
Detecting Malicious Landing Pages in Malware

Distribution Networks

Gang Wang

Computer Science

UC Santa Barbara

Santa Barbara, CA 93106

gangw@cs.ucsb.edu

Jack W. Stokes

Microsoft Research

One Microsoft Way

Redmond, WA 98052

jstokes@microsoft.com

Cormac Herley

Microsoft Research

One Microsoft Way

Redmond, WA 98052

cormac@microsoft.com

David Felstead

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

davfeld@microsoft.com

Abstract—Drive-by download attacks attempt to compromise
a victim’s computer through browser vulnerabilities. Often they
are launched from Malware Distribution Networks (MDNs) con-
sisting of landing pages to attract traffic, intermediate redirection
servers, and exploit servers which attempt the compromise.

In this paper, we present a novel approach to discovering
the landing pages that lead to drive-by downloads. Starting from
partial knowledge of a given collection of MDNs we identify the
malicious content on their landing pages using multiclass feature
selection. We then query the webpage cache of a commercial
search engine to identify landing pages containing the same or
similar content. In this way we are able to identify previously-
unknown landing pages belonging to already identified MDNs,
which allows us to expand our understanding of the MDN.

We explore using both a rule-based and classifier approach
to identifying potentially malicious landing pages. We build
both systems and independently verify using a high-interaction
honeypot that the newly identified landing pages indeed attempt
drive-by downloads. For the rule-based system 57% of the landing
pages predicted as malicious are confirmed, and this success rate
remains constant in two large trials spaced five months apart. This
extends the known footprint of the MDNs studied by 17%. The
classifier-based system is less successful, and we explore possible
reasons.

Keywords—Drive-by download; malware distribution network;
signature;

I. INTRODUCTION

The reach and scale of the Internet has fostered a parasitic
industry of those who seek illegal profit. A common strategy is
to infect innocent users’ machines with malicious code which
can then be used to harvest passwords, send spam, retrieve
contact lists, participate in a botnet, etc. A malware author
needs three things [1]: bad code, a way to get it running,
and an introduction to the user. The second and third often
represent the challenge in running a cybercrime business;
that is, finding users and getting the code to run on their
machines is more of a challenge than writing the malware.
Social engineering, the process of using false pretence to
lure a user to install the software himself, has met with
considerable success. Numerous studies have shown that users
can be manipulated into installing malware, ignoring security
warnings, and disabling protection mechanisms [2], [3]. The
introduction to the user in this case is often provided in the
form of a spam campaign.

A second approach attempts to exploit un-patched vul-
nerabilities in the applications on the user’s machine. Large
complex applications such as Adobe Acrobat, Microsoft Excel,
etc, often have vulnerabilities. Opening a malicious document
with a vulnerable application can be enough to give the attacker
the opening to get malicious code running on the user’s
machine. Again, in this case spam is often the introduction
vector. For example, many spam campaigns try to get a user
to open an attachment with lures such as “your tax request has
been denied” or “your package delivery failed” in the subject
line of the email.

A drive-by download is a particular case where the vul-
nerable application is a browser. Some browser vulnerabilities
will allow malicious code to begin running without the user’s
knowledge or consent. A user who visits a malicious webpage
with a vulnerable browser could get infected. This opens
various possibilities for attackers. An attacker could set up
websites that host malicious content and then wait for vulner-
able browsers to come by. The number of users infected will
then be related to the amount of traffic that the site can gain.
It is certainly possible to employ Search Engine Optimization
(SEO) techniques to maximize traffic to a page that has nothing
except malicious code to offer. However, since even legitimate
websites compete vigorously for visitors, getting traffic is by
no means a trivial proposition.

A more common approach is to infect an innocent website
with code that directs a browser to load malware from a second
site. A particularly attractive aspect of this approach is that it
allows the attacker to piggyback on someone else’s traffic: the
introduction to the user is provided by the web-traffic that
a site is already attracting. Rather than deface, or interfere
with the performance of the infected site the attacker generally
injects a malicious script that eventually redirects the browser
to a server hosting a malicious payload. Thus visitors with
browsers that possess the targeted vulnerabilities will become
infected. The innocent site is called the landing page, and the
site with the malware is called the exploit server. In this way
the attacker gets to infect many clients without having to earn
the traffic.

Often the path from the landing page to the exploit server
contains many redirects. For example, if the attacker succeeds
in infecting the innocent webserver at foo.com he can direct
all traffic to load the malicious content from evil.com. This
can be done indirectly, so that the page at foo.com points
to a.com, which points to b.com, which points to c.com
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Fig. 1: High-level overview. Our system processes webpage content from the static crawler and drive-by download detection
results from the dynamic crawler. It identifies malicious webpages belonging to MDNs based on similar content which can then
be used to filter the search engine result pages.

and so on, until it eventually reaches evil.com. Often there
will be many landing pages that share a small collection of
exploit servers. They may also share some of the links in
their redirection paths to the exploit servers. The collection
of landing pages, exploit servers and intermediate redirection
pages is collectively known as a Malware Distribution Network
(MDN) [4].

Addressing this exploitation of users involves a multi-
pronged approach. Browser vendors aggressively seek to iden-
tify and patch vulnerabilities. This is complicated by the ap-
parent reluctance of users to promptly install security updates.
For example, 22% of Internet Explorer users were still using
IE6 more than four years after the launch of IE7 and 18 months
after the launch of IE8, and 80% of users studied by Trustseer
were using un-patched versions of Flash Player [5]. Hav-
ing updates installed automatically by default has improved
this situation somewhat, but machines that are compromised
through vulnerabilities for which available patches have not
been installed remains a serious problem. Anti-virus software,
of course, is the main line of defense for most users.

Search engines actively seek to identify webpages asso-
ciated with malicious content. Such webpages can be low-
ered, or dropped altogether, in the ranked results returned to
users. However, the architecture of the MDN makes the task
of identifying exploit servers very difficult. Search crawlers
typically retrieve the contents of the document at a site, and
do not run any scripts on the page. This is an unavoidable
consequence of scale: large search engines index billions of
pages per day. Rendering a page and running all scripts, as
a browser would do, can take orders of magnitudes more
resources than simply loading the main document. Thus the
malicious actions performed by the scripts on a landing page
are largely invisible to search crawlers. We outline previous
attempts at MDN detection in the Related Work Section.

In this paper, we study drive-by download attacks with
a focus on MDN landing pages. We conjecture that landing
pages within an MDN will exhibit a certain level of similarity
regarding the webpage content. We validate this hypothesis
using a large-scale dataset from a production search engine.
In an MDN, this content maybe be similar across completely

malicious webpages (webpages created by the attacker), le-
gitimate but compromised webpages, or a combination of
both. For malicious webpages, content within an MDN most
likely varies to avoid filtering from search results by duplicate
detection. However like the compromised webpages, a small
amount of common, malicious code is used to initiate the drive-
by download attack.

We propose a technique to extract the MDN specific
redirection patterns and use them to detect previously-unknown
drive-by download landing pages. Our technique is to start
from a seed set of landing pages from already-known MDNs.
We identify the common malicious content on these pages and
then seek other pages in the search crawler cache that contain
this content. These are good candidates to be previously-
unknown landing pages associated with the MDN in question.
We validate the results by submitting the found pages to a
high-interaction honeypot. For example, 57% of the suspicious
pages found by the rule-based system in Section III are verified
as pointing to malicious drive-by downloads.

A high-level overview of the system environment is pro-
vided in Figure 1. The static crawler collects content from a
wide range of webpages, most of which are benign, and gives
this to the search engine. During this process, the static crawler
may also fetch content from malicious webpages belonging to
different MDNs. In parallel, the dynamic crawler is scanning
unknown webpages in order to identify malicious pages, and
the dynamic crawler output is used to identify individual
MDNs. Our system consumes the static and dynamic crawl
data, correlates the web content for pages belonging to indi-
vidual MDNs, and identifies the malicious web content within
each individual MDN. When a user enters a new query into the
search engine, the search engine returns one or more SERPs
(Search Engine Result Pages). Once the MDN content which
is suspected as being malicious has been validated by the
dynamic crawler, the corresponding webpage can be removed
from the SERP producing a filtered SERP for the end user.
The filtered SERP may block all, some, or none of the landing
pages within an MDN.

This paper is organized as follows. We introduce necessary
background material in the next section. In Section III we



describe and evaluate a rule-based approach to the problem. In
Section IV we present and evaluate a classifier approach to the
same problem. Section V discusses the differences and merits
of the two approaches. We review related work in Section VI.

II. BACKGROUND

In this section, we provide background on three key aspects
related to our system, namely malware distribution networks,
the static search crawler, and the dynamic crawler.

A. Malware Distribution Networks

A malware distribution network (MDN) consists of three
components: landing pages, one or more redirection servers,
and the exploit servers. The attack starts when a browser
requests content from the landing page. Sometimes the landing
page redirects the user to an exploit server directly, but
more often the landing page will redirect the user to other
redirection servers before reaching the final exploit server.
Multi-hop redirection usually exists in more sophisticated
drive-by download attacks where the redirection servers in
the middle of the infection process further examine different
conditions (e.g. browser type, version, plugins etc.) to decide
which exploit server the browser should be directed to. For
example, one redirection path might be followed by Firefox
browsers while another would be taken by particular versions
of Internet Explorer. The landing page will trigger the first
hop of redirection. For compromised webpages, redirection is
usually caused by injected content. In an MDN, an exploit
server may handle traffic from a large number of landing pages.

This architecture offers several advantages to the attackers.
It separates the functions of traffic acquisition, traffic redirec-
tion and exploit serving. The redirection path can be obfus-
cated. The architecture facilitates management and auditing of
traffic in the redirection layer, which allows for the possibility
that the compromise of landing pages and redirection layers
are controlled by a different party than the one hosting the
exploit servers.

B. Static Search Crawler

Search engines employ crawlers to retrieve content for
indexing. For this project we had access to the crawler of a
large commercial search engine. The crawler runs continuously
visiting new pages as found, and revisiting existing pages
based on a schedule determined by the pages’ changefulness
and ranking. The crawler retrieves the content of a page for
analysis. Some, but not all, of the links identified in the content
are added to the list of pages to be subsequently crawled. The
crawler does not however fetch embedded images or execute
any scripts on the page, or attempt to render the page as a
browser would. As it retrieves the static, but not dynamic,
content from webpages it is commonly referred to as the static
crawler. For example, in fetching the page www.nytimes.com
(fetched April 16, 2012) in a browser a total of 176 requests
were issued to 31 different domains. Of the 176 requests, 54
were jpeg, 40 gif, 4 png, 7 css, 12 flash, and 33 were javascript
objects. None of these objects would be fetched by the static
crawler, which limits itself to static text and HTML content.
Thus a server that uses javascript to point to a server hosting

TABLE I: An example of the output of the dynamic crawler
or DCTrace.

DCTrace

Landing Page www.foo.com/index.html

Redirection URLs
www.a.com/redirect.js
www.b.com/check.php
www.c.com/hack.js

Exploit URL www.evil.com/malware.exe

IPs

www.foo.com (23.21.215.24)
www.a.com (192.168.0.1)
www.b.com (192.168.0.2)
www.c.com (192.168.0.3)
www.evil.com (192.220.74.179)

File Hash E21AD55HCCSAD7DC21B....74R

Is Drive-By Successful? True

malicious content does not exhibit suspicious behavior to the
static crawler.

Servers that host malicious content (as opposed to pointing
to other servers that host it) will often attempt to hide their
nature from crawlers by cloaking [6]. This is a technique that
involves delivering malicious content to potentially vulnerable
visitors, but innocent content to crawlers. Since web crawlers
for major search engines operate from easily-identified blocks
of IP addresses, and strictly obey any crawling policies put in
place by robots.txt, it is simple to offer them different
content from regular web users. Thus, an exploit server which
seeks to evade discovery will not typically be reached via the
links placed in innocent pages and has no difficulty showing
an innocent face to any crawler that finds it by another path.

C. Dynamic Crawler

While the information retrieved by the static crawler suf-
fices for search indexing, it does not reveal if a webpage
is attempting to infect the user’s machine with a drive-by
download or not. Thus, a malicious embedded script which
causes the browser to follow a series of redirects terminating
at the exploit server, will never be followed.

Thus, many search engines, in addition to the static
crawler, have a second dynamic crawler which examines a web
page more thoroughly. The dynamic crawler can be thought
of as a active, client-side honeypot. It visits a site posing as
a vulnerable browser, and runs all the scripts on the page. In
the www.nytimes.com example above, it would fetch all of
the Flash and javascript objects and execute them. If those
scripts involve fetching other links, these links would also be
followed.

The dynamic crawler uses different vulnerable browsers
and OS components to trigger possible malicious reactions.
If any attempts to exploit known vulnerabilities are detected,
the site will be flagged as potentially malicious. Since all of
this must happen in an isolation environment, it is orders of
magnitude slower than the static crawler. It is simply infeasible
to comprehensively crawl a significant fraction of the web
using the dynamic crawler. Thus the dynamic crawler must be
reserved for pages that are suspected of being malicious. We
refer to the output of dynamic crawler as the DCTrace. This
contains all logged activity associated with the page load. Thus



it has hostnames and IP addresses of all links followed. An
example is shown in Table I.

As shown in Figure 2, our system takes two inputs: the
DCTraces from the dynamic crawler (DCTrace) and web
content of landing pages from the static crawler (LPages). Here
we focus on the malicious DCTraces that are identified as a
drive-by download by the dynamic crawler.

III. RULE-BASED LANDING PAGE DETECTION

In this section, we present our study on drive-by download
attacks and our system for landing page detection. In the spirit
of SNORT [7], we propose a rule-based detection method
which involves learning a set of rules, in this case the presence
or absence of a set of strings and clusters of strings, that are
used to detect individual MDNs.

The MDN represents the coordinated work of a person or
group attempting to funnel traffic from potentially innocent
landing pages to exploit servers. Thus it is likely that similar
(or the same) content occurs on many of the landing pages.
Given the scale of many MDNs (which contain hundreds or
even thousands of landing pages as shown in Figure 3) it
is likely that the process of injecting malicious content into
compromised pages is done by script, rather than by hand.
Thus, it should be possible to identify previously-unknown
landing pages by searching the static crawl cache for the
malicious content already found on known-bad MDN landing
pages. This can be seen to be the case in Table II and Table
III, where we show strings suspected of being injected content
found on the landing pages associated with several MDNs and
the corresponding domains or URLs.

The basic architecture of our system is shown in Figure
2. We start with an initial set of MDNs. We use Arrow as
described by Zhang et al [8], but our system is agnostic in this
regard: we merely need a collection of MDNs to get started.
From the landing pages of these MDNs we extract strings
which are candidates to be the common content which in many
cases, causes the first redirection. We then cluster those strings
and use multiclass feature selection to identify features that
best represent a particular MDN. We then search in the static
crawl cache for pages that possess those strings. In this way
we are able to discover pages within the static crawl cache
that are, with high likelihood, previously-undetected members
of already-known MDNs. Finally, we submit those pages to
the dynamic crawler to verify if they indeed lead to exploit
servers. We now review these steps in more detail.

A. Initial MDN Discovery

We use Arrow to discover an initial set of MDNs. Here we
only briefly review the Arrow system and refer readers to the
paper [8] for details. Arrow works from a set of exploit servers
to find MDNs. It takes the DCTrace (illustrated by Table I)
from the dynamic crawler, and then groups malicious traces
that lead to the same exploit server into one MDN. This initial
set of malicious DCTraces were detected by the production
dynamic crawler during normal webpage scanning.

MDNs can have complex structures. In general they consist
of a set of landing pages, redirection servers and exploit
servers. However, in order to prevent easy blacklisting, MDNs
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Fig. 2: System Diagram

often use fast-flux techniques whereby they change IP ad-
dresses and hostnames frequently. Rather than use single a
domain name or IP address to denote a server, Arrow develops
a Host-IP-Cluster (HIC) to identify servers in the traces.
Simply put, Host-IP-Cluster is a data structure to represent
a group of hostnames that share a large percentage of IPs.
Details regarding HIC computation can be found in [8]. This
technique adds a level of robustness to Arrow’s ability to
identify MDNs. We use Host-IP-Clusters just as Arrow does.
As shown in Figure 2, we feed the output from the dynamic
crawler (DCTraces) to Arrow and receive the MDNs as output.
The original landing pages produced by Arrow then become
the initial seeds for our system.

B. Extracting Malicious Features from Landing Pages

Having found a collection of MDNs, we now examine the
web content of landing pages within an MDN. The first task
is to detect common, malicious code segments in the landing
pages of the identified MDNs. We do this by examining the
content of these pages in the static crawler cache. From the
content, we extract all of the strings that potentially cause
malicious redirection. HTML elements such as <script>,
<iframe>, <form>, <frame>, <object> or <embed> are
potential sources of redirection. This stage produces many
strings per page, the majority of which will obviously be
innocent. For example, the www.nytimes.com page considered
earlier contained 28 <script> strings (obviously we use this
page as example only, and it is not an MDN landing page).
We consider each string as a potential feature.

After processing a large volume of landing pages, we have
a feature space that contains many times more features (i.e.,
strings) than the number of landing pages. Each landing page,
indexed by its associated MDN, will also have a binary vector
indicating whether it contains a particular string or not. This
vector is very sparse; i.e., most strings appear on only a small
number of the landing pages.

C. String Clustering

In the next section, the feature selection process selects
the most discriminative features (i.e., strings) for particular
MDNs. However, these features can be brittle: some MDNs use



TABLE II: String features suspected of being injected content on known MDN landing pages. Observe that each is a link, and
that some show slight polymorphism. The feature number refers to a string-cluster rather than a string. Note: these features are
merely suspicious, and have not been validated.

Feature ID Feature String

642 <script language=“javascript” type=“text/javascript” src=“http://js.users.51.la/2406109.js”></script>
642 <script language=“javascript” type=“text/javascript” src=“http://js.users.51.la/4456469.js”></script>
642 <script language=“javascript” type=“text/javascript” src=“http://js.users.51.la/627317.js”></script>
442 <iframe src=”http://zlocorp.com/1010/in.cgi?14” width=”100%” height=”1” scrolling=”no” frameborder=”0” ...
442 <iframe src=”http://zlocorp.com/1010/in.cgi?14” width=”100%” height=”2” scrolling=”no” frameborder=”0” ...
442 <iframe src=”http://zlocorp.com/1010/in.cgi?14” width=”100%” height=”7” scrolling=”no” frameborder=”0” ...
2203 <script type=”text/javascript”>/* <![CDATA[ */ bmone2n.makeAd(’14216.1.1.1’); /* ]]> */</script>
2203 <script type=”text/javascript”>/* <![CDATA[ */ bmone2n.makeAd(’14216.1.1.12’); /* ]]> */</script>
2203 <script type=”text/javascript”>/* <![CDATA[ */ bmone2n.makeAd(’14216.1.1.2’); /* ]]> */</script>
2203 <script type=”text/javascript”>/* <![CDATA[ */ bmone2n.makeAd(’14216.1.1.7’); /* ]]> */</script>

TABLE III: Domains or URLs of landing pages which include members of the string cluster features in Table III. Some of these
string clusters, 642, occur on a wide range of domains, others are found within the same top tier domain, 2203, while others are
found on landing pages within the same hostname, 442. All of these were determined to be malicious at some time in the past.

Feature ID URL

642 bzmc.flash-soul.com/html/skill/201103/1292.html
642 www.xn–4pvoj466jvub.net/faq.php
642 kdpiao.cn
642 www.fushi123.cn
642 www.zbzwow.cn/bbs/viewthread.php
642 www.hhhhu.com/info.html
442 fcguy.atspace.name/89.html
442 fcguy.atspace.name/site-12.html
2203 www.akw81.yoyo.pl/art 30.php
2203 www.amalysz.yoyo.pl/l.html
2203 www.iwadala.yoyo.pl/darmowa-wersja-gry-fim-speedway-grand-prix-2-do-pobrania.html
2203 stowarzyszenie-amicus.yoyo.pl

polymorphism that impairs the effectiveness of the feature se-
lection. In certain MDNs, the malicious content varies slightly
from landing page to landing page. For example, in Table
II, the first three strings are almost, but not quite, identical.
Though the injected content is essentially the same code “exact
matching” may be ineffective in the feature selection process.
This polymorphism of the injected content is quite common
and has the effect of expanding the feature space considerably.
As a result, feature selection based on “exact matching” fails
to learn the similar malicious strings employed in one MDN
resulting in a failed detection.

To address this problem, we develop a clustering module
for the extracted strings based on the string similarity. Even
though the polymorphic content is in a different form, the main
body of the code and the code logic remain the same. So for
each entity, we transform each string into a set of trigrams,
and use the Jaccard distance between two strings defined as:

D12 = 1−
Intersection(Set1, Set2)

Union(Set1, Set2)
,

where Setk is the set of trigrams generated from the k-th
string. For example, if one string contains trigrams a, b, c
and d, and a second contains b, d, e, f and g the distance
between them would be 1 − 2/7 ≈ 0.71. This proves a
powerful technique in grouping the variants of polymorphic
injection: minor polymorphic variations end up being close

under this distance measure. This allows us to cluster the sets
of strings into groups. We cluster these trigram sets using
the ISODATA [9] algorithm which does not require a pre-
selected number of clusters.

This technique may reduce the total number of candidate
features from a very large number of strings to a much smaller
number of string clusters. After feature selection, we end up
with a set of rules consisting of string clusters which we refer
as STRING CLUSTER. A string cluster may consist of one
string which can be viewed as a cluster containing a single
item. This feature set will also be used as one type of features
in the classifier-based approach in the following section.

D. Feature Selection

Our task is now a feature selection problem: we seek to se-
lect the strings or string clusters that best represent a particular
MDN but are not indicative of webpages from either legitimate
sites or other MDNs. Recall that landing pages of infected
sites have little in common other than their membership of the
same MDN. Thus, strings that are common, or even similar,
between them are good candidates to have been written by the
MDN owner rather than the owners of the landing pages. That
is, strings that appear on the landing pages of one MDN but
seldom (or never) on those of other MDNs or on benign pages
are good features to characterize this particular MDN. The



strings that do best in distinguishing between MDNs, and more
importantly legitimate pages, emerge in this feature selection
phase.

We use a feature selection algorithm based on the mutual
information [10] between the i-th MDN and the k-th feature.
Define A (resp. C) as the number of landing pages not in
the i-th MDN that do not contain (resp. do contain) the k-
th feature. Define B (resp. D) as the number of landing
pages in the i-th MDN that do not contain (resp. do contain)
the k-th feature. Then a maximum likelihood estimate of the
information provided about membership in the i-th MDN by
the k-th feature is:

R(f) =
D

N
log

2

N ·D

(B̂D)(ĈD)
+

B

N
log

2

N ·B

(ÂB)(B̂D)

+
C

N
log

2

N · C

(ĈD)(ÂC)
+

A

N
log

2

N · A

(ÂB)(ÂC)

where ÂB = (A + B), ÂC = (A + C), B̂D = (B + D),
ĈD = (C +D), and N = A+B + C +D.

Finally, the set of potential features is ranked for each MDN
based on the scores. We select the top 5 ranked features for
each MDN, which best discriminate that particular MDN with
other MDNs and benign webpages under consideration. This
method not only effectively selects malicious code, but also
excludes benign injected code, like normal third-party web
tracking code (e.g.Google Analytics). As normal web tracking
code frequently appears in the benign webpage set, their
ranking in MDNs would be lowered in the feature selection
process.

E. False Positive Pruning

The rule-based approach is very straightforward: we take
the strings and string-clusters found in Sections III-B and III-C,
and then search for pages that contain them in the static
crawler cache. Recall that these strings are common among
the already-found landing pages of a single MDN, and are thus
with high probability injected malicious content. However, it
is possible that landing pages that belong to very different sites
contain common content that is not malicious. This can happen
if both sites are using a template or web-site authoring tool
that produces content in a certain form.

With a view to reducing the possibility of such false
positives we do as follows. We search for each of our candidate
strings in a randomly selected sparse 10% subset of the static
crawler cache. Any string that co-occurs on landing pages as
result of a template or authoring tool should be found many
times in this sparse set. Many of these pages will also have
been scanned by the dynamic crawler. A feature is retained if
60% or more of the pages that contain the feature and have
been previously scanned by the dynamic crawler were also
detected as being malicious. Otherwise, we regard the string
as a benign feature and remove it from the candidate feature
list. This step is used as a sanity check to avoid producing
large numbers of false positives.

F. Rule-Based Experimental Results

We describe the experimental results used to validate our
proposed rule-based method in the following section. We

begin by describing the preprocessing step which identifies
the MDNs determined from a large collection of DCTraces.
Next, the setup and the rule-based system results are analyzed.
Finally the validation results on the dynamic crawler for this
system is provided.

1) PreProcessing: Referring to the system diagram in Fig-
ure 2, we randomly selected 6.0 million malicious DCTraces
that were diagnosed as drive-by download attacks by the
production dynamic crawler. The traces are selected within
a 60-day period ending on two dates, August 25, 2011 and
January 2, 2012. The first 60-day trace ending in August
2011 is used to conduct preliminary experiments with the rule-
based system and also evaluate the classifier-based approach
described in the following section. Here, for brevity, we mainly
describe the details of the January 2, 2012 collection which
serves as our primary DCTrace data set.

We use Arrow to group the DCTraces into MDNs and
use these landing pages in each MDN as the input to the
remainder of our system for evaluation. After filtering out
small MDNs containing no more than 20 distinct DCTraces,
Arrow discovered 53 MDNs with central servers and a total
of 719,089 landing pages. (We choose to study MDNs with a
central server topology because these architectures can be more
complex: the central server sometimes uses fast-flux techniques
to control a collection of exploit servers [8].) Of these we
randomly selected 32,000 landing pages as malicious webpage
samples.

From a separate source we obtain 32,000 pages for our
benign data set. These webpages are known to be legitimate
since they are from reputable websites and have been manually
graded by human analysts. These webpages are a subset of the
those used to train the search engine’s ranker.

Thus, we have 32,000 each of known-good and known-
bad pages for training. We next obtain the webpage content
for these from the static crawler and retain only the strings as
described in Section III-B. We then generate a sparse binary
data set where each row represents a webpage and each column
represents a string found on at least one of the webpages.

The final step for creating this experiment’s data set is
to label each webpage. Each MDN has its own label and
malicious landing pages are labeled based on the MDN it
belongs to. On the other hand, all 32,000 benign pages are
grouped under the same label. Thus our feature dataset has
webpages as rows and features as columns. A column is set to
true if the page in question contains that feature. There is one
additional column, which contains the label to indicate which
group the page belongs to (here group means a particular MDN
or the collection of benign pages).

2) Rule-Based Detection System: The features for the rule-
based system consist of individual strings and clusters of
strings. Selecting a maximum of 5 string or string-cluster fea-
tures per MDN, feature selection yielded 538 total individual
strings from the 53 MDNs.

An example of some of these strings is shown in Table II.
As detailed in Section III-E, we submitted these candidate
features to a 10% sub-sample of the daily crawl results from
the static crawler. This produced over 2.9M URLs, which
might be considered suspicious. We prune the list by discarding
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Fig. 3: Number of landing pages predicted to belong to each
individual MDN as determined by the rule-based system after
false positive pruning. The MDN landing page count varies by
several orders of magnitude with the largest MDN having over
100,000 pages.

features that return less than 60% of detections on pages
marked malicious by the dynamic crawler. This reduces the
candidate feature list to a final set of 128 high-precision
features. This feature list was then submitted to the static
crawler to determine all web pages scanned on January 20,
2012 containing at least one of these features. This final step
produced a list of 289,087 URLs which we suspect to be
landing pages belonging to 24 MDNs. The number of landing
pages per MDN is provided in Figure 3.

3) Validation: The last step is to validate the effectiveness
of the system. To do so, we compare our method to three
systems: the production dynamic crawler, the Nozzle [11]
system, and the Zozzle [12] system. We first submitted a
subset of the discovered URLs to the production dynamic
crawler. The validation results for the rule-based system for
the August 25, 2011 and January 2, 2012 datasets are given
in Table IV. Forced to be parsimonious in our use of the
production dynamic crawler (which is a heavily used resource)
we were able to submit only a portion of our newly detected
URLs. We submitted only 48,189 pages randomly selected
from the August dataset and 88,503 from the January dataset.

The dynamic crawler detected 57.2% of the webpages
as malicious for August 25, 2011. Likewise, 58.1% of the
88,503 evaluated by the dynamic crawler for January 2,
2012 dataset were determined to be malicious. This indicates
that the proposed system has very high precision, given that
malicious webpages on the internet constitute a very small
fraction of the whole and random sampling is not viable.
In fact, in a production environment, a automated detection
system is regarded as actionable if 1% of the pages that are
predicted to be malicious are confirmed. Unfortunately we
cannot analyze the system’s recall since it is impossible to
know how many false negatives there are. Using the dynamic
crawler to scan this web-scale dataset is prohibitive for us
due to the computational costs. While 58.1% were verified
malicious only 42.6% had not previously been discovered. At

this rate, the expected number of new landing pages for these
MDNs is 289, 087× 0.426 = 123, 071. Thus, since we started
with 719, 089 landing pages we have expanded the verified
footprint of the MDNs by 100× 123/719 ≈ 17.1%. It’s also
worth noting that the detection rates remained consistent over
a period of five months.

In addition, we also evaluated these same webpages using
the Nozzle and Zozzle systems. Nozzle detects heap sprays in
the malicious code in runtime, while Zozzle is a classification
system to detect malicious javascript. Table IV shows that
Nozzle did not find any of the webpages identified by our
method while Zozzle detected four for the first dataset and
350 for the second. We make several observations from these
results. First, the rule-based detection system does a very good
job of identifying malicious webpages; our system provided
webpages that were almost 60% malicious. Furthermore, the
detection system is essentially orthogonal to the Nozzle and
Zozzle systems. That is, our system is complementary to their
method of discovery.

IV. CLASSIFIER-BASED MDN DETECTION

The rule-based method for detecting MDN landing pages
exhibited high precision as indicated in Table IV: over 57% of
pages the system deemed suspicious turned out to be hosting a
drive-by download attack. We now explore a second, classifier-
based landing page detection method and examine whether it
can produce a better result.

A. Classifier Features and Regular Expression Generation

The classifier borrows much from the rule-based system,
including the preprocessing step (identifying the MDNs from
DCTraces, described in Section III-F1) and the string cluster
features (Section III-C). A departure from the rule-based
method is that we also investigate two additional types of
features: individual string features in isolation, and regular
expression features.

The regular expression generator is based on the algorithm
proposed in [13] which demonstrated considerable efficacy in
accurately capturing spam URLs. With a set of strings as input,
it generates one or more regular expressions that match the
strings in the set. This may be able to capture more generic
forms of features than the string cluster features. The three
types of features are labeled as STRING MATCH, STRING

CLUSTER and REGEX CLUSTER in the evaluation figures.

B. Classifier Training

We use the 60-day DCTraces ending on August 25, 2011 to
train the classifiers and understand the performance of different
feature sets. After the MDN labeling and feature selection
steps, we next construct labeled, sparse binary datasets for
each of the three feature sets. Rows represent webpages and
columns represent features. Each dataset consists of 64,000
rows half of which are constructed from pages belonging to
our benign webpage collection and the other half from landing
pages of known MDNs. An element in the dataset is set to true
if the webpage associated with the row contains the feature
associated with the column (i.e., contains the string, an element
of the string cluster, or matches the regular expression).



TABLE IV: Dynamic Crawler Evaluation.

DC Trace Data Total URLs Proposed Pages Detected By Malicious Webpage Nozzle Zozzle
End Date Scanned Method Proposed Method Detection Rate (%)

Aug 25, 2011 48,189 Rule-Based 27,563 57.2 0 4

Jan 2, 2012 88,503 Rule-Based 51,567 58.3 0 350

Jan 2, 2012 110,982 Classifier-Based 1,363 1.2 0 0
Highest Probability

Jan 2, 2012 102,919 Classifier-Based 1,617 1.6 0 2
Random Sampling
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Fig. 4: Detection error tradeoff curves for the three proposed
feature sets for dynamic trace data over 60 days ending August
25, 2011.

We train separate classifiers for each feature set using
multi-class logistic regression [14]. Each MDN is considered
one class, and all of the benign pages are considered as
belonging to a single class. Once training is complete, an
unknown webpage is evaluated by calculating its feature vector
and predicting which class (i.e., particular MDN or the benign
set) it is most likely to belong.

C. Classifier Performance Evaluation

Figure 4 provides the 5-fold cross validation, Detection Er-
ror Trade-Off (DET) curves for the STRING MATCH, STRING

CLUSTER and REGEX CLUSTER classifiers. The low false
positive region of these curves is highlighted in Figure 5. These
curves demonstrate that the three algorithms are comparable,
with STRING MATCH algorithm offering a minor improve-
ment.

The shape of the DET curves requires further investigation.
Figure 6 provides the histogram of the STRING CLUSTER

classifier’s score, s(xi), which is the log odds that landing
page i is malicious. The log odds is computed as s(xi) =
log(P (yi = Malicious|xi)/P (yi = Benign|xi)) where yi
and xi are the label and the feature vector determined by the set
of strings extracted from the i-th webpage, respectively. Bars in
dark color in Figure 6 represent samples from benign webpages
while malicious pages are indicated by the white bars. We
first observe a nice separation between the distributions of the
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Fig. 5: A zoomed-in view of the detection error tradeoff curves
in Figure 4 for a maximum false positive rate of 1% .

malicious and benign pages. We also note five false positives in
this particular fold of the classifier training. The false positive
rate increases in the DET curves as we sweep a threshold from
right to left in the log odds histogram.

The distribution of the STRING CLUSTER classifier prob-
abilities for a random sample of one million URLs is shown
in Figure 7. Noting the log scale, this figure indicates many
distinct, and potentially large, sets of URLs which include one
or more of the string cluster features. This distribution indicates
that in many cases, the classifier will either identify a large
number of truly malicious webpages, or an extremely large
number of false positives.

D. Classifier Validation

We also evaluate the results of the STRING CLUSTER

classification system. To be parsimonious in our use of the pro-
duction dynamic crawler we submit only the URLs produced
by the STRING CLUSTER system, since there is little difference
between STRING CLUSTER and the STRING MATCH approach,
and both outperform REGEX CLUSTER.

The validation results for the classifier-based system for
the January 2012 dataset are given in Table IV. We evaluated
this method in two ways, namely Highest Probability and
Random Sampling. For the Highest Probability experiment,
we selected URLs which were predicted to be malicious by
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Fig. 6: String cluster classifier score (i.e. log odds) for the for
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Fig. 7: Histogram of string cluster classifier probabilities for a
subsample of one million URLs. Distinct sets of features may
be included in an extremely large number of webpages.

the classifier with the highest probability. Similarly for the
Random Sampling experiment, we chose URLs at random.

From the table, we make several observations. First, the
classifier-based method detects a much lower percentage of
URLs than the rule-based system. Second, the detection rate
for the Highest Probability and Random Sampling methods
are roughly comparable. Third, the classifier performs nowhere
near as well as Figure 4 might lead us to hope. That is, Figure
4 suggests that a false negative rate of less than 20% can be
achieved with essentially no false positives. In practice, Table
IV shows a false positive rate of 98.4%: the classifier fails
to deliver the performance that it displayed on the test set in
training. We explore some of the reasons for this failure in
Section V.

Finally, in the following experiment, we seek to understand

whether the classifier-based approach can detect the same
sets of URLs that are detected by the rule based approach.
To do so, we compute the overlap of the rule-based system
compared to the classifier-based system with High Probability

URL selection, ÔRB,HP :

ÔRB,HP =
| RBD ∩HPD |

| HPD |
= 70.5% (1)

where RBD is the set of detected URLs from the rule-based
method and HPD is the set of detected URLs from the high
probability classifier method. By detected, we mean the set
of URLs predicted to be malicious by a method and later
confirmed by the dynamic crawler. Similarly, the overlap of the
rule-based system with respect to the classifier-based system

with Random Sampling URL selection is ÔRB,RS = 23.1%.
From these estimates, we note the rule-based method tends to
select landing pages which are predicted by the classifier to
have a higher probability of being malicious. We also confirm
that the classifier-based approach only detects a subset of the
URLs detected by rule-based approach.

V. DISCUSSIONS

In the previous two sections, we proposed systems to
detect MDN landing pages utilizing either rules or a classifier.
The results from Table IV clearly indicate that the rule-based
system outperforms the classifier in terms of validation rate.
This improvement is primarily due to the inclusion of the false
positive pruning stage. As shown in Figure 7, the classifier
predicts that some pages are more likely to be malicious than
others. At the start of the study, we expected that this would
allow us to select an operating threshold for the classifier to
automatically detect malicious webpages while avoiding false
positive pruning. However, the results from Table IV failed to
support this hypothesis. As confirmed by the dynamic crawler,
the false positive rates for the classifier are significantly
higher than expected given the DET results obtained during
training for both the high probability and random sampling
experiments.

One possible reason for the high false positives of the
classifiers is that our training data set, especially benign set,
has limited coverage. For example, we discovered that some
of the false positives produced by the classifier were caused
by a string related to accessing an analytics service from
the Russian search engine Yandex. Upon further investigation,
we confirmed that none of the content from our legitimate
webpages accessed this service, but several of the MDNs using
Russian URLs (i.e., .ru) did. This implies that if we include a
more comprehensive benign set (some of which may use this
analytic service), we can effectively reduce the false positives
of the classifiers.

A possible usage case for the second classifier-based strat-
egy is to rank the detected webpages so that more malicious
webpages can be verified first. At the present time, we cannot
use the dynamic crawler to scan all possible URLs detected
by our detector. However, one could consider verifying a
more targeted subset of URLs with a production dynamic
crawler. Instead of validating a random URL sample or a
sample corresponding to the highest classifier probabilities,
one could instead sample a fixed number of URLs (e.g. 100)
which include one or more of the features identified during



feature selection and validate individual features based on the
percentage of landing pages confirmed to be malicious. This
is similar to the proposed false positive pruning strategy, but
instead of considering only URLs which have been scanned
by the dynamic crawler in the past, we verify all possible
injected strings. In this way, the method could consider new
string cluster features which have not been found on previously
detected webpages.

There are several cases where attackers could evade or
abuse the detection system. For example, in the false positive
pruning stage of rule-based detection, a feature is retained
if 60% or more of the pages containing the feature were
previously scanned by the dynamic crawler and detected as
malicious. Hypothetically, attackers can abuse the pruning
stage by including this feature in 41% of the landing pages
which do not launch an attack. However, we argue that this
is unlikely to happen in practice considering the overhead
and difficulty of injecting malicious code in legitimate landing
pages. Giving up 41% of injected landing pages is a big loss
for attackers.

In addition, polymorphic and obfuscated injection is an-
other challenge for our system. Today, attackers tend to hide
the real purpose of the injected code by making it unreadable.
There are limitless ways to obfuscate a piece of code to give
it a totally different and unreadable appearance. Our scheme
works against content that is either obfuscated or polymorphic,
but not both. In an extreme case where the attacker obfuscated
the code in different ways on every single landing page in the
MDN, the feature selection algorithm will fail to recognize
these malicious strings.

Our system works together with both the dynamic and
static crawlers. There are several common challenges that
crawlers have that may affect our system. First, the dynamic
crawler exposes vulnerable components to webpages and de-
tect malicious responses. Thus it is possible that the dynamic
crawler may fail to detect some of the attacks due to a limited
configuration of vulnerable components. In addition, cloaking
is concern for both the static and dynamic crawlers. Attackers
can identify the crawler (e.g., by knowing the IP addresses
from which it operates or detecting the presence of the virtual
machine), and evade detection by not attempting to exploit a
vulnerability or returning legitimate content.

Finally, our system is limited in the fact that it requires
an initial set of MDNs. Thus our system can be considered
supplemental to other detection techniques rather than a stand-
alone system.

VI. RELATED WORK

To defend against drive-by download attacks, a number
of systems have been proposed from both the research and
industrial communities. These systems use different strategies
to detect drive-by downloads, including classifying malicious
URLs or web content, actively exploiting web servers with
client-side honeypot, identifying attacks from a single instance
or correlating multiple landing pages within a campaign. We
categorize these systems and techniques from the following
perspectives.

First, most systems start from landing pages: they visit
the malicious websites, execute the embedded script, and

traverses the secondary URLs while monitoring suspicious
state changes of the operating system in order to detect drive-
by downloads. For example, systems like [15], [16], [17], [18]
will dynamically execute the web content and capture drive-
by downloads based on either signatures or anomaly detection.
PhoneyC [19] and WebPatrol [20] use a signature-based, low-
interaction honeypot to detect rogue websites. In addition,
Nozzle [11] is a runtime monitoring infrastructure which
detects malicious heap spray attempts, while JSAND [21] takes
a machine learning approach to classify malicious javascript.
Rozzle [22] is another javascript virtual machine. It explores
multiple execution paths within a single execution in order
to expand the possibility of triggering the malicious scripts.
Finally, Blade [23] leverages user behavior models for drive-
by download detection. All of these systems have shown good
detection results. However, it is usually costly to follow the full
redirection path and monitor each script execution in runtime.
Moreover, their accuracy is highly dependent on the webpage’s
malicious response to vulnerable components.

Some systems work in the reverse direction: they start with
servers hosting malicious exploits and reverse the redirection
path to discover the corresponding landing pages. Leveraging
the drive-by download traces contributed by dynamic crawlers
or public anti-virus databases, these systems could discover
the campaign-like malware distribution networks (MDNs) [4].
Existing systems [8], [24] fall into this category. WebCop [24]
uses static hyperlinks to build a web graph of malware
distribution networks. The limitations of WebCop are the
static web graph and exact match approach, which are less
resilient to dynamic changes of the web. Arrow [8] detects and
generates URL signatures for the central server in complex
MDNs in order to detect more landing pages sharing these
central servers. In this paper, we also follow this approach
in discovering MDNs. Unlike [8], [24], we leverage both the
static and dynamic crawlers and focus on the malicious code
in the landing page content instead of URLs. Arrow can only
find additional webpages which have previously scanned, but
undetected, by the dynamic crawler.

In addition, static analysis is a technique adopted by many
existing systems [12], [25], [26] to detect malicious webpages.
Most of these systems explore multiple features from malicious
javascript code: for example, Zozzle [12] focuses on the
contextual features in javascript code to detect heap spraying.
Systems like Prophiler [25] consider both javascript features
and additional features extracted from the HTML content and
URLs of malicious pages. A recent system EvilSeed [26]
generates gadgets by analyzing the page content, DNS traces
and link topology of known malicious pages, and then uses the
gadgets to discover similar pages. Unlike the dynamic analysis
of the honeypot approach, the mentioned static analysis is more
light-weight and less time-consuming. Our work differs from
existing work in this detection scope and considered features:
previous systems are generic detectors for generally malicious
content in webpages, while our system precisely targets the
landing page features of specific MDNs.

Finally, SURF [27] and deSEO [28] study the malware
distribution campaigns from the perspective of blackhat Search
Engine Optimization (SEO). In a typical drive-by download
attack, one important function of landing pages is to drive
traffic to the exploit servers. Attackers have been trying differ-



ent SEO techniques to rank malicious landing pages high in
the search results for popular queries. SURF uses the features
extracted from the search-then-visit browsing sessions to detect
malicious redirections from the search results. It can work as a
scanner in the dynamic crawler. deSEO, on the other hand, is
a signature-based detector using the patterns of the malicious
URLs in the search results. In our approach, we use URLs
in the redirection paths to discover large malware distribution
networks, but our detector focuses more on the malicious code
in the web content.

VII. CONCLUSIONS

In this paper, we analyze landing pages belonging to
malware distribution networks (MDNs) which lead to drive-
by download attacks. Using a large set of drive-by download
traces from a production dynamic crawler, we show that
landing pages within the same MDN have a certain level of
similarity in their malicious content that causes redirection.
With the aid of multiclass feature selection, we are able
to identify the MDN-specific features that best discriminate
landing pages of one MDN with those of other MDNs and
benign webpages.

We propose and implement two new solutions to efficiently
detect malicious landing pages. The first, rule-based system,
which is based on matching clusters of strings, exhibits high
precision in identifying malicious injected code in the land-
ing pages within the MDN. This system produces a list of
URLs out of which over 57% are independently validated as
malicious by a production dynamic crawler. This success rate
remains constant in two large trials spaced five months apart.
This extends the known footprint of the MDNs studied by
17%.

The second system, which implements a classifier, also
produces set of URLs of which approximately 1% are inde-
pendently confirmed to be malicious. Compared to the rule-
based method, we conclude that the classifier offers little utility
in this setting without using a far greater training set. We
include the results of the classifier system in the paper for
completeness.
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