
Verified Computational Differential Privacy with

Applications to Smart Metering
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Abstract—EasyCrypt is a tool-assisted framework for reason-
ing about probabilistic computations in the presence of adver-
sarial code, whose main application has been the verification of
security properties of cryptographic constructions in the compu-
tational model. We report on a significantly enhanced version of
EasyCrypt that accommodates a richer, user-extensible language
of probabilistic expressions and, more fundamentally, supports
reasoning about approximate forms of program equivalence.
This enhanced framework allows us to express a broader range
of security properties, that notably include approximate and
computational differential privacy. We illustrate the use of the
framework by verifying two protocols: a two-party protocol for
computing the Hamming distance between bit-vectors, yielding
two-sided privacy guarantees; and a novel, efficient, and privacy-
friendly distributed protocol to aggregate smart meter readings
into statistics and bills.

I. INTRODUCTION

Data mining holds the promise of delivering valuable in-

formation that can be used for purposes such as elaborating

health policies or market strategies. To realize its potential,

data mining must reconcile two objectives: providing useful

results and protecting the privacy of individuals. Differential

privacy [17] is one policy that achieves a good compromise

between privacy and utility. In the database literature, a ran-

domized mechanism is differentially private if it ensures that

the privacy of individuals that contribute data to a statistical

database is protected against malicious or dangerous queries.

More formally, a randomized mechanism M is differentially

private if it gives similar answers to queries on two databases

D,D′ that differ in at most one row. Quantitatively, (ǫ, δ)-
differential privacy requires that for any set of answers S,

Pr[M(D) ∈ S] ≤ exp(ǫ) Pr[M(D′) ∈ S] + δ

Differential privacy has two outstanding strengths: it is realiz-

able by sanitization mechanisms that provide useful answers

to honest queries, and it enjoys good composition properties.

Over the last years, differential privacy has emerged as a de

facto standard for privacy-preserving computation, which has

led to the development of differentially private approximation

algorithms for problems of practical interest, and sanitization

mechanisms to answer a broad range of statistical queries.

Differential privacy provides information-theoretic guaran-

tees that hold against computationally unbounded adversaries.

As a consequence, it is usually too strong for distributed appli-

cations, which often rely on cryptographic constructions whose

security holds only against computationally bounded adver-

saries. Computational differential privacy [34] is a relaxation

of differential privacy that aims to provide privacy guarantees

against such adversaries. This relaxation makes sense in the

client/server setting, where all data is stored at a server, and

also for distributed applications, where data is spread across

participants. Although negative results indicate that little, if

any, can be gained from moving beyond information-theoretic

differential privacy in client/server applications [24], there is

evidence that it can result in significant gains in efficiency

and accuracy for distributed applications, and in particular for

multi-party computation protocols [31].

Computationally differentially private two-party protocols

have been developed for computing Hamming distance and

threshold similarity between bit-vectors, and scalar product

of integer vectors [1, 34]. Computational differential pri-

vacy can also account for the use of pseudo-random sources

in otherwise information-theoretic differentially private algo-

rithms [16]. In general, information-theoretic differentially

private algorithms can be run in a distributed manner using

secure multi-party computation to emulate a trusted third

party with access to the data of all participants [8], but the

resulting protocol will be in most cases only computationally

differentially private.

Deductive verification of differential privacy

The advent of powerful Satisfiability Modulo Theory (SMT)

solvers and automated theorem provers has turned deductive

program verification into a practical technology for proving

safety and correctness of complex software. However, applying

state-of-the-art deductive program verification techniques to

prove some security and privacy properties remains a signifi-

cant challenge for two main reasons. First, many policies are

most naturally expressed as 2-safety properties, i.e. proper-

ties of two executions of a program [12, 44], while most

existing techniques can only reason directly about a single

execution. Second, a large class of sensitive applications, such

as cryptographic protocols or private data-mining algorithms,

achieve their goals by means of randomized computations,

but, with few exceptions, current verification tools are based

on a deterministic or, in the best case, possibilistic model for

programs. Differential privacy combines these two challenges,

because it requires the ability to reason about quantitative

properties of two executions of a probabilistic program.



This paper lays the foundations of a tool-assisted framework

for the deductive verification of computationally differentially

private algorithms. Our starting point is EasyCrypt [3],

a framework for reasoning about probabilistic programs in

the presence of adversarial code. To date, EasyCrypt has

been mainly applied to verify the security of cryptographic

primitives in the computational model. In order to allow

reasoning about computational differential privacy, we have

added support for proving judgments of the form

⊢ c1 ∼α,δ c2 : Ψ⇒ Φ

where c1 and c2 are probabilistic programs, assertions Ψ,Φ
are relations over program states, α ≥ 1, and 0 ≤ δ ≤ 1
(see Section III-C for a formal definition of validity). The

associated logic, coined apRHL, is described by Barthe et al.

[5] and subsumes the relational logic implemented in previous

versions of EasyCrypt, which corresponds to the case α = 1,

δ = 0. An outstanding feature of apRHL is that it faithfully

captures differential privacy. Concretely, if M = c1 = c2, the

pre-condition Ψ is an appropriate adjacency relation on inputs,

the post-condition Φ is the equality on the observable outputs

of the algorithm, and α = exp(ǫ), then the above judgment is

valid iff M is (ǫ, δ)-differentially private.

In addition, we have developed a library that gives first-class

status to discrete probability distributions, and significantly

enhances the expressive power of the programming language

of EasyCrypt. This library allows users to define and specify

probability distributions from which values can be sampled in

programs, and to prove properties about them. These properties

can then be used to verify rather than assume the privacy

guarantees of standard mechanisms, such as the addition of

symmetrically distributed noise for sanitizing numeric queries.

Applications

We apply the techniques described in this paper and our

extension of EasyCrypt to obtain machine-checked proofs

of two non-trivial examples of computationally differentially

private protocols.

Our first example, inspired by the seminal paper on com-

putational differential privacy [34], is a two-party protocol

for computing Hamming distance between bit-vectors that

achieves two-sided privacy guarantees.

Our second example is a novel distributed protocol for

computing statistics and linear bills for smart metering infras-

tructures, without the use of a single trusted authority. The

protocol guarantees the privacy of a single user even when

all other users and authorities, except one, collude. Besides

illustrating our verification techniques, the protocol offers

major performance, compactness and robustness advantages

over others in the literature [28, 30, 42].

Summary of contributions

The main contributions of the paper are:

1) A practical program verifier to reason about approximate

relational equivalences of probabilistic programs;

2) A flexible framework to define and reason about discrete

probability distributions;

3) Machine-checked privacy proofs for two practically rele-

vant multi-party computation protocols, including a novel

smart metering aggregation protocol.

Organization of the paper

The rest of the paper is structured as follows: Section II

provides the necessary background on differential privacy and

cryptography, and illustrates the workings of our framework

on a two-party protocol for computing Hamming distance

between bit-vectors. Section III describes the theoretical foun-

dations of our extension of EasyCrypt, including its support

for reasoning about approximate program equivalences and for

defining new probabilistic expressions. Section IV illustrates

the application of our extension of EasyCrypt to the verifi-

cation of a protocol for computing aggregates of smart meter

readings. We review related work in Section V and conclude

with some perspectives for further work in Section VI.

Supplemental material accompanying this paper, including

a version of EasyCrypt implementing the extensions we de-

scribe and the proofs of the examples we present, is available

at

http://easycrypt.gforge.inria.fr/csf13/

II. BACKGROUND AND MOTIVATING EXAMPLE

In this section we review the notions of information-

theoretic and computational differential privacy, both in the

client-server setting, where privacy guarantees are one-sided,

and in the two-party setting, where the privacy of the data

of both participants must be guaranteed. Moreover, we show

how various notions of differential privacy can be cast in a

programming language setting as program equivalences, which

can in turn be captured as judgments in a relational Hoare

logic.

A. Preliminaries

We cast differential privacy in a programming language

setting as a quantitative 2-safety property of probabilistic

algorithms.

Definition 1 (Approximate differential privacy). A probabilis-

tic algorithm M operating on inputs drawn from a set A with

a metric d, and returning an output in B is (ǫ, δ)-differentially

private if for all pair of inputs a, a′ ∈ A such that d(a, a′) ≤ 1
and for all S ⊆ B it holds that

Pr[M(a) ∈ S] ≤ exp(ǫ) Pr[M(a′) ∈ S] + δ

The standard definition of ǫ-differential privacy corresponds

to the case δ = 0.

Approximate differential privacy enjoys good composition

properties; it is closed with respect to sequential and parallel

composition [5].



Theorem 1 (Sequential composition). Let M be an (ǫ, δ)-
differentially private algorithm with outputs in B and for

any b ∈ B, let M ′(b, ·) be an (ǫ′, δ′)-differentially private

algorithm. Then, their sequential composition

M ′′(a) def

= x←M(a); y ←M ′(x, a); return (x, y)

is (ǫ+ ǫ′, δ + δ′)-differentially private.

The notion of (ǫ, δ)-differential privacy is information-

theoretic, in the sense that it guarantees privacy against all

computationally unbounded adversaries who can observe the

output of the algorithm. It is thus natural to ask whether

something can be gained from restricting attention to efficient

adversaries with only computationally bounded resources.

Mironov et al. [34] put forward two ways of restricting Defini-

tion 1 to computationally bounded adversaries. The first, called

indistinguishability-based computational differential privacy

(IND-CDP), is a straightforward variant that restricts quan-

tification to computationally bounded adversaries. The sec-

ond, called simulation-based differential privacy (SIM-CDP),

starkly separates the computational and information-theoretic

aspects by requiring the existence of an ǫ-differentially private

simulator whose output is computationally indistinguishable

from the real algorithm.

Extending Definition 1 to a computational setting requires

considering a family of algorithms {Mη} indexed by a security

parameter η ∈ N rather than a single algorithm. In the follow-

ing, we say that an algorithm is probabilistic polynomial-time

if it executes within time polynomial on the security parameter

η and that a function ν : N→ R
+ is negligible when

∀c ∈ N. ∃nc ∈ N. ∀n > nc. ν(n) < n−c

Moreover, we assume that an algorithm Mη takes inputs in a

set A with a metric d and outputs values in a set Bη .

Definition 2 (IND-CDP). A family of probabilistic algo-

rithms {Mη}η∈N is (ǫ, δ)-IND-CDP if for every probabilistic

polynomial-time adversary A and every a, a′ ∈ A of size

polynomial in η such that d(a, a′) ≤ 1 it holds that

Pr[A(Mη(a)) = 1] ≤ exp(ǫ(η)) Pr[A(Mη(a
′)) = 1] + δ(η)

When δ is negligible, we may simply say that {Mη}η∈N is

ǫ-IND-CDP.

Definition 3 (SIM-CDP). A family of probabilistic algorithms

{Mη}η∈N is (ǫ, δ)-SIM-CDP if there exists a family of algo-

rithms {M ′
η}η∈N, each of them ǫ(η)-differentially private, such

that for every probabilistic polynomial-time adversary A and

any a ∈ A of size polynomial in η it holds that

|Pr[A(Mη(a)) = 1]− Pr[A(M ′
η(a)) = 1]| ≤ δ(η)

When δ is negligible, we may simply say that {Mη}η∈N is

ǫ-SIM-CDP.

Note that the family of simulators {M ′}η∈N in the definition

of SIM-CDP is just a theoretical artifact and need not be

efficient. In general, neither do computationally differentially

private algorithms need be efficient, although efficiency is a

necessary and sufficient condition for an analog of Theorem 1

to hold for both IND-CDP and SIM-CDP [34].

Any algorithm that satisfies SIM-CDP also satisfies IND-

CDP [34], but it is unknown whether the converse holds.

However, by inverting the order of the quantifiers in the

definition of SIM-CDP (requiring that for all pairs of adjacent

inputs there exists a, possibly different, simulator), one obtains

a definition that is equivalent to IND-CDP.

The above definitions extend naturally to interactive proto-

cols. We restrict our attention here to two-party protocols in

the honest-but-curious model (where participants are assumed

to follow the protocol), but note that this extends to multi-

party protocols, and that malicious participants can be forced

to abide by the protocol by requiring that they accompany the

messages they send with a proof of their consistency.

We represent each party in an interactive protocol by a

sequence of probabilistic algorithms—one for each round—

sharing local state, in a similar way to interactive func-

tions [23]. In a two-party protocol Π, we denote VIEW
A
Π(x, y)

the view of party A when the protocol is run with input x for A
and y for the other party, i.e. the joint probability distribution

over x, the messages exchanged, and the random coins of A.

Definition 4 (Differentially private two-party computation).

A two-party protocol Π = (A,B) is (ǫ, δ)-differentially

private for party B if for all values x, VIEW
A
Π(x, ·) is (ǫ, δ)-

differentially private. This definition extends to IND-CDP and

SIM-CDP by considering a family of protocols {Πη}η∈N

rather than a single protocol.

Intuitively, a two-party protocol is differentially private for

participant B if participant A gets only a differentially private

view of B’s secret input.

B. Computing Hamming distance privately

We illustrate the workings of our framework on a two-

party protocol for computing the Hamming distance between

ℓ-bit vectors (i.e. the number of positions at which they

differ). This protocol achieves two-sided privacy guarantees

and is inspired by a protocol first proposed by Mironov et al.

[34] as a candidate for separating information-theoretic from

computational differential privacy. The only differences are

that in our protocol both parties learn an approximation of

the Hamming distance of their inputs, and that we factor out

the post-processing done by participants after the protocol

terminates, which is only needed to argue that the protocol

achieves good utility. Figure 1 describes the protocol in detail.

The protocol builds on a public key encryption scheme

(KG, E ,D). The key generation algorithm KG(η) outputs a

pair of keys (pk, sk); the public key pk includes a description

of the plaintext space, which we assume to be Zn for some

n such that n − ℓ ∈ Ω(η). We require the scheme be addi-

tively homomorphic and affine, i.e. there must exist efficient

operations ⊕pk and ⊗pk such that for all a, b ∈ Zn:

1) D(Epk(a)⊕pk Epk(b)) = a+ b mod n
2) D(Epk(a)⊗pk b) = ab mod n



INPUT: Alice holds a ∈ {0, 1}ℓ, Bob holds b ∈ {0, 1}ℓ
1) Alice generates a fresh pair of keys (pk, sk) using KG and computes ãi = E(ai) for i = 1 . . . ℓ. It sends over to Bob

the public key pk and the vector ã.

2) Bob computes c̃i =

{

ãi if bi = 0

1⊖ ãi otherwise
for i = 1 . . . ℓ, samples kB from GEOM(exp(ǫ)) and sends hB =

ℓ
⊕

i=1

c̃i⊕E(kB)

to Alice.

3) Alice samples kA from GEOM(exp(ǫ)) and sends over hA = (D(hB) + kA) mod n to Bob.

Fig. 1. Two-party protocol for privately computing Hamming distance between bit-vectors

In the remainder, we omit the subscript pk from operations if

there is no confusion, and write 1⊖ x for E(1)⊕ (x⊗ (−1));
when x is an encryption of a value a ∈ {0, 1}, D(1⊖x) = ā,

the complement of a. One encryption scheme matching our

requirements is Paillier cryptosystem [37], whose semantic

security is based on the decisional composite residuosity

assumption. In Paillier cryptosystem, ⊕ corresponds to mul-

tiplication modulo n2 and ⊗ to exponentiation modulo n2.

To extend the proof to the malicious case, the BGN cryp-

tosystem [9] could be used instead, which supports efficient

non-interactive proofs of ciphertext consistency. We also note

that the requirement that the encryption scheme is affine can

be dropped at an extra cost in communication, by having Alice

send both an encryption of each bit of its input vector and of

its complement.

Each party protects its data by adding noise sampled from

a symmetric geometric distribution. This geometric mecha-

nism is the discrete counterpart of the Laplace mechanism

used to sanitize real-valued queries. Formally, the distribution

GEOM(α) with scale parameter α > 1 is the discrete distribu-

tion with support Z and probability mass function

p(k) def

=
α− 1

α+ 1
α−|k|

Lemma 1 (Geometric mechanism [21]). Let f : A→ Z be a

function with sensitivity

Sf
def

= max
a,a′|d(a,a′)≤1

|f(a)− f(a′)|

then M(a) def

= k $← GEOM(exp(ǫ/Sf )); return f(a) + k is

an ǫ-differentially private algorithm.

We analyze the protocol in the honest-but-curious model;

the privacy guarantees we prove reflect its asymmetry: the

protocol is information-theoretic differentially private for Bob,

but only computationally differentially private for Alice. How-

ever, both obtain similarly useful estimates of the Hamming

distance between their inputs.

We first show that the protocol is ǫ-SIM-CDP for Alice.

We represent a run of the protocol as a probabilistic pro-

gram; we use a sugared version of the syntax presented in

Section III-B. The view of each participant is obtained by

projecting the output distribution on the relevant program

variables. For instance, the view of Bob is given by the

procedure VIEW
B
Πη

(b, a) in Figure 2. We show that this view

is SIM-CDP using the simulator Fη(b, a) in Figure 2. Instead

of using a to compute the encrypted noisy estimate hB of

h(a, b), the simulator uses the all-zero vector 0ℓ; moreover, it

computes hA directly from h(a, b) rather than from hB .

If the underlying encryption scheme is semantically secure

(equivalently, IND-CPA secure), no efficient adversary will

be able to distinguish one or many encryptions of 0 from

the encryption of any other value (even chosen adaptively).

Indeed, we show by reduction that for any a, b ∈ {0, 1}ℓ,
the probability that an efficient adversary B distinguishes

VIEW
B
Πη

(b, a) from Fη(b, a) is the same as the IND-CPA

advantage of some adversary A against the homomorphic en-

cryption scheme. Formally, we define the IND-CPA advantage

of an adversary A as the quantity

Adv
IND-CPA
A (η) def

=
∣

∣

∣
Pr

[

AE(·)(pk)=1
]

− Pr
[

AE(0)(pk)=1
]∣

∣

∣

where the probability is taken over the random coins of A, its

oracle, and (pk, sk) $← KG(η).
The adversary A that we exhibit as witness behaves as

VIEW
B
Πη

(b, a), but uses its oracle E(·) to encrypt values,

forwards the resulting view to B, and returns the answer it

gets back. Thus, when A is given E(·) as oracle, it answers

as B would do given a view of the real protocol, and when

its oracle is E(0), it answers as B would do given a simulated

view. We prove this using the non-approximate fragment of the

logic of EasyCrypt, for which all the tools that have proven

successful for reasoning about cryptographic constructions are

available [3].

To see that Fη(b, ·) is ǫ-differentially private, observe that

the only output that depends on its second input is hA, which

is computed from the result of adding noise sampled from

GEOM(exp(ǫ)) to h(a, b)+kB . But the sensitivity of Hamming

distance (and h(·, b) + kB) is 1, and so it follows from

Lemma 1 that Fη(b, ·) is ǫ-differentially private. This part of

the proof uses the novel extension of EasyCrypt described in

next section for reasoning in the apRHL logic. Lemma 1 is

derived from the probability mass function of the geometric

distribution and reformulated as a parametric judgment:

|= x $←GEOM(α) ∼αk,0 y $←GEOM(α) : Ψ⇒ a+ x = b+ y

where Ψ def

= 1 < α ∧ |a − b| ≤ k. By combining this with

the sequential composition rule [seq] of Fig. 3, one is left

to prove a non-approximate judgment relating the prefix of

Fη(b, a) up to line 10 with itself, namely

|= Fη(b, a)[1−10] ∼ Fη(b
′, a′)[1−10] : h(a, a

′)≤1 ∧ b=b′ ⇒ Φ



1: procedure VIEW
B
Πη

(b, a)
2: (pk, sk)← KG(η)
3: hB ← E(0)
4: for i← 1 to ℓ do

5: ã[i]← E(a[i])
6: if b[i] = 0 then c̃← ã[i] else c̃← 1⊖ ã[i]
7: hB ← hB ⊕ c̃
8: end for

9: kB $← GEOM(exp(ǫ))
10: hB ← hB ⊕ E(kB)
11: kA $← GEOM(exp(ǫ))
12: hA ← (D(hB) + kA) mod n
13: return (b, pk, ã, kB , hB , hA)

1: procedure Fη(b, a)

2: (pk, sk)← KG(η)
3: hB ← E(0)
4: for i← 1 to ℓ do

5: ã[i]← E(0)
6: if b[i] = 0 then c̃← ã[i] else c̃← 1⊖ ã[i]
7: hB ← hB ⊕ c̃
8: end for

9: kB $← GEOM(exp(ǫ))
10: hB ← hB ⊕ E(0)
11: kA $← GEOM(exp(ǫ))
12: hA ← (h(a, b) + kB + kA) mod n
13: return (b, pk, ã, kB , hB , hA)

Fig. 2. Bob’s view of the protocol for computing Hamming distance (left) and simulator used in the proof of computational differential privacy (right)

where we mark with a single quote the variables of the

program on the right-hand side, and define post-condition Φ
as the relation

(b, pk, ã, kB , hB) = (b′, pk′, ã′, k′B , h
′
B)

∧ |h(a, b)− h(a′, b′)| ≤ 1

Proving this boils down to showing that Hamming distance

is 1-sensitive and that the joint distribution of the rest of the

output variables of Fη(b, ·) is fully determined by its first input

b, on which both programs coincide.

The proof that the protocol is ǫ-differentially private for

Bob is simpler. The view of Alice is defined analogously

to Bob’s but projecting on (a, pk, sk, ã, hB , kA, hA) instead.

Of these variables, only hA and hB depend on b, but hB

is an encryption of h(a, b) + GEOM(exp(ǫ)) and hA can

be computed from hB . So again, Lemma 1 implies that

VIEW
A
Πη

(a, ·) is ǫ-differentially private.

III. EXTENDING THE EASYCRYPT FRAMEWORK

Providing support for reasoning about differential privacy

required to extend EasyCrypt significantly. As a first step,

we defined a library for describing discrete probability distri-

butions, and extended the expression language of EasyCrypt

with a new probabilistic sampling primitive sample(·), taking

as argument a representation of a distribution. In contrast,

previous versions of EasyCrypt only allowed sampling from

a pre-defined set of uniform distributions with finite support.

Secondly, we have adapted the verification component of

EasyCrypt to prove properties of user-defined probability dis-

tributions and to reason about approximate forms of program

equivalence. This section presents these extensions.

A. Distributions

EasyCrypt features a polymorphically-typed expression

language that can be extended by the user with new types

and deterministic operators, but hitherto could not be extended

with new probabilistic operators. In this work, we take ad-

vantage of this rich expression language to define an abstract

data type of discrete probability distributions, and introduce

a new primitive probabilistic operator sample(·) to choose

values from them.

We model probability distributions and events using an em-

bedding of higher-order types into the first-order logic of SMT

solvers. Our embedding is inspired by [26, 33]. Concretely, we

introduce two polymorphic types: distrA, of sub-probability

distributions over a discrete sample space A, and eventA
of events in the σ-algebra 2A. Sub-probability distributions

correspond to measures that may assign a value less than 1

to the entire probability space; this relaxation proved useful

to encode runtime assertions (see Section III-B). Moreover,

we define operators @E and @D of types eventA × A → B

and distrA × eventA → R, respectively, where B denotes the

type of booleans and R the type of reals. The former operator

corresponds to set membership, the latter corresponds to the

measure defined by a sub-probability distribution. In the sequel

we write a ∈ E for @E(E, a) and µ(E) for @D(µ,E).
We declare and axiomatize set-theoretical constants and

operators over eventA, including union, intersection, comple-

ment, singleton sets, and constants denoting the empty set

and the entire sample space. Note that we do not provide

an operator for converting a boolean-valued function into

an event; however, users can introduce for any function

f : A → B, an event Ef : eventA together with the axiom

∀(x : A). x ∈ Ef ⇐⇒ f x = true.

Discrete sub-probability distributions in distrA are axiom-

atized so that they respect the axioms of sub-probability

measures, monotonicity and extensionality. Formally, for all

µ, µ′ : distrA and E,F : eventA, we assume:

1) 0 ≤ µ(E) ≤ 1
2) µ(∅) = 0
3) µ(E ∪ F ) = µ(E) + µ(F )− µ(E ∩ F )
4) µ ≤ µ′ ⇐⇒ ∀a : A, µ({a}) ≤ µ′({a})

where µ ≤ µ′ def

= ∀E : eventA. µ(E) ≤ µ′(E).
5) µ = µ′ ⇐⇒ µ ≤ µ′ ∧ µ′ ≤ µ

Other useful properties are derived from these axioms as

lemmas, e.g. ∀E,F : eventA, E ⊆ F =⇒ µ(E) ≤ µ(F ).
Moreover, we define an operator denoting the weight of a

sub-probability distribution and a predicate characterizing its

support as follows:

weight(µ : distrA)
def

= µ(A)
support(µ : distrA, a : A) def

= 0 < µ({a})



In order to characterize differential privacy and prove the

validity of apRHL judgments from first principles, we encode

the notion of α-distance between sub-probability distributions

of Barthe et al. [4]. The α-distance ∆α (µ, µ′) between µ and

µ′ is defined as the smallest real number δ such that for all

events E:

µ(E) ≤ α µ′(E) + δ ∧ µ′(E) ≤ α µ(E) + δ

Note that from the properties of discrete distributions above,

one has ∆α (µ, µ′) = 0 iff for every singleton set {a}
µ({a}) ≤ α µ′({a}) ∧ µ′({a}) ≤ α µ({a})

We encode α-distance by introducing an abstract operator

∆ : R× distrA × distrA → R

and axioms encompassing the above definition; in the sequel

we write ∆α (µ, µ′) for ∆(α, µ, µ′).
We provide instances of the above abstract data type of

discrete sub-probability distributions for all distributions given

as primitives in previous versions of EasyCrypt, including

the uniform distribution over booleans, bitstrings, and integer

intervals, as well as distributions that underlie differential

privacy mechanisms. For instance, we formalize the geometric

distribution by introducing an operator Geom : R → distrZ
and an axiom stating that for every α > 1 and integer k:

GEOM(α)({k}) =
α− 1

α+ 1
α−|k|

Based on this axiom, we prove that for all integers a, b,

|a− b| ≤ k =⇒ ∆αk (a+ GEOM(α), b+ GEOM(α)) = 0

This implies the validity of the apRHL judgment

|= x $←GEOM(α) ∼αk,0 y $←GEOM(α) : Ψ⇒ a+ x = b+ y

where Ψ def

= 1 < α∧|a−b| ≤ k, which corresponds to a direct

embedding of Lemma 1. (Validity of apRHL judgments is

defined formally in Section III-C; the derivation of the validity

of this judgment in EasyCrypt is shown in the Appendix.)

B. Programs

Programs in EasyCrypt are written in an imperative pro-

gramming language with procedure calls and probabilistic as-

signments, called pWHILE. Commands are defined inductively

by the following grammar:

C ::= skip nop

| V ← E deterministic assignment

| V $← sample(E) probabilistic assignment

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

| C; C sequence

where V and P are sets of variable and procedure identi-

fiers, respectively, and expressions E are built from primi-

tive and user-defined constants and operators. In this work,

we generalize probabilistic assignments to be of the form

x $← sample(µ), where x is a variable of type A and µ is an

expression of type distrA. For conciseness, in code snippets

we write simply x $← µ instead of x $← sample(µ). Runtime

assertions, which were introduced as primitives by Barthe et al.

[5], can be encoded as macros: abort and assert e, where

e is a boolean expression, respectively abbreviate sampling

from the null sub-probability distribution, and the command

if e then skip else abort.

Programs are given by a command together with an environ-

ment mapping procedures to their definitions; the denotation

of a program is a function from an initial memory to a sub-

probability distribution over final memories. Let D(X) be the

set of discrete sub-probability distributions over X . A memory

m ∈ M maps program variables to values. An expression e
of type A denotes a function from memories to elements of

the set-theoretical interpretation of A; an expression µ of type

ditsrA denotes a function from memories to sub-probability

distributions over the set-theoretical interpretation of A. Fi-

nally, a program c denotes a function JcK :M→ D(M). For

a detailed description of the semantics of pWHILE we refer

the reader to Barthe et al. [5].

C. Reasoning about approximate relational properties

EasyCrypt provides three main verification components:

an interactive but somewhat automated theorem prover to

establish relational properties of probabilistic programs, a

mechanism to derive inequalities between probabilities from

proven relational properties, and an algorithm to directly

compute (bounds of) the probability of an event w.r.t. the

output distribution generated by a program.

In order to support reasoning about differential privacy, we

first extended the program verifier of EasyCrypt to support

reasoning about the approximate relational logic apRHL [4],

a generalization of the pRHL logic supported in previous

versions of EasyCrypt. Judgments in apRHL are of the form

⊢ c1 ∼α,δ c2 : Ψ⇒ Φ (1)

with a skew α ≥ 1 and a slack 0 ≤ δ ≤ 1 (pRHL judgments

correspond to the case α = 1, δ = 0). As for pRHL, pre-

and post-conditions are first-order formulae built from the

grammar:

Ψ,Φ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ→ Φ | ∀x. Φ | ∃x. Φ
where e stands for a boolean expression over quantified logical

variables and program variables tagged with either 〈1〉 or 〈2〉
to indicate whether they should be interpreted as variables

in the program on the left- or right-hand side, respectively.

A relational formula is interpreted as a relation on program

memories. For example, the formula x〈1〉 + y〈2〉 ≤ z〈1〉 is

interpreted as the relation

R = {(m1,m2) | m1(x) +m2(y) ≤ m1(z)}
Validity is defined in terms of an operator that lifts binary

relations on memories to relations on distributions over mem-

ories; this lifting operator has close connections with proba-

bilistic bisimulations, maximum flows in transport networks,



|= c1 ∼α,δ c2 : Ψ⇒ Φ′ |= c′1 ∼α′,δ′ c
′
2 : Φ′ ⇒ Φ

|= c1; c
′
1 ∼αα′,δ+δ′ c2; c

′
2 : Ψ⇒ Φ

[seq]

∀m1,m2. m1Ψm2 =⇒ ∆α(f1 ◦ µ1, f2 ◦ µ2) ≤ δ f1, f2 bijective

|= x1
$← µ1 ∼α,δ x2

$← µ2 : Ψ⇒ f1(x1)〈1〉 = f2(x2)〈2〉 ∧ support(µ1, x1)〈1〉 ∧ support(µ2, x2)〈2〉
[rand]

|= c1 ∼α,δ c2 : ϕ ∧ b1〈1〉 ∧ b2〈2〉 ∧ k = e⇒ ϕ ∧ b1〈1〉 = b2〈2〉 ∧ k < e ϕ ∧ n ≤ e =⇒ ¬b〈1〉
|= while b1 do c1 ∼αn,n δ while b2 do c2 : ϕ ∧ b1〈1〉 = b2〈2〉 ∧ 0 ≤ e⇒ ϕ ∧ ¬b1〈1〉 ∧ ¬b2〈2〉

[while]

Fig. 3. Selected apRHL rules

and the Kantorovich metric [15]. Formally, the (α, δ)-lifting of

a relation R ⊆ A×B is the relation ∼α,δ
R over D(A)×D(B)

that holds for a pair of distributions µ1, µ2 iff there exists a

distribution µ : D(A×B) such that:

1) ∀a ∈ A, b ∈ B. 0 < µ({(a, b)}) =⇒ a R b
2) π1(µ) ≤ µ1 ∧ π2(µ) ≤ µ2

3) ∆α (π1(µ), µ1) ≤ δ ∧ ∆α (π2(µ), µ2) ≤ δ

where the projections π1(µ) and π2(µ) are defined as:

π1(µ)({a}) def

= µ({a} ×B) π2(µ)({b}) def

= µ(A× {b})

Judgment (1) above is valid iff for all memories m1 and

m2 the following holds:

m1 Ψ m2 =⇒ (Jc1K m1) ∼α,δ
Φ (Jc2K m2)

From this, it can be proved [4, Lemma 5] that for any event1

E that holds either in both or in neither of a pair of memories

satisfying Φ:

m1 Ψ m2 =⇒ Pr [c1,m1 : E] ≤ α Pr [c2,m2 : E] + δ

which is exactly the kind of inequalities one needs to prove

differential privacy. We plan to embed this mechanism to

derive inequalities from apRHL judgments in EasyCrypt

and extend the algorithm that directly computes (bounds of)

the probability of events to handle our extended form of

probabilistic assignments.

D. Verification of apRHL judgments

EasyCrypt uses a hybrid strategy to verify relational goals.

It combines a weakest pre-condition transformer, with a tactic

language for applying logic rules and semantics-preserving

program transformations. The weakest pre-condition trans-

former can be applied to compute relational weakest pre-

conditions w.r.t. fragments of deterministic, straight-line code,

whereas tactics can be applied whenever ingenuity is required,

and for reasoning about loops or adversarial code. Applying

a tactic or the weakest pre-condition transformer results in

one or several new verification goals, as well as a number

of proof obligations in the form of first-order formulae, which

are discharged by sending them to SMT solvers and automated

theorem provers.

1Events in this setting are boolean expressions over program variables, and
should not be confused with elements of the abstract data type defined in the
previous section.

Goals that fall in the non-approximate pRHL fragment of

the logic can be proven using all tactics previously available in

EasyCrypt. To prove goals that fall outside this fragment, we

have adapted and extended the existing weakest pre-condition

transformer and the language of tactics. Figure 3 shows an

excerpt of apRHL rules that we have implemented as tactics

in our extension of EasyCrypt.
The sequential composition rule [seq] reflects the composi-

tion theorem of approximate differential privacy (Theorem 1).

The corresponding tactic requires the user to provide the

intermediate values α, α′ and δ, δ′ (if not given, they are

assumed to be 1 and 0, respectively); these could be avoided by

introducing existential variables, but we have not yet explored

this possibility.

Rule [rand] is a generalization of the apRHL rule of the

same name in [4], which could only establish the equality

of the sampled variables as post-condition. This rule reduces

proving a judgment relating two probabilistic assignments

to proving an upper bound of the α-distance between two

distributions. Thus, one can use it to prove differential privacy

guarantees of standard mechanisms, like the geometric mech-

anism used in Section II. Given a distribution µ in A, and

a bijection f : A → B, f ◦ µ in Figure 3 denotes the sub-

probability distribution over B with measure µ(f−1(·)). When

δ = 0, the verifier exploits the axiomatization of α-distance

and generates a simplified verification condition of the form

Ψ =⇒ ∀a : B. µ({a}) ≤ αµ′({a}) ∧ µ′({a}) ≤ αµ({a})
Rule [while] may be used to relate two loops that execute in

lock-step; it requires to provide an appropriate loop invariant.

The fact that the loops progress in lock-step follows from

the first premise, but one also needs to ensure that they

both terminate after a given number of iterations. Therefore,

the rule requires exhibiting a non-negative integer variant

e and a (constant) bound n, and showing that: 1) a loop

iteration strictly increases the value of e, and 2) whenever

the expression e reaches the bound n, the loop guard becomes

false.

IV. APPLICATIONS TO SMART METERING

Smart-meters collect information about household electric-

ity usage or generation at a granularity ranging from 15 to

30 minutes. Aggregates of these results are used by different

actors in the energy industry: energy distributors, providers and

generators require timely statistics to support their business



Meters Aggregators

Service

c1 = r1 +
∑

j H(t, k1,j)

c2

c3

c4

c5

s1 =
∑

i wi ·H(t, ki,1) +Geom(α)

s2

s3
T =

∑

i wi · ci −
∑

j sj

Fig. 4. Aggregation of readings using weights ~w in an infrastructure with 5
meters and 3 aggregators. The setup phase ensures that meter i and aggregator
j share a key ki,j .

processes; distributors require statistics about the peak loads

that particular lines may be subject to; while providers need to

know the exact consumption of their customer base for every

settlement period. All entities require statistics to support the

development of their future services or financial forecasting

at different geographic or demographic levels. We present

and verify a novel protocol that allows readings from smart

meters to be aggregated in weighted sums and used by dif-

ferent entities to serve their needs, without compromising the

privacy of customers by disclosing fine-grained consumption

data. Furthermore, missing readings due to failing meters or

unreliable networks do not impede the aggregation of the

readings collected.

A. Aggregation protocol

Three types of entities are involved in the aggregation pro-

tocol. A set of smart meters that record and report readings ri,
a set of aggregators or aggregation authorities that facilitate

private aggregation, and finally a service provider that wants

to learn a weighted aggregate T =
∑

i wi · ri. The goal

of the protocol is to let the service provider compute an

approximation of T without revealing too much about any

individual reading ri to any other entity beyond the meter that

generated it. Figure 4 illustrates how the protocol works during

the aggregation phase; no communication between readers and

aggregators is needed.

Setup. In the setup phase each meter and each aggregator

generates its own public/secret key pair. Every meter is then

seeded with the public keys of all aggregators, and every

aggregator with the public keys of all meters. In this way,

each pair of a meter and an aggregator can derive a shared

symmetric key.

Concretely, let G be a Diffie-Hellman group of prime order

q and g a generator; these depend on the security parameter η
which, for the sake of clarity, we omit from the presentation.

Let P be the number of aggregators and N the number of

meters participating in the protocol. In the setup phase, each of

these entities generates a Diffie-Hellman key pair by uniformly

choosing a random value x ∈ Zq and setting x as their private

key and publishing gx as their public key. Each pair of meter

and aggregator then exchange a shared key; if x is the secret

key of the meter and y the secret key of the aggregator, their

pairwise shared key is gxy .

An honest-but-curious authority coordinates the setup phase

by engaging all participating entities. The result is equivalent

to executing the SETUP procedure in Fig. 5. The setup phase

results in all meters being seeded with the valid public keys

of all aggregation authorities, and vice versa. As a result, a

shared key can be derived between all pairs of meters and

aggregation authorities. Any secure mechanism to ensure this,

including a certificate chain, an auditing mechanism or factory

initialization can be used, but may have different systems’

ramifications. The setup phase is only performed once per

meter for a stable set of authorities. Public keys of new meters

can be incrementally added to authorities.

Aggregation. Meters generate readings over time. We consider

readings are associated with labels t ∈ T . For example, t may

be the label attached to all readings at a particular time period,

or from a specific geographic area. The service provider wants

to aggregate readings ri,t with label t from all meters and

compute their weighted sum T =
∑

i wi · ri,t.
First, the service provider requests a blinded reading ci,t

from each meter i, computed as in the procedure GETREAD-

ING(i, t) in Fig. 5. The blinded reading ci,t is computed by

each meter as the sum of its reading ri,t and ephemeral session

keys shared with the aggregation authorities. These session

keys are generated by applying a hash function H : T ×G →
Zn to the label t of the requested reading, and the shared

key ki,j . The resulting value ci,t is a simple n-bit integer

(e.g. a 32-bit machine integer, of course n ≪ q), and the

only computation involved in producing it on the meter is the

application of a hash function and simple integer arithmetic.

The service provider may request readings from all meters,

but some may fail to arrive due to meter malfunction or

network unavailability or latency. The service provider gathers

the identities of the meters that have responded in a set M
and sends each aggregator j a request for an opening sj
computed using the procedure GETOPENING(j, t, ~w,M) in

Fig. 5, to facilitate the aggregation of readings with label t
from meters in M , using weights ~w. Each aggregator computes

the weighted sum of the session keys shared with each meter

for tag t, and adds to the result noise sampled from the

distribution GEOM(α). The scale parameter α = exp(ǫ/∆)
of the distribution is chosen to offer ǫ-differential privacy on

the basis of the sensitivity of a single reading being ∆, an

upper bound on the maximum possible value of wiri,t. The

result of this sum, a single n-bit number, is returned to the

service provider—the actual blinded readings ci,t need not be

transmitted to the aggregators.

To get the sought result, the service provider sums the



1: procedure SETUP(N,P )

2: g ← G∗
3: for j ← 1 to P do

4: yj ← Zq

5: end for

6: for i← 1 to N do

7: xi ← Zq

8: for j ← 1 to P do

9: ki,j ← gxiyj

10: end for

11: end for

12: procedure GETREADING(i, t)
13: ci,t ← ri,t +

∑P
j=1 H(t, ki,j) mod n

14: return ci,t

15: procedure GETOPENING(j, t, ~w,M )

16: sj ←
∑

i∈M wi ·H(t, ki,j) mod n
17: uj ← GEOM(α)
18: return sj + uj mod n

19: procedure AGGREGATE(t, ~w)

20: M ← ∅
21: for i← 1 to N do

22: ci,t ← GETREADING(i, t)
23: if ci,t 6= ⊥ then M ←M ∪ {i}
24: end for

25: for j ← 1 to P do

26: sj ← GETOPENING(j, t, ~w,M)
27: end for

28: T ←∑

i∈M wi · ci,t −
∑P

j=1 sj mod n
29: return T

Fig. 5. Procedures used by participants of the distributed protocol for aggregating smart meter readings

weighted blinded readings, and subtracts from the result the

responses from all the aggregators. The result is a noisy esti-

mate of the aggregate value T , computed as in the procedure

AGGREGATE in Figure 5.

The full aggregation process, initiated by the service

provider, requires only 2 · |M | · |A| hash function evaluations,

distributed across all meters and aggregators, no public key

operations, and only modular multiplications and additions at

the service provider. In terms of utility the noise added to the

aggregate has mean zero and variance

P
∑

k∈Z

α− 1

α+ 1
α−|k| k2 =

2Pα

(α− 1)2

The size of n must be chosen to make integer overflow or

underflow unlikely; Chebyshev’s inequality can be used as a

guide. Alternatively, aggregators may add noise from a trun-

cated geometric distribution to avoid overflows or underflows,

or to guarantee hard bounds on the added noise.

Billing. We note that the aggregation protocol can be adapted

as a simple linear billing protocol by considering a single

meter i and a set of labels L, rather than a set of meters

and a single label. A service provider defines readings with

labels t ∈ L as originating from a single household within a

billing period. The weights wt represent the applicable tariff

at the time of the reading. The final bill is, as expected,

T =
∑

t∈L wt · ri,t. Adding noise to bills is expensive,

given that real money is at stake. Thus such an approach

would have to be combined with other protocols that combine

differentially private billing with rebates [13]. Alternatively,

such queries may have no noise added to them, foregoing any

protection based on differential privacy. We leave a security

analysis of such protocols to future work.

B. Differential privacy

We prove that the protocol described above is computation-

ally differentially private under mild assumptions on the group

G and the hash function used to derive per-label shared keys.

Namely, we require the group G and the hash function H
satisfy the Hash Diffie-Hellman assumption (HDH).

Definition 5 (Hash Diffie-Hellman Assumption). Let G be a

group of prime order q and H : G → X . The advantage

Adv
HDH

A of an adversary A in solving the Hash Diffie-

Hellman problem on G and H , is defined as the quantity
∣

∣Pr[A(g, ga, gb, H(gab)) = 1]− Pr[A(g, ga, gb, x) = 1]
∣

∣

where the probability is taken over the random choices of A,

and uniformly chosen g ∈ G∗ (the set of generators of G),

a, b ∈ Zq , and x ∈ X .

When the hash function H is a secure key-derivation

function, the HDH assumption is weaker than the Decisional

Diffie-Hellman assumption (DDH), in which the task of the

adversary is to distinguish a random element in the group

from gab given g, ga, gb, (i.e. if it is hard to solve DDH then

it must be also hard to solve HDH, but the converse may

not hold) [43]. However, HDH is in general stronger than the

Computational Diffie-Hellman assumption, in which the task

of the adversary is to compute gab given g, ga, gb.

We show in the honest-but-curious model that the protocol

preserves privacy for a meter if there is at least one aggregator

that behaves honestly, even if the rest of the aggregators,

meters, and the service provider collude.

Theorem 2 (Aggregation privacy). When α = exp(ǫ/∆), the

protocol described in the previous section is (ǫ, δ)-SIM-CDP

for any meter against a coalition of all other meters and

authorities, except one honest aggregator, where δ = Adv
HDH

A

for some adversary A against the HDH problem on G and

H(t, ·).
In practice this means that if the honest aggregator limits

the number of aggregation requests for any label t to ℓ, the

protocol offers (ℓ ǫ, ℓ δ) computational differential privacy (see

Theorem 1).

Proof. Without loss of generality, we show that privacy holds

for the meter i = 1 when the aggregator j = 1 is honest,



against a coalition C of all other meters, aggregators and

the service provider. Let Π denote a run of the protocol for

aggregating readings with label t using weights ~w, and define

the following abbreviations:

~rC
def

= {ri,t | i ∈ [2 . . . N ], t ∈ T }
~r1

def

= {r1,t| t ∈ T }
~xC

def

= {xi | i ∈ [2 . . . N ]}
~yC

def

= {yj | j ∈ [2 . . . P ]}
~uC

def

= {uj | j ∈ [2 . . . P ]}
The view of the coalition C is given by the following proce-

dure:

1: procedure VIEW
C
Π(~rC , ~r1)

2: SETUP(N,P )
3: T ← AGGREGATE(t, ~w)
4: return (~rC , ~xC , ~yC , g, g

x1 , gy1 , ~w, t, T,~c, ~s, ~uC)

Note that we do not need to include in this view the keys

shared between members of the coalition, or between them

and honest participants, because they can be computed from

~xC , ~yC , g, g
x1 , and gy1 .

We show that VIEW
C
Π(~rC , ·) is ǫ-SIM-CDP using the sim-

ulator F given in Fig. 6. We assume that the honest meter

successfully responds to the service provider request to get its

blinded reading; otherwise privacy holds trivially.

We first prove that for any value ~r of the readings, the

probability that an adversary B distinguishes VIEW
C
Π(~rC , ~r1)

from F (~rC , ~r1) is the same as the advantage of an adversary A
in solving the HDH problem on G and H(t, ·). The adversary

A that we construct (parameterized by ~r) is the following:

1: procedure A(g, gx, gy, h)

2: u $← GEOM(α)
3: c′ ← (r1,t + h) mod n
4: s′ ← (w1 h+ u) mod n
5: F.SETUP(N,P, g, gx, gy)
6: T ← F.AGGREGATE(t, ~w, c′, s′)
7: return B(~rC , ~xC , ~yC , g, gx, gy, ~w, t, T,~c, ~s, ~uC)

It is easy to see that when A is given as input a proper

HDH tuple of the form (g, ga, gb, H(t, gab)), the view that it

provides to B follows the same distribution as a view generated

by VIEW
C
Π(~rC , ~r1). Indeed, g is a uniformly chosen generator

of G, ga plays the role of gx1 , gb the role of gy1 , and gab the

role of k1,1; the procedure F .SETUP computes the keys of the

rest of the meters and aggregators, and all other shared keys

as in the protocol. The values of c1,t and s1 computed by the

procedure F .AGGREGATE from h = gab are also distributed as

in the protocol. Intuitively, computations requiring the private

data of the meter i = 1 and the aggregator j = 1 (i.e.

~r1, x1, y1) have been factored out from procedures SETUP and

AGGREGATE.

When A is given instead a tuple of the form (g, ga, gb, h)
where h is a value uniformly chosen from Zn, the view that

it provides to the distinguisher B is distributed as a simulated

view computed by F (~rC , ~r1). This not as straightforward to

see; but it boils down to showing that for any values of w1,

r1,t, and u, the program

c′ $← Zn; s′ ← (w1 (c
′ − r1,t) + u) mod n

generates the same joint distribution over c′, s′ as the program

h $← Zn; c
′ ← (r1,t+h) mod n; s′ ← (w1 h+u) mod n

This can be shown by an application of the non-approximate

rule for random assignments of pRHL [4], which requires

exhibiting a bijection f on Zn such that for all c′ ∈ Zn,

c′ ≡ r1,t + f(c′) mod n
w1 (c

′ − r1,t) + u) ≡ w1 (f(c
′) + u) mod n

The bijection f(c′) def

= (c′− r1,t) mod n satisfies these con-

ditions.

To conclude the proof, we show that the simulator F (~rC , ·)
in Fig. 6 is ǫ-differentially private. Formally, we consider that

two inputs ~r1, ~r′1 are adjacent when

|r1,t − r′1,t| ≤
∆

maxi wi

(2)

Since F (~rC , ~r1) (resp. F (~rC , ~r′1)) uses directly the value

r1,t (resp. r′1,t) only to compute s′, it suffices to show that

s′ = (w1 (c
′ − r1,t) + GEOM(exp ǫ/∆)) mod n provides ǫ-

differential privacy. We prove this applying the parameterized

apRHL judgment corresponding to Lemma 1. This requires to

show that |w1 (c
′− r1,t)−w1 (c

′− r′1,t)| ≤ ∆, which follows

from (2) above.

C. Discussion

In general, the aggregation protocol above guarantees the

following: If more than one meter and at least a single

aggregator are honest, the adversary learns nothing about the

partition of the resulting weighted sum between the different

meter readings. In other words, any set of readings from

honest meters, leading to the same weighted sum, are equally

likely. In all cases, even when a single aggregator is honest,

the protocol guarantees the privacy of honest readings. When

more than one aggregator can be assumed to be honest, the

utility of the protocol can be increased while maintaining the

same privacy guarantee, by reducing the amount of noise each

aggregator adds (i.e. increasing the scale parameter α).

The aggregators are oblivious to the readings or even the

resulting weighted sum: they do not even need to see the

blinded readings to execute their part of the protocol. Besides

providing differential privacy, any subset of the aggregators

can audit the privacy compliance of aggregation queries, per-

form access control, authorize only some aggregation queries,

or limit the rate of aggregation queries to preserve privacy.

We observe that traditional encryption and signature

schemes can be used to protect the confidentiality and integrity

of all communications from third parties—a concern that is

orthogonal to our presentation of the protocol.

V. RELATED WORK

A. Relational verification of probabilistic programs

Tschantz and Wing [45] advocate the use of formal methods

and automated tools for verifying differential privacy. Pierce



1: procedure F (~rC , ~r1)

2: g $← G∗; x1, y1 $← Zq; c′ $← Zn

3: u $← GEOM(α)
4: s′ ← (w1 (c

′ − r1,t) + u) mod n
5: F.SETUP(N,P, g, gx1 , gy1)
6: T ← F.AGGREGATE(t, ~w, c′, s′)
7: return (~rC , ~xC , ~yC , g, g

x1 , gy1 , ~w, t, T,~c, ~s, ~uC)

8: procedure F .SETUP(N,P, g, gx, gy)

9: for j ← 2 to P do

10: yj ← Zq; k1,j ← gxyj

11: end for

12: for i← 2 to N do

13: xi ← Zq; ki,1 ← gyxi

14: for j ← 2 to P do

15: ki,j ← gxiyj

16: end for

17: end for

18: procedure F .AGGREGATE(t, ~w, c′, s′)
19: c1,t ← (c′ +

∑P
j=2 H(t, ki,j)) mod n

20: M ← {1}
21: for i← 2 to N do

22: ci,t ← GETREADING(i, t)
23: if ci,t 6= ⊥ then M ←M ∪ {i}
24: end for

25: s1 ← (s′ +
∑

i∈M wi H(t, ki,1)) mod n
26: for j ← 2 to P do

27: sj ← GETOPENING(j, t, ~w,M)
28: end for

29: T ←∑

i∈M wi · ci,t −
∑P

j=1 sj mod n
30: return T

Fig. 6. Simulator used in the proof of Theorem 2. Procedures GETREADING and GETOPENING are as in Figure 5.

[38] classifies language-based approaches to differential pri-

vacy into three categories: runtime enforcement (PINQ, AIRA-

VAT), static enforcement (Fuzz, DFuzz), and verification-based

enforcement (CertiPriv). We briefly review these systems.

PINQ [32] is a platform that enforces differential privacy

of C# programs that embed SQL-like queries. Enforcement is

performed at runtime: for each query, the platform computes

its sensitivity and subtracts the amount of privacy leaked by

the query from a privacy budget. The soundness of PINQ rests

on the composition theorems for differential privacy, and on

the correctness of the Laplacian and exponential mechanisms.

AIRAVAT [41] operates on similar principles, but is based on

the MapReduce programming model.

Static approaches, originating from Reed and Pierce [39]

and further developed in Gaboardi et al. [19], are based on

linear type systems. These type systems exploit two essential

properties of differential privacy: it can be achieved by output

perturbation with noise scaled to sensitivity, and it is closed

under sequential and parallel composition. Linear type systems

can be automated and can handle effectively many interesting

examples; D’Antoni et al. [14] use Z3 to solve constraints

arising during type checking. However, these type systems

cannot validate programs that achieve differential privacy with-

out relying on standard building blocks for output perturbation,

or programs that achieve computational differential privacy.

The verification-based approach followed in this paper is

based on CertiPriv [4], which extends CertiCrypt [2] with

support for reasoning about apRHL. CertiPriv is strictly more

expressive than the framework presented in this paper because

it allows users to short-circuit apRHL and reason directly

about the semantics of programs. However, proofs must be

built using the Coq proof assistant, which is time-consuming

and requires expertise. Similar approaches that support re-

lational program verification include Relational Hoare Type

Theory [36] and Relational F⋆ [6]; however, the former does

not support probabilistic computations whereas the latter does

not support approximate relational judgments as apRHL does.

Recently, Chaudhuri et al. [11] have developed an automated

method to prove sensitivity of imperative programs; their

method can be used to choose adequate parameters for sani-

tization mechanisms in order to achieve differential privacy.

Our verification-based approach shares many similarities

with the method developed by Tschantz et al. [46] for

reasoning about differential privacy of interactive systems.

In particular, their definition of differential privacy is also

based on a lifting operator that closely resembles ours and

their unwinding-based verification method can be understood

as an abstract, language-independent, equivalent of apRHL.

However, their method is currently limited to reason about

(ǫ, 0)-differential privacy.

B. Differentially private computation of Hamming distance

The problem of constructing a privacy-friendly two-party

protocol for computing the Hamming distance between two

bit-vectors is closely related to the problem of computing

their inner product, and of securely computing set-intersection

cardinality. Indeed, the inner product 〈a, b〉 of two bit-vectors

x, y ∈ {0, 1}n can be computed as h (x, 0n) + h (y, 0n) −
h (x, y), and thus any two-party protocol for approximating

h (x, y) can be converted into a protocol for approximating

〈x, y〉 (and vice versa) if, in addition, both parties release

differentially private approximations of the Hamming weight

of their inputs. Such a protocol would have applications in

the context of data-mining, where many problems of practical

interest can be reduced to computing the inner product of bit-

vectors (see e.g. [18, 22, 47]).

Alaggan et al. [1] describe a computationally differentially

private two-party protocol for computing the inner product of

two bit-vectors based on the shared scalar product protocol

of Goethals et al. [22] and a threshold homomorphic cryp-

tosystem. As observed above, this protocol can be turned into

a protocol for computing Hamming distance by having both



parties release a differentially private estimate of the Hamming

weight of their inputs. However, this comes at the expense of a

degradation in either privacy or utility due to the added noise,

and in efficiency, due to the use of a threshold cryptosystem,

which requires the participants to actively cooperate at the end

of the protocol to decrypt the estimate of the inner product.

McGregor et al. [31] prove that for every ζ > 0, any

protocol for computing the Hamming distance between two

ℓ-bit vectors that is (ǫ, δ)-differentially private must incur with

probability 1 − ζ an additive error Ω
(

ζ
√
ℓ exp(−ǫ)/ log(ℓ)

)

when δ = o(1/ℓ). In contrast, the (ǫ, δ)-SIM-CDP protocol we

presented in Section II can be proven to incur only an additive

error 1 + 1/ǫ with probability at most exp(−1)/2, indepen-

dently of the length of the vectors. This implies a strong sepa-

ration result between computational and information-theoretic

differential privacy in the two-party setting; in contrast, no

similar result is in sight for the client/server setting.

C. Smart meter aggregation & billing

Shi et al. [42] propose constructions for time-series aggre-

gation of distributed data. Their techniques allow for compact

ciphertexts, are aggregator oblivious, and achieve a flavor

of computational differential privacy (in the random oracle

model) provided a fraction of participants is uncompromised.

Yet, they lack robustness, and no result can be extracted in case

a reading is missing. More recently, Chan et al. [10] achieve

some degree of robustness at the cost of requiring more noise

when readings are missing, and incurring a logarithmic to

linear communication cost depending on the scheme variant.

Kursawe [29] first proposed the use of secret sharing for

aggregation. The protocol requires communication complexity

that is linear in the number of aggregation authorities, but

also public key operations for every aggregation. In subsequent

work [30] a number of schemes were proposed with public

verifiability of the aggregation operation in mind, as well as

protocols for communication efficient aggregation. None of

these protocols is robust, and a single missing reading renders

aggregation impossible.

A line of work starting with Garcia and Jacobs [20] uses

homomorphic cryptosystems to support aggregation. Jawurek

and Kerschbaum [28] extend this to support robustness: they

achieve the same level of noise as our scheme, but at the com-

putation and networking cost of one public key operation per

reading, as well as several operations for every aggregation.

Our scheme achieves communication efficient aggregation,

which means that messages are small, comparable in size to

the readings themselves. No public key operations are required

during aggregation, and an initial key distribution setup phase

can be amortized over many aggregations. The threat model

we use is similar to Jawurek and Kerschbaum [28] in that it

requires a set of authorities to facilitate aggregation. These

authorities are oblivious to the aggregation result. Meters

proposed in Kursawe et al. [30] can be seeded with keys from

our authorities, and perform our protocol without modification.

In fact at a very high level the robust protocol we present here

has the same roots as Kursawe [29] in secret sharing, but uses

a one-off Diffie-Hellman exchange in the setup phase, to avoid

subsequent computation and communication costs.

Privacy-friendly billing has received some previous atten-

tion: Jawurek et al. [27] as well as Rial and Danezis [40]

propose schemes based on homomorphic commitments and

zero-knowledge proofs to support a variety of billing policies,

and in particular a linear policy very efficiently. Molina-

Markham et al. [35] show how to make such protocols

very efficient for the meters in terms of computation and

communication. The downside of the above protocols is the

requirement that, in addition to the meter, a user device is

needed to compute bills. Our proposed protocol can be applied

without the customer interacting with the service provider,

but at the cost of requiring a small number of aggregation

authorities.

VI. CONCLUSION

We have extended EasyCrypt with support for reason-

ing about user-defined sub-probability distributions, and for

proving approximate relational equivalences of probabilistic

programs. We have used this extension to verify differentially

private algorithms and protocols, including two multi-party

protocols that achieve differential privacy only against com-

putationally bounded adversaries.

Besides the examples presented in Sections II and IV,

we have verified several information-theoretic differentially

private algorithms, including all examples from [5]. One of

particular interest is the approximation algorithm for solving

the Minimum Vertex Cover problem in graphs of Gupta et al.

[25]. This case study is significant in three respects: it achieves

differential privacy without resorting to standard mechanisms,

it works on structured rather than numeric data, and its proof

necessitates a more complex rule for loops [5, Figure 5], which

we have also mechanized in EasyCrypt. CertiPriv [5] has

been recently extended to reason about an asymmetric version

of apRHL [7], which leads to a marginally tighter differential

privacy bound for this example; it could be worthwhile to

further extend EasyCrypt to support the same logic.

The extension of EasyCrypt that we presented in this paper,

and in general the logic apRHL, can also be used for other

purposes, including reasoning about the statistical distance

between probability distributions generated by randomized

programs; this has applications to information-theoretic no-

tions of security in cryptography that are stated in terms of

statistical rather than computational indistinguishability, such

as statistical zero-knowledge.

There are several directions for further work. These include

extending the protocols and proofs of Sections II and IV to

the malicious model, and enhancing EasyCrypt with support

for reasoning about continuous probability distributions and

real-world implementations based on floating-point arithmetic.

Another challenge is to provide tool-support for reasoning

about the utility of differentially private algorithms, which

would require more advanced methods to derive bounds about

the probability of events w.r.t. distributions generated by

programs (e.g. Chebyshev’s inequality).
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APPENDIX

EASYCRYPT PROOF OF THE GEOMETRIC MECHANISM

100 op Geom : real → int distr.

101

102 op p(α:real, k:int) = αˆ(- |k|) * ((α - 1) / (α + 1)).

103

104 axiom Geom_def : ∀ (α:real, k:int), 1 < α ⇒ mu_x(Geom(α), k) = p(α, k).

105

106 axiom mult_div_le : ∀ (x, y, z:real), 0 < z ⇒ x * (z ˆ (-1)) ≤ y ⇒ x ≤ y * z.

107

108 axiom pow_monotonic : ∀ (x, a, b:real), 1 ≤ x ⇒ a ≤ b ⇒ x ˆ a ≤ x ˆ b.

109

110 axiom pow_pos : ∀ (x, y:real), 0 < x ⇒ 0 < x ˆ y.

111

112 lemma pow_plus : ∀ (x, y, z:real), 0 < x ⇒ x ˆ (y + z) = (x ˆ y) * (x ˆ z).

113

114 lemma pow_mult : ∀ (x, y, z:real), 0 < x ⇒ x ˆ (y * z) = (x ˆ y) ˆ z.

115

116 lemma pow_inv : ∀ (x, y, z:real), 0 < x ⇒ (x ˆ y) ˆ (-1) = x ˆ (- y).

117

118 lemma pow_ge_one : ∀ (x:real, a:int), 1 < x ⇒ 0 ≤ a ⇒ 1 ≤ x ˆ a.

119

120 lemma abs_minus_sym : ∀ (a, b:int), |a - b| = |b - a|.

121

122 lemma pow_α_triangular :

123 ∀ (α:real, k, a, b:int), 1 < α ⇒ |b - a| ≤ k ⇒ α ˆ (|b| - |a|) ≤ α ˆ k.

124

125 lemma pow_α_le :

126 ∀ (α:real, k, a, b:int), 1 < α ⇒ |b - a| ≤ k ⇒ αˆ(- |a|) * αˆ(|b|) ≤ α ˆ k.

127

128 lemma α_le : ∀ (α:real, k, a, b:int), 1 < α ⇒ |b - a| ≤ k ⇒
129 l e t z = (α - 1) / (α + 1) in αˆ(- |a|) * z ≤ ((α ˆ k) * αˆ(- |b|)) * z.

130

131 lemma Geom_distance :

132 ∀ (α:real, k, a, b:int), 1 < α ⇒ |b - a| ≤ k ⇒ p(α, a) ≤ (α ˆ k) * p(α, b).

133

134 lemma Geom_α_distance :

135 ∀ (α:real, k, a, b: int, µ1, µ2:int distr),

136 1 < α ⇒ |b - a| ≤ k ⇒
137 (∀ (x:int), p(α, x - b) ≤ (α ˆ k) * p(α, x - a)) ∧
138 (∀ (y:int), p(α, y - a) ≤ (α ˆ k) * p(α, y - b)).

139

140 lemma Geom_α_distance_pred :

141 ∀ (α:real, k, a, b: int, µ1, µ2:int distr),

142 1 < α ⇒ |b - a| ≤ k ⇒
143 (∀ (x:int), mu_x(µ1, x) = mu_x(Geom(α), x - a)) ⇒
144 (∀ (y:int), mu_x(µ2, y) = mu_x(Geom(α), y - b)) ⇒
145 delta(α ˆ k, µ1, µ2) = 0 ∧ delta_pred(α ˆ k, µ1, µ2, 0).

146

147 lemma Geom_support : ∀ (α:real), 1 < α ⇒ ∀ (a:int), support(a, Geom(α)).
148

149 spec Geom_spec(α:real, k, a, b:int) :

150 x = sample(Geom(α)) ∼ y = sample(Geom(α)) : 1 < α ∧ |b - a| ≤ k =[αˆk; 0]=⇒ a + x = b + y

151 as lemma (x → a + x | x - a) (z → b + z | z - b).


