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Abstract

Image artifacts that result from sensor dust are a com-
mon but annoying problem for many photographers. To re-
duce the appearance of dust in an image, we first formulate
a model of artifact formation due to sensor dust. With this
artifact formation model, we make use of contextual infor-
mation in the image and a color consistency constraint on
dust to remove these artifacts. When multiple images are
available from the same camera, even under different cam-
era settings, this approach can also be used to reliably de-
tect dust regions on the sensor.

In contrast to image inpainting or other hole-filling
methods, the proposed technique utilizes image informa-
tion within a dust region to guide the use of contextual data.
Joint use of these multiple cues leads to image recovery re-
sults that are not only visually pleasing, but also faithful to
the actual scene. The effectiveness of this method is demon-
strated in experiments with various cameras.

1. Introduction
Sensor dust is a common problem in digital photography,

especially for digital single-lens reflex cameras (DSLRs)
with interchangeable lenses. During lens exchange, the sen-
sor becomes exposed to the environment, and dust may en-
ter the camera before another lens is mounted. This ac-
cumulated dust blocks incoming light before it reaches the
sensor, and appears as dark spots in images. Not only are
these dust artifacts visually objectionable to photographers,
but their alterations of scene appearance may impair com-
puter vision algorithms.

Various tools have been designed for physically remov-
ing dust from a sensor, including cleaning liquids, brushes,
vacuums, and dust adhesives. However, sensor cleaning re-
mains a difficult task even for a professional. Most camera
manufacturers explicitly warn users not to touch the sensor
even for the purpose of removing dust.

Rather than eliminate dust by physical means, photogra-
phers often prefer to process images using photo software
∗This work was done while Changyin Zhou was a visiting student at
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to remove the appearance of sensor dust. This approach be-
comes necessary when dust particles are not noticed until
viewing the pictures. Dust removal in software using, for
example, a cloning tool requires skillful image manipula-
tion to obtain satisfactory results. While manual processing
of images can be effective when the background of a dust
region is uniform or highly regular, it is often the case that
a dust background does not have such regularity. An exam-
ple of this is shown in Fig. 1(a,b). Although the dust arti-
facts are visually obvious, they are challenging to remove
by hand, since their irregular backgrounds are difficult to
reproduce by cloning.

To automatically recover a dust-free image, a cloning-
style process may be simulated to fill in dust regions. Previ-
ous techniques along this direction include image inpainting
and texture synthesis. As with manual cloning, these ap-
proaches have difficulties with irregular dust backgrounds,
due to insufficient contextual information.

In contrast to the hole-filling applications addressed by
these previous methods, dust regions generally contain
some information about the obscured background area. As
shown in Fig. 1, despite the attenuation of scene radiance by
dust, the veins and surface texture on the pictured leaf are
still partially observable. This source of information pro-
vides an important constraint on dust artifact removal that
enables recovery of irregular backgrounds common in nat-
ural imagery.

To better utilize the information inside a dust region, we
study and model the formation of image artifacts by sen-
sor dust. Since sensor dust actually accumulates on a low-
pass filter that rests upon the sensor array, the attenuation
of light as seen from the sensor is related not only to the
dust itself, but also to the imaging geometry specified by
camera settings. The presented dust imaging model defines
a function space of image artifacts with respect to camera
settings, which together with the information from the dust
region implicitly describes a space of possible solutions for
the dust background. Further constraints based on contex-
tual data in the image and color consistency of dust lead to
image recovery results that are true to the scene.

Given a single image, there exists ambiguity on whether
a darkened region indicates a dust artifact or is actually a
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(a) Image Thumbnail (b) Dust Regions (c) Texture Synthesis (d) Our Results (e) Ground Truth
Figure 1. A leaf photographed with a Canon 30D camera. In (b), it can be seen that some background information is available inside the
dust regions. By utilizing this information in conjunction with the artifact formation model, our technique produces results more similar to
the ground truth than texture synthesis. The ground truth was obtained by slightly shifting the camera to displace the locations of artifacts
in the image.

part of the scene. Our method provides an ordered list of
candidate dust regions in an image, based on adherence to
image context and the dust artifact model, and then a user
can specify which regions on this list actually contain dust.
In many instances, a photographer will have a collection of
images taken from the same camera at approximately the
same time, possibly with various camera settings. Since the
configuration of dust on the sensor can be considered fixed
in such an image set, the proposed method can more reliably
detect dust artifacts based on their consistency among the
images with respect to camera settings.

2. Related Work

The image appearance of dust that lies on a transparent
lens cover was examined in [13]. While such protective
covers may be important in certain scenarios, e.g., on the
2003 Mars Exploration Rovers in [13], digital cameras gen-
erally do not have them. If dust were to fall directly on
a camera lens, the image effects would differ significantly
from that of sensor dust, since the scene radiance would be
uniformly attenuated over the entire sensor array. This is
due to the fact that each sensor element receives light that
is focused through the lens, and therefore the resultant arti-
fact is not visually apparent. In [13], the problems of dust
artifact removal and detection are not addressed.

Image completion and image inpainting methods have
been used to recover missing portions of images. These
techniques assume that there is no significant information
within the regions to be filled, and exploit contextual in-
formation in the surrounding image. Bertlalmio et al. [1]
filled in missing regions by propagating image Laplacians
from the region boundaries along isophote directions. Many
techniques have since been proposed to take greater advan-

tage of contextual information. To handle curved structures,
Chan and Shen [2] introduced the use of Euler’s elastica.
Levin et al. [9] employed an image-specific prior to guide
inpainting. Many example-based approaches [5][10][4]
have also been proposed for image completion by interpo-
lating pixels using texture synthesis techniques.

Although these previous approaches may generate visu-
ally plausible results, they do not consider available infor-
mation inside the regions, and therefore may produce so-
lutions that do not conform with the actual scene. This is
exemplified in Fig. 1, where the texture synthesis result in
(c) appears unnatural and different from the ground truth
in (d). Some image information within a dust region may
be preserved by band-limited texture synthesis [6], but the
low-pass effects of dust vary over a dust region and would
thus complicate such an approach. To better guide image
completion, user specification of region structure has been
utilized in [11][12]. In our work, this structural information
is obtained directly from the dust region, and interpreted us-
ing the presented artifact formation model. Unlike the pre-
vious techniques, our work also can infer the locations of
dust regions, based on both image context and the artifact
formation model.

3. Formation of Dust Artifacts

To better utilize the image information within a dust re-
gion, an understanding of dust artifact formation is needed.
We assume dust particles to be light attenuators that alter
an image according to I(x) = U(x) · α(x), where I(x)
is the recorded image intensity at pixel x, U represents the
dust-free image that we wish to recover, and α models the
attenuation due to sensor dust. Although dust artifacts may
partly result from light diffraction, we consider this little ef-
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Figure 2. The artifact produced by a given dust appears differently under different camera settings. From left to right, the F-number is set
to F/22, F/19, F/16 and F/11, respectively. These artifact functions α are estimated from a uniform scene and contain image noise.

fect to be negligible, since dust regions do not exhibit inter-
ference effects associated with diffraction around the edges
of a barrier.

Since the dust lies on a low-pass filter instead of directly
on the sensor, the artifact function α represents a projec-
tion of the dust’s transparency function β. The geometry
of this projection is dependent upon camera settings, which
can substantially affect α for a given β as shown in Fig. 2.
We note that light that passes through a dust particle may
undergo some amount of scattering that is not modelled by
a transparency function. However, we have found such scat-
tering effects to be small enough to disregard.

3.1. Projection of Dust Effects

The projection of dust transparency from the low-pass
filter to the camera sensor is illustrated in Fig. 3. The dust
transparency function β : L2 → [0, 1] manifests itself as an
artifact function α : L2 → [0, 1] in the image. Essentially,
α(x) denotes the proportion of scene radiance that passes
through the dust and reaches pixel x.

It can be assumed that the camera focal length f is much
larger than the offset d of the low-pass filter from the sensor,
and that the dust size is much smaller than the aperture size
A. From the projection geometry, the effect of an arbitary
point on the dust will be spread over the sensor according
to the rect function u(·), defined as

uτ (x) =





0 if |x/τ | > 1/2
1/2 if |x/τ | = 1/2
1 if |x/τ | < 1/2.

(1)

Based on triangle similarity as seen in Fig. 3, the scale τ of
the rect pulse can be calculated as τ = d · A/f . The value
of f/A is equal to the camera’s F-number setting, which is
conventionally recorded in the EXIF data of an image file.

The projection from β to α can then be formulated as the
following convolution operation:

α = β ∗ uτ .

We note that since sensor dust lies on a low-pass filter, blur-
ring from the filter will also have some slight effect on the
formation of α. As discussed in the Appendix, this effect
is small and will not be included in our artifact formation
model.
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Figure 3. Projection geometry of dust effects.

3.2. Function Space of α

Because of dust projection, a function space of possible
dust artifacts α can be defined with respect to the projection
geometry factor τ and the bounds of dust transparency β.
As illustrated in Fig. 2, larger values of τ lead to dust arti-
facts that are essentially more blurred, because of a broader
convolution kernel in Eq. 1. Since β : L2 → [0, 1], the func-
tion space Dτ of valid artifacts α with respect to τ can be
expressed as

Dτ = {α : β ∗ uτ = α, 0 ≤ β ≤ 1}. (2)

Together with the image information within a dust region,
this function space implicitly defines a space of possible
dust backgrounds, which serves as a constraint on the dust
removal solution.

4. Dust Removal in a Single Image
For a given dust region D ∈ Ω, the goal of dust removal

is to recover its dust-free appearance UD. According to our
artifact formation model, UD must satisfy

ID = UD · (β ∗ uτ ) + n

provided that image noise n is additive. The dust trans-
parency function β and projection geometry factor τ are
both unknown, since the low-pass filter displacement d is
information generally not provided with a camera. As a
result, the dust removal problem is ill-posed. To better con-
dition the image recovery process, we utilize contextual in-



formation IΩ/D from outside the dust region in conjunction
with the artifact formation model.

4.1. Formulation

We formulate this recovery as the following MAP esti-
mation problem 1:

ÛD = arg max P (UD, α|I)
= arg max P (ID|UD, α) · P (UD|IΩ/D) · P (α).

Expressed as a logarithmic energy function, the problem be-
comes the minimization of

E(UD, α|I) = λ1E1(ID|UD, α)+λ2E2(UD|IΩ/D)+λ3E3(α).
(3)

The energy term E1 uses the artifact formation model to
capitalize on the image information within the dust region.
E1 is defined as the L2 distance between ID and UD · α:

E1(ID|UD, α) =
1
2
||ID − UD · α||2. (4)

As explained in [3], the coefficient λ1 should ideally be
related to the noise level of n, and should be large if the
signal-to-noise ratio is large.

The term E2 utilizes contextual contraints from the sur-
rounding image. The recovered region UD is expected
to have local appearance features consistent with those in
neighboring areas, and image transitions should be smooth
at the region boundaries. Similar to [7], we define this en-
ergy to be

E2(UD|IΩ/D) = Σ
Di∈D

dist(UDi
, IΩ/D)2, (5)

where Di is a set of overlapped sub-blocks in D, and

dist(UDi
, IΩ/D) =

1
2
||UDi

− IBi
||2

with Bi = arg min
B∈Ω/D

||UDi
− IB||2.

E3 represents the constraint from the function space of
α. For an estimated α, we define E3(α) as the minimal L2

distance to the function space Dτ :

E3(α) =
1
2
||α− PDτ

(α)||2, (6)

where PDτ (α) is the projection of α onto the space Dτ :

PDτ
(α) = arg min

u∈Dτ

||α− u||.
1 arg max P (UD, α|I)

= arg max P (UD, α, ID, IΩ/D)
= arg max P (ID|UD, α, IΩ/D) · P (UD, α|IΩ/D) · P (IΩ/D)
= arg max P (ID|UD, α, IΩ/D) · P (UD, α|IΩ/D).

Since α is independent of UD and IΩ/D , and ID is con-
ditionally independent of IΩ/D given UD and α, we have
arg max P (ID|UD, α) · P (UD|IΩ/D) · P (α).

Computing PDτ (α) ∈ Dτ is equivalent to finding a β∗,
(0 < β∗ < 1) that minimizes F = 1

2 ||α−β ∗uτ ||2, and can
be solved using the partial derivative ∂F

∂β = (α−β∗uτ )∗ūτ ,
where ūτ (x, y) is defined asuτ (−x,−y). Determination of
the value of τ used here will be explained in Sec. 4.4.

Intuitively, recovery of a dust-free image using the en-
ergy function in Eq. 3 may be viewed as a constrained tex-
ture synthesis or inpainting. The term E2 could be any tex-
ture synthesis or inpainting objective function to propagate
contextual information from the surrounding image. In this
paper, we use patch-based texture synthesis [4] in conjunc-
tion with the global optimization procedure of [7]. This syn-
thesis is regulated by physical knowledge on artifact forma-
tion (E3) together with observed image information within
the dust region (E1). These cues jointly suggest a recovery
solution that tends toward the ground truth.

4.2. Optimization

In the optimization of Eq. 3, estimation of α relies on
a good prediction of UD, whereas UD depends on an ac-
curate function α. For this chicken-and-egg problem, we
use the alternating minimization approach [3] to optimize
E(UD, α|I).

We start from an initialization U
(0)
D obtained by apply-

ing conventional texture synthesis on a set of candidate dust
regions, which are determined simply by fitting 2D Gaus-
sians on small overlapping image patches and evaluating
their concavity. An alternating sequence of conditional min-
imizers is then computed:

u
(0)
D → α(0) → u

(1)
D → α(1) → . . . → u

(n)
D → α(n) → . . .

according to

α(n) = arg minE(α|I, U
(n)
D )

U
(n+1)
D = arg minE(U|I, α(n)),

where the partial derivatives of E can be computed from
Eqs. 3, 4, 5, and 6 as

∂E/∂UD = λ1α
′(UD · α− ID) + λ2 Σ

Di∈D
(UDi

− IBi)

∂E/∂α = λ1U
′
D(UD · α− ID) + λ3(α− PDτ (α)).

The sequence is iteratively computed until ||α(n) −
α(n+1)|| < ε.

4.3. Color Consistency

The preceding algorithm may be applied independently
for each color channel of an image; however, certain corre-
lations between channels may be exploited as an additional
constraint for radiometrically calibrated cameras. Since a
dust particle is typically composed of a single material, we



can generally assume that it is monochromatic, i.e., of a uni-
form color. After normalization, we expect α to be propor-
tional in the three channels, such that αr(x)/Σxαr(x) =
αg(x)/Σxαg(x) = αb(x)/Σxαb(x). The normalized α
functions in the three channels should then have minimal
Kullback-Leibler (K-L) divergence [8] to an optimized α∗:

α∗ = arg min
Σα(x)=1

Σ
i=r,g,b

KL(α||(αi/Σxαi)), (7)

where KL(·||·) is the K-L divergence:

KL(P ||Q) = ΣxP (x) log
P (x)
Q(x)

.

From Eq. 7, we can define an energy function that repre-
sents a color consistency constraint on dust:

E4(αr, αg, αb) =
1
2 Σ

c=r,g,b
||αc − α∗ · Σxαc||2.

This energy term can be integrated into Eq. 3 to obtain
E = λ1E1 + λ2E2 + λ3E3 + λ4E4. Within the alternat-
ing minimization algorithm, the partial derivative of E with
respect to α for each channel c = r, g, b is given by

∂E/∂αc = λ1 · ΣU ′
D(UD · αc − ID)

+ λ3 · (αc − PDτ (αc))
+ λ4 · (αc − α∗ · Σxαc).

4.4. Estimation of τ

As mentioned previously, the value of τ is generally un-
known, because the low-pass filter displacement d from the
sensor is typically unavailable. Since τ defines the func-
tion space Dτ of α, it affects the energy term E3 defined in
Eq. 6.

The volume of space Dτ is negatively related to the value
of τ . As seen from Eq. 2, when τ approaches zero, Dτ will
accommodate any function 0 ≤ α ≤ 1; as τ increases, the
space of valid artifact functions becomes constricted. Con-
sequently, values of τ that are greater than the actual value
τ∗ will have a corresponding space Dτ that may not admit
true artifact functions in an image. As a result, the opti-
mization energy E computed for τ > τ∗ tends to increase
sharply with respect to τ . On the other hand, a space Dτ

for τ ≤ τ∗ will admit valid artifacts, and hence have opti-
mization energies that decrease less rapidly with respect to
τ . Some decrease in energy still exists because a broader
range of artifact functions allows more flexible use of con-
textual data.

Based on this characteristic, τ may be estimated by ex-
amining the optimization energy E computed for sampled
values of τ , as shown in the leftmost graph of Fig. 5. Since
E changes rapidly for τ > τ∗ and slowly for τ ≤ τ∗, τ
can be estimated as arg maxτ ∂2E/∂τ2. In practice, we

(a) (b)
Figure 4. Candidate dust regions can be detected based on opti-
mization energy. The only true dust regions are E=0.07 in (a),
and E=0.06 in (b). The other candidates in (b) are part of the
image texture, and have less color consistency in their estimated
artifact functions.

have found that small discrepancies between τ and τ∗ do
not lead to appreciable differences in results, likely because
valid artifacts still lie in Dτ for an underestimated τ , and
dusts without sharp edges are still admissible for a slightly
overestimated τ .

We note that d is a fixed value for a given camera model.
If this distance has been accurately recovered for one cam-
era, e.g., using multiple images as will be explained in
Sec. 5.2, then other users of this camera model can utilize
this value to determine τ as d · A/f , where f/A is the F-
number setting.

4.5. Detection of Candidate Dust Regions

When τ is set, the proposed method can determine opti-
mization energy values for regions in an image. Since lower
energies indicate a recovery result that is more consistent
with image context and the dust artifact model, their corre-
sponding regions are more likely candidates to contain dust.
Some results of candidate detection are shown in Fig. 4.
Dust artifacts can often be distinguished from dark scene
spots because of dust projection characteristics and color
consistency. A list of candidate regions ordered by increas-
ing energy could be presented to the user to expedite dust
detection.

4.6. Results

The cropped photograph in Fig. 1 was taken with a
Canon 30D DSLR camera. The energy function coefficients
were set to λ1 = 0.9, λ2 = 0.4, λ3 = 0.9, λ4 = 0.9 for all
experiments in this paper, and the value of τ was determined
to be 10 in this case. From the ordered list of candidate dust
regions output by our algorithm, the top two were selected
for image recovery. We compare our technique with the
texture synthesis method in [4] and ground truth obtained
by slightly shifting the camera. Because of subpixel shifts
in the ground truth image, we present a visual rather than
a quantitative comparison of results. Without consideration
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Figure 5. Optimization energy Ed vs. low-pass filter displacement d for twelve dust regions in a Kodak DCS 330. The red curves represent
the means among the twelve dusts. From left to right: with a single input image at F/11; with two images at F/11 and F/22; with four
images at F/11, F/16, F/19, F/22. For a single image, d can be estimated from second derivatives, and for multiple images, d can be
determined from the minimum energy.

of image information within the dust region, texture syn-
thesis generates leaf structures and texture details that are
different from the ground truth. Moreover, some leaf de-
tails appear slightly blurred due to texture irregularity and
patch blending. Our method preserves most of the original
leaf appearance, with less suspectibility to blurring because
of the structural constraints provided by the dust region and
artifact formation model.

Fig. 7 shows an example from a Kodak DCS 330 cam-
era. τ is determined to be 4. In the evaluation of dust can-
didates, 17 (indicated by green arrows) of the 20 actual dust
regions in the image appear among the top 18 candidates
in the ordered list. The actual dust regions are determined
manually from a photo of a uniform scene. The three over-
looked dust regions are marked by red arrows, and the one
incorrect candidate of the 18 is labelled with a yellow arrow.
Although the dust detection method is not fully accurate, it
nevertheless provides a helpful tool to the user.

Because of the large number of dust regions, the ground
truth was captured using a different camera that is free of
sensor dust. The scene appears slightly different with the
other camera, but it provides an idea of the actual dust-free
appearance. In comparison to conventional texture synthe-
sis, our method better recovers the true scene appearance
within the dust regions.

5. Multiple-Image Input
Having multiple input images, even with different cam-

era settings, can improve detection and removal of dust ar-
tifacts. The dust transparency function β can be considered
fixed among images captured within a single session, and
this additional constraint enables estimation of β as well as
a more reliable determination of d.

5.1. Formulation

Suppose we have a set of images Ii, i = 1, 2, . . . , m and
their corresponding F-numbers, ρ1, ρ2, . . . , ρm. Similar to
the formulation of color consistency in dust, α functions in
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Figure 6. Two β functions derived from multiple-image input.

these images should closely correspond to a common β:

β = arg min
β

Σ
i
||β ∗ uτi − αi||2, (8)

where τi = d/ρi, and d is obtained as described in Sec. 5.2.
From Eq. (8), we can define an energy term that represents
consistency of β among multiple images:

E5 = E(α1, α2, . . . , αn, d) =
1
2
Σi||β ∗ uτi

− αi||2, (9)

which has the derivative

∂E5/∂αi = β ∗ uτi
− αi.

Thus, the overall energy function for multiple-image input
is

Emulti =
m

Σ
i=1

Ei
d + λ5 · E5, (10)

where Ei
d denotes the single-image energy for each Ii.

5.2. Estimation of d and β

With a larger number of input images, a more reliable
estimate of d can be obtained. Among m images, a set
of α functions α1, . . . , αm is computed for each dust re-
gion. Since these α functions arise from the same dust, they
should satisfy m equations αi = β ∗ ud/ρi

, i = 1, . . . , m.
The correct value of d should give the same β when decon-
volving the functions αi by ud/ρi

; otherwise, the inconsis-
tency in β will lead to a high energy in Eq. 9.

Greater reliability in estimating d is exemplified in
Fig. 5. For sampled values of d, we denote the optimiza-
tion energy as Ed, and plot Ed with respect to d. We set



λ5 = 0.6 for all examples in this paper. With two images as
input, a minimum in Ed becomes noticeable, and the mini-
mum becomes clearer with four images.

Simultaneously, an estimate of β can be computed from
Eq. 8. Given α1, α2, . . . , αn, the function β can be solved
by setting the partial derivative of

∑
i ||β ∗ uτi

− αi||2 with
respect to β to zero. This gives us

β = deconv(Σ(αi ∗ ūτi
),Σ(uτi

∗ ūτi
)),

where C = deconv(A,B) is the deconvolution operation
to seek a C that satisfies A = B ∗ C.

Recovered β functions for two of the dust regions are
displayed in Fig. 6. We note that with multiple input im-
ages, candidate dust regions can be more reliably detected
because of the powerful constraint that they have similar β
functions in each image.

5.3. Results

Fig. 8 exhibits results for three complex input images
taken by a Canon 20D camera at F/16, F/14 and F/11. There
exist two actual dust regions (indicated by red rectangles)
on the sensor. Since these photographs each contain nu-
merous small dark regions, detection of candidate dust re-
gions becomes difficult when processing each image inde-
pendently. When applying our single-image method on the
top image of (a), the two true dust regions appear among the
top 11 candidates (marked by green arrows). Similar results
are obtained when processing the other two photographs in-
dividually. When using all three images as input, the two
dust regions become the top two candidates.

In the close-up images, the quality of our recovery results
is seen to be higher than that of conventional texture synthe-
sis. We observe that although our single-image algorithm
is less effective at detecting dust candidates, it can achieve
recovery results that are comparable to our multiple-image
technique, which employs much more image information.

6. Conclusion
In this paper, we introduced an approach to sensor dust

removal that, unlike inpainting or texture synthesis meth-
ods, exploits the image information inside the damaged re-
gion. To effectively utilize this data, we presented an arti-
fact formation model for sensor dust. The dust region in-
formation together with the artifact model jointly provides
a constraint on the possible dust removal solutions. Im-
age context and color consistency of dust are additionally
utilized to recover a visually pleasing image that closely
matches the actual scene. When multiple images are avail-
able, this approach can further offer the user a reliable list
of candidate dust regions to choose from. Experiments
demonstrate effective results with different cameras and
complex scenes.

In future work, we plan to examine various cameras and
detemine the displacements d between the low-pass filter
and imaging sensor. Although low-pass filters in digital
cameras exist in different forms, such as birefrigent plates
or molded plastic sheets, and may be supplemented with an
infrared cutoff filter, the number or ranges of typical d val-
ues may possibly be limited. Such a prior model on d could
provide a useful constraint in our method for single-image
input.

Although our method targets sensor dust removal, the
presented framework could potentially be used in other ap-
plications. For example, similar artifacts often appear in
scanned images due to fingerprints and smudges on the
scanner glass. With a suitable model for artifact formation,
the constrained use of contextual information in our dust re-
moval technique might then be applied for scanner images.
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Appendix: Effects of Low-pass Filtering
The low-pass filter in a camera is designed to blur a pho-

tograph by one or two pixels in order to prevent aliasing and
moiré effects. Since sensor dust lies on this filter, the blur-
ring it induces will also influence the formation of a dust
artifact. For simplicity, we will discuss this effect in 1D.

For a low-pass filter that blurs an image by one pixel, we
obtain an image I = (U · α) ∗ u1, where U is the dust-free
image prior to filtering. If the dust were not present, then the
low-pass filtered image would instead be I ′ = U ∗ u1. The
original artifact function α without low-pass filtering would
thus be transformed to α′ = I/I ′ by the low-pass filter. In
the discrete case, (f ∗ u1)(x) = [f(x) + f(x + 1)]/2, such
that the artifact function can be expressed as

α′(x) = α(x) +
U(x + 1)

U(x) + U(x + 1)
· [α(x + 1)− α(x)].

The transformed artifact α′(x) is therefore bounded by
α(x) and α(x + 1). Because of image noise and the typ-
ical smoothness of α = β ∗ uτ , we approximate α′ with α
and ignore the effect of the low-pass filter on dust artifacts.
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