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Chapter 1

INTRODUCTION

The study of elliptic curves has historically been a subject of almost purely math-

ematical interest. However, Koblitz and Miller independently showed that elliptic

curves can be used to implement cryptographic primitives [13], [17]. This thrust el-

liptic curves from the abstract realm of pure mathematics to the preeminently applied

world of communications security. Public key cryptography in general advanced the

development of the Internet and was in turn further advanced by this new use. El-

liptic curve cryptography (ECC) was also developed and advanced along with the

general field of public key cryptography.

Elliptic curves provide benefits over the groups previously proposed for use in

cryptography. Unlike finite fields, elliptic curves do not have a ring structure (the two

related group operations of addition and multiplication), and hence are not vulnerable

to index calculus like attacks [12]. The direct effect of this is that using elliptic curves

over smaller finite fields yields the same security as using discrete log or factoring

based public key crypto systems of Diffie-Hellman and RSA with larger moduli. This

makes ECC ideally suited to small embedded and low power devices such as cell

phones. So it is unsurprising that as these type of small devices have increased in

popularity in recent years, ECC has as well.

As elliptic curves are now used in cryptography, the computational aspects of

them have real world applications. The underlying theory is very deep and touches

on many different branches of mathematics. Elliptic curves have a very rich math-

ematical structure and the subject of ECC is about determining how to best apply

and efficiently compute with this deep structure.
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The maps defined on any mathematical object are a key part of the underlying

structure. In the case of elliptic curves, the principal maps of interest are the isogenies.

An isogeny is a non-constant function, defined on an elliptic curve, that takes values on

another elliptic curve and preserves point addition. In short, isogenies are functions

that preserve the elliptic curve structure. As such, they are a powerful tool for

studying elliptic curves and similar to elliptic curves admit a deep underlying theory

that is interesting from many different perspectives such as complex analysis, algebra,

number theory, and algebraic geometry.

In addition to providing an abstract tool for the study of elliptic curves, isogenies

are concrete mathematical objects that can be written down and used for computa-

tions. Vélu’s formulas [22] initially provided an algorithm to compute the codomain

and rational maps given the domain and kernel of an isogeny. This work has been

greatly expanded upon and improved by subsequent authors [16], [2]. Furthermore,

the problem of computing an isogeny given the domain and codomain is also well

understood.

With the advent of elliptic curve cryptography, isogenies have found an application

in cryptology as well. These applications provide motivation for a more widespread

audience to understand and use them. Here we provide a brief list of these uses and

their relevance to the greater field.

The first application of isogenies to cryptography was as a tool in the Schoof-

Elkies-Atkins (SEA) algorithm for counting the number of points on elliptic curves

over finite fields [1]. Originally Schoof had provided an algorithm that, when given a

curve E defined over some finite field Fq, would return the number of points in the

group of points on E defined over Fq. Schoof’s original algorithm was polynomial

time, but if n is the number of bits in q then by using straight forward arithmetic has

a complexity of O(n5+ε). The SEA improvement results in a complexity of O(n4+ε)

which is significant at such degrees. This improvement fundamentally uses isogenies.

More recently, isogenies have been used as a tool to analyze the computational
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difficulty of the elliptic curve discrete log problem (ECDLP) [9]. Specifically, the

paper shows that isogenies can be used to create a randomized algorithm that will

reduce the ECDLP from one set of curves to a significantly larger set of curves in

polynomial time. The authors argue that this provides complexity theoretic evidence

that the difficulty of discrete logs on all curves of the same order is the same.

Isogenies have also been proposed as a tool in constructing random number gen-

erators and hash functions [6]. In particular, isogenies can be used as a one way

function that can be used in these cryptographic primitives. The nice mathemat-

ical properties lend themselves to a rigorous analysis of the security properties. In

turn, these hash functions and random number generators can be considered provably

secure with respect to some hardness assumptions.

Before the introduction of elliptic curves to cryptography, few people in the field

of computer security would be worried about the most efficient way to implement

elliptic curve arithmetic. However, this is now a deep and popular area of research.

As isogenies are a tool used in cryptography there is a need for the field to be more

accessible to people without a deep mathematical background.

This document includes an introduction to the basic theory of isogenies of elliptic

curves, viewing them as a generalization of the multiplication by m map. This is pre-

sented in a fashion that only presupposes a familiarity of elliptic curves and abstract

algebra at the level one would need to be comfortable with the subject of elliptic curve

cryptography. After an introduction to the basic theory, there are several algorithms

for computational aspects of isogenies. These algorithms focus on how to represent

isogenies, and how to deduce one representation from another. For example, one such

method is to determine the codomain and coordinate maps of an isogeny from the

kernel. Another method determines the kernel and rational maps from the domain

and codomain. The algorithms are presented with proofs of correctness, as well as

analyses of the computational complexity.
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Chapter 2

BASIC THEORY

Throughout this section, unless otherwise noted, we will use the following notation:

K - A field.

K - A fixed algebraic closure of K.

E - A fixed elliptic curve given by the Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients in K.

E(K), E(K) - The set of pairs (x, y) satisfying the Weierstrass equation of E where

x and y are taken in K or K respectively.

ϕ - An isogeny (to be defined later) from E to another elliptic curve E ′.

Also, in this exposition, we have tried to give and prove the most general results.

For ease of reading and understanding, most textbook presentations such as Silverman

[20] and Washington [23] both tend to assume that the curve E is in short Weierstrass

form, and assume that the characteristic of K is not 2 or 3. Whenever possible we

have favored results that work for a curve in general Weierstrass form, and try to

avoid making conditions on the characteristic of K as much as is reasonable. For the

most part, this does not significantly affect the proofs or reasoning, aside from adding

technical details, that admittedly makes them a little bit more messy. However, the

results for curves in short Weierstrass form, as well as the characteristic 2, or 3 case,

follow immediately from the general results. Also, the hope is that for a reader who
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is not as familiar with the techniques being used, can consult these proofs if they do

not see how to generalize the results in the canonical introductory texts.

2.1 The Multiplication By m Map

We are interested in studying maps that preserve both the group structure, and

the structure of an elliptic curve as an algebraic variety. It is instructive to see if

there are any such maps immediately at our disposal. Indeed, one such map is the

multiplication by m map, This map is the usual map computed by adding a point

to itself m-times, and is very familiar in elliptic curve cryptography, as it is the

principal operation in ECDH and ECDSA [23]. It is clear that this map preserves

point addition, and it maps the curve E to itself. As this map satisfies the properties

we are interested in, we shall now investigate it in some detail.

Recall that the elliptic curve E group operation “point addition” ([20] section III.2)

is such that for points P = (xP , yP ) and Q = (xQ, yQ) on E the sum is given by the

formulas:

(xP+Q, yP+Q) = (xP , yP ) + (xQ, yQ).

The formulas for xP+Q and yP+Q are

xP+Q = λ2 + a1λ− a2 − xP − xQ

and

yP+Q = −(λ+ a1)xP+Q − ν − a3

where λ and ν are given as follows. If xP 6= xQ then

λ =
yp − yQ
xP − xQ

and ν =
yQxP − yPxQ
xP − xQ

,

and otherwise when xP = xQ then

λ =
3x2

P + 2a2xP + a4 − a1yP
2yP + a1xP + a3

and ν =
−x3

P + a4xP + 2a6 − a3yP
2yP + a1xP + a3

.
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Furthermore if P = (x, y) then

−P = (x,−y − a1x− a3).

Immediately, this gives the duplication formula:

x2P =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

, (2.1)

where b2, b4, b6 and b8 are the b-invariants given in [20] section III.1. This formula

can be substituted in to derive a similar formula for y2P.

So this gives a nice rational map for multiplication by 2 on a curve E. Thus using a

“double-and-add” approach with this formula and the addition formulas, If P = (x, y)

denotes a non-infinite point on E, then there are rational maps for the coordinates

of mP. The rest of this section is devoted to generalizing the duplication formula to

give clear formulas for multiplication by m.

First note that if a point P on E is a two torsion point, meaning 2P is the point

at infinity, denoted here as ∞, then P = −P . So

yP = −yP − a1xP − a3

therefore

2yP + a1xP + a3 = 0. (2.2)

So any two torsion points on E must satisfy this equation. However, we also have

the fact that if P is a two torsion point then the duplication formula for x2P must

go to infinity (because the x-coordinate function on E has a pole at infinity.) This

implies that the denominator of the rational map in (2.1) evaluates to 0. Therefore

if P = (x, y) is a two torsion point then

4x3 + b2x
2 + 2b4x+ b6 = 0. (2.3)

Which can be seen quite precisely, when working in characteristic not equal to 2 and

replacing y by 1
2
(y − a1 x − a3) in the Weierstrass equation for E and solving for
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y2 gives

y2 = 4x3 + b2x
2 + 2b4x+ b6

and the points with y = 0 in this new equation are the points satisfying equation

(2.3) on E. Thus the values satisfying (2.3) are x coordinates of a two torsion point

on E. Herein, we refer to the polynomial in equation (2.2) as the bivariate two tor-

sion polynomial, and the polynomial in equation (2.3) as the univariate two torsion

polynomial.

For the rest of the discussion of the multiplication by m map, to simplify the

presentation we diverge from the general approach and restrict our attention to the

case of characteristic not 2 or 3. So we can assume that our curves are in short

Weierstrass form:

y2 = x3 + Ax+B.

The treatment in this section follows [20] exercise 3.7 and [23] section 3.2. The reader

interested in the values for the general case can see [1] section III.4.

Immediately from the assumption that the curves are in short Weierstrass form

we get a1 = a3 = 0, this gives that the bivariate two torsion polynomial is 2y.

Definition 2.1.1. The torsion polynomials are polynomials in Z[A,B, x, y, (2y)−1].

The first four are defined explicitly as

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx− A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3)

the subsequent polynomials are defined inductively as

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 (m ≥ 2)

ψ2m = (2y)−1ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) (m ≥ 3)
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Remark 2.1.2. Some authors prefer the term division polynomial to torsion polyno-

mial, however herein they mean exactly the same thing.

Remark 2.1.3. The torsion polynomials ψ3 and ψ4 are found by looking for the poly-

nomials that evaluate to 0, when P = (x, y) is a 3 or 4 torsion point, similar to the

approach for finding the 2-torsion polynomial.

It is somewhat awkward to have the torsion polynomials be defined over some

fraction involving the variable y in the denominator. However, it turns out that we

can take the torsion polynomials to be in a less awkwardly defined polynomial ring.

Lemma 2.1.4. For all positive integers m the division polynomial ψm is contained

in the polynomial ring Z[A,B, x, y].

Proof. Just by looking at the formulas, we can see that the confusion only comes in on

the definition of ψ2m as that is the only definition that includes the denominator 2y.

We prove this lemma by arguing that not only is ψ2m a polynomial, it is evenly

divisible by 2y. Clearly this holds when m is 1 and 2. For m greater than 3 assume

that the hypothesis holds for n up to (but not including) 2m Now suppose that m,

then m − 2, m, and m + 2 are divisible by 2y, factoring these out of the recurrence

shows that the denominator cancels one and the resulting expression is a polynomial

still evenly divisible by 2y. In the case that m is odd then m − 1 and m + 1 are

even, so by the induction hypothesis ψm−1 and ψm+1 are polynomials divisible by 2y.

Thus substituting this into the recurrence relation shows that the numerator is divis-

ible by (2y)2. The denominator cancels out one factor of 2y leaving the result as a

polynomial that is divisible by 2y.

Finally given the torsion polynomials we define the polynomials

φm = xψ2
m − ψm+1ψm−1

ωm = ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1.
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These polynomials arise in the multiplication by m map that we are trying to derive.

Next we make and prove some statements about the form of these polynomials.

Lemma 2.1.5. When m is odd ψm, φm and y−1ωm are polynomials in Z[A,B, x, y2].

When m is even ((2y)−1ψm, φm, and ωm are polynomials in Z[A,B, x, y2].

Proof. For simplicity, in this proof, we will let R be Z[A,B, x, y2]. We will prove the

cases of ψm, φm and ωm separately.

First we show this is true for ψm. For m ≤ 4, this can be seen by observation of the

given formulas. Next we assume that the properties hold for m < 2n, where 2 < n,

so that n + 2 < 2n. Hence the inductive hypothesis holds for all of the formulas in

the recurrence relation. In the case that n is even then n − 2 and n + 2 are even as

well, then (2y)−1ψi is a polynomial in R for i = n − 2, n, n + 2. Also, n − 1, n + 1

are odd so ψn+1 and ψn−1 are in R. Hence plugging these values into the recurrence

relation shows that (2y)−1ψ2n is in R. In the case that n is odd, then (2y)−1ψn−1 and

(2y)−1ψm+1 are in R as m − 1 and m + 1 are even. And m + 2, m, and m − 2 are

odd so ψm+2, ψm and ψm−2 are in R. Thus plugging into the recurrence relation gives

that (2y)−1ψ2m is in R.

Now we show that the lemma holds for ψ2m+1. We assume that the properties

hold for m < 2n, where 2 ≤ n, so that n + 2 < 2n + 1. If n is even then ψn+2 and

ψn are in 2yR so ψn+2ψ
3
n is in (2y)4R which is contained in R (by replacing y2 by

x3 + Ax + B). Also, n − 1 and n + 1 are odd so that ψn−1ψ
3
n+1 are in R, hence

ψ2n+1 is in R, by the recurrence relation. The case for n odd is exactly symmetric

(the even and odd values are reversed) and it follows that ψ2m+1 is in R.

Next we examine φm. If m is even then ψm is in 2yR and hence ψ2
m is in (2y)2R

which is contained in R. Furthermore, m− 1 and m+ 1 are odd, so ψm−1 and ψm+1

are in R. Thus φm is in R. If m is odd, then ψm is in R and ψm−1ψm+1 are in (2y)2R

hence in Z[A,B, x, y2]. So φm is in R.

Finally, we show that the properties hold for ωm. If m is odd then so are m + 2
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and m− 2, so that ψm+2 and ψm−2 are in R. Also, m+ 1 and m− 1 are even so that

ψm+1 and ψm−1 are in 2yR so ψ2
m+1 and ψ2

m−1 are in (2y)2R. Thus by the definition

of ωn it is in R. If m is even then (2y)−1ψm+2 and (2y)−1ψm−2 are in R and ψm−1

and ψm+1 are in R as well. Hence

2ωm = (2y)−1ψm+2ψ
2
m−1 − (2y)−1ψm−2ψ

2
m+1 (2.4)

is in R. Now we prove the following by induction: When m is odd

ψm ≡
(
x2 + A

)(m2−1)/4
mod 2 (2.5)

and when m is even

(2y)−1ψm ≡ (m/2)
(
x2 + A

)(m2−4)/4
mod 2. (2.6)

We induct on m and divide into the cases of congruence modulo 4 separately. For

m = 1 equation (2.5) holds. Now suppose the lemma holds for all values less than

4n+ 1 then for m = 4n+ 1 calculating out by the recurrence relation gives

ψ4n+1 ≡ (x2 + A)(m2−1)/4 mod 2.

For m = 2 equation (2.6) holds. Now suppose the lemma holds for all values less than

4n+ 2 then for m = 4n+ 2 calculating out the recurrence relation gives

(2y)−1ψ4n+2 ≡ (m/2)(x2 + A)(m2−1)/4 mod 2.

The cases for m congruent to 3 and 4 are completely analogous to these two cases.

Thus substituting equations (2.5) and (2.6) into equation (2.4) shows that the right

hand side is divisible by 2, and hence ωm is in R.

Remark 2.1.6. In the polynomial ring Z[A,B, x, y2] we can replace y2 by x3 + Ax + B,

and thus take this ring to be Z[A,B, x].

Lemma 2.1.7. The highest degree term of φm(x) is xm
2

and the highest degree term

of ψ2
m(x) is m2x(m2−1).
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Proof. First we prove that

ψm(x) =

 y
(
mx(m2−4)/2 + · · ·

)
m even

mx(m2−1)/2 + · · · m odd
(2.7)

by induction. We can immediately see that this holds for m ≤ 4.

Suppose m = 2n, and assume that this formula holds up to 2n. we look at the

case of n even and odd separately. Suppose that equation (2.7) holds for all m′ < 2n.

In the case that n is even, then using the induction hypothesis we get that

ψn+2ψ
2
n = y

(
(n− 1)2(n+ 1)x3n2/2 + · · ·

)
and

ψn−2ψ
2
n+1 = y

(
(n− 2)(n+ 1)2x3n2/2 · · ·

)
so subtracting gives a leading term of 2x3n2/2 (of the univariate in x factor.) Also,

the induction hypothesis gives

ψn = y
(
x(n2−4)/2 + · · ·

)
.

plugging all this into the recurrence verifies that ψ2n satisfies equation (2.7). In the

case that n is odd, then using the induction hypothesis gives that the leading terms

are

ψn+2ψ
2
n = y

(
(n− 1)2(n+ 1)x(3n2−3)/2 + · · ·

)
and

ψn−2ψ
2
n+1 = y

(
(n− 2)(n+ 1)2x(3n2−3)/2 · · ·

)
Also, the induction hypothesis gives

ψn = nx(n2−1)/2 + · · · .

So combining this all via the recurrence relation gives that ψm satisfies the hypothesis.
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Now for the case m = 2n+ 1, and assume that the formula holds up to 2n+ 1. In

either case, n even or odd, then (after replacing y2 by x3 + Ax + B) the expansions

are

ψn+1ψ
3
n = (n+ 2)n3x((2n+1)2−1)/2 + · · ·

and

ψn−1ψ
3
n+1 = (n− 1)(n+ 1)3x((2n+1)2−1)/2 + · · ·

subtracting and plugging into the recurrence relation gives that the expansion is

ψ2n+1 = (2n+ 1)x((2n+1)2−1)/2 + · · · .

as desired.

Squaring equation (2.7) (and replacing y2 by x3 + Ax + B) gives the desired

equality for ψ2
m.

Now it is a simple matter to show that φm satisfies the statement of the lemma.

Using the identity for ψm gives that the leading term of ψm+1ψm−1 is (m2 − 1)xm
2
.

Also the leading term of xψ2
m is m2xm

2
. Using this in the definition of φm gives that

the leading term is xm
2

as desired.

Now that we have thoroughly examined the form of these polynomials, we can

give the rational equation for the multiplication by m map.

Theorem 2.1.8. If [m] denotes the multiplication by m map on E, then if the charac-

teristic of K does not divide m then the map is given by rational functions satisfying:

[m](x, y) =

(
φm(x)

ψ2
m(x)

,
ωm(x, y)

ψ3
m(x, y)

)
.

Proof. We can take the x coordinate map to be univariate in x by lemma 2.1.7.

We do not present a full proof here in an effort to remain brief. However, there

are two ways to prove that this formula is correct. This follows from induction on

m and substituting into the addition formula. This approach is very concrete and

computational but intricate ([1] III.4.) Alternately, there is an analytic proof that

can be found in [23] section 9.5 or [14] section II.1.
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Now that we have defined the multiplication by m map, we can look at the m-

torsion of E, that is the set of points on E with order m.

Definition 2.1.9. The m-torsion subgroup of E is the set of all points in E(K) with

order m, and is denoted E[m]. Then a point P is in E[m] if and only if mP is the

point at infinity.

The following theorem justifies the name of the torsion polynomials.

Corollary 2.1.10. Suppose that the characteristic of K does not divide m. A point

P = (x, y) on E is a root of ψm if and only if P is an m torsion point.

Proof. By theorem 2.1.8 the x coordinate of mP is given by the map φm(x)
ψ2

m(x)
. If P is

an m torsion point then the function φm/ψ
2
m has a pole at P . This implies that the

denominator ψ2
m(P ) is 0, and thus so is ψm(P ). To show the other direction note that if

ψm(P ) is not 0, then φm(P )/ψ2
m(P ) is a value in K corresponding to the x-coordinate

of mP . Thus mP is not the point at infinity, so P is not an m torsion.

Using this corollary, we can determine the degree of the numerator and denomi-

nator of the x-coordinate map of [m].

Lemma 2.1.11. Suppose that the characteristic of K does not divide m. Then the

polynomials φm(x) and ψ2
m(x) have no roots in common.

Proof. By definition ψm = xψ2
m − ψm+1ψm−1. Thus if x is a common root of φm

and ψ2
m, then x is a root of ψm+1ψm−1. So reinterpreting this polynomials as functions

on E implies that there is some P in E(K) such that φm(P ) and ψm(P ) are both 0

and P is also a root of ψm+1 or ψm−1. And by corollary 2.1.10 this implies that P is

an m-torsion, and also an m+ 1 or m− 1 torsion point. And this implies that either

gcd(m − 1,m) or gcd(m,m + 1) is greater than 1. This is a contradiction, thus φm

and ψ2
m must be relatively prime.
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Lemma 2.1.12. Suppose that the characteristic of K does not divide m. Then E[m]

is isomorphic to

Z/mZ× Z/mZ.

Proof. By lemma 2.1.7

ψ2
m(x) = m2x(m2−1) + · · · .

So, as the characteristic of K does not divide m, m is not zero in K and hence the

degree of ψ2
m is m2− 1. As it is univariate, this implies that it has m2− 1 roots. Thus

there are m2 − 1 points P in E(K) such that ψm(P ) = 0. Thus E[m] contains m2

points (including the point at infinity.)

First consider the case that m is prime. Then by the fundamental theorem of

finitely generated abelian groups [7] E[m] is isomorphic to either the cyclic group of

m2 elements or the direct sum of two copies of Z/mZ. But by definition, every point

in E[m] has order m so E[m] must be Z/mZ× Z/mZ.

In the case that m = pn, a prime power, this can be seen as follows. The subgroup

E[m] must be a direct sum of two cyclic subgroups, if it was not, then the fundamental

theorem of finitely generated abelian groups implies that E[p] would be a direct sum

of more than two cyclic subgroups, contradicting the result we just showed. Then

assume that the theorem holds for m = pn−1, then the only two possible isomorphism

types for E[pn] are

Z/pn+1Z× Z/pn−1Z or Z/mZ× Z/mZ,

because, as argued above, E[m] must contain m2 points. However, E[m] must contain

only m torsion, and that narrows down the possible isomorphism choices to one.

Thus by the Chinese remainder theorem if m is composite E[m] must also be

isomorphic to Z/mZ× Z/mZ.
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2.2 Isogenies

In the previous section we saw the multiplication by m map, as an example of a map

that preserves point addition and the structure of the elliptic curve as a an algebraic

variety. Now we will generalize our analysis to account for all such maps, the isogenies.

Various authors treat isogenies in different ways. In [20] Silverman takes an ab-

stract approach favoring an arithmetic geometry point of view. By contrast in [23]

Washington takes a more concrete algebraic and computational point of view. In the

following presentation, we heavily favor the concrete computational perspective, as

the goal is to provide necessary background to understand the algorithms for some of

the computational aspects of isogenies. However, to provide deeper insight, when it is

not overly distracting we will point out the differences in the more abstract approach

to the subject.

We begin with a definition:

Definition 2.2.1. An isogeny ϕ is a nontrivial rational map of an Elliptic Curve onto

another Elliptic Curve that is also a group homomorphism.

For those familiar with the the abstract language of category theory, isogenies are

the (nontrivial) morphisms in the Category of Elliptic Curves. Indeed, isogenies are

rational maps and hence morphisms in the category of algebraic varieties, as well as

abelian group homomorphisms. It is worth noting that not all authors even agree on

this definition. For example, Silverman allows trivial isogenies, which expands the

definition to all morphisms in the category of elliptic curves (defined over a field.)

However, for our purposes, we restrict our consideration to the nontrivial case to

simplify and avoid having to constantly distinguish the two cases. As an immediate

example of how this choice simplifies things we have the following fact:

Lemma 2.2.2. If ϕ : E → E ′ is an isogeny, then ϕ is surjective. Meaning that for a

point P ′ in E ′(K) there exists a point P in E(K) such that ϕ(P ) is P ′.
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Proof. Recall the Theorem of algebraic geometry that all nontrivial mappings of al-

gebraic curves are surjective ([15]: II.6.8). By definition of an isogeny ϕ is a nonzero

mapping of algebraic curves, hence it must be surjective.

Furthermore, Silverman does not define isogenies as group homomorphisms. In

that presentation, the definition only requires that ϕ preserves the point at infinity.

By looking at the homomorphism that ϕ induces on the principle divisors of E, one

sees that the property of preserving the point at infinity ϕ implies ϕ is a group

homomorphism ([20] Theorem III.4.8.) However, the reader primarily interested in

explicit computational methods can easily skip that formalism.

We can take the set E(K) as an algebraic variety or as a group. When considering

ϕ as a map of algebraic varieties, it is denoted ϕ(x, y), and is considered a pair (x′, y′)

satisfying the Weierstrass equation of the codomain. When considering it as a group

homomorphism we take P as a general element of E(K) and denote the evaluation

of ϕ on P as ϕ(P ), an element of E ′(K) interpreted as a group. In terms of notation

we will use ϕ(P ) and ϕ(x, y) interchangeably.

With just the basic definitions, we can recognize a couple of examples of isogenies:

Example 2.2.3. Let m > 0 be an integer. Suppose the characteristic of K is 0 or

relatively prime to m, then the the multiplication by m map that sends P to m · P

is an isogeny. As we saw above, this map is rational in the coordinates and it maps

points P on E to E. Furthermore, this multiplication distributes over point addition,

and hence is a group homomorphism. Also, E(K) has infinite order and as argued

above the order of the m torsion of E is m2, so multiplication by m cannot annihilate

the whole group of points on the curve, and hence is non-constant.

Example 2.2.4. Suppose K = Fq for a prime power q = pn then the Frobenius map

(x, y) 7→ (xq, yq) is an isomorphism. Clearly from its presentation, this is a rational

map in the coordinates. Furthermore, the map xq distributes over multiplication

and addition. Thus if (x, y) satisfies the Weierstrass model: y2 + a1xy + a3y =
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x3 + a2x
2 + a4x+ a6 with ai ∈ Fp then

(yq)2 + aq1(x
q)(yq) + aq3(y

q) = (y2 + a1xy + a3y)q

= (x3 + a2x
2 + a4x+ a6)

q

= (xq)3 + aq2(x
q)2 + aq4(x

q) + aq6

So, given that {aqi}5i=1 are a-invariants of a non-singular curve Eq, the Frobenius

mapping: (x, y) 7→ (xq, yq) is a rational map from E to Eq.

Remark 2.2.5. Because an isogeny ϕ is a rational map, the evaluation at a point P is

given by

ϕ(P ) =

(
px
qx
,
py
qy

)
where px, qx, py, qy are polynomials in the coordinates of P . Additionally, px is rela-

tively prime to qx, py is relatively prime to qy, and px and py are monic. Hence this

representation is unique.

Definition 2.2.6. The degree of an isogeny ϕ is the maximum of the degree of the

numerator and denominator of the x-coordinate maps:

deg(ϕ) = max{deg(px), deg(qx)}.

2.2.1 Coordinate Maps

At this point, as we are working with rational functions on elliptic curves, it is worth-

while to investigate some basic properties of these maps. To discuss rational functions

we must first precisely state what is meant by this. Because an elliptic curve is defined

by a Weierstrass equation, the points on the curve satisfy a polynomial equation:

W (x, y) = y2 − x3 + a1xy − a2x
2 + a3y − a4x− a6 = 0

Elliptic curves are irreducible, and hence W is irreducible. Thus the ideal of K[x, y]

generated by W is prime, so that the quotient ring R = K[x, y]/(W ) is an integral
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domain. The rational functions on E are the elements in the field of fractions of R,

denoted by K(E). Occasionally, by abusing notation we will refer to a polynomial

on E which means a rational function on E with trivial denominator. Before proving

anything about rational functions on E, we can first make the following observation

about polynomials on elliptic curves:

Lemma 2.2.7. Let p(x, y) be a polynomial defined on E. Then there exists polynomi-

als p1(x) and p2(x) both univariate in the x-coordinate such that

p(x, y) = p1(x) + y · p2(x).

Proof. This is shown by induction on the highest degree m of y. For the case m = 1

we are done. For the case m = 2 this can be seen by replacing y2 by according to the

Weierstrass equation of E. Then assuming that this holds for n < m and substituting

via the inductive hypothesis, results in a polynomial where the highest degree power

of y is less than m.

We can apply this lemma to simplify the form of rational maps on E that we

consider:

Lemma 2.2.8. Suppose R(x, y) is a rational map on E then there exists polynomials

φ1(x), φ2(x), ψ(x) univariate in x such that

R(x, y) =
φ1(x) + yφ2(x)

ψ(x)
.

Proof. Applying lemma 2.2.7 to p(x, y) and q(x, y) immediately gives that there exists

p1(x), p2(x), q1(x), q2(x) such that:

R(x, y) =
p1(x) + yp2(x)

q1(x) + yq2(x)
.

We can multiply the numerator and denominator through by

q1(x)− (y + a1x+ a3)q2(x).
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The resulting denominator is

(q1(x))2 − (y2 + a1x+ a3)(q2(x))2 + (a1x+ a3)q1(x)q2(x)

= (q1(x))2 − (x3 + a2x
2 + a4x+ a6)(q2(x))2 + (a1x+ a3)q1(x)q2(x)

= ψ(x).

Applying lemma 2.2.7 to the numerator again gives the desired equality.

Because ϕ is a group homomorphism, it necessarily preserves negation so

ϕ(−P ) = −ϕ(P ). Recalling the explicit formulas for the coordinates of a negative

point:

−(x, y) = (x,−y − a1x− a3).

Now consider an isogeny ϕ : E → E ′, where E and E ′ are defined by a Weier-

strass equations with coefficients {ai}5i=1 and {a′i}5i=1 respectively. Writing ϕ(x, y) =

(R1(x, y), R2(x, y)) for rational maps R1(x, y), R2(x, y) and applying the negation for-

mula it follows that:

ϕ(−P ) = ϕ(x,−y − a1x− a3)

= (R1(x,−y − a1x− a3), R2(x,−y − a1x− a3)). (2.8)

Likewise:

−ϕ(P ) = −(R1(x, y), R2(x, y))

= (R1(x, y),−R2(x, y)− a′1R1(x, y)− a′3). (2.9)

These two equations can be combined to greatly simplify the form of the rational

maps of isogenies:

Lemma 2.2.9. If ϕ is an isogeny, then the x-coordinate map of ϕ can be expressed

as a univariate (in x) rational map: r1(x).
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Proof. First we apply lemma 2.2.8 to R1(x, y) so that we have univariate (in x)

polynomials φ1, φ2, ψ with

R1(x, y) =
φ1(x) + yφ2(x)

ψ(x)
.

Combining this with equations (2.8) and (2.9) gives:

φ1(x) + yφ2(x)

ψ(x)
=
φ1(x)− (y + a1x+ a3)φ2(x)

ψ(x)
.

Then subtracting the right hand side from the left hand side it follows that:

(2y + a1x+ a3)φ2(x)

ψ(x)
= 0.

The polynomial 2y + a1x+ a3 is the two torsion polynomial for E thus only satisfied

at two torsion points P. Therefore for this polynomial to be satisfied at all points

P = (x, y) we must necessarily have φ2(x) = 0. Thus

R1(x, y) =
φ1(x)

ψ(x)
.

Lemma 2.2.10. If char(K) 6= 2, then the y-coordinate map of ϕ is of the form:

(y + (a1x+ a3)/2) r2(x)− (a′1r1(x) + a′3)/2

where r2(x) is a univariate rational map and the x-coordinate map of ϕ is given

by r1(x).

Proof. Similar to the proof of lemma 2.2.9, first apply lemma 2.2.8 to R1(x, y) so that

we have univariate (in x) polynomials φ1, φ2, ψ with

R2(x, y) =
φ1(x) + yφ2(x)

ψ(x)
.

From lemma 2.2.9 we have that the x-coordinate map of ϕ is a univariate rational

map r1(x). Combining both of these facts with equations (2.8) and (2.9) gives the

equality:

φ1(x)− (y + a1x+ a3)φ2(x)

ψ(x)
= −φ1(x) + yφ2(x)

ψ(x)
− (a′1r1(x) + a′3). (2.10)
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Straight forward algebraic manipulation (because we are not in characteristic 2) gives:

φ1(x)

ψ(x)
=

(a1x+ a3)φ2(x)

2ψ(x)
− (a′1r1(x) + a′3)/2.

Then we can substitute this into equation (2.10), and solve for R2(x, y) which gives:

R2(x, y) = (y + (a1x+ a3)/2)
φ2(x)

ψ(x)
− (a′1r1(x) + a′3)/2

= (y + (a1x+ a3)/2) r2(x)− (a′1r1(x) + a′3)/2,

where r2(x) is a univariate rational map (in x), as desired.

2.2.2 Separability

With the results we’ve proved about the explicit forms of the rational maps that

occur as coordinate maps in isogenies, we can now discuss some further properties of

isogenies.

Definition 2.2.11. Let ϕ : E → E ′ be an isogeny, and let r1(x) be the x-coordinate

map. If the derivative of the x-coordinate map r′1(x) is not 0 then ϕ is separable.

With this definition it is instructive to look at some examples:

Example 2.2.12. Suppose Fp is a finite field with prime order p, and let E/Fp be an

elliptic curve. Then the Frobenius isogeny is given by the rational maps (xp, yp). So

the derivative of the x-coordinate map is,

p · xp−1 = 0

because this in characteristic p. Thus by definition the Frobenius isogeny is not

separable.

Example 2.2.13. Suppose E/Q, and ϕ : E → E2 is an isogeny, and furthermore

inseparable. Then if r(x) is the x-coordinate map of ϕ then r′(x) = 0 so r(x) is

constant. Which cannot be, hence ϕ cannot be inseparable.
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These two examples show two extremes. In the case of elliptic curves over Q

isogenies are always separable. On the other hand, in the finite field case Frobenius

isogenies are always not separable.

It is instructive to note that there is an alternate (yet equivalent) approach to the

defining the separable property. Silverman prefers a characterization of separability

based on function field extensions. Specifically, an isogeny is a non-constant map of

algebraic curves, so it induces an injection between the corresponding function fields

ϕ∗ : K(E2)→ K(E1)

by precomposing functions in K(E2) with the isogeny ϕ. Then K(E1) is an extension

of the field ϕ∗K(E2) see ([20] Theorem II.2.4). Using this language and notation,

an isogeny is separable if the corresponding extension of fields K(E1)/ϕ
∗K(E2) is

separable. Although the more computationally minded reader may find this overly

abstract, if one is comfortable with algebraic geometry this equivalent characterization

is useful to keep in mind.

Using this definition of separability, it is also instructive to look at the interplay

between ϕ as a rational map and as a group homomorphism. Because an isogeny is

a rational map, if either of the denominators of the coordinate maps evaluates to 0,

the result of the isogeny will be the point at infinity. Intuitively, one can think of

this as dividing either of the coordinates by 0 will send the point to infinity. More

formally, dividing a coordinate by 0 indicates that the corresponding point in the

projective plane is (0 : 1 : 0), the point at infinity. Hence, the kernel corresponds

to points that form the roots of the denominator polynomials. By lemma 2.2.8 the

denominator polynomials are univariate in the x-coordinate, and hence have a finite

number of roots. Thus the kernel of an isogeny is a finite subgroup of E(K), with

order bounded by the degree of the isogeny.

Thus we can classify isogenies based on the relation of the order of the kernels and

the degrees as rational maps:
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Lemma 2.2.14. If ϕ : E → E ′ is a separable isogeny then | ker(ϕ)| = deg(ϕ).

Otherwise | ker(ϕ)| < deg(ϕ).

Proof. By lemma 2.2.2, we know that ϕ is surjective. So if P = (a, b) ∈ E ′(K) and P

not ∞ then there exists (x0, y0) ∈ E(K) such that (a, b) = ϕ(x0, y0). By lemma 2.2.9

we have that

r1(x0) =
p(x0)

q(x0)
= a.

Furthermore, because E ′(K) is infinite we can choose (a, b) with the following prop-

erties:

1. a 6= 0

2. deg(p(x) − aq(x)) = max{deg(p(x)), deg(q(x))} = deg(ϕ) (The only way that

deg(p(x)− aq(x)) < deg(ϕ) is possible is if deg(p(x)) = deg(q(x)) and α is the

leading coefficient of p, β is the leading coefficient of q, and α− aβ = 0. In this

case, we only need restrict a 6= α/β.

We have that deg(p(x)− aq(x)) = deg(ϕ), and hence has deg(ϕ) (possibly indistinct)

roots. As ϕ is a homomorphism the number of distinct roots of p(x) − aq(x) is ex-

actly | ker(ϕ)|. Now it suffices to determine when p(x)−aq(x) has repeated roots. The

polynomial p(x)−aq(x) has repeated roots at x0 if and only if p(x0)−aq(x0) = 0 and

p′(x0)− aq′(x0) = 0. In this case, ap′(x0)q(x0) = ap(x0)q
′(x0). We chose a 6= 0 so this

implies that x0 is a root of p(x)′q(x) − p(x)q′(x). Furthermore, r′1(x) = 0 and hence

r1 is by definition inseparable if and only if p(x)′q(x)− p(x)q′(x) = 0 for all x ∈ K.

So if ϕ is not separable, then every element of K is a root of p(x)′q(x) − p(x)q′(x)

and hence p(x) − aq(x) must have a repeated root.

If ϕ is separable, then p′(x)q(x) − p(x)q′(x) is not identically 0, and hence has a

finite number of roots. We can let S be this finite set of roots and further restrict our
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choice of a so that a 6∈ r1(S). As such, if x0 were a repeated root of p(x)− aq(x) then

the preceding argument shows that x0 ∈ S, a contradiction. Thus, in the separable

case, we conclude that deg(ϕ) = | ker(ϕ)|.

2.2.3 Isogenies and Differential Forms

An important tool in the study of elliptic curves are the differentials of the function

field K(E). Similarly, this tool is also important to the study of isogenies. Recall the

definition ([20] II.4)

Definition 2.2.15. The space of differential forms of E, denoted ΩE is the 1-

dimensional K(E)-vector space generated by dx. Here df is the usual differential

operator, such that given f and g in K(E) and a is constant in K

1. d(f + g) = df + dg.

2. d(fg) = fdg + gdf.

3. da = 0.

Using this space, applying the differential operator to the Weierstrass equation for

E gives us the following important value associated to E ([20] III.5):

Definition 2.2.16. The invariant differential of E, denoted ω is the value:

ω =
dx

2y + a1x+ a3

=
dy

3x2 + 2a2x+ a4 − a1y
.

We want to understand the effect of f under mappings of E so to this end we

make the following definition

Definition 2.2.17. Let f be a map from E to a curve E ′ where fx and fy are the

x and y coordinate maps, respectively. Let γ be a differential form on E ′, hence
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γ = αdx′, for some α in K(E ′) Then the pullback of γ along f is denoted f ∗γ and is

defined as

α(fx, fy)dfx.

Remark 2.2.18. The map fx is a function on E, so dfx is in ΩE. Thus, f ∗ defines a

mapping from ΩE′ to ΩE.

Ultimately we want to use differential forms to study isogenies. However, it is

prudent to look at the effect of another type of map on the invariant differential.

Let Q be any point on a curve E and define tQ : E → E as the translation by Q

map, specifically, tQ(P ) = P +Q. It is useful to the study of isogenies to understand

the pullback of the invariant differential ω along tQ. It turns out that the invariant

differential, is in fact, invariant under translation (hence the name.)

Lemma 2.2.19. For any point Q on E the pullback of the invariant differential ω

along the translation map tQ is ω.

Proof. This can be seen by writing out the addition formulas on E and a straight

forward algebraic manipulation confirms that

dxP+Q

2yP+Q + a1xP+Q + a3

=
dxP

2yP + a1xP + a3

,

for any P and Q on E.

There is a more elegant alternate proof ([20] III.5.1) that uses the effect of t∗Q

on the divisor of ω. That proof may be more elucidating for readers familiar with

algebraic geometry.

We can begin to discuss the pullback of invariant differentials along isogenies.

First we can immediately see that the invariant differential of E ′ pulls back to the

invariant differential of E.

By applying this fact, we can precisely determine the pullback of the invariant

differential along an isogeny of E.
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Lemma 2.2.20. Suppose K is of characteristic not equal to 2. If ϕ : E → E ′ is an

isogeny and ω′ is the invariant differential of E ′, then ϕ∗ω′ = cω for some constant c

in K.

Proof. By considering ϕ∗ω′ as an element in ΩE there is a g in K(E) such that

ϕ∗ω = gω. Also t∗Qϕ
∗ω′ = ϕ∗t∗ϕ(Q)ω

′, because ϕ is a group homomorphism.

By lemma 2.2.19 it follows that t∗ϕ(Q)ω
′ = ω′ and t∗Qω = ω. Hence for all Q on

E we have:

t∗Qg =
ϕ∗t∗ϕ(Q)ω

′

t∗Qω
′ =

ϕ∗ω′

ω
.

Thus g must be constant, so ϕ∗ω = cω for some c in K.

Recall that in lemmas 2.2.9 and 2.2.10 we greatly simplified the form of the x and

y coordinate maps of ϕ. Specifically, we showed that the ϕx map is univariate in the

x-coordinate of E, and also we expressed the map ϕy in terms of the y coordinate and

Weierstrass coefficients of E as well as ϕx and some other rational function, univariate

in x. Using the identity for ϕ∗ω, we can entirely express this other univariate rational

function in the map ϕy in terms of ϕx.

Lemma 2.2.21. Suppose ϕ : E → E ′ is an isogeny with coordinate maps ϕx(x) and

ϕy(x, y) then

ϕy(x, y) = c

(
y +

a1x+ a3

2

)
ϕ′x(x)− a1ϕx(x) + a3

2
,

where c is some constant in K and ϕ′x(x) denotes the derivative of ϕx with respect

to x, as usual.

Proof. By lemma 2.2.20, we have that

dϕx
2ϕy + a1ϕx + a3

=
cdx

2y + a1x+ a3

.

Next we note that dϕx = ϕ′xdx, substituting this in and solving for ϕy(x, y) gives the

desired equality.
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Now that we have determined the general form of the coordinate maps of an

isogeny we can characterize the isogenies based on the constant multiple in the y-

coordinate map.

Definition 2.2.22. An isogeny ϕ : E → E ′ is normalized if the pullback of the

invariant differential of E ′ along ϕ is equal to the invariant differential of E. That is,

if ω and ω′ are the invariant differentials of E and E ′ respectively, then ϕ∗ω′ equals ω.

2.2.4 The Dual Isogeny

In the final section on the basic theory of elliptic curve isogenies, we examine the

question: Suppose there is a degree ` isogeny from E1 to E2, is there a degree `

isogeny from E2 back to E1? The answer is yes. Not only does such a map exist, but

there exists a unique such map satisfying some nice properties. Here we only prove

and state the result for separable isogenies, but it does in fact hold for all isogenies.

Theorem 2.2.23. Let ϕ : E1 → E2 be a separable isogeny of degree `. Then there

exists a unique separable isogeny ϕ̂ : E2 → E1 of degree ` such that ϕ̂ ◦ ϕ is the

multiplication by ` map on E1. The isogeny ϕ̂ is called the dual of ϕ.

Proof. In an effort to remain brief, we present only a high level proof here and do not

delve into the background details.

We suppose that ϕ is separable so the characteristic of K does not divide `. Thus

| ker(ϕ)| is ` by lemma 2.2.14.

By [20] corollary III.4.11, if φ : E1 → E2 and ψ : E1 → E3 are isogenies and φ is

separable with ker(ψ) containing ker(φ) then there is a unique isogeny λ : E2 → E3

such that ψ = λ ◦ φ. (The proof of this works by using [20] theorem III.4.10(c) to

generate a tower of Galois extensions: ψ∗K(E3) ⊆ ψ∗K(E2) ⊆ K(E1) and deducing

the existence of λ from this.)

Thus in this case, this result gives that there exists a unique isogeny ϕ̂ : E2 → E1

such that ϕ̂ ◦ ϕ = [`]. Furthermore, we know that |E[`]| is `2 by lemma 2.1.12. As
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isogenies are group homomorphisms, ϕ(E[`]) ∼= E[`]/ ker(ϕ). Hence |ϕ(E[`])| is `.

Also ϕ(E[`]) = ker(ϕ) as E[`] is exactly the kernel of multiplication by `. So thus the

order of ker(ϕ̂) is `.

It follows that ϕ̂ must be separable. As [`] is ϕ̂ ◦ϕ and [`] has degree `2 and ϕ has

degree `, then ϕ̂ has degree `. Thus by lemma 2.2.14 is separable.

For a complete proof, including the case of inseparable isogenies see [20] theo-

rem III.6.1. There is a complete proof in [23], theorem 12.14, that is more computa-

tional. The proof presented above is a hybrid of the two approaches.

Remark 2.2.24. From the proof of theorem 2.2.23 it follows that ϕ ◦ ϕ̂ is the multi-

plication by ` map on E2. Furthermore, ˆ̂ϕ = ϕ.
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Chapter 3

ALGORITHMS

Before examining the algorithms for computing isogenies, it is prudent to examine

what exactly this means. In one sense, as an isogeny is a function, computing it

means to evaluate it on some input. By definition isogenies are rational maps, so

given this rational map it is straight forward to perform this evaluation. However,

the rational maps are not the only way to represent an isogeny. In this chapter we give

two methods for computing the rational maps of an isogeny. First we assume that

we know the domain and kernel, and give algorithms for determining the codomain

and rational maps. We also assume that we know the domain, codomain and degree

of an isogeny, and we show how to recover the kernel and hence rational maps.

3.1 Computing from the Kernel

Suppose that one knows the kernel and the domain of a separable normalized isogeny.

The algorithms in this section show how to compute the codomain and the rational

maps associated to that isogeny. Even this computational task is complicated by the

ambiguity of representing the kernel. There are two choices. First we can consider

the kernel as a list of points in E(K). Alternately, we can assume that the kernel C

is specified by the kernel polynomial, the unique monic polynomial of lowest degree

with roots only at x-coordinates of the finite points of C. Vélu’s formulas take as

input the kernel as a list of points, and return the rational maps and codomain of the

curve. Kohel’s approach takes the input as the kernel polynomial.

Before going into the details of the algorithms that compute an isogeny given

the kernel, it is useful to look at just exactly what can be computed from this input.
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Specifically, we have to consider post composition of an isogeny by curve isomorphisms

(and automorphisms.)

Suppose that ϕ : E → E ′ is a separable isogeny with kernel C. Also, suppose

that ρ : E ′ → E ′′ is an isomorphism of curves defined over K (a separable isogeny of

degree 1.) Then, ρ ◦ ϕ is a separable isogeny from E to E ′′. Thus it is clear that the

codomain of an isogeny is not uniquely specified by the kernel.

Now suppose that ρ : E → E ′ is a normalized isomorphism of curves (again here

isomorphism denotes a separable isogeny of degree 1.) So the invariant differential

of E ′ pulls back to the invariant differential of E. Because ρ is a separable degree 1

isogeny it is a linear change of variables, this implies that

ρ(x, y) = (x+ r, y + sx+ (sr + t))

for some r, s and t in K. Hence it follows that the c-invariants of E and E ′ are the

same, so E and E ′ are the same curve. Thus, if E and E ′ are isomorphic but not

equal elliptic curves and τ : E → E ′ is an isomorphism of elliptic curves, then τ is not

normalized. So post composing a separable normalized isogeny by an isomorphism

to a different elliptic curve results in a non normalized isogeny. It follows that the

kernel uniquely specifies the codomain of a separable normalized isogeny.

It remains to consider post composition of an isogeny by automorphisms. That

is degree 1 isogenies from a curve E to itself. If the characteristic of K is not 2 or

3 then by ([20] theorem III.10.1 and proposition A.1.2) any automorphism of E is of

the form:

(x, y) 7→ (u2x, u3y)

for some u in K. Hence, any nontrivial automorphism will have u not 1, and then by

([20] section III.1) the pullback of the invariant differential along a nontrivial auto-

morphism will introduce a factor of u. Thus post composing a separable normalized

isogeny by a nontrivial automorphism will result in a non-normalized isogeny. (This

is also the case if the characteristic of K is 3 and the j-invariant of E is not 0.) In the
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case of characteristic K equal to 2 or 3 then there are additional concerns because

the automorphisms do not always have such a simple form. Namely, there are non-

trivial automorphisms of E under which the pullback of the invariant differential does

introduce a scaling factor (see the proof of proposition A.1.2 in [20] for the specific

cases.)

This shows that there are cases where post composition of a separable normalized

isogeny with an automorphism, results in another separable and normalized isogeny

with the same kernel and codomain. This indicates that the kernel and codomain can-

not uniquely specify the rational maps for evaluating a seperable normalized isogeny.

Bearing this in mind, as in [4] we remark that given a kernel of a separable nor-

malized isogeny we can uniquely determine a codomain curve (and give a Weierstrass

equation for it.) However, we can only specify the rational maps for evaluating the

isogeny up to post composition with an automorphism.

3.1.1 Vélu’s Approach: Computing from points in the kernel

Vélu’s formulas show how, for any field K, given a Curve E1/K and the Kernel of an

isogeny (as a list of the points of a finite order subgroup of E(K)) how to determine

the codomain of the isogeny, as well as compute the isogeny.

Input: Given a curve in general Weierstrass form:

E1 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and a set of points of C that forms a finite subgroup of E1(K).

Output: The general Weierstrass coefficients of a Weierstrass model for the codomain

curve E2 of a separable normalized isogeny with kernel C. Also, coordinate maps (as

rational maps on E1) that evaluate a point (x, y) on E1 to a point on E2.
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Step 1: Partition the set of points C :

1. Throw out ∞.

2. Let C2 be all the 2-torsion points in C, let R be the rest of the points in C.

3. Split R into two equal sized sets such that R+ and R− so that if a point P is in

R+ then −P is in R−.

4. Let S = R+ ∪ C2.

Step 2: Now given Q ∈ S define the following quantities:

gxQ = 3x2
Q + 2a2xQ + a4 − a1yQ

gyQ = −2yQ − a1xQ − a3

vQ =

 gxQ if 2Q =∞

2gxQ − a1g
y
Q otherwise

uQ = (gyQ)2

v =
∑
Q∈S

vQ, w =
∑
Q∈S

(uQ + xQvQ)

Step 3: Compute the target image:

First define the values:

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5v, A6 = a6 − (a2
1 + 4a2)v − 7w.

Then the Weierstrass equation of E2 is:

y2 + A1xy + A3y = x3 + A2x
2 + A4x+ A6.
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Step 4: The formula for computing the image point (α, β) from the point (x, y):

α = x+
∑
Q∈S

(
vQ

x− xQ
− uQ

(x− xQ)2

)
(3.1)

β =

y −
∑
Q∈S

(
uQ

2y + a1x+ a3

(x− xQ)3
+ vQ

a1(x− xQ) + y − yQ
(x− xQ)2

+
a1uQ − gxQg

y
Q

(x− xQ)2

)
(3.2)

Remark 3.1.1. Note that while Vélu’s formulas clearly can be used to evaluate an

isogeny (given the domain and kernel) at a given point of the domain curve, here we

are treating Vélu’s formulas as a way to precompute the rational maps of the isogeny.

These rational maps can be stored and used to evaluate any number of points on the

domain curve.

For a full proof of the correctness of these algorithms one can see Vélu’s original

paper [22], or the reader more familiar with English can read Washington’s treatment

[23] which deals only with the case of characteristic not equal to 2. Here we will

partially prove that these formulas work, stating one lemma without proof:

Lemma 3.1.2. The codomain curve E2 found by Vélu’s formulas is nonsingular.

The proof requires the Riemann-Hurwitz theorem ([15] section IV.2) This is a

result from algebraic geometry that relates the degree of an unramified rational map

on algebraic curves with the genus of the domain and codomain curves. The proof

of the Riemann-Hurwitz theorem requires considerably more depth of understanding

of algebraic geometry (particularly it uses sheaves) than most of the other results

presented herein. As such, these details are left up to readers who are more interested

in these abstract matters.

Furthermore, as is common with many algorithmic results, those interested solely

in computation can skip this result, or take it without proof. Indeed, every time one
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runs Vélu’s formulas, one can perform a check that the calculated codomain is in fact

nonsingular. Thus in effect proving that the codomain is nonsingular every time the

algorithm is run.

The rest of the proof closely follows the presentation in [23]. Before proving the

the main theorem we first prove the following lemma:

Lemma 3.1.3. The rational maps α(P ) and β(P ) in Vélu’s formulas obey the fol-

lowing formulas

α(P ) = xP +
∑

Q∈C−{∞}

(xP+Q − xQ)

and

β(P ) = yP +
∑

Q∈C−{∞}

(yP+Q − yQ)

Proof. We will make heavy use of the addition formula in section [20] algorithm III.2.3

and restated here in section 2.1.

First we will assume that Q ∈ C−{∞} is a two torsion point and P us any point

on E1 distinct from Q. Furthermore, because Q is a two torsion point gyQ = 0 (as gyQ

is the bivariate two torsion polynomial evaluated on the point Q). This also implies

that uQ is also 0. Substituting the addition formula and expanding in terms of xP

and yP gives:

xP+Q =(y2
P − 2yPyQ + y2

Q + a1xPyP

− a1xPyQ − a1xQyP + a1xQyQ − a2x
2
P

+ 2a2xPxQ − a2x
2
Q − x3

P + xPx
2
Q

+ x2
PxQ − x3

Q)/(xP − xQ)2.

We can substitute:

y2 − x3 + a1xy = −a3y + a4x+ a6.

for (x, y) any point on E1 and also

−2yPyQ − a1xQyP − a3yP = yP (gyQ) = 0.
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Then by subtracting xQ from the resulting expression for xP+Q−xQ, the denominator

becomes:

a4xP − a3yQ + a4xQ + 2a6 = −a1xPyQ + 2a2xPxQ + 3xPx
2
Q + x3

Q.

Using the Weierstrass equation to make a substitution for the terms uniform in the

coordinates of Q the whole expression becomes

xP+Q − xQ =
(xP − xQ)vQ + yQg

y
Q

(xP − xQ)2
.

Thus this simplifies down to:

xP+Q − xQ =
vQ

xP − xQ
(3.3)

Now we do a similar evaluation in terms of the y coordinates when translating

by Q. Substituting the addition formula for the y-coordinate, and using the equality

xP+Q =
vQ

xP − xQ
+ xQ

gives

yP+Q − yQ = −yP − yQ + a1(xP − xQ)

xP − xQ

(
vQ

xP − xQ
+ xQ

)
+
−yPxQ + yQxP − a3xP + a3xQ − yQxP + yQxQ

xP − xQ

= −vQ
a1(xP − xQ) + yP − yQ

(xP − xQ)2
− gyQ.

This simplifies to:

yP+Q − yQ = −vQ
a1(xP − xQ) + yP − yQ

(xP − xQ)2
. (3.4)

Next we note that if P = Q then xP+Q = yP+Q =∞ as Q is a two torsion. Then

xP = xQ, so xP − xQ = 0 so vQ/(xP − xQ) = ∞ and hence in equations (3.3) and

(3.4) both sides of the equations go off to infinity. Thus these equations hold when

P = Q as well.
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Now we prove similar results for the case that Q is not a two torsion, and P is

not ±Q. In this case, we need to keep track of multiple different addition formulas, so

we denote λP+Q and νP+Q as the values in the addition formula for P +Q. Similarly

we define λP−Q and νP−Q while computing P − Q. Furthermore, these values are

related in the following way:

λP−Q = λP+Q − gyQ, νP−Q = νP+Q +
xPg

y
Q

xP − xQ
.

In the case of the x-coordinates we have that xQ = x−Q so that:

xP+Q − xQ + xP−Q − x−Q = xP+Q + xP−Q − 2xQ.

Then expanding in terms of xP , xQ, λP+Q and gyQ gives:

xP+Q + xP−Q − 2xQ = 2λP+Q + 2a1λP+Q − 2a2 − 2xP − 4xQ

−
2gyQλP+Q

xP − xQ
−

a1g
y
Q

xP − xQ
+

vQ
xP − xQ

.

Then further expanding in terms of xP and xQ gives that

2λP+Q+2a1λP+Q − 2a2 − 2xP − 4xQ −
2gyQλP+Q

xP − xQ
−

a1g
y
Q

xP − xQ

=(a2
1xPxQ + 6xPx

2
Q + 4a2xP + a1a3xP + 2a4xP

− a2
1x

2
Q − 6x3

Q − 4a2x
2
Q − a1a3xQ − 2a4xQ)/(xP − xQ)3.

Then replacing 2a4xP and 2a4xQ via the Weierstrass equation this whole expression

simplifies down to uQ/(xP − xQ)2. Combining this all gives that:

xP+Q − xQ + xP−Q − x−Q =
vQ

xP − xQ
+

uQ
(xP − xQ)2

. (3.5)

Next we compute a similar equality for the y-coordinates. First we note that the

inversion formula gives:

y−Q − yQ − a1xQ − a3.
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Then substituting this gives

yP+Q − yQ = yP−Q − y−Q = yP+Q − yP−Q + a1xQ + a3.

Furthermore, gyP = −2yP − a1xP − a3 by slightly abusing notation, because P is not

necessarily in C. So using this equality and the addition formulas, this expression

becomes

−(λP+Q + a1)
vQ

xP − xQ
− (λP+Q + a1)

(
uQ

(xP − xQ)2
+ 2xQ

)
+

gyQ
xP − xQ

xP+Q + uQ
gyP

(xP − xQ)3

− 2νP+Q −
xPg

y
Q

(xP − xQ)
+ a1xQ − a3.

Now by expressing λP+Q, νP+Q, xP+Q, gxQ, and gyQ as expressions in xP , yP , xQ and

yQ one can see that

−
a1uQ − gxQg

y
Q

(xP − xQ)2
=− (λP+Q + a1)

(
uQ

(xP − xQ)2
+ 2xQ

)
− 2νP+Q −

xPg
y
Q

(xP − xQ)
+ a1xQ − a3

+ gyQ(f(Q)− f(P )).

The function f in K(E1) is

f(x, y) = y2 − x3 + a1xy − a2x
2 + a3y − a4.

The Weierstrass equation gives that for any point P on E1 the evaluation f(P ) = −a6.

So f(Q)− f(P ) is 0. Substituting this all back together gives

yP+Q − yQ + yP−Q − y−Q =− uQ
2yP + a1xP + a3

(xP − xQ)3
− vQ

a1(xP − xQ) + yP − yQ
xP − xQ

−
a1uQ − gxQg

y
Q

(xP − xQ)2
. (3.6)
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When Q is a two torsion point, then we argued that gyQ = uQ = 0, thus by parti-

tioning S into the disjoint sets C2 and R+ and substituting the results of equations

(3.3) and (3.5), we can evaluate the see that the sum in the α map:∑
Q∈S

vQ
xP − xQ

− uQ
(xP − xQ)2

=
∑

Q∈C−{∞}

xP+Q − xQ.

Likewise, by using the results of equations (3.4) and (3.6) we can evaluate the sum in

the β map:

−
∑
Q∈S

uQ
2yP + a1xP + a3

(xP − xQ)3
+ vQ

a1(xP − xQ) + yP − yQ
xP − xQ

+
a1uQ − gxQg

y
Q

(xP − xQ)2

=
∑

Q∈C−{∞}

yP+Q − yQ.

This gives the statement of the lemma.

Now using this proof we finally prove the following theorem.

Theorem 3.1.4. Steps 1-4 of Vélu’s formulas give the domain and rational maps to

compute a separable normalized isogeny with kernel C.

Proof. Define t = x/y and s = 1/y. Then as functions on E1, t has a simple zero and

s has a zero of order 3 at infinity (Because x is a degree 2 and y is a degree 3 function

on E1, [23] example 11.3).

Divide the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

through by y3, replacing with s and t and rearranging gives:

s = t3 +−a1st+ a2s
2 − a3s

2 + a4ts
2 + a6s

3.

Now substituting the expression for s into the right hand side gives:

s =t3 − a1(t
3 +−a1st+ a2s

2 − a3s
2 + a4ts

2 + a6s
3)t+

a2(t
3 +−a1st+ a2s

2 − a3s
2 + a4ts

2 + a6s
3)t2 + · · · .
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By repeating this substitution until we know the coefficients of t3, · · · , t9 gives and

expression:

1

y
= s = t3(1− a1t+ (a2

1 + a2)t
2 − (a3

1 + 2a1a2 + a3)t
3 + · · · )

(to see this equality, see [20] section IV.1.) Taking the reciprocal gives an expression

for y in terms of t:

y = t−3 + u1t
−2 + u2t

−1 + u3 + u4t+ u5t
2 + u6t

3 +O(t4)

where O(t4) is a function that has a zero of order 4 at ∞ and the coefficients ui are

u1 = a1, u2 = −a2, u3 = a3, u4 = −(a1a3 + a4),

u5 = a2a3 + a2
1a3 + a1a4,

u6 = −(a2
1a4 + a3

1 + a2a4 + 2a1a2a3 + a2
3 + a6.

Then the fact that x = ty, gives a similar expression for x in terms of t:

x = t−2 + u1t
−1 + u2 + u3t+ u4t

2 + u5t
3 + u6t

4 +O(t5).

Then taking A1, A2, A3, A4 and A6 given in the statement of the theorem, and define

F to be the function of the Weierstrass equation with these coefficients. Then define

G as the function on E1:

G = F (α, β) = β2 − α3 + A1αβ − A2α
2 + A3β − A4α− A6.

Clearly, α and β are rational functions in x and y, hence functions on E1. By substi-

tuting in the expansions of x and y in t into the formulas for α and β, an intricate

calculation of F (α, β) shows that it is O(t). Meaning that the function G vanishes

at ∞. (This calculation can be done by applying the algorithm for computing the

truncated reciprocal in appendix A.2.3.)

The explicit formulas for α and β show that they have poles only at points in

the set C. As F is a polynomial in α and β, G can only have poles where these
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functions do. We just saw that G has a zero at ∞. It is clear from lemma 3.1.3 that

for any Q ∈ C the rational maps α and β are invariant under translation by Q, that

is α(P +Q) = α(P ) and β(P +Q) = β(P ). Thus G is invariant under translation by

Q as well. So as G has a zero at∞ then G is zero at every point in C. Thus G has no

poles, and therefore it must be constant, [23] proposition 11.1. (This is an elementary

application of divisors of functions on curves.) It follows that

G(P ) = F (α(P ), β(P )) = 0

and hence (α(P ), β(P )) satisfies the Weierstrass equation with coefficients Ai. Fur-

thermore, ϕ = (α, β) preserves the point at infinity, and as mentioned before this

implies that ϕ is a group homomorphism. Thus, by definition ϕ is an isogeny.

Now to show that these formulas specify a separable isogeny, we examine the

degree of the rational map α.

However, to determine this we first define the function G on E1 as follows:

G(x, y) = x3 − y2 − a1xy + a2x
2 − a3y + a4x+ a6.

From the Weierstrass equation we see that G is 0 for all points on E1. Then by taking

the partial derivatives with respect to x and y and evaluating at Q = (xQ, yQ) we see:

Gx(xQ, yQ) = 3x2
Q + 2a2xQ + a4 − a1yQ = gxQ,

and

Gy(xQ, yQ) = −2yQ − a1xQ − a3 = gyQ.

Thus if both gyQ and gxQ are 0, then it is clear that

Gx(xQ, yQ) = Gy(xQ, yQ) = 0

and then by example I.1.5 in [20] Q is a singular point, contradicting the fact that E1

is a nonsingular curves. Because gyQ is the bivariate non-two torsion polynomial it is

0 if and only if Q is a two torsion point. Therefore, if Q is a two torsion point then
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gxQ cannot be 0. Furthermore, if Q is a two torsion point then vQ is equal to gxQ and

hence not 0. Also, if Q is not a two torsion then uQ is the square of gyQ and hence

not 0.

For Q ∈ S, we have:

vQ
xP − xQ

+
uQ

(xP − xQ)2
=
vQ(xP − xQ) + uQ

(xP − xQ)2
.

Let pQ(x) = vQ(x− xQ) + uQ. Then in this notation:

α(x) = x+
∑
Q∈S

pQ(x)

(x− xQ)2
.

Thus if Q is a two torsion then uQ is 0 and vQ is not, hence

pQ(x)

(x− xQ)2
=

vQ
x− xQ

.

Otherwise, if Q is not a two torsion, then uQ is not 0 and hence

pQ(x)

(x− xQ)2
=
vQ(x− xQ) + uQ

(x− xQ)2

is in reduced form.

Define nQ(x) and dQ(x) to be the numerator and denominator respectively pQ(x)/(x−

xQ)2 in reduced form. Thus if Q is a two torsion point then dQ(x) is x− xQ and oth-

erwise dQ(x) is (x− xQ)2. Likewise, if Q is not a two torsion point then nQ(x) is vQ

and otherwise nQ(x) is vQ(x− xQ) + uQ. Then define the polynomial ψ as follows:

ψ(x) =
∏
Q∈S

dQ(x).

Hence ψ is the denominator of α. From the characterization of dQ(x) it is clear that

the highest power of x− xQ that divides ψ is 1 if Q is a two torsion and 2 otherwise.

Next we define ψQ(x) as ψ(x)/dQ(x), and set

r(x) =
∑
Q∈S

ψQ(x)nQ(x).
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In the case that Q is a two torsion point then deg(ψQ) is deg(ψ) − 1, and nQ is

constant and hence has degree 0. In the case that Q is not a two torsion point then

deg(ψQ) is deg(ψ) − 2, and nQ is linear and hence has degree 1. Thus in both cases

the degree of ψQ(x)nQ(x) is deg(ψ)− 1. So the degree of r(x) is deg(ψ)− 1. Then if

we define p(x) as xψ(x) + r(x) so deg(p) is deg(ψ) + 1.

Note that the number of points in the set of kernel points C is equal to:

#(two torsion points in S) + 2 ·#(non-two torsion points in S) + 1.

This is clear from the way that the set C was partitioned in step 1. Therefore,

deg(ψ) = #C − 1.

Explicitly, the rational map α is of the form:

α(x) = x+
r(x)

ψ(x)
=
p(x)

ψ(x)
.

Then the degree of p is #C, so by definition 2.2.6 the degree of ϕ is #C. Thus by

lemma 2.2.14, ϕ is separable.

It is also clear that the leading coefficients of p and q are both 1, so that the

coefficient of the pullback of the invariant differential along ϕ must be 1 as well,

hence by definition ϕ is normalized.

This concludes the proof that Vélu’s formulas define a separable normalized isogeny

with specified codomain, and that the isogeny can be computed via the given rational

maps α and β.

For computational purposes, we would like to know the algebraic complexity of

applying Vélu’s formulas (for a definition and discussion of algebraic complexity see

appendix A.1.) Measuring complexity in this case is somewhat complicated by the

fact that while the elliptic curve E1 is defined over K, as an algebraic variety it is fully

realized over K and in many ways only makes sense in this setting. On the one hand,

we can look at the algebraic complexity over K but this is somewhat unsatisfactory

in that our input curve is defined over K and the kernel points are defined over some
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extension field. Counting K operations tells us nothing about the actual time we

spend operating over finite precision inputs. What we would really like is to get

an idea of the algebraic complexity over K. To get the most in-depth look at the

algebraic complexity, we need to consider the contribution of both the degree of an

isogeny as well as the degree of the extension over which the kernel of the isogeny is

defined. (Note that the following theorem uses the soft-Oh notation, see definition

A.1.5.)

Theorem 3.1.5. Suppose ϕ is an isogeny of degree `, where F/K is a minimal degree

extension such that the kernel ϕ is contained in E(F ). If d is the degree of F/K, then

running steps 1 through 4 of Vélu’s formulas, and also evaluating equations (3.1)

and (3.2) on an actual point of E(K) require O(`) operations in K, or Õ(`M(d))

operations in K.

Proof. The total algebraic complexity can be determined by a step-by-step analysis.

In step 1, partitioning the kernel into lists of two torsion and non-two torsion

points requires applying the two division polynomial. For each point in the kernel this

requires a constant number of F operations, and checking if the result is zero or not.

So for each point in the kernel this is a constant number of algebraic operations, so the

total complexity for checking all points in the kernel is Õ(`). Then, sorting the non-

two torsion points can be accomplished by ordering the other points by x-coordinate,

and taking only the even or odd indexed points. This has the well known complexity

of O(`log`) = Õ(`) comparisons (which some authors take to be F operations [5], [8].)

Hence this dominates the complexity of this step.

In step 2, for Q in ker(ϕ) we compute the values gxQ, gyQ, uQ and vQ. If ker(ϕ) is

contained in E(F ), the for Q in ker(ϕ), the associated values xQ and yQ are in F .

Hence, the values gxQ, gyQ, uQ and vQ are all in F as well, and computing each of them

requires a constant number of F operations. The values v and w can be updated at

each step, and there are O(`) points Q in S so the total complexity is operations in F .
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In step 3, we compute the Weierstrass model of the domain curve from the values

v and w computed in step 2. This only uses a constant number of F operations.

In step 4, we set the rational maps of the coordinates, these are rational maps

over K of degree O(`).

From this we can see that steps 1 and 2 dominate the algebraic complexity. So

that the total complexity for applying Vélu’s formulas is Õ(`) operations in F . All

F operations are O(M(d)) operations in K, thus we get that computing the total

complexity is Õ(`M(d)) operations in K. Furthermore, once the codomain curve

and the rational maps have been computed, these can be stored. Then evaluating

the isogeny at a point on the domain curve can then be accomplished in Õ(`M(d))

operations in K. If we are only counting operations in K we can ignore the M(d)

factor in the algebraic complexity.

Ultimately, as in theorem 3.1.5, it is most informative to know exactly what val-

ues impact the algebraic complexity. Here we see that the algebraic complexity is

primarily dominated by the degree of the extension over which the kernel is defined.

However, leaving the complexity analysis in both ` and d is somewhat unsatisfactory,

because it gives the incorrect impression that these two values are independent when

they are anything but. Specifically, the extension degree d can be expressed in `. The

following corollary expresses the algebraic complexity of Vélu’s formulas uniformly

in `.

Theorem 3.1.6. For an isogeny ϕ of degree ` (not divisible by the characteristic

of K), running Steps 1 through 4 of Vélu’s formulas, and also evaluating equations

(3.1) and (3.2) on an actual point of E(K) require Õ(`M(`2)) operations in K.

Proof. It suffices to show that there is an extension F/K such that ker(ϕ) is contained

in E(F ) with [F : K] = O(`2).

Because ker(ϕ) is an order ` subgroup it is entirely contained in E[`], and E[`] is

isomorphic to Z/`Z× Z/`Z by lemma 2.1.12. So ker(ϕ) is generated by at most two



45

elements.

If ker(ϕ) is cyclic let G = (α, β) denote a generator. Then α is a root of the

square of the `-torsion polynomial ψ2
` by corollary 2.1.10. By lemma 2.1.7 ψ2

` has

degree `2− 1 it follows that L = K(α) is an extension of degree at most `2− 1. Then,

β is a solution to either a linear or quadratic polynomial over L, so that F = L(β) is

an extension of degree 1 or 2. Thus G in E(F ), so the cyclic group generated by G,

ker(ϕ), is contained in E(F ). Hence [F : K] = O(`2).

Now suppose that ker(ϕ) is generated by two independent elements G1 = (α1, β1)

and G2 = (α2, β2). (In this case independent means that 〈G1〉 ∩ 〈G2〉 is trivial.) If

we let L1 = K(α1, β1) and L2 = K(α2, β2) then G1 and G2 are in E(L1) and E(L2)

respectively. Thus E(L1) contains 〈G1〉 and E(L2) contains 〈G2〉. Now suppose that

`1 and `2 are the orders of G1 and G2 respectively. Then as argued in the cyclic case

[L1 : K] = O(`21) and [L2 : K] = O(`22). Furthermore, ker(ϕ) is exactly 〈G1, G2〉, and

because G1 and G2 are independent this implies that ` = `1`2, thus if F = L1L2 then

[F : K] is O(`21`
2
2) = O(`2). Also, both G1 and G2 are in E(F ), so ker(ϕ) is contained

in E(F ). Hence, in the case that the kernel of ϕ is generated by two independent

elements, the points of the kernel are defined over an extension F/K of degree O(`2)

just as in the cyclic case.

Only by considering both theorem 3.1.5 and corollary 3.1.6 does one obtain the

most complete view of the complexity of applying Vélu’s formulas. One can see by the

following example that the minimal degree of the extension can be both 1 and O(`2).

Example 3.1.7. Let K = F7 and E1 be the elliptic curve defined over K by

y2 = x3 + x.

Likewise, let E2 be the elliptic curve defined over K by

y2 = x3 − 2.



46

In both cases, the a-invariants a1 and a3 are both 0, so the two torsion polynomial

ψ2(x, y) = 2y by definition 2.1.1. Hence the two torsion points are the ones with

y-coordinate equal to 0.

First we find an isogeny with kernel order ` = 2, such that the kernel is defined

over K. Thus, the point P1 = (0, 0) on E1 is clearly defined over K. So the isogeny

ϕ1 with kernel 〈P1〉 has kernel defined over K.

Now to observe the opposite extreme, we can show the existence of an isogeny

of degree 2 with kernel defined over an extension of degree 3, which is the degree

of the (univariate) two torsion polynomial. As the two torsion points on E2 are the

points with y-coordinate equal to 0, the x-coordinate must be a root of the polynomial

x3 − 2. Exhaustive search shows that 2 is not a cube modulo 7, so this polynomial

is irreducible over K. Let α be any cube root of 2 in K, so F = K(α) is a degree 3

extension, and a minimal degree extension such that the two torsion point P2 = (α, 0)

on E2(K) is defined. Thus to define an isogeny ϕ2, of degree ` = 2 with kernel 〈P2〉 it

is necessary to work over an extension of degree equal to the degree of the `-torsion

polynomial. As the degree of the ` is the source of the O(`2) bound in corollary 3.4,

this demonstrates an isogeny of degree ` where kernel is only defined over an extension

with degree limited by the degree of the `-torsion polynomial.

In the worst case scenario, the degree over which the kernel is defined can grow

quadratically in `. However, in practice, the contribution is only dependent on the

extension degree over which the kernel is defined, which may be smaller in many other

cases.

3.1.2 Kohel’s Approach: Computing from the kernel polynomial

In his dissertation, D. Kohel introduced a new approach for determining the domain

and rational maps from the kernel of an isogeny [16]. Specifically, as opposed to Vélu’s

approach of calculating from a list of points in the kernel, Kohel introduced the idea
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of calculating the isogeny from the kernel polynomial. Specifically, given any finite set

S of points on an elliptic curve E(K), there is a unique monic polynomial of minimal

degree, ψ, defined over K such that ψ(x) = 0 if and only if x is the x-coordinate of

a point in S. So, the kernel polynomial of a separable isogeny is the minimal degree

polynomial with roots at the x-coordinates of the kernel points.

Similar to Vélu’s formulas, Kohel’s formulas give a straight forward algorithm to

calculate the codomain and rational maps of an isogeny. To illustrate this we precisely

state the input and output of this algorithm.

Input: Given a curve E1 in general Weierstrass form and a kernel polynomial ψ(x)

of a separable isogeny. Here, we add the restriction that the kernel associated to ψ is

either odd order, or if it is even order that it is contained in or equal to the E1[2].

Output: The general Weierstrass coefficients of a Weierstrass model for the codomain

curve E2 of a separable normalized isogeny with kernel polynomial ψ. Also, coordi-

nate maps (as rational maps on E1) that evaluate a point (x, y) on E1 to a point on E2.

Given the explicit formulas in this section it is a simple matter to apply them to

obtain the algorithm.

As stated we restrict to the cases that the kernel of the isogeny is order two, the

whole two torsion, or an odd order. In each case, we assume that the domain of the

isogeny is an elliptic curve with Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Just as in Vélu’s formulas, the codomain of the isogeny is given by Weierstrass model:

y2 + a1xy + a3y = x3 + a2x
2 + (a4 − 5v)x+ (a6 − (a2

1 + 4a2)v − 7w). (3.7)

If the kernel has an odd order d = 2n+ 1, then the kernel polynomial is given by:

ψ(x) = xn +
n−1∑
i=0

(−1)isi.
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If b2, b4, and b6 are the b-invariants of the Weierstrass model of the domain, then the

codomain of the isogeny is given by equation (3.7) where v and w are given by:

v = 6(s2
1 − 2s2) + b2s1 + nb4

and

w = 10(s3
1 − 3s1s2 + 3s3) + 2b2(s

2
1 − 2s2) + 3b4s1 + nb6

where s2 = 0 if n < 2 and s3 = 0 if n < 3.

Then we define the polynomial:

φ(x) =(4x3 + b2x
2 + 2b4x+ b6)(ψ

′(x)2 − ψ′′(x)ψ(x))

− (6x2 + b2x+ b4)ψ
′(x)ψ(x) + (dx− 2s1)ψ(x)2.

Then let ψ2 denote the bivariate two torsion polynomial (as in equation (2.2)). If the

characteristic of K is not 2, then define:

ω(x, y) =

(
φ′(x)ψ(x)

ψ2(x, y)

2
− φ(x)ψ′(x)ψ2(x, y)

)
− a1φ(x) + a3ψ(x)2

2
ψ(x)

=

(
y +

a1x+ a3

2

)
(φ(x)ψ′(x)− φ′(x)ψ(x))− a1φ(x) + a3ψ(x)2

2
ψ(x)

In the general case, first define:

ψ̃ =
n−2∑
i=0

(
i+ 2

2

)
si+2(−x)i

and

˜̃ψ = −
n−3∑
i=0

3

(
i+ 3

3

)
si+3(−x)i.

Note, that while similar to derivatives, these polynomials are not exactly the second
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and third derivative of ψ. Then, use these formulas to define:

ω(x, y) =φ′(x)ψ(x)y − φ(x)ψ′(x)ψ2(x, y)+

((a1x+ a3)(ψ2(x, y))2(ψ̃(x)ψ′(x)− ˜̃ψ(x)ψ(x))+

(a1ψ2(x, y)2 − 3(a1x+ a3)(6x
2 + b2x+ b4))ψ̃(x)ψ(x)+

(a1x
3 + 3a3x

2 + (2a2a3 − a1a4)x+ (a3a4 − 2a1a6))ψ
′(x)2+

(−(3a1x
2 + 6a3x+ (−a1a4 + 2a2a3))+

(a1x+ a3)(dx− 2s1))ψ
′(x)ψ(x) + (a1s1 + a3n)ψ(x)2)ψ(x)

This ends the discussion of the form of the rational maps in the odd degree case.

In the case that the kernel is of order 2, then the kernel polynomial ψ(x) = x−x0

is the single x-coordinate of the non-infinite point in the kernel. If y0, the y-coordinate

is not known, then it is easily found. If the characteristic of K is 2, then square roots

are unique and we can define

y0 =
√
x3

0 + a2x2
0 + a4x0 + a6,

otherwise define

y0 = −a1x0 + a3

2
.

The codomain is given by equation (3.7) where v and w values are given by:

v = 3x2
0 + 2a1x0 + a4 − a1y0 and w = x0v.

The polynomials φ and ω are given by

φ(x) = (x(x− x0) + v)(x− x0)

and

ω(x, y) = (y(x− x0)
2 − v(a1(x− x0) + (y − y0)))(x− x0).

In the case that the kernel is the entire two torsion then

ψ(x) = x3 − s1x
2 + s2x− s3
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and if b2 and b4 are b-invariants of the Weierstrass model of the domain, then the

codomain is given by the equation (3.7) where the v and w values are given by:

v = 3(s2
1 − 2s2) +

b2s1 + 3b4
2

and w = 3(s2
1 − 3s1s2 + 3s3) +

b2(s
2
1 − 2s2) + b4s1

2
.

(Note that we are assuming the characteristic of K is not 2 here, this is fine because

as we saw in section 2.1 multiplication by 2 is not separable in such fields.) Then

define the polynomials:

φ1(x) = ψ′(x)2 + (−2ψ′′(x) + (4x− s1))ψ(x),

and

ω1(x, y) =
ψ2(x, y)(φ′1(x)ψ(x)φ1(x)ψ′(x))− (a1φ1(x) + a3ψ(x))ψ(x)

2
.

Then we set

φ(x) = φ1(x)ψ(x) and ω(x, y) = ω1(x, y)ψ(x).

This concludes the characterization of the rational maps in the case that the kernel

is contained in E1[2].

We summarize the results of this section as:

Theorem 3.1.8. If ψ is the kernel polynomial of an isogeny of odd degree, degree 2,

or degree 4 if the kernel is also the entire two torsion. The codomain of the isogeny

is given by equation (3.7). The rational maps for the isogeny are given by:(
φ(x)

ψ(x)2
,
ω(x, y)

ψ(x)3

)
,

where ψ, φ, ω, v and w are given for the individual cases above.

We state this without proof, because it will follow from the results of the next

section.

Certainly Kohel’s formulas simplify the task of computing an isogeny. Indeed these

formulas reduce the problem of computing the isogeny to polynomial arithmetic and
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evaluation. However, it is not immediately clear why this is at all useful, other than

conceptual clarity. It does, in fact, work out that Kohel’s formulas do provide a

performance improvement, in some cases.

Specifically, the kernel of an isogeny is defined over some algebraic extension L/K,

it may occur that the kernel polynomial of an isogeny ψ(x) is defined over an inter-

mediate extension F properly contained in L. When the field of definition of ψ is of

lower degree than the field of definition of the actual points of the kernel, this can

lead to a speed up by simplifying the necessary extension field arithmetic.

Immediately the question comes to mind: Does it ever occur that using Kohel’s

formulas provides a speed up? Alternately, does it ever occur that using Kohel’s

formulas does not provide a speed up over Vélu’s formulas? The answer to both

questions is yes. This can be seen by examining two extreme cases: When ψ is

defined over K or when the kernel polynomial is only defined over L, the extension of

definition of the kernel of the isogeny. In the first case, it is sufficient to only perform

polynomial arithmetic over K. However, in the second case Kohel’s algorithms will

not provide any speed up over Vélu’s formulas. The following example illustrates how

each of these cases may be realized.

Example 3.1.9. Consider the elliptic curve E defined over K = F7 by the Weierstrass

equation y2 = x3 + x + 1. In this case the a-invariants a1 and a3 are both zero, so

that the two torsion points on E(K) are the points with y-coordinate 0. Thus, we see

that the minimal polynomial over K of the x-coordinates of the two torsion points

is ψ2(x) = x3 + x + 1. We can easily check that this polynomial is irreducible, by

checking that it has no roots in K (as it is degree 3, if it were reducible, it must have

a linear factor.) We can further note that this polynomial is separable (i.e. has no

repeated roots) because ψ′(x) = 3x2 + 1 = 3(x2 + 5) and we can tell that if it did

ψ(x) would have a nontrivial factor, contradicting the fact that it is irreducible.

Now consider a root α of ψ2 and let F = K(α). It turns out that ψ2 splits

completely over F , with roots α, 2α2 + 6 and −2α2 + 4α + 2. So that the nontrivial
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two torsion points are:

(α, 0), (2α2 + 6, 0) and (−2α2 + 4α + 2, 0)

and all are contained in E(F ).

Suppose that ϕ1 is the isogeny with the full two-torsion set as kernel, then applying

Vélu’s formulas requires working over F . However, as the kernel polynomial is defined

over K, applying Kohel’s formulas requires that we work over K. This realizes the

case when the kernel polynomial is defined over K but the kernel is defined over an

extension.

However, we can also see the other extreme case, when the kernel polynomial is

only defined over the same extension field as the points of the kernel. If ϕ2 is the

isogeny with order 2 kernel 〈(α, 0)〉, applying Vélu’s formulas requires that we work

over F . However, the kernel polynomial ψ of ϕ is the linear polynomial x− α. This

polynomial is defined over F , so applying Kohel’s formulas requires working over F

as well.

More formally, let ψ(x) in K[x] be the kernel polynomial of the degree ` separable

isogeny ϕ. Let F/K be an algebraic extension of minimal degree d such that the

coefficients of ψ(x) are all contained in F . Then because extension field arithmetic

is implemented via polynomial arithmetic, one F multiply takes M(d) operations

in K, so that we can take all F operations to be O(M(d)) operations in K. As

multiplication is the limiting factor in extension field arithmetic we will take all F

operations to be O(M(d)) operations in K. The polynomial ψ has degree `, so that

the degree of all polynomials involved is O(`). Thus, the polynomial arithmetic in

F [x] requires O(M(`)) operations in F , or Õ(M(d`)) operations in K.

This result is summarized in the following theorem:

Theorem 3.1.10. If ϕ : E1 → E2 is an isogeny with kernel polynomial ψ in F [x],

where F/K is an algebraic extension of degree d, then Kohel’s formulas can be com-
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puted in Õ(M(d`)) operations in K. The formulas can be precomputed and then

evaluated in O(`M(d)) operations in K.

So if we restrict to the case of an isogeny defined over K, then the kernel polyno-

mial must be defined over K as well. In this case F = K and hence d = 1 so that we

get the following corollary.

Corollary 3.1.11. If ϕ : E1 → E2 is an isogeny defined over K then Kohel’s formulas

can be computed in O(M(`)) operations in K. The formulas can be precomputed and

then evaluated in O(`) operations in K.

It is common to consider only isogenies defined over K, such as in the case of the

SEA point counting algorithm ([2], [1] chapter VII.) So the assumptions of corollary

3.1.11 are not unreasonable in practice.

3.2 Computing from the kernel polynomial: General degree isogenies

Kohel’s idea is a very useful observation, and in many cases leads to improved per-

formance due to performing the computations over a lower degree extension field.

However, in some cases the restriction of working over an odd degree field may be

overly restrictive. This idea can be generalized to work over arbitrary degree isoge-

nies [2].

In order to compute a general degree isogeny from a kernel polynomial, we stipulate

that the domain curve must be in short Weierstrass form. This greatly simplifies the

algebra.

Theorem 3.2.1. Suppose E1 is an elliptic curve in short Weierstrass form

y2 = x3 + Ax+B.

Let ψ be the kernel polynomial of a separable normalised isogeny ϕ with domain E1

and degree `. Let ψ2 = gcd(x3 + Ax+B,ψ). Then define

D(x) = ψ2/ψ2 = x`−1 − σ1x
`−2 + σ2x

`−3 − σ3x
`−3 + · · · .
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Then the coordinate maps of ϕ are given by

α(x) = `x− σ1 − (3x2 + A)I(x)− 2(x3 + Ax+B)I ′(x),

where I(x) = D′(x)
D(x)

, and

β(x, y) = yα′(x).

And the codomain curve E2 is given by

y2 = x3 + (A− 5v)x+ (B − 7w),

where v = A(`−1)+3(σ2
1−2σ2) and w = 3Aσ1+2B(`−1) + 5(σ3

1 − 3σ1σ2 + 3σ3).

Proof. The proof of this fact follows from the proof of Vélu’s formulas. As in Vélu’s

formulas C is the set of points of the kernel of a separable normalized isogeny ϕ.

First we determine the map α. Then by lemma 3.1.3 α(P ) is given by

xP +
∑
Q∈C

xP+Q − xQ.

As in Vélu’s formulas (section 3.1.1) C is partitioned into the disjoint sets {∞}, C2,

R and −R where C2 are the two torsion points and R and −R are the rest of the

points of C sorted from their inverses. Thus we can write D(x) as:∏
Q∈C2

(x− xQ)
∏
Q∈R

(x− xQ)2.

Thus if we let C+ be C2 ∪R. Then by equations (3.3) and (3.5) in lemma 3.1.3, if P

is (x, y) then

α(P ) = x+
∑
Q∈C+

(
vQ

x− xQ
+ 4

x3
Q + AxQ +B

(x− xQ)2

)
where vQ is 3x2

Q + A if Q is a two torsion and vQ is 2(3x2
Q + A). As E1 is in short

Weierstrass form, when Q is a two torsion x3
Q + AxQ +B is 0. Hence

∑
Q∈C2

xP+Q − xQ =
∑
Q∈C2

(
vQ

x− xQ
+ 2

x3
Q + AxQ +B

(x− xQ)2

)
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Now looking at a similar sum for the non-two torsion points gives that the sum over

Q ∈ R ∪ −R is
1

2

∑
Q∈C−C2

(
vQ

x− xQ
+ 4

x3
Q + AxQ +B

(x− xQ)2

)
.

Combining these two equations gives:

α(P ) =
∑

Q∈C−{∞}

(
3x2

Q + A

x− xQ
+ 2

x3
Q + AxQ +B

(x− xQ)2

)
.

It is straight forward algebraic manipulation to show

x− xQ −
3x2 + A

x− xQ
+ 2

x3 + Ax+B

(x− xQ)2
=

3x2
Q + A

x− xQ
+ 2

x3
Q + AxQ +B

(x− xQ)2
.

substituting this into the expression for α gives

α(P ) = `x− σ1− (3x2 +A)
∑

Q∈C−{∞}

(x− xQ)−1 + 2(x3 +Ax+B)
∑

Q∈C−{∞}

(x− xQ)−2.

The sum of (x − xQ)−1 is I(x) = D′(x)/D(x). The derivative of (x − xQ)−1 is

−(x − xQ)−2 so the second sum is equal to −I ′(x). This gives the statement of the

Theorem.

Given that the x-coordinate map is α and E1 is in short Weierstrass form, then

the expression for β comes from lemma 2.2.21.

The expression for the coefficients of the codomain curves are given by expanding

the values from Vélu’s formulas A − 5v and B − 7w in the symmetric functions

(coefficients) of D(x). Hence the expressions in σ1, σ2 and σ3.

From this theorem, it seems that to obtain a formula that works for general degree

isogenies, we have sacrificed generality of the curves that we consider. Indeed we

restrict ourselves to the case of curves in short Weierstrass form. On the other hand,

if the characteristic of K is not 2 or 3, then all curves are isomorphic to a curve in

short Weierstrass form. This is certainly encouraging, and turns out to be quite useful.

However, Vélu’s and Kohel’s formulas for computing isogenies are quite dependent
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on the underlying Weierstrass model. We would like to precisely describe how to use

theorem 3.2.1 to actually calculate the rational maps and codomain curve given a

kernel polynomial of an isogeny with domain in general Weierstrass form. The only

restriction we make is that K must be of characteristic not 2 or 3.

First we note that in both Vélu’s and Kohel’s formulas, the codomain of the com-

puted isogeny has the same coefficients on the y, xy, and x2 coefficients as the domain

curve. In the algorithm that we give, we maintain the same convention. However, the

argument that we present will show that one can easily post compose with any Weier-

strass isomorphism to obtain a separable isogeny. The approach is straight forward,

but requires that we be careful when we precompose the isogeny with a Weierstrass

isomorphism.

Input: A curve E1 in general Weierstrass form, defined over a curve of characteristic

not 2 or 3. A kernel polynomial ψ of a separable normalized isogeny ϕ with domain

E1 and degree `.

Output: The general Weierstrass coefficients of a Weierstrass model for the codomain

curve E2 (with the same coefficients on y, xy and x2 as E1) of a separable normalized

isogeny with kernel polynomial ψ. Also, coordinate maps (as rational maps on E1)

that evaluate a point (x, y) on E1 to a point on E2.

1. Calculate s = −a1/2, r = −(a2 − sa1 − s2)/3 and t = −(a3 + ra1)/2. Then

define the Weierstrass isomorphism ρ : E1 → Ẽ1 by

x̃ = x− r, ỹ = y − sx+ rs− t

and its inverse ρ−1 : Ẽ1 → E1 is given by

x = x̃+ r, y = ỹ + sx̃+ t.
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Then Ẽ1 is in short Weierstrass form with coefficients

A = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

and

B = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

2. Define ψ̃ = ψ ◦ ρ−1. Use theorem 3.2.1 with domain curve Ẽ1 and kernel poly-

nomial ψ̃ to calculate an isogeny ϕ̃ : Ẽ1 → Ẽ2.

3. Let A2 and B2 be the coefficients of Ẽ2. Let r, s, and t be as in the first step.

Define the Weierstrass isomorphism τ : Ẽ2 → E2 by

x′ = x̃+ r, y′ = ỹ + sx̃+ t.

Then E2 has coefficients a′1 = a1, a
′
2 = a2, a

′
3 = a3,

a′4 = A2 + sa3 − 2ra2 + (t+ rs)a1 − 3r2 + 2st

and

a′6 = B2 − ra4 − r2a2 − r3 + ta3 + t2 + rta1.

4. Calculate ϕ = τ ◦ ϕ̃ ◦ ρ.

Corollary 3.2.2. This algorithm correctly returns a separable normalized isogeny of

degree ` with codomain E1 and kernel polynomial ψ.

Proof. This is succinctly summarized in the following commutative diagram:

E1
ϕ //

ρ

��

E2

Ẽ1 ϕ̃
// Ẽ2

τ

OO

The equations for ρ, ρ−1 and the curve Ẽ1 are correct based on the properties of

Weierstrass isomorphisms ([20] III.1.2.) The isogeny ϕ̃ is separable and has codomain
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Ẽ2 by theorem 3.2.1. Once again, the Weierstrass isogeny τ and codomain E2 are also

correct based on the properties of Weierstrass isomorphisms. The only tricky thing

is to note is that ψ̃ = ψ ◦ ρ−1 is the kernel polynomial of τ ◦ ϕ̃. Then, because ρ−1 ◦ ρ

is the identity, it follows that ψ is the kernel polynomial of ϕ.

The composite map ϕ is a separable isogeny, as ρ, ϕ̃ and τ are separable isogenies

(Weierstrass isomorphisms are degree 1 isogenies.)

It also follows that ϕ is normalized, as ϕ̃ is normalized and because ρ and τ have

no scaling factors. Thus the pullback of the invariant differential of E1 along the

composite map has no scaling factors introduced.

We conclude this section with a brief discussion of the algebraic complexity of ap-

plying the algorithms of this section. Unsurprisingly the complexity of this algorithm

is not terribly different than applying Kohel’s formulas. Unless one calculates out

the composite rational map as a quotient of polynomials written out as the canonical

sum of multiples of powers of x, In which case, the complexity can gain a factor of `.

Theorem 3.2.3. Let ϕ : E1 → E2 be an isogeny of degree ` with kernel polynomial

ψ ∈ F [x], where F is some degree d algebraic extension of K. Then computing ϕ

by the algorithm of this section takes O(M(`d)) operations in K. If one leaves ϕ

as a sequence of maps (instead of computing the explicit composite) the complexity

of applying these formulas is O(`M(d)) If one computes out the rational maps for

ϕ as a quotient of polynomials, written as a sum of multiples of powers of x then

this step takes O(M(d`)
√
`) operations in K and will dominate the complexity of

precomputing ϕ.

Proof. The dominant factor in applying the formulas of theorem 3.2.1 is polynomial

multiplication. These polynomials are of degree O(`) over F hence the dominant

algebraic complexity is O(M(d`)). Computing the Weierstrass isomorphisms takes

a constant number of F operations, and hence does not contribute to the algebraic

complexity.
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Likewise evaluating the Weierstrass isomorphisms takes a constant number of F

operations. However, as in the case of Kohel’s formulas, this takes O(`M(d)) opera-

tions in K.

There are multiple algorithms for evaluating the composite ϕ̃ ◦ ρ, the best asymp-

totic complexity that does not contain a dependence on the underlying field is

O(M(`)
√
` log `) = O(M(`)

√
`)

operations in F ([2] 2.5, [3].) Hence this is O(M(`d)
√
`) K operations.

3.3 Computing from Domain and Codomain

The algorithms from the previous section show how to determine the coordinate maps

and codomain of an isogeny given a domain and kernel. However, there is a sort of

inverse question to this. Suppose we have the domain and codomain of a degree `

separable isogeny. Can we recover the kernel of this isogeny? Fortunately, the answer

is yes.

In this section we prove this by displaying a naive algorithm to recover the kernel,

given a domain and codomain. However, this naive algorithm has abysmal perfor-

mance, so we also present Stark’s algorithm which can achieve a much better com-

plexity with a few assumptions about the input.

3.3.1 A Naive Approach

Here we briefly sketch a brute force approach for recovering the kernel of an isogeny

from the domain and codomain. So given a domain E1, a codomain E2 and a degree `.

We will only suppose that p = char(K) does not divide `. Then we search for the

kernel of ϕ : E1 → E2 as follows. As ker(ϕ) is of order `, it is contained in E1[`], the `

torsion of E1. By lemma 2.1.12 E1[`] is isomorphic to Z/`Z×Z/`Z. So we enumerate

all ` order subgroups S of E1[`] and run Vélu’s formulas on each one, checking if the

calculated codomain is isomorphic to E2. If we find one, then there is a separable
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isogeny ϕ : E1 → E2 with kernel S. If we do not find any such kernel, then there is

not a degree ` isomorphism from E1 to E2.

Next, we briefly analyze the algebraic complexity of this approach when ` is prime.

For ` prime the group Z/`Z × Z/`Z has ` + 1 subgroups of order ` and in this case

Vélu’s formulas has algebraic complexity O(`M(`2)). So this algorithm has algebraic

complexityO(`2M(`2)). In general, if ` is composite then E[`] has more than `+1 order

` subgroups, so this complexity can not be better than O(`2M(`2)). This complexity

is worse than O(`4) and hence this is not a particularly practical algorithm.

3.3.2 Stark’s Algorithm

In contrast to the Naive approach in the previous section, Stark’s algorithm is a sub-

cubic algorithm for computing the kernel polynomial of an isogeny given the degree,

domain and codomain. The main idea underlying this algorithm is that if there exists

an isogeny ϕ : E1 → E2 with x-coordinate map N(x)/D(x) and ℘1 and ℘2 are the

respective Weierstrass functions of E1 and E2 then ℘1 and ℘2 are related by

℘2(z) = ℘1

(
N(z)

D(z)

)
([2] 6.1.) In [21] Stark proposed a continued fraction approach to recover the rational

function N(z)/D(z). Specifically by expanding ℘2 as a continued fraction in ℘1, hence

approximating N(z)/D(z). This algorithm has been written up in [2], a more clearly

written version of the algorithm occurs in Moody’s dissertation ([18] algorithm 3.)

The algorithm operates as follows:

Input: Given a domain E1 and codomain E2 both in short Weierstrass form of a

degree ` isogeny ϕ, where 4` < p, in the case of positive characteristic p.

Output: The denominator D(x) of the x-coordinate map of ϕ.

1. Let S = ℘1 mod z4`
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2. Let T = ℘2 mod z4`

3. Set n = −1, q−2 = 1, and q−1 = 0.

4. While deg(qn) < `− 1 do:

(a) Find r and t−2r such that

T (z) =
t−2r

z2r
+ · · ·+ t0 + t2z

2 + · · · .

(b) Set n = n+ 1 and an = 0.

(c) While 0 ≤ r do:

i. Set an = an + t2rz
r

ii. Set T = T − t−2rS
r mod z4`.

iii. Find r and t−2r such that

T (z) =
t−2r

z2r
+ · · ·+ t0 + t2z

2 + · · · .

(d) Set qn = anqn−1 + qn−2.

(e) If n = `− 1 go to step 5.

(f) Set T (z) = 1/T (z) mod z4`.

5. Return D(x) = qn(x).

This algorithm is straight forward, except for a few steps. In step 4f computing

the truncated reciprocal can be done in time O(M(`)) by the algorithm stated in

section A.2.3. So that the complexity of the main loop is O(`M(`)) Also, we have not

shown how to compute ℘1 and ℘2 as in steps 1 and 2, which we will proceed to show.

Before moving on to discussing how to compute the Weierstrass functions on E1

and E2, we make some general remarks about this algorithm.
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Remark 3.3.1. This algorithm assumes that the input is in short Weierstrass form.

As we will show, this is a requirement of the algorithm for computing ℘1 and ℘2.

However, using the methods described in section 3.2 for characteristic not 2 or 3 we

can calculate Ẽ1 and Ẽ2 in short Weierstrass form, and isomorphic to to E1 and E2

respectively. Then by appropriately pre and post composing with these isomorphisms

we can determine the isogeny ϕ : E1 → E2. Also, note that restricting to characteristic

2 and 3 is implied by the fact that 4` < p in the case of positive characteristic p.

Remark 3.3.2. Notice that this algorithm outputs the denominator D(x) of ϕx. How-

ever the algorithms in sections 3.1.2 and 3.2 take input as a kernel polynomial ψ.

However, ψ and D are simply related as ψ = ψ2ψ>2, where ψ2 is the greatest common

divisor of ψ and the univariate two torsion polynomial of E1. Then D = ψ2(ψ>2)
2.

Thus we can easily compute ψ from D.

Remark 3.3.3. Note that the value T in this algorithm is always a Laurent series

in z2. From an implementation point of view, it is straight forward to store this as a

Laurent series in z. However this requires storing twice as many coefficients, half of

which will always be 0, and will waste operations while performing operations on T.

By careful implementation, one can succinctly store this Laurent series and perform

operations on it that do not waste cycles performing multiplications by 0.

The remainder of this section is on how to compute the Weierstrass ℘ function

of a curve in short Weierstrass form. We do not go into any background details of

this function and point the interested reader to [20] VI.3.3. For our purposes, the ℘

function is a Laurent series over K of the form

℘(z) =
1

z2
+
∞∑
i=0

ciz
−2i. (3.8)

Furthermore, ℘ satisfies the differential equation

(℘′(z))2 = 4
(
℘(z)3 + A℘(z) +B

)
(3.9)
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We now give two approaches for solving for ℘ mod zn. First we give a straight

forward algorithm with complexity O(n2) and then give an algorithm with complex-

ity O(M(n)).

The first straight forward approach ([2] 3.2) is to combine equations (3.8) and

(3.9) and use the fact that

c1 = −A
5
, and c2 = −B

7
.

Differentiating equation (3.9) gives

℘′′(z) = 6℘(z)2 + 2A.

Then solving for cj gives

cj =
3

(j − 2)(2j + 3)

j−2∑
i=1

cicj−1−i.

Directly computing these coefficients then takes O(n2) operations in K. Note that

this implies that if we are working in positive characteristic p, then we must have

2n+ 3 < p, otherwise the formula will have a division by 0.

The second approach is a more complicated algorithm, but it can solve for ℘ in

time O(M(n)). This approach was introduced in [2] 3.3, and proceeds as follows. Let

Q(z) =
1

℘(z)
and R(z) =

√
Q(z)

where either choice of square root will do here. Then

R′(z)2 = BR(z)6 + AR(z)4 + 1.

Thus calculating out the first 3 terms of R gives

R(z) = z +
A

10
z5 +

B

14
z7 + · · ·

squaring implies that

Q(z) = z2 +
A

5
z6 +

B

7
z8 + · · · .
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This in turn implies that

℘(z) =
1

z2
− A

5
z2 +

B

7
z4 + · · · .

So this yields the algorithm to compute ℘(z) as follows:

Input: A and B coefficients of an elliptic curve E in short Weierstrass form, and

degree n.

Output: The truncated Weierstrass function ℘ mod zn associated to E.

1. Compute R mod z2n+6 by the algorithm for first order nonlinear differential

equations in section A.2.2 with G(t) = Bt6 + At4 + 1.

2. Compute Q = R mod z2n+5.

3. Compute ℘ = 1/Q mod z2n+1.

The algorithm for solving first order nonlinear differential equations in section

A.2.2 requires O(M(n)), as does squaring and reciprocal (see appendix A.2.3) so that

the total complexity for computing ℘ is O(M(n)).

Because computing the functions ℘1 and ℘2 have complexity O(M(n)) these steps

do not impact the algebraic complexity of Stark’s Algorithm. Thus we can take the

algebraic complexity of Stark’s algorithm as O(nM(n)).
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Appendix A

ALGEBRAIC COMPLEXITY THEORY AND
ALGORITHMS

This appendix provides some background on algebraic complexity theory and some

efficient polynomial arithmetic algorithms. These two subjects are very broad in their

own right and the purpose of this appendix is not to provide any sort of deep or

complete introduction. Both subjects also provide powerful tools for analyzing and

understanding number theoretic algorithms. The computational aspects of elliptic

curves and isogenies are no exception, so this material is useful for deeper under-

standing of the results in the body of this document. The results collected here are

provided as either a refresher or brief introduction to the few results that are used

through out the rest of this document. There are several very good introductions to

this deep subject such as [5] and [8].

A.1 Algebraic Complexity

Simply put, the algebraic complexity of a number theoretic algorithm measures the

number of mathematical operations that the algorithm takes, and how this value scales

with the input size. In the case of combinatorial algorithms, the analysis is based on

how many operations they use based on the number of bits of input ([11] I.1.) While

in many cases this closely corresponds to the algebraic complexity, measuring the

number of operations of a mathematical algorithm based on the number of bits in

the input may not be particularly informative. For instance, using the number of bits

in the input presupposes a fixed representation, and constantly considering this may

be cumbersome. To be more precise, algebraic complexity is measured as follows,
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for a given algorithm, the size of the input is measured in one or more variables

that captures the size of the input. Then for a given input, the underlying ring or

field of the input is identified. The algebraic complexity is measured as how many

operations in the underlying field or ring are used based on the size of the input.

Ring operations are considered as addition, subtraction, and multiplication. Field

operations are the ring operations as well as inversion. Sometimes, (depending on

the context) comparison operations such as equals, greater than or less than are

considered ring/field operations as well.

This definition may seem somewhat uninformative, so it is useful to look at a few

examples.

Example A.1.1. Consider polynomial arithmetic: given two polynomials f and g in

K[x] for some field K with n = min{deg(f), deg(g)}. The complexity of the poly-

nomial arithmetic is measured as the number of K operations it takes to compute

h = f + g, h = f − g or h = f · g respectively. Specifically, addition and subtrac-

tion both take n K operations, measuring multiplication is more complicated and we

denote the number of operations as M(n).

Example A.1.2. Consider matrix addition and multiplication of two m×m matrices

over a ring R, we consider the size of the input to be the dimension m. In this case the

naive algorithm for addition requires exactly m2 additions. The naive algorithm for

multiplications requires computing m2 inner products, each of which takes m multi-

plications in R and m−1 additions in R. Thus the naive algorithm for multiplication

takes 2m3 −m2 operations in R.

Ultimately, it would be nice to not worry about the exact number of algebraic

operations an algorithm uses, but rather to just get an idea of the way that this

number scales as the input size changes. The solution is to measure the asymptotic

complexity of the algorithm, that is if the input grows arbitrarily large, we want a

function that dominates the number of operations the algorithm takes. This can be
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rigorously defined ([8] 25.7), but we first must introduce the following definition:

Definition A.1.3. A function f : N → R is eventually positive if there exists some

N such that for all n ≥ N , f(n) is positive.

The asymptotic complexity of an algorithm is measured in big-oh notation. The

precise definition and notation of this is:

Definition A.1.4. For an input of size n the number of underlying field (ring) op-

erations used by an algorithm is O(f(n)), if f is an eventually positive function, and

there exists a positive integer N such that for all n ≥ N , there exists a positive

constant C such that for input size of n, the algorithm uses no more than Cf(n)

operations.

From this it is clear that the naive algorithm for matrix multiplication in example

A.1.2 is O(m3). Which would have been a much easier analysis than actually counting

each operation.

The notion of big-oh notation can be relaxed to ignore logarithmic factors, and

his is called soft-oh notation. The precise definition of this is as follows:

Definition A.1.5. For an input of size n the number of underlying field (ring) op-

erations used by an algorithm is Õ(f(n)), if f is an eventually positive function,

and there exists a positive integer N such that for all n ≥ N , there exists posi-

tive constants b and C such that for input size n, the algorithm uses no more than

C(log(3 + f(n)))bf(n) operations.

To illustrate the differences between these two asymptotic measurements, consider

the algebraic complexity of matrix multiplication in example A.1.2. Because any

algorithm must keep track of the indices of the elements of the matrices that are

being multiplied, this requires keeping around counters that can hold values up to m

so the length of these variables (in bits) and complexity of arithmetic is O(logm).
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If we take these operations into account the algorithm has complexity O(m3 logm).

But this is cumbersome, and uninformative because as m grows the m3 term will

dominate the logm factor, so it is convenient to consider the soft-Oh asymptotic

complexity Õ(m3).

Remark A.1.6. There are algorithms that are, in practice, better than the naive

algorithm for matrix multiplication. In this case, computing the product of two m×m

matrices is Õ(mω) where ω can be taken to be at most log2 7 = 2.807... ([8] 12.1.)

A.2 Efficient Polynomial Arithmetic

As mentioned in the previous section the algebraic complexity of polynomial multipli-

cation is more complicated than just the naive algorithm that uses O(n2) operations in

the underlying field K (where n is the degree of the polynomials.) For example, the al-

gorithm for fast Fourier multiplication has algebraic complexity O(n log n log log n) =

Õ(n) ([8] 8.2.) Although, the values for n where the exact run times are better than

other methods may be quite high. This is just an indicator of how complicated an-

alyzing the costs of polynomial multiplication can be. Herein, we are not interested

in the exact complexity of polynomial multiplication. As such, we treat polynomial

multiplication as a subroutine and denote the cost as M(n). However, we do make the

assumption that the complexity of polynomial multiplication is “superlinear,” and by

this mean that
M(m)

m
≤ M(n)

n

when m ≤ n. This implies that

i∑
i=1

M(2i) ≤ 2M(2i), (A.1)

a fact that will come in handy when analyzing algorithms for computing truncated

power series of polynomials [2].

Recall that Starks algorithm (section 3.3.2) requires that we compute the Weier-

strass ℘ functions associated to the domain and codomain. This requires solving
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a system of differential equation, and the algorithms for that in turn require com-

puting the truncated reciprocal and exponential functions of polynomials. We first

demonstrate the algorithms for solving the differential equations, and then show how

to compute the reciprocal and exponential functions efficiently enough to give these

algorithms O(M(n)) complexity. For now, to analyze the complexity of solving the

system of linear equations we will assume this complexity.

Stark’s algorithm to recover the kernel polynomial of an isogeny requires solving

a first order nonlinear differential equation. To show how to do that, we will first

present an algorithm for solving first order linear differential equations, and then

show how this can be used to solve the desired system of linear equations.

A.2.1 Solving a system of first order linear differential equations

To solve a system of linear differential equations, we use the following algorithm from

[2] 2.3, originating from [3].

Input: A degree n, univariate polynomials a, b, and c in K[z] of degree at most n,

where a(0) 6= 0, and a scalar α in K.

Output: A polynomial f such that

af ′ + bf = c mod zn

and f(0) = α.

1. Let B = b/a mod zn−1.

2. Let C = c/a mod zn−1.

3. Let J = expn
(∫

CB
)
.

4. Return

f =
1

J

∫
CJ mod zn.
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The correctness of this algorithm can be seen directly by verifying that f does

in fact satisfy the desired equations. Here
∫

denotes the antiderivative. So we note

that to calculate the antiderivative we require that 1, · · · , n− 1 are units in K (thus

for positive characteristic n ≤ p.) In steps 1, 2 and 4, we calculate reciprocals and

hence have complexity O(M(n)). Computing the truncated exponential in step 3 has

complexity O(M(n)) as well. Computing the antiderivatives in steps 3 and 4 are O(n).

Hence the whole algorithm is O(M(n)).

A.2.2 Solving a system of first order nonlinear differential equations

Now to show how to solve the nonlinear system of differential equations we restate a

special case of an algorithm from [3] as relayed in [2] section 2.4.

Input: A polynomial G in K[t], scalars α and β in K, and degree n.

Output: The polynomial f such that f ′(z)2 = G(f)(z) mod zn and f(0) = α and

f ′(0) = β (here G(f) indicates the polynomial formed by composing G with f .)

1. Set f = α + βz and s = 2.

2. While s < n do

(a) Set a = 2f ′.

(b) Set b = G′(f) (Where G′ denotes the derivative of G with respect to t.

(c) Set c = G(f)− (f ′)2.

(d) Use the algorithm for first order linear differential equations to solve for f

mod zs by computing f2 such that

af ′2 + bf2 = c

with f2(0) = 0.
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(e) Set f = f2 + f mod zs.

(f) Let s = 2s− 1.

3. Return f.

The correctness of this algorithm follows from the fact that if f1 = f mod zs then

f2 = f − f1 mod z2s−1 is a solution of the linearized differential equation

2f ′1f
′
2 −G′(f2) = G(f1)− (f ′1)

2.

Note that for this algorithm to work 1, · · · , n − 1 must be units (i.e. n ≤ p in

positive characteristic,) so that we can use the algorithm for solving first order linear

differential equations. We briefly analyze the complexity here. Calculating a, b,

and c to precision s requires O(M(n)) and, as argued above, solving the system of

linear differential takes O(M(s)) as well. Thus equation (A.1) implies that the whole

complexity is O(M(n), as the magnitude of s roughly doubles with each iteration.

A.2.3 Polynomial reciprocal and exponential functions

Next, we describe the polynomial functions of truncated reciprocal and truncated

exponential. Then we describe how to compute these values in time O(M(n)).

For the truncated reciprocal of degree n, one can guess that this means that given

a polynomial f , the reciprocal polynomial g is the polynomial such that

f(z)g(z) ≡ 1 mod zn,

however to compute this, we can apply the iterative formula:

gi = − 1

f0

i∑
j=1

figi−j

for i ≥ 1, where g0 = 1/f0, the reciprocal of the constant coefficient which must

be nonzero. It is less clear what the truncated exponential, denoted expn(f), of a
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polynomial is. However, it is just the evaluation of the power series

n−1∑
i=0

f i

n!
mod zn.

In each of these cases, assuming that the input polynomial f is of degree n, using

these straight forward iterative formulas requires O(n2) operations in K.

In the case of the algorithms for computing the ℘-function, using O(n2) algorithms

for exponential and reciprocal this would dominate the complexity, leading to O(n3)

algorithms. As the complexity of these algorithms is the bottleneck, it is prudent

to investigate different algorithms. It turns out that there are algorithms for both

reciprocal and exponential that have complexity O(M(n)). Both of these algorithms

use a technique called Newton iteration. The Newton iteration approach is a general-

ization of Newton’s method for finding roots. Whereas Newton’s method finds roots

by approximation in the usual Euclidean metric of analysis, Newton iteration uses

the p-adic metric where p is some prime ideal ([8] chapter 9.) Here we do not give a

proof of correctness, rather we just state the iterations.

The Newton iteration for computing the reciprocal of f is

gi+1 = gi (2− fhi) mod z2i+1

for i ≥ 0 where g0 is 1/f0. So computing iteration i requires O(M(2i+1)) operations in

K. Thus equation (A.1) implies that computing the truncated reciprocal to precision

n requires O(M(n)) operations ([2] 2.1, [8] algorithm 9.3.)

The Newton iteration for computing the exponential of f is

gi+1 = gi (1 + f − log2i+1(g)) mod z2i+1

for i ≥ 0, where g0 = 1. Similarly to how we defined the exponential function on

polynomials by the power series expansion, we can define the truncated logarithm as

logn(g) = −
n−1∑
i=1

1

i
(1− g)i mod zn.
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However, the logarithm can also be obtained by computing the truncated power series

of g′/g and taking the antiderivative. The derivative and antiderivative operations

on a polynomial take O(n) operations, and, as we just saw, calculating the reciprocal

takes O(M(n)) operations, so that calculating the logarithm of a polynomial can

be computed in time O(M(n)). Thus it follows that iteration i takes O(M(2i+1))

operations in K. And again, by equation (A.1) it follows that computing the truncated

exponential to precision n requires O(M(n)) operations in K ([2] 2.2.)



76

Appendix B

ELLIPTIC CURVE ISOGENIES IN SAGE

As of release 4.0.2, Sage [19] includes an implementation of elliptic curve isogenies.

This implementation was written by the author as part of the research for this project.

The purpose of this appendix is to briefly describe and advertise this new elliptic curve

isogeny functionality in Sage.

First we initialize an elliptic curve:

sage: F = GF(19);

sage: E = EllipticCurve(F, [0,0,0,1,2]); E

Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 19

sage: E.order()

12

The order 3 subgroup of the points defined over F19 is {∞, (8, 3), (8, 16)}.

Then, like in Vélu’s formulas we can specify the isogeny by giving this list of points

to the constructor:

sage: P = E((8,3))

sage: phi = EllipticCurveIsogeny(E, [0*P, P, 2*P]); phi

Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + x + 2

over Finite Field of size 19 to Elliptic Curve defined by

y^2 = x^3 + 9*x + 3 over Finite Field of size 19

Alternately, we can use the kernel polynomial ψ(x) = x− 8 to construct the isogeny

as in the algorithms of sections 3.1.2 and 3.2:
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sage: R.<x> = F[]

sage: phi = EllipticCurveIsogeny(E, x-8); phi

Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + x + 2

over Finite Field of size 19 to Elliptic Curve defined by

y^2 = x^3 + 9*x + 3 over Finite Field of size 19

An isogeny object can be called as a function to evaluate the result at points on the

domain curve:

sage: P = E.random_point(); P

(14 : 9 : 1)

sage: phi(P)

(16 : 14 : 1)

sage: P = E.random_point(); P

(8 : 3 : 1)

sage: phi(P)

(0 : 1 : 0)

The rational maps function returns the coordinate maps:

sage: phi.rational_maps()

((x^3 + 3*x^2 - 6*x + 7)/(x^2 + 3*x + 7),

(x^3*y - 5*x^2*y - 4*x*y - 4*y)/(x^3 - 5*x^2 + 2*x + 1))

The codomain function returns the codomain of the isogeny:

sage: E2 = phi.codomain(); E2

Elliptic Curve defined by y^2 = x^3 + 9*x + 3

over Finite Field of size 19

The constructor can also work to generate the isogeny from the domain and codomain,

and the equals operator has been overloaded so that it works with isogenies (even when

they are instantiated in different ways):



78

sage: psi = EllipticCurveIsogeny(E, None, E2, 3)

sage: psi == phi

True

The dual function returns the dual isogeny:

sage: phihat = phi.dual(); phihat

Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 9*x + 3

over Finite Field of size 19 to Elliptic Curve defined by

y^2 = x^3 + x + 2 over Finite Field of size 19

sage: P = E.random_point(); P

(17 : 7 : 1)

sage: phihat(phi(P)) == 3*P

True

For more complete and in-depth documentation of the sage EllipticCurveIsogeny

class, see the Sage documentation.


