so as to maximize her expected utility.
Crucially, the chosen effort level is not directly observable by the requester.

The worker’s choice not to perform a task is modeled as a separate effort level of zero
cost (called the null effort level) and a separate outcome of zero value and zero payment
(called the null outcome) such that the null effort level deterministically leads to the
null outcome, and it is the only effort level that can lead to this outcome.

The mapping from outcomes to the requester’s value is called the requester’s value
function. The mapping from effort levels to costs is called the cost function, and the
mapping from effort levels to distributions over outcomes is called the production func-
tion. For the purposes of this paper, a worker is completely specified by these two func-
tions; we say that the cost function and the production function comprise the worker’s
type. Unlike some traditional versions of the principal-agent problem, in our setting a
worker’s type is not observable by the requester, nor is any prior given.

Dynamic model. The dynamic model we consider in this paper is a natural exten-
sion of the static model to multiple rounds and multiple workers. We are still con-
cerned with just a single requester. In each round, a new worker arrives. We assume
a stochastic environment in which the worker’s type in each round is an i.i.d. sample
from some fixed and unknown distribution over types, called the supply distribution.
The requester posts a new task and a contract for this task. All tasks are of the same
type, in the sense that the set of possible effort levels and the set of possible outcomes
are the same for all tasks. The worker strategically chooses her effort level so as to
maximize her expected utility from this task. Based on the chosen effort level and the
worker’s production function, an outcome is realized. The requester observes this out-
come (but not the worker’s effort level) and pays the worker the amount specified by
the contract. The type of the arriving worker is never revealed to the requester. The
requester can adjust the contract from one round to another, and his total utility is the
sum of his utility over all rounds. For simplicity, we assume that the number of rounds
is known in advance, though this assumption can be relaxed using standard tricks.

The dynamic contract design problem. Throughout this paper, we take the point
of view of the requester interacting with workers in the dynamic model. The algo-
rithms we examine dynamically choose contracts to offer on each round with the goal
of maximizing the requester’s expected utility. A problem instance consists of several
quantities, some of which are known to the algorithm, and some of which are not. The
known quantities are the number of outcomes, the requester’s value function, and the
time horizon T (i.e., the number of rounds). The latent quantities are the number of ef-
fort levels, the set of worker types, and the supply distribution. The algorithm adjusts
the contract from round to round and observes the realized outcomes but receives no
other feedback.

We focus on contracts that are bounded (offer payments in [0, 1]), and monotone (as-
sign equal or higher payments for outcomes with higher value for the requester). LetX

be the set of all bounded, monotone contracts. We compare a given algorithm against a
given subset of “candidate contracts” Xcand ⊂ X. Letting OPT(Xcand) be the optimal util-
ity over all contracts in Xcand, the goal is to minimize the algorithm’s regret R(T |Xcand),
defined as T × OPT(Xcand) minus the algorithm’s expected utility.

The subset Xcand may be finite or infinite, possibly Xcand = X. The most natural
example of a finite Xcand is the set of all bounded, monotone contracts with payments
that are integer multiples of some ψ > 0; we call it the uniform mesh with granularity
ψ, and denote it Xcand(ψ).

Notation. Let v(·) be the value function of the requester, with v(π) denoting the value
of outcome π. Let O be the set of all outcomes and let m be the number of non-null
outcomes. We will index the outcomes as O = {0, 1, 2 , . . . ,m} in the order of increasing
value (ties broken arbitrarily), with a convention that 0 is the null outcome.

Let ci(·) and fi(·) be the cost function and production function for type i. Then the
cost of choosing effort level e is ci(e), and the probability of obtaining outcome π having
chosen effort e is fi(π|e). Let Fi(π|e) =

∑
π′≥π fi(π

′|e).
Recall that a contract x is a function from outcomes to (non-negative) payments. If

contract x is offered to a worker sampled i.i.d. from the supply distribution, V (x) is
the expected value to the requester, P (x) ≥ 0 is the expected payment, and U(x) =
V (x)− P (x) is the expected utility of the requester. Let OPT(Xcand) = supx∈Xcand

U(x).

Assumption: First-order stochastic dominance (FOSD). Given two effort levels e
and e′, we say that e has FOSD over e′ for type i if Fi(π|e) ≥ Fi(π|e′) for all outcomes
π, with a strict inequality for at least one outcome.3 We say that type i satisfies the
FOSD assumption if for any two distinct effort levels, one effort level has FOSD over
the other for type i. We assume that all types satisfy this assumption.

Assumption: Consistent tie-breaking. If multiple effort levels maximize the ex-
pected utility of a given worker for a contract x, we assume the tie is broken con-
sistently in the sense that this worker chooses the same effort level for any contract
that leads to this particular tie. This assumption is minor; it can be avoided (with
minor technical complications) by adding random perturbations to the contracts. This
assumption is implicit throughout the paper.

2.1. Discussion

Number of outcomes. Our results assume a small number of outcomes. This regime
is important in practice, as the quality of submitted work is typically difficult to eval-
uate in a very fine granularity. Even with m = 2 non-null outcomes, our setting has
not been studied before. The special case m = 1 is equivalent to the dynamic pricing
problem from Kleinberg and Leighton [2003]; we obtain improved results for it, too.

The benchmark. Our benchmark OPT(·) only considers contracts that are bounded
and monotone. In practice, restricting to such contracts may be appealing to all human
parties involved. However, this restriction is not without loss of generality: there are
problem instances in which monotone contracts are not optimal; see the full version for
an example. Further, it is not clear whether bounded monotone contracts are optimal
among monotone contracts.

Our benchmark OPT(Xcand) is relative to a given set Xcand, which is typically a finite
discretization of the contract space. There are two reasons for this. First, crowdsourc-
ing platforms may require the payments to be multiples of some minimum unit (e.g.,
one cent), in which case it is natural to restrict our attention to contracts satisfying

3This mimics the standard notion of FOSD between two distributions over a linearly ordered set.

the same constraint. Second, achieving guarantees relative to OPT(X) for the full gen-
erality of our problem appears beyond the reach of our techniques. As in many other
machine learning scenarios, it is useful to consider a restricted “benchmark set” – set
of alternatives to compare to.4 In such settings, it is considered important to handle
arbitrary benchmark sets, which is what we do.

One known approach to obtain guarantees relative to OPT(X) is to start with some
finite Xcand ⊂ X, design an algorithm with guarantees relative to OPT(Xcand), and then,
as a separate result, bound the discretization error OPT(X)−OPT(Xcand). Then the choice
of Xcand drives the tradeoff between the discretization error and regret R(T |Xcand), and
one can choose Xcand to optimize this tradeoff. However, while one can upper-bound
the discretization error in some (very) simple special cases (see Section 5), it is unclear
whether this can be extended to the full generality of dynamic contract design.

Alternative worker models. One of the crucial tenets in our model is that the work-
ers maximize their expected utility. This “rationality assumption” is very standard
in Economics, and is often used to make the problem amenable to rigorous analysis.
However, there is a considerable literature suggesting that in practice workers may
deviate from this “rational” behavior. Thus, it is worth pointing out that our results
do not rely heavily on the rationality assumption. The FOSD assumption (which is
also fairly standard) can be circumvented, too. In fact, all our assumptions regarding
worker behavior serve only to enable us to prove Lemma 3.1, and more specifically to
guarantee that the collective worker behavior satisfies the following natural property
(which is used in the proof of Lemma 3.1): if the requester increases the “increment
payment” (as described in the next section) for a particular outcome, the probability of
obtaining an outcome at least that good also increases.

Comparison to multi-armed bandits (MAB). Dynamic contract design can be mod-
eled as special case of the MAB problem with some additional, problem-specific struc-
ture. The basic MAB problem is defined as follows. An algorithm repeatedly chooses
actions from a fixed action space and collects rewards for the chosen actions; the avail-
able actions are traditionally called arms. More specifically, time is partitioned into
rounds, so that in each round the algorithm selects an arm and receives a reward
for the chosen arm. No other information, such as the reward the algorithm would
have received for choosing an alternative arm, is revealed. In an MAB problem with
stochastic rewards, the reward of each arm in a given round is an i.i.d. sample from
some distribution which depends on the arm but not on the round. A standard measure
of algorithm’s performance is regret with respect to the best fixed arm, defined as the
difference in expected total reward between a benchmark (usually the best fixed arm)
and the algorithm.

Thus, dynamic contract design can be naturally modeled as an MAB problem with
stochastic rewards, in which arms correspond to monotone contracts. The prior work
on MAB with large / infinite action spaces often assumes known upper bounds on sim-
ilarity between arms. More precisely, this prior work would assume that an algorithm
is given a metric D on contracts such that expected rewards are Lipschitz-continuous
with respect to D, i.e., we have upper bounds |U(x) − U(y)| ≤ D(x, y) for any two con-
tracts x, y.5 However, in our setting such upper bounds are absent. On the other hand,
our problem has some supplementary structure compared to the standard MAB set-
ting. In particular, the algorithm’s reward decomposes into value and payment, both of
which are determined by the outcome, which in turn is probabilistically determined by
the worker’s strategic choice of the effort level. Effectively, this supplementary struc-

4A particularly relevant analogy is contextual bandits with policy sets, e.g., Dudik et al. [2011].
5Such upper bound is informative if and only if D(x, y) < 1.

ture provides some “soft” information on similarity between contracts, in the sense
that numerically similar contracts are usually (but not always) similar to one another.

3. OUR ALGORITHM: AgnosticZooming
In this section, we specify our algorithm. We call it AgnosticZooming because it “zooms
in” on more promising areas of the action space, and does so without knowing a precise
measure of the similarity between contracts. This zooming can be viewed as a dynamic
form of discretization. Before stating the algorithm itself, we discuss the discretization
of the action space in more detail, laying the groundwork for our approach.

3.1. Discretization of the action space
In each round, the AgnosticZooming algorithm partitions the action space into several
regions and chooses among these regions, effectively treating each region as a “meta-
arm.” In this section, we discuss which subsets of the action space are used as regions,
and introduce some useful notions and properties of such subsets.

Increment space and cells. To describe our approach to discretization, it is useful
to think of contracts in terms of increment payments. Specifically, we represent each
monotone contract x : O → [0,∞) as a vector x ∈ [0,∞)m, where m is the number of
non-null outcomes and xπ = x(π)−x(π−1) ≥ 0 for each non-null outcome π. (Recall that
by convention 0 is the null outcome and x(0) = 0.) We call this vector the increment
representation of contract x, and denote it incr(x). Note that if x is bounded, then
incr(x) ∈ [0, 1]m. Conversely, call a contract weakly bounded if it is monotone and its
increment representation lies in [0, 1]m. Such a contract is not necessarily bounded.

We discretize the space of all weakly bounded contracts, viewed as a multi-
dimensional unit cube. More precisely, we define the increment space as [0, 1]m with
a convention that every vector represents the corresponding weakly bounded contract.
Each region in the discretization is a closed, axis-aligned m-dimensional cube in the
increment space; henceforth, such cubes are called cells. A cell is called relevant if it
contains at least one candidate contract. A relevant cell is called atomic if it contains
exactly one candidate contract, and composite otherwise.

In each composite cell C, the algorithm will only use two contracts: the maximal
corner, denoted x+(C), in which all increment payments are maximal, and the mini-
mal corner, denoted x−(C), in which all increment payments are minimal. These two
contracts are called the anchors of C. In each atomic cell C, the algorithm will only use
one contract: the unique candidate contract, also called the anchor of C.

Virtual width. To take advantage of the problem structure, it is essential to estimate
how similar the contracts within a given composite cell C are. Ideally, we would like to
know the maximal difference in expected utility:

width(C) = supx,y∈C |U(x)− U(y)| .

We estimate the width using a proxy, called virtual width, which is expressed in terms
of the anchors:

VirtWidth(C) =
(
V (x+(C))− P (x−(C))

)
−
(
V (x−(C))− P (x+(C))

)
. (1)

This definition is one crucial place where the problem structure is used. (Note that
it is not the difference in utility at the anchors.) It is useful due to the following lemma
(proved in the full version).

LEMMA 3.1. If all types satisfy the FOSD assumption and consistent tie-breaking
holds, then width(C) ≤ VirtWidth(C) for each composite cell C.

Recall that the proof of this lemma is the only place in the paper where we use
our assumptions on worker behavior. All further developments hold for any model of
worker behavior which satisfies Lemma 3.1.

3.2. Description of the algorithm
With these ideas in place, we are now ready to describe our algorithm. The high-level
outline of AgnosticZooming is very simple. The algorithm maintains a set of active cells
which cover the increment space at all times. Initially, there is only a single active cell
comprising the entire increment space. In each round t, the algorithm chooses one
active cell Ct using an upper confidence index and posts contract xt sampled uniformly
at random among the anchors of this cell. After observing the feedback, the algorithm
may choose to zoom in on Ct, removing Ct from the set of active cells and activating all
relevant quadrants thereof, where the quadrants of cell C are defined as the 2m sub-
cells of half the size for which one of the corners is the center of C. In the remainder
of this section, we specify how the cell Ct is chosen (the selection rule), and how the
algorithm decides whether to zoom in on Ct (the zooming rule).

Let us first introduce some notation. Consider cell C that is active in some round
t. Let U(C) be the expected utility from a single round in which C is chosen by the
algorithm, i.e., the average expected utility of the anchor(s) of C. Let nt(C) be the
number of times this cell has been chosen before round t. Consider all rounds in which
C is chosen by the algorithm before round t. Let Ut(C) be the average utility over
these rounds. For a composite cell C, let V +

t (C) and P+
t (C) be the average value and

average payment over all rounds when anchor x+(C) is chosen. Similarly, let V −
t (C)

and P−
t (C) be the average value and average payment over all rounds when anchor

x−(C) is chosen. Accordingly, we can estimate the virtual width of composite cell C at
time t as

Wt(C) =
(
V +
t (C)− P−

t (C)
)
−

(
V −
t (C)− P+

t (C)
)
. (2)

To bound the deviations, we define the confidence radius as

radt(C) =
√
crad log(T)/nt(C), (3)

for some absolute constant crad; in our analysis, crad ≥ 16 suffices. We will show that
with high probability all sample averages defined above will stay within radt(C) of the
respective expectations. If this high probability event holds, the width estimate Wt(C)
will always be within 4 radt(C) of VirtWidth(C).

Selection rule. Now we are ready to complete the algorithm. The selection rule is
as follows. In each round t, the algorithm chooses an active cell C with maximal in-
dex It(·). It(C) is an upper confidence bound on the expected utility of any candidate
contract in C, defined as

It(C) =

{
Ut(C) + radt(C) if C is an atomic cell,
Ut(C) +Wt(C) + 5 radt(C) otherwise.

(4)

Zooming rule. We zoom in on a composite cell Ct if

Wt+1(Ct) > 5 radt+1(Ct),

i.e., the uncertainty due to random sampling, expressed by the confidence radius, be-
comes sufficiently small compared to the uncertainty due to discretization, expressed
by the virtual width. We never zoom in on atomic cells. The pseudocode is summarized
in Algorithm 1.

ALGORITHM 1: AgnosticZooming
Inputs: subset Xcand ⊂ X of candidate contracts.
Data structure: Collection A of cells. Initially, A = { [0, 1]m }.
For each round t = 1 to T

Let Ct = argmaxC∈A It(C), where It(·) is defined as in Equation (4).
Sample contract xt u.a.r. among the anchors of Ct. \\ Anchors are defined in Section 3.1.
Post contract xt and observe feedback.
If |C ∩Xcand| > 1 and 5 radt+1(Ct) < Wt+1(Ct) then

A ← A∪ {all relevant quadrants of Ct} \ {Ct}. \\ C is relevant if |C ∩Xcand| ≥ 1.

Integer payments. In practice it may be necessary to only allow contracts in which
all payments are integer multiples of some amount ψ, e.g., whole cents. (In this case we
can assume that candidate contracts have this property, too.) Then we can redefine the
two anchors of each composite cell: the maximal (resp., minimal) anchor is the nearest
allowed contract to the maximal (resp., minimal) corner. Width can be redefined as a
sup over all allowed contracts in a given cell. With these modifications, the analysis
goes through without significant changes. We omit further discussion of this issue.

4. REGRET BOUNDS AND DISCUSSION
We present the main regret bound for AgnosticZooming. Formulating this result re-
quires some new, problem-specific structure. Stated in terms of this structure, the re-
sult is somewhat difficult to access. To explain its significance, we state several corol-
laries, and compare our results to prior work.

The main result. We start with the main regret bound. Like the algorithm itself, this
regret bound is parameterized by the set Xcand of candidate contracts; our goal is to
bound the algorithm’s regret with respect to candidate contracts.

Recall that OPT(Xcand) = supx∈Xcand
U(x) is the optimal expected utility over candidate

contracts. The algorithm’s regret with respect to candidate contracts is R(T |Xcand) =
T OPT(Xcand)−U , where T is the time horizon and U is the expected cumulative utility
of the algorithm.

Define the badness ∆(x) of a contract x ∈ X as the difference in expected utility
between an optimal candidate contract and x: ∆(x) = OPT(Xcand)−U(x). Let Xϵ = {x ∈
Xcand : ∆(x) ≤ ϵ}.

We will only be interested in cells that can potentially be used by AgnosticZooming.
Formally, we recursively define a collection of feasible cells as follows: (i) the cell [0, 1]m
is feasible, (ii) for each feasible cell C, all relevant quadrants of C are feasible. Note
that the definition of a feasible cell implicitly depends on the set Xcand of candidate
contracts.

Let Fϵ denote the collection of all feasible, composite cells C such that
VirtWidth(C) ≥ ϵ. For Y ⊂ Xcand, let Fϵ(Y) be the collection of all cells C ∈ Fϵ that
overlap with Y , and let Nϵ(Y) = |Fϵ(Y)|; sometimes we will write Nϵ(Y |Xcand) in place
of Nϵ(Y) to emphasize the dependence on Xcand.

Using the structure defined above, the main theorem is stated as follows. We prove
this theorem in Section 6.

THEOREM 4.1. Consider the dynamic contract design problem with all types sat-
isfying the FOSD assumption and a constant number of outcomes. Assume T ≥
max(2m + 1, 18). Consider AgnosticZooming, parameterized by some set Xcand of can-

didate contracts. There is an absolute constant β0 > 0 such that for any δ > 0,

R(T |Xcand) ≤ δT +O(log T)
∑

ϵ=2−j≥δ: j∈N

Nϵ β0(Xϵ|Xcand)

ϵ
. (5)

Remark 4.2. As discussed in Section 2.1, we target the practically important case of
a small number of outcomes. The impact of larger m is an exponential dependence on
m in the O() notation, and, more importantly, increased number of candidate policies
(typically exponential in m for a given granularity).

Remark 4.3. Our regret bounds do not depend on the number of worker types, in
line with prior work on dynamic pricing. Essentially, this is because bandit approaches
tend to depend only on expected reward of a given “arm” (and perhaps also on the
variance), not the finer properties of the distribution.

Equation (5) has a shape similar to several other regret bounds in the literature,
as discussed below. To make this more apparent, we observe that regret bounds in
“bandits in metric spaces” are often stated in terms of covering numbers. (For a fixed
collection F of subsets of a given ground set X, the covering number of a subset Y ⊂ X
relative to F is the smallest number of subsets in F that is sufficient to cover Y .) The
numbers Nϵ(Y |Xcand) are, essentially, about covering Y with feasible cells with virtual
width close to ϵ. We make this point more precise as follows. Let an ϵ-minimal cell be
a cell in Fϵ which does not contain any other cell in Fϵ. Let Nmin

ϵ (Y) be the covering
number of Y relative to the collection of ϵ-minimal cells, i.e., the smallest number of
ϵ-minimal cells sufficient to cover Y . Then

Nϵ(Y) ≤ ⌈log 1
ψ ⌉ N

min
ϵ (Y) for any Y ⊂ Xcand and ϵ ≥ 0, (6)

where ψ is the smallest size of a feasible cell.6 Thus, Equation (5) can be easily restated
using the covering numbers Nmin

ϵ (·) instead of Nϵ(·).
Corollary: Polynomial regret. Literature on regret-minimization often states “poly-
nomial” regret bounds of the form R(T) = Õ(T γ), γ < 1. While covering-number regret
bounds are more precise and versatile, the exponent γ in a polynomial regret bound
expresses algorithms’ performance in a particularly succinct and lucid way.

For “bandits in metric spaces” the exponent γ is typically determined by an appropri-
ately defined notion of “dimension”, such as the covering dimension,7 which succinctly
captures the difficulty of the problem instance. Interestingly, the dependence of γ on
the dimension d is typically of the same shape; γ = (d+1)/(d+2), for several different
notions of “dimension”. In line with this tradition, we define the width dimension:

WidthDimα = inf
{
d ≥ 0 : Nϵ β0

(Xϵ|Xcand) ≤ α ϵ−d for all ϵ > 0
}
, α > 0. (7)

Note that the width dimension depends on Xcand and the problem instance, and is
parameterized by a constant α > 0. By optimizing the choice of δ in Equation (5), we
obtain the following corollary.

COROLLARY 4.4. Consider the the setting of Theorem 4.1. For any α > 0, let d =
WidthDimα. Then

R(T |Xcand) ≤ O(α log T) T (1+d)/(2+d). (8)

6To prove Equation (6), observe that for each cell C ∈ Fϵ(Y) there exists an ϵ-minimal cell C′ ⊂ C, and for
each ϵ-minimal cell C′ there exist at most ⌈log 1

ψ
⌉ cells C ∈ Fϵ(Y) such that C′ ⊂ C.

7Given covering numbers Nϵ(·), the covering dimension of Y is the smallest d ≥ 0 such that Nϵ(Y) = O(ϵ−d)
for all ϵ > 0.

The width dimension is similar to the “zooming dimension” in Kleinberg et al. [2008]
and “near-optimality dimension” in Bubeck et al. [2011] in the work on “bandits in
metric spaces.” See the full version for further discussion.

Comparison to prior work (non-adaptive discretization). One approach from
prior work that is directly applicable to the dynamic contract design problem is non-
adaptive discretization. This is an algorithm, call it NonAdaptive, which runs an off-
the-shelf MAB algorithm, treating a set of candidate contracts Xcand as arms.8 For
concreteness, and following the prior work [Kleinberg 2004; Kleinberg and Leighton
2003; Kleinberg et al. 2008], we use a well-known algorithm UCB1 [Auer et al. 2002] as
an off-the-shelf MAB algorithm.

To compare AgnosticZooming with NonAdaptive, it is useful to derive several “worst-
case” corollaries of Theorem 4.1, replacing Nϵ(Xϵ) with various (loose) upper bounds.9

COROLLARY 4.5. In the setting of Theorem 4.1, the regret of AgnosticZooming can
be upper-bounded as follows:

(a) R(T |Xcand) ≤ δT +
∑
ϵ=2−j≥δ: j∈N Õ(|Xϵ| /ϵ), for each δ ∈ (0, 1).

(b) R(T |Xcand) ≤ Õ(
√
T |Xcand|).

Here the Õ() notation hides the logarithmic dependence on T and δ.

The best known regret bounds for NonAdaptive coincide with those in Corollary 4.5
up to poly-logarithmic factors. However, the regret bounds in Theorem 4.1 may be
significantly better than the ones in Corollary 4.5. We further discuss this in the next
section, in the context of a specific example.

5. A SPECIAL CASE: THE “HIGH-LOW EXAMPLE ”
We show an application of the machinery in Section 4 on a specific example. On this
example AgnosticZooming significantly outperforms NonAdaptive.

The most basic special case is when there is just one non-null outcome. Essentially,
each worker makes a strategic choice whether to accept or reject a given task (where
“reject” corresponds to the null effort level), and this choice is fully observable. This set-
ting has been studied before [Badanidiyuru et al. 2012, 2013; Kleinberg and Leighton
2003; Singla and Krause 2013]; we will call it dynamic task pricing . Here the contract
is completely specified by the price p for the non-null outcome. The supply distribution
is summarized by the function S(p) = Pr[accept|p], so that the corresponding expected
utility is U(p) = S(p)(v−p), where v is the value for the non-null outcome. This special
case is already quite rich, because S(·) can be an arbitrary non-decreasing function.
By using adaptive discretization, we achieve significant improvement over prior work;
see the full version for further discussion.

We consider a somewhat richer setting in which workers’ strategic decisions are not
observable; this is a salient feature of our setting, called moral hazard in the contract
theory literature. There are two non-null outcomes (low and high), and two non-null
effort levels (low and high). Low outcome brings zero value to the requester, while high
outcome brings value v > 0. Low effort level inflicts zero cost on a worker and leads
to low outcome with probability 1. We assume that workers break ties between effort
levels in a consistent way: high better than low better than null. (Hence, as low effort
incurs zero cost, the only possible outcomes are low and high.) We will call this the
high-low example; it is perhaps the simplest example that features moral hazard.

8To simplify the proofs of the lower bounds, we assume that the candidate contracts are randomly permuted
when given to the MAB algorithm.
9We use the facts that Xϵ ⊂ Xcand, Nϵ(Y) ≤ N0(Y), and Nmin

0 (Y) ≤ |Y | for all subsets Y ⊂ X.

In this example, the worker’s type consists of a pair (ch, θh), where ch ≥ 0 is the cost
for high effort and θh ∈ [0, 1] is the probability of high outcome given high effort. Note
that dynamic task pricing is equivalent to the special case θh = 1.

The following claim states a crucial property of the high-low example.

CLAIM 5.1. Consider the high-low example with a fixed supply distribution. Then
Pr[high outcome | contract x] depends only on p = x(high) − x(low); denote this proba-
bility by S(p). Moreover, S(p) is non-decreasing in p. Therefore:
• expected utility is U(x) = S(p)(v − p)− x(low).
• discretization error OPT(X)− OPT(Xcand(ψ)) is at most 3ψ, for any ψ > 0.

Recall that Xcand(ψ), the uniform mesh with granularity ψ > 0, consists of all
bounded, monotone contracts with payments in ψN.

For our purposes, the supply distribution is summarized via the function S(·). Denote
Ũ(p) = S(p)(v − p). Note that U(x) is maximized by setting x(low) = 0, in which case
U(x) = Ũ(p). Thus, if an algorithm knows that it is given a high-low example, it can set
x(low) = 0, thereby reducing the dimensionality of the search space. Then the problem
essentially reduces to dynamic task pricing with the same S(·).

However, in general an algorithm does not know whether it is presented with the
high-low example (because the effort levels are not observable). So in what follows we
will consider algorithms that do not restrict themselves to x(low) = 0.

“Nice” supply distribution. We focus on a supply distribution D that is “nice”, in
the sense that S(·) satisfies the following two properties:
• S(p) is Lipschitz-continuous: |S(p)− S(p′)| ≤ L|p− p′| for some constant L.
• Ũ(p) is strongly concave, in the sense that Ũ ′′(·) exists and satisfies Ũ ′′(·) ≤ C < 0.

Here L and C are absolute constants. We call such D strongly Lipschitz-concave.
The above properties are fairly natural. For example, they are satisfied if θh is the

same for all worker types and the marginal distribution of ch is piecewise uniform such
that the density is between 1

λ and λ, for some absolute constant λ ≥ 1.
We show that for any choice Xcand ⊂ X, AgnosticZooming has a small width dimen-

sion in this setting, and therefore small regret.

LEMMA 5.2. Consider the high-low example with a strongly Lipschitz-concave sup-
ply distribution. Then the width dimension is at most 1

2 , for any given Xcand ⊂ X.
Therefore, AgnosticZooming with this Xcand has regret R(T |Xcand) = O(log T)T 3/5.

We contrast this with the performance of NonAdaptive, parameterized with the
natural choice Xcand = Xcand(ψ). We focus on R(T |X): regret w.r.t. the best con-
tract in X. We show that AgnosticZooming achieves R(T |X) = Õ(T 3/5) for a wide
range of Xcand, whereas NonAdaptive cannot do better than R(T |X) = O(T 3/4) for any
Xcand = Xcand(ψ), ψ > 0.

LEMMA 5.3. Consider the setting of Lemma 5.2. Then:
(a) AgnosticZooming with Xcand ⊃ Xcand(T

−2/5) has regret R(T |X) = O(T 3/5 log T).
(b) NonAdaptive with Xcand = Xcand(ψ) cannot achieve regret R(T |X) < o(T 3/4) over
all problem instances, for any ψ > 0. 10

6. PROOF OF THE MAIN REGRET BOUND (THEOREM 4.1)
We now prove the main result from Section 4. Our high-level approach is to define a
clean execution of an algorithm as an execution in which some high-probability events

10This lower bound holds even if UCB1 in NonAdaptive is replaced with any other MAB algorithm.

are satisfied, and derive bounds on regret conditional on the clean execution. The anal-
ysis of a clean execution does not involve any “probabilistic” arguments. This approach
tends to simplify regret analysis.

We start by listing some simple invariants enforced by AgnosticZooming:

INVARIANT 6.1. In each round t of each execution of AgnosticZooming:
(a) All active cells are relevant,
(b) Each candidate contract is contained in some active cell,
(c) Wt(C) ≤ 5 radt(C) for each active composite cell C.

Note that the zooming rule is essential to ensure Invariant 6.1(c).

6.1. Analysis of the randomness
DEFINITION 6.2 (CLEAN EXECUTION). An execution of AgnosticZooming is called

clean if for each round t and each active cell C it holds that

|U(C)− Ut(C)| ≤ radt(C), (9)
|VirtWidth(C)−Wt(C)| ≤ 4 radt(C) (if C is composite). (10)

LEMMA 6.3. Assume crad ≥ 16 and T ≥ max(1 + 2m, 18). Then:
(a) Pr [Equation (9) holds ∀ rounds t, active cells C] ≥ 1− 2T−2.
(b) Pr [Equation (10) holds ∀ rounds t, active composite cells C] ≥ 1− 16T−2.

Consequently, an execution of AgnosticZooming is clean with probability at least 1−1/T .

Lemma 6.3 follows from the standard concentration inequality known as “Chernoff
Bounds”. However, one needs to be careful about conditioning and other details.

PROOF OF LEMMA 6.3(A). Consider an execution of AgnosticZooming. Let N be the
total number of activated cells. Since at most 2m cells can be activated in any one
round, N ≤ 1+2mT ≤ T 2. Let Cj be the min(j,N)-th cell activated by the algorithm. (If
multiple “quadrants” are activated in the same round, order them according to some
fixed ordering on the quadrants.)

Fix some feasible cell C and j ≤ T 2. We claim that

Pr [|U(C)− Ut(C)| ≤ radt(C) for all rounds t | Cj = C] ≥ 1− 2T−4. (11)

Let n(C) = n1+T (C) be the total number of times cell C is chosen by the algorithm.
For each s ∈ N: 1 ≤ s ≤ n(C) let Us be the requester’s utility in the round when C is
chosen for the s-th time. Further, let DC be the distribution of U1, conditional on the
event n(S) ≥ 1. (That is, the per-round reward from choosing cell C.) Let U ′

1 , . . . , U
′
T be

a family of mutually independent random variables, each with distribution DC . Then
for each n ≤ T , conditional on the event {Cj = C}∧{n(C) = n}, the tuple (U1 , . . . , Un)
has the same joint distribution as the tuple (U ′

1 , . . . , U
′
n). Consequently, applying

Chernoff Bounds to the latter tuple, it follows that

Pr
[∣∣U(C)− 1

n

∑n
s=1 Us

∣∣ ≤ √
1
n crad log(T)

∣∣∣ {Cj = C} ∧ {n(C) = n}
]

≥ 1− 2T−2crad ≥ 1− 2T−5.

Taking the Union Bound over all n ≤ T , and plugging in radt(Cj), nt(Cj), and Ut(Cj),
we obtain Equation (11).

Now, let us keep j fixed in Equation (11), and integrate over C. More precisely, let
us multiply both sides of Equation (11) by Pr[Cj = C] and sum over all feasible cells C.
We obtain, for all j ≤ T 2:

Pr [|U(Cj)− Ut(Cj)| ≤ radt(Cj) for all rounds t] ≥ 1− 2T−4. (12)

(Note that to obtain Equation (12), we do not need to take the Union Bound over all
feasible cells C.) To conclude, we take the Union Bound over all j ≤ 1 + T 2.

PROOF SKETCH OF LEMMA 6.3(B). We show that

Pr
[∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C) ∀ rounds t, active composite cells C

]
≥ 1− 4

T 2 , (13)

and similarly for V −(), P+() and P−(). Each of these four statements is proved simi-
larly, using the technique from Lemma 6.3(a). In what follows, we sketch the proof for
one of the four cases, namely for Equation (13).

For a given composite cell C, we are only interested in rounds in which anchor x+(C)
is selected by the algorithm. Letting n+t (C) be the number of times this anchor is
chosen up to time t, let us define the corresponding notion of “confidence radius”:

rad+t (C) =
1

2

√
crad log T

n+t (C)
.

With the technique from the proof of Lemma 6.3(a), we can establish the following
high-probability event: ∣∣V +(C)− V +

t (C)
∣∣ ≤ rad+t (C). (14)

More precisely, we can prove that

Pr [Equation (14) holds ∀ rounds t, active composite cells C] ≥ 1− 2T−2.

Further, we need to prove that w.h.p. the anchor x+(C) is played sufficiently often.
Noting that E[n+t (C)] = 1

2 nt(C), we establish an auxiliary high-probability event:11

n+t (C) ≥ 1
2 nt(C)−

1
4 radt(C). (15)

More precisely, we can use Chernoff Bounds to show that, if crad ≥ 16,

Pr [Equation (15) holds ∀ rounds t, active composite cells C] ≥ 1− 2T−2. (16)

Now, letting n0 = (crad log T)1/3, observe that

nt(C) ≥ n0 ⇒ n+t (C) ≥ 1
4 nt(C) ⇒ rad+t (C) ≤ radt(C),

nt(C) < n0 ⇒ radt(C) ≥ 1 ⇒
∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C).

Therefore, once Equations (14) and (15) hold, we have
∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C).

This completes the proof of Equation (13).

6.2. Analysis of a clean execution
The rest of the analysis focuses on a clean execution. Recall that Ct is the cell chosen
by the algorithm in round t.

CLAIM 6.4. In any clean execution, I(Ct) ≥ OPT(Xcand) for each round t.

PROOF. Fix round t, and let x∗ be any candidate contract. By Invariant 6.1(b), there
exists an active cell, call it C∗

t , which contains x∗.
We claim that It(C∗

t) ≥ U(x∗). We consider two cases, depending on whether C∗
t is

atomic. If C∗
t is atomic then the anchor is unique, so U(C∗

t) = U(x∗), and It(C∗
t) ≥ U(x∗)

11The constant 1
4

in Equation (15) is there to enable a consistent choice of n0 in the remainder of the proof.

by the clean execution. If C∗
t is composite then

It(C
∗
t) ≥ U(C∗

t) + VirtWidth(C∗
t) by clean execution

≥ U(C∗
t) + width(C∗

t) by Lemma 3.1
≥ U(x∗) by definition of width, since x∗ ∈ C∗

t .

We have proved that It(C∗
t) ≥ U(x∗). Now, by the selection rule we have It(Ct) ≥

It(C
∗
t) ≥ U(x∗). Since this holds for any candidate contract x∗, the claim follows.

CLAIM 6.5. In any clean execution, for each round t, the index It(Ct) is upper-
bounded as follows:

(a) if Ct is atomic then I(Ct) ≤ U(Ct) + 2 radt(Ct).
(b) if Ct is composite then I(Ct) ≤ U(x) +O(radt(Ct)) for each contract x ∈ Ct.

PROOF. Fix round t. Part (a) follows because It(Ct) = Ut(Ct)+radt(Ct) by definition
of the index, and Ut(Ct) ≤ U(Ct) + radt(Ct) by clean execution.

For part (b), fix a contract x ∈ Ct. Then:

Ut(Ct) ≤ U(Ct) + radt(Ct) by clean execution
≤ U(x) + width(Ct) + radt(Ct) by definition of width
≤ U(x) + VirtWidth(Ct) + radt(Ct) by Lemma 3.1
≤ U(x) +Wt(Ct) + 5 radt(Ct) by clean execution. (17)

It(Ct) = Ut(Ct) +Wt(Ct) + 5 radt(Ct) by definition of index
≤ U(x) + 2Wt(Ct) + 10 radt(Ct) by Equation (17)
≤ U(x) + 20 radt(Ct) by Invariant 6.1(c).

For each relevant cell C, define badness ∆(C) as follows. If C is composite, ∆(C) =
supx∈C ∆(x) is the maximal badness among all contracts in C. If C is atomic and x ∈ C
is the unique candidate contract in C, then ∆(C) = ∆(x).

CLAIM 6.6. In any clean execution, ∆(C) ≤ O(radt(C)) for each round t and each
active cell C.

PROOF. By Claims 6.4 and 6.5, ∆(Ct) ≤ O(radt(Ct)) for each round t. Fix round t
and let C be an active cell in this round. If C has never be selected before round t, the
claim is trivially true. Else, let s be the most recent round before twhen C is selected by
the algorithm. Then ∆(C) ≤ O(rads(C)). The claim follows since rads(C) = radt(C).

CLAIM 6.7. In a clean execution, each cell C is selected ≤ O(log T/(∆(C))2) times.

PROOF. By Claim 6.6, ∆(C) ≤ O(radT (C)). The claim follows from the definition of
radT in Equation (3).

Let n(x) and n(C) be the number of times contract x and cell C, respectively, are
chosen by the algorithm. Then regret of the algorithm is

R(T |Xcand) =
∑
x∈X n(x) ∆(x) ≤

∑
cells C n(C)∆(C). (18)

The next result (Lemma 6.8) upper-bounds the right-hand side of Equation (18) for a
clean execution. By Lemma 6.3, this suffices to complete the proof of Theorem 4.1

LEMMA 6.8. Consider a clean execution of AgnosticZooming. For any δ ∈ (0, 1),∑
cells C n(C)∆(C) ≤ δT +O(log T)

∑
ϵ=2−j≥δ: j∈N

|Fϵ(X2ϵ)|
ϵ .

The proof of Lemma 6.8 relies on some simple properties of ∆(·), stated below.

CLAIM 6.9. Consider two relevant cells C ⊂ Cp. Then:

(a) ∆(C) ≤ ∆(Cp).
(b) If ∆(C) ≤ ϵ for some ϵ > 0, then C overlaps with Xϵ.

PROOF. To prove part (a), one needs to consider two cases, depending on whether
cell Cp is composite. If it is, the claim follows trivially. If Cp is atomic, then C is atomic,
too, and so ∆(C) = ∆(Cp) = ∆(x), where x is the unique candidate contract in Cp.

For part (b), there exists a candidate contract x ∈ C. It is easy to see that ∆(x) ≤
∆(C) (again, consider two cases, depending on whether C is composite.) So, x ∈ Xϵ.

PROOF OF LEMMA 6.8. Let Σ denote the sum in question. Let A∗ be the collection of
all cells ever activated by the algorithm. Among such cells, consider those with badness
on the order of ϵ:

Gϵ := { C ∈ A∗ : ∆(C) ∈ [ϵ, 2ϵ) } .
By Claim 6.7, the algorithm chooses each cell C ∈ Gϵ at most O(log T/ϵ2) times, so
n(C)∆(C) ≤ O(log T/ϵ).

Fix some δ ∈ (0, 1) and observe that all cells C with ∆(C) ≤ δ contribute at most δT
to Σ. Therefore it suffices to focus on Gϵ, ϵ ≥ δ/2. It follows that

Σ ≤ δT +O(log T)
∑
ϵ=2−i≥δ/2

|Gϵ|
ϵ . (19)

We bound |Gϵ| as follows. Consider a cell C ∈ Gϵ. The cell is called a leaf if it is never
zoomed in on (i.e., removed from the active set) by the algorithm. If C is activated in
the round when cell Cp is zoomed in on, Cp is called the parent of C. We consider two
cases, depending on whether or not C is a leaf.

(i) Assume cell C is not a leaf. Since ∆(C) < 2ϵ, C overlaps with X2ϵ by Claim 6.9(b).
Note that C is zoomed in on in some round, say in round t− 1. Then

5 radt(C) ≤Wt(C) by the zooming rule
≤ VirtWidth(C) + 4 radt(C) by clean execution,

so radt(C) ≤ VirtWidth(C). Therefore, using Claim 6.6, we have

ϵ ≤ ∆(C) ≤ O(radt(C)) ≤ O(VirtWidth(C)).

It follows that C ∈ FΩ(ϵ)(X2ϵ).
(ii) Assume cell C is a leaf. Let Cp be the parent of C. Since C ⊂ Cp, we have ∆(C) ≤

∆(Cp) by Claim 6.9(a). Therefore, invoking case (i), we have

ϵ ≤ ∆(C) ≤ ∆(Cp) ≤ O(VirtWidth(Cp)).

Since ∆(C) < 2ϵ, C overlaps with X2ϵ by Claim 6.9(b), and therefore so does Cp. It
follows that Cp ∈ FΩ(ϵ)(X2ϵ).

Combing these two cases, it follows that |Gϵ| ≤ (2m + 1)
∣∣FΩ(ϵ)(X2ϵ)

∣∣. Plugging this
into (19) and making an appropriate substitution ϵ → Θ(ϵ) to simplify the resulting
expression, we obtain the regret bound in Theorem 4.1

7. SIMULATIONS
We evaluate the performance of AgnosticZooming through simulations. We compare
AgnosticZooming with two versions of NonAdaptive that use, respectively, two standard
bandit algorithms: UCB1 [Auer et al. 2002] and Thompson Sampling [Thompson 1933]
(with Gaussian priors). For both UCB1 and AgnosticZooming, we replace the logarithmic

confidence terms with small constants.12 All three algorithms are run with Xcand =
Xcand(ψ), where ψ > 0 is the granularity of the discretization.

Setup. We consider a version of the high-low example, as described in Section 5. We
set the requester’s values to V (high) = 1 and V (low) = .3. The probability of obtaining
high outcome given high effort is set to θh = .8. Thus, the worker’s type is characterized
by the cost ch for high effort. We consider three supply distributions:

— Uniform Worker Market : ch is uniformly distributed on [0, 1].
— Homogeneous Worker Market : ch is the same for every worker.
— Two-Type Market : ch is uniformly distributed over two values, c′h and c′′h .

These first two markets represent the extreme cases when workers are extremely
homogeneous or extremely diverse, and the third market is one way to represent the
middle ground. For each market, we run each algorithm 100 times. For Homogeneous
Worker Market, ch is drawn uniformly at random from [0, 1] for each run. For Two-Type
Market, c′h and c′′h are drawn independently and uniformly from [0, 1] on each run.

Results. The plots can be found in the full version. Across all simulations,
AgnosticZooming performs comparably to or better than NonAdaptive. In particular,
its performance does not appear to suffer from large “hidden constants” that appear in
the analysis. We find that AgnosticZooming converges faster than NonAdaptive when ψ
is near-optimal or smaller; this is consistent with the intuition that AgnosticZooming
focuses on exploring the more promising regions. When ψ is large, AgnosticZooming
converges slower than NonAdaptive, but eventually achieves the same performance.
Further, we find that AgnosticZooming with small ψ performs well compared to
NonAdaptive with larger ψ: not much worse initially, and much better eventually.

Our simulations suggest that if time horizon T is known in advance and one can
tune ψ to T , then NonAdaptive can achieve similar performance as AgnosticZooming.
However, in real applications approximately optimal ψ may be difficult to compute,
and the T may not be known in advance.

8. CONCLUSIONS
Motivated by applications to crowdsourcing markets, we define the dynamic contract
design problem: a multi-round version of the principal-agent model with unobservable
strategic decisions. We design an algorithm for this problem and derive regret bounds
which compare favorably to prior work. Our main conceptual contribution is the adap-
tive discretization approach that does not rely on Lipschitz-continuity assumptions.
We provably improve on the uniform discretization approach from prior work, both in
the general case and in some illustrative special cases. These theoretical results are
supported by simulations.

We believe that the dynamic contract design problem deserves further study. First, it
is not clear whether our provable results can be improved, perhaps using substantially
different algorithms and relative to other problem-specific structures. In particular, no
lower bounds are currently known. Second, our adaptive discretization approach may
be fine-tuned, in several different ways, to improve its performance in practice. One
possible area of improvement is selecting a feasible cell in a “smoother”, probabilistic
way, e.g., as in Thompson Sampling [Thompson 1933]. Third, one needs deeper insights
into the structure of the (static) principal-agent problem, primarily in order to upper-
bound discretization errors of the form OPT(Xcand) − OPT(Xcand(ϵ)) and OPT(Xcand(ϵ)) −
OPT(Xcand(ϵ

′)), ϵ > ϵ′ > 0. Also of interest is the effect of restricting our attention

12We find such changes beneficial in practice, for both algorithms; this observation is consistent with prior
work [Radlinski et al. 2008; Slivkins et al. 2013].

to monotone contracts. Fourth, a (much) more extensive analysis of special cases is
in order. The most immediate direction is deriving lucid corollaries from the current
regret bounds, preferably also optimizing the choice of candidate contracts. One can
also design improved algorithms and derive specialized lower bounds.

Going beyond our current model, a natural (but probably very difficult) direction is to
incorporate budget constraints, extending the results on online task pricing [Badani-
diyuru et al. 2012, 2013; Singla and Krause 2013].

REFERENCES

Rajeev Agrawal. 1995. The continuum-armed bandit problem. SIAM J. Control and Optimiza-
tion 33, 6 (1995), 1926–1951.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of the Multi-
armed Bandit Problem. Machine Learning 47, 2-3 (2002), 235–256. Preliminary version in
15th ICML, 1998.

Peter Auer, Ronald Ortner, and Csaba Szepesvári. 2007. Improved Rates for the Stochastic
Continuum-Armed Bandit Problem. In 20th COLT. 454–468.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. 2012. Learning on a budget:
posted price mechanisms for online procurement. In 13th ACM EC. 128–145.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. 2013. Bandits with
Knapsacks. In 54th IEEE FOCS.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. 2011. Online Optimiza-
tion in X-Armed Bandits. J. of Machine Learning Research (JMLR) 12 (2011), 1587–1627.
Preliminary version in NIPS 2008.

Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin,
and Tong Zhang. 2011. Efficient Optimal Leanring for Contextual Bandits. In 27th UAI.

Robert Kleinberg. 2004. Nearly Tight Bounds for the Continuum-Armed Bandit Problem.. In
18th NIPS.

Robert Kleinberg and Tom Leighton. 2003. The Value of Knowing a Demand Curve: Bounds on
Regret for Online Posted-Price Auctions.. In 44th IEEE FOCS. 594–605.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. 2008. Multi-Armed Bandits in Metric
Spaces. In 40th ACM STOC. 681–690.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit Based Monte-Carlo Planning. In 17th
ECML. 282–293.

Jean-Jacques Laffont and David Martimort. 2002. The Theory of Incentives: The Principal-Agent
Model. Princeton University Press.

Rémi Munos and Pierre-Arnaud Coquelin. 2007. Bandit algorithms for tree search. In 23rd
UAI.

Sandeep Pandey, Deepak Agarwal, Deepayan Chakrabarti, and Vanja Josifovski. 2007. Bandits
for Taxonomies: A Model-based Approach. In SDM.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse rankings
with multi-armed bandits. In 25th ICML. 784–791.

Yaron Singer and Manas Mittal. 2013. Pricing Mechanisms in Crowdsourcing Markets. In
WWW.

Adish Singla and Andreas Krause. 2013. Truthful incentives in crowdsourcing tasks using re-
gret minimization mechanisms. In 22nd WWW. 1167–1178.

Aleksandrs Slivkins. 2011a. Contextual Bandits with Similarity Information. In 24th COLT. To
appear in J. of Machine Learning Research (JMLR), 2013.

Aleksandrs Slivkins. 2011b. Multi-armed bandits on implicit metric spaces. In 25th NIPS.
Aleksandrs Slivkins, Filip Radlinski, and Sreenivas Gollapudi. 2013. Learning optimally diverse

rankings over large document collections. J. of Machine Learning Research (JMLR) 14, Feb
(2013), 399–436. Preliminary version in 27th ICML, 2010.

William R. Thompson. 1933. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25, 3-4 (1933), 285294.

