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Abstract

We study decision making in environments
where the reward is only partially observed, but
can be modeled as a function of an action and an
observed context. This setting, known as con-
textual bandits, encompasses a wide variety of
applications including health-care policy and In-
ternet advertising. A central task is evaluation
of a new policy given historic data consisting of
contexts, actions and received rewards. The key
challenge is that the past data typically does not
faithfully represent proportions of actions taken
by a new policy. Previous approaches rely ei-
ther on models of rewards or models of the past
policy. The former are plagued by a large bias
whereas the latter have a large variance.

In this work, we leverage the strength and over-
come the weaknesses of the two approaches by
applying thedoubly robustechnique to the prob-
lems of policy evaluation and optimization. We
prove that this approach yields accurate value es-
timates when we hawathera good (but not nec-
essarily consistent) model of rewardsa good
(but not necessarily consistent) model of past
policy. Extensive empirical comparison demon-
strates that the doubly robust approach uniformly
improves over existing techniques, achieving
both lower variance in value estimation and bet-
ter policies. As such, we expectthe doubly robust
approach to become common practice.

Internet advertising, we find only whether a user clicked on
some of the presented ads, but receive no information about
the ads that were not presented. In health care, we only find
out success rates for patients who received the treatments,
but not for the alternatives. Both of these problems are in-
stances otontextual bandit¢Auer et al., 2002; Langford

& Zhang, 2008). The context refers to additional informa-
tion about the user or patient. Here, we focus on the offline
version: we assume access to historic data, but no ability to
gather new data (Langford et al., 2008; Strehl et al., 2011).

Two kinds of approaches address offline learning in con-
textual bandits. The first, which we call tliégrect method
(DM), estimates the reward function from given data and
uses this estimate in place of actual reward to evaluate
the policy value on a set of contexts. The second kind,
calledinverse propensity scor@PS) (Horvitz & Thomp-

son, 1952), uses importance weighting to correct for the in-
correct proportions of actions in the historic data. The firs
approach requires an accurate model of rewards, whereas
the second approach requires an accurate model of the past
policy. In general, it might be difficult to accurately model
rewards, so the first assumption can be too restrictive. On
the other hand, it is usually possible to model the past pol-
icy quite well. However, the second kind of approach often
suffers from large variance especially when the past policy
differs significantly from the policy being evaluated.

In this paper, we propose to use the techniqueaibly
robust(DR) estimation to overcome problems with the two
existing approaches. Doubly robust (or doubly protected)
estimation (Cassel et al., 1976; Robins et al., 1994; Robins
& Rotnitzky, 1995; Lunceford & Davidian, 2004; Kang &

. Schafer, 2007) is a statistical approach for estimatiomfro

1. Introduction incomplete data with an important propertyeither oneof

We study decision making in environments where we re{he two estimators (in DM and IPS) is correct, then the esti-
ceive feedback only for chosen actions. For example, ifnationis unbiased. This method thus increases the chances

of drawing reliable inference.

Appearing inProceedings of the8*" International Conference . . .
on Machine LearningBellevue, WA, USA, 2011. Copyright 2011 For example, when conducting a Survey,_se_emlngly ancil-
by the author(s)/owner(s). lary questions such as age, sex, and family income may be
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asked. Since not everyone contacted responds to the sui2- Problem Definition and Approach

vey, these values along with census statistics may be used

to form an estimator of the probability of a response condi-€t¥ be an input space apdi ={L. T k}a fipite actioq ,
pace. A contextual bandit problem is specified by a distri-

tioned on age, sex, and family income. Using importance™™ ¢ X ) wh e th q
weighting inverse to these estimated probabilities, otie es Hutloan\(er pairs(z, ) wherez € A’ is the contextan
€ 10, 1])* is a vector of rewards. The input data has been

mator of overall opinions can be formed. An alternative es-

timator can be formed by directly regressing to predict thegenerated using some unknown policy (possibly adaptive

survey outcome given any available sources of information@"d randomized) as follows:

Doubly robust estimation unifies these two techniques, so e The world draws a new example, #) ~ D. Only =

that unbiasedness is guaranteegitifierthe probability es- is revealed.

timate is accurater the regressed predictor is accurate. e The policy chooses an actien~ p(a | z, h), where
h is the history of previous observations (that is, the
concatenation of all preceding contexts, actions and
observed rewards).

e Rewardr, is revealed. It should be emphasized that
other rewards,, with a’ # a are not observed.

We apply the doubly robust technique to policy value esti-
mation in a contextual bandit setting. The core technique is
analyzed in terms of bias in Section 3 and variance in Sec-
tion 4. Unlike previous theoretical analyses, we do not as-
sume that either the reward model or the past policy model
are correct. Instead, we show how the deviations of the\ote that neither the distributio® nor the policyp is

two models from the truth impact bias and variance of theknown. Given a data sef = {(z,h,a,r,)} collected as
doubly robust estimator. To our knowledge, this style ofabove, we are interested in two tasks: policy evaluation and
analysis is novel and may provide insights into doubly ro-policy optimization. In policy evaluation, we are interegt

bust estimation beyond the specific setting studied here. Ih estimating thevalueof a stationary policyr, defined as:
Section 5, we apply this method to both policy evaluation

and optimization, finding that this approach substantially VT =E@n~plrm@)] -

sharpens existing techniques. On the other hand, the goal of policy optimization is
to find an optimal policy with maximum valuer* =

1.1. Prior Work argmax, V™. In the theoretical sections of the paper,

L . L we treat the problem of policy evaluation. It is expected
Doubly robust estimation is widely used in statistical infe that better evaluation generally leads to better optimiza-

ence -(see, €.g., Kang & S_chafer (2007) and_ the referenc?ﬁ)n (Strehl et al., 2011). In the experimental section, we
therein). More recently, it has been used in Internet ad-

vertising to estimate the effects of new features for onlineStUdy how our policy evaluation approach can be used for
advertisers (Lambert & Pregibon, 2007; Chan et al., 2010)pol|cy optimization in a classification setting.
Previous work focuses on parameter estimation rather th
policy evaluation/optimization, as addressed here. lewrth
more, most of previous analysis of doubly robust estima-The key challenge in estimating policy value, given the data
tion studies asymptotic behavior or relies on various modas described in the previous section, is the fact that we only
eling assumptions (e.g., Robins et al. (1994), Lunceford &ave partial information about the reward, hence we can-
Davidian (2004), and Kang & Schafer (2007)). Our analy-not directly simulate our proposed policy on the data set

sis is non-asymptotic and makes no such assumptions. §. There are two common solutions for overcoming this

Several other papers in machine learning have used ideggwi_tation. The first, calledlirect method DM), forms an

related to the basic technique discussed here, although nGpimateda () .Of the expegted rewa_rd conditiqned on the
with the same language. Foenign bandits Hazan & contextandaction. The policy value is then estimated by

Kale (2009) construct algorithms which use reward estima- - 1 Z b (2)

tors in order to achieve a worst-case regret that depends on PM 5] = &n(2) '

the variance of the bandit rather than time. Similarly, the ‘

Offset Tree algorithm (Beygelzimer & Langford, 2009) can Clearly, if o.(x) is a good approximation of the true ex-
be thought of as using a crude reward estimate for the “offPected reward, defined as(z) = E(,»~plra | z], then

set”. In both cases, the algorithms and estimators destribg"€ DM estimate is close 8™. Also, if ois unbiasedy gy
here are substantially more sophisticated. is an unbiased estimate Bf". A problem with this method

is that the estimatg is formed without the knowledge of
= and hence might focus on approximatimgainly in the
areas that are irrelevant féf™ and not sufficiently in the
areas that are important fof™; see Beygelzimer & Lang-
ford (2009) for a more refined analysis.

a?.l. Existing Approaches
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The second approach, calliegerse propensity sco(@PS), We express the expected value@‘R usingd(-,-,-) and
is typically less prone to problems with bias. Instead of A(-,-). To remove clutter, we introduce shorthangsfor
approximating the reward, IPS forms an approximationg,(z), g, for é,(x), I for I(w(x) = a), p for p(w(z) |
p(a |z, h) of p(a | x,h), and uses this estimate to correct z;, h), p for p(w(x) | 2, h), A for A(n(z),z)), andé for
for the shift in action proportions between the old, data-d(w(z), z, k). In our analysis, we assume that the estimates

collection policy and the new policy: p andp are fixed independently &f (e.g., by splitting the
original data set int® and a separate portion for estimating
Vire = L Z Ta{(w(x) =a) pandp). To evaluatde[Vy], it suffices to focus on a single
5] pnomes Dlalz,h) term in Eq. (1), conditioning oh:
wherel(-) is an indicator function evaluating to one if its  E(, #p aup(.j.h) [w + @w(w)]
argument is true and zero otherwise. plfa | z,h) =~
p(a | z,h) then the IPS estimate above will be, approxi- [(T — 0~ A)I
mately, an unbiased estimate Bf*. Since we typically =E; 7aln e Or(x) + A
have a good (or even accurate) understanding of the data- P @)

collection policy, it is often easier to obtain a good esti-

matep, and thus IPS estimator is in practice less suscepti- = Eq aln
ble to problems with bias compared with the direct method.

However, IPS typically has a much larger variance, due to = Eqn[A(1 —p/p)] + V7™ = By, [Ad] + V7™ .

the range of the random variable increasing. The issue bg=yen thoughr is independent ok, the conditioning orh

comes more severe whefu | z, i) gets smaller. Our ap- remains in the last line, becauéep andp are functions

proach alleviates the large variance problem of IPS by takyf 4, Summing across all terms in Eq. (1), we obtain the
ing advantage of the estimagaised by the direct method.  {o|1owing theorem:

(Qa —ﬁQa)I + A(l . I/ﬁ)

2.2. Doubly Robust Estimator Theorem 1 Let A andd be defined as above. Then, the

) bias of the doubly robust estimator is
Doubly robust estimators take advantage of both the esti-

mate of the expected rewagd (x) and the estimate of ac- |Es[Vi] — V™| = L‘ES[ Z Aé} ‘ :
tion probabilities(a | =, k). Here, we use a DR estimator 1] (z,h)€S

of the form first suggested by Cassel et al. (1976) for re- . . . .
gression, but previously not studied for policy learning: If the past policy and the past policy estimate are statignar

(i.e., independent df), the expression simplifies to
[E[VER] - V7| = |E.[Ad]] .

o 1 (ra — 0a(2))I(7(x) = a)
Yor = 15 2 5(a |z, h) N o
(@,h,a,ma)ES p ’ In contrast (for simplicity we assume stationarity):
+ @77 )\ L) |- (1) Crm T
)] BV - V7| = B[4
Informally, the estimator usesas a baseline and if there is |E[Vizd — V™| = |Ez[0r@)d]]

dat_a ava|lf_;1ble, a corre_ctlon is applied. We_ will se? that OUfyhere the second equality is based on the observation that
estimator is accurate #t least oneof the estimatorsy and IPS is a special case of DR fof, () = 0

p, is accurate, hence the naheubly robust

L L . In general, neither of the estimators dominates the others.
In practice, itis rare to have an accurate estimation oéeith However, ifeither A ~ 0, or § ~ 0, the expected value of

oorp. Thus, a bas_ic qut?stion jS: HQW does this estimatorthe doubly robust estimator will be close to the true value,
perform as the estimatgsandp deviate from the truth? whereas DM requireA ~ 0 and IPS requires ~ 0. Also
The following two sections are dedicated to bias and vari-lf A ~ 0 ands < 1, DR will still outperform DM an;j

ance analysis, respectively, of the DR estimator. similarly for IPS with roles ofA ands reversed. Thus, DR

can effectively take advantage of both sources of informa-
3. Bias Analysis tion for better estimation.

Let A denote the additive deviation @ffrom g, andé a . .
multiplicative deviation ofy from p: 4. Variance Analysis

Ala,z) = da(2) — 0a(z) In the previous section, we argued that the expected value
= e Galt) of Vg, compares favorably with IPS and DM. In this sec-
6(a,z,h) =1—pla|z h)/p(a|z,h) . tion, we look at the variance of DR. Since large deviation
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bounds have a primary dependence on variance, a lowérhe first term is identical, the second term will be of similar
variance implies a faster convergence rate. We treat onlynagnitude as the corresponding term of the DR estimator,
the case with stationary past policy, and hence drop the dgrovided that ~ 0. However, the third term can be much
pendence oh throughout. larger for IPS ifp(7(z) | ) < 1 and|A| is smaller than

As in the previous section, it suffices to analyze the second™(®)" In contrast, for the direct method, we obtain

moment (and then variance) of a single term of Eq. (1). . 1
We use a similar decomposition as in Eq. (2). To simplify Var[V5y] = Evarr [on(e) +A]
derivation we use the notatien= (r, —0,)1/p. Note that,
conditioned orx anda, the expectation of is zero. Hence, Thus, the variance of the direct method does not have terms
we can write the second moment as depending either on the past policy or the randomness in
. 2 the rewards. This fact usually suffices to ensure that it is
(M + @m@) significantly lower than the variance of DR or IPS. How-
p
S o Ez[Qi(z)] + 2Ez,a[9ﬂ(z)A(1 _ I/ﬁ)] direct method is typically much larger, leading to larger er

E. -
o ever, as we mention in the previous section, the bias of the
) rors in estimating policy value.
+E,o[A%(1-1/p)7]

= Eq 7ale”] + Ea[0} ()] + 2Bz [0n(x) AF] 5. Experiments
2 . 2
+ By [A*(1—2p/p+ p/p7)] This section provides empirical evidence for the effective
= Eq7ale?] + Ex[03 (1)) + 2Bz [0r(2) A] ness of the DR estimator compared to IPS and DM. We

201 o je L 2 /2 R consider two classes of problems: multiclass classifinatio
+Ea [A (1 2p/p+p7/p +2p(1 P)/p )] with bandit feedback in public benchmark datasets and es-
= Em,?,a[EQ] +E,; [(Qﬂ(z) + A5) ] timation of average user visits to an Internet portal.

+E.[A% - p(1 —p)/p?]

) 9 5.1. Multiclass Classification with Bandit Feedback
= Em,?,a[g ] +E; [(Qﬂ(m) + Aé) ]

We begin with a description of how to turnkaclass clas-

sification task into &-armed contextual bandit problem.

This transformation allows us to compare IPS and DR us-
hing publicdatasets for both policy evaluation and learning.

+Em

1-r A%(1 - 6)?
p

Summing across all terms in Eq. (1) and combining wit
Theorem 1, we obtain the variance:
5.1.1. DATA SETUP

Theoren_1 2LetA, o ar_1d < b? defined as gbove. If the In a classification task, we assume data are drawn IID from
past policy and the policy estimate are stationary, then theafixed distribution{z, ¢) ~ D, wherez € X is the feature

variance of the doubly robust estimator is vector ande € {1,2,...,k} is the class label. A typical

R 1 goalis to find a classifier : X — {1,2,...,k} minimiz-
Var[Vgi] = & (Ez_,ﬁa[s?] + Var, [0q(z) + Ad] ing the classification error:
1= p e(m) = E(z,e)~p [I(m(z) # )] .
+E, |[—F - A%(1-6)?
p

Alternatively, we may turn the data poifit, ¢) into a cost-

Thus, the variance can be decomposed into three term;gnsmve cIa§S|f|cat|on examp(e:zr,.ll,lg, o l), Whgr.e
= I(a # ¢) is the loss for predicting. Then, a classifier

The first accounts for randomness in rewards. The second mav be interoreted as an action-selection policy. and its
term is the variance of the estimator due to the randomnes% y be prete . P y’b
in 2. And the last term can be viewed as the importancec assification error is exactly the policy’s expected loss.
weighting penalty. A similar expression can be derived forTo construct a partially labeled dataset, exactly one loss
the IPS estimator: component for each example is observed, following the ap-

proach of Beygelzimer & Langford (2009). Specifically,
(Em,aa[82] +Var, [0x(z) — 0n(@)0] given any(z,l1,l2,...,lx), we randomly select a label

When considering classification problems, it is more natura
1-— ] ) to talk about minimizing classification errors. This lossimiza-

1

Var [Vigs] = S

p
+E, T : Q?‘r(m)(l - 5)2 tion problem is symmetric to the reward maximization praoble

defined in Section 2.
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Table 1.Characteristics of benchmark datasets used in Section 5.1.

| Dataset [ ecoli | glass| letter | optdigits | page-blocks pendigits| satimage| vehicle | yeast]
Classesk) 8 6 26 10 5 10 6 4 10
Dataset sizg| 336 | 214 | 20000| 5620 5473 10992 6435 846 1484

a ~ UNIF(1,2,... k), and then only reveal the compo- 5.1.3. PoLICY OPTIMIZATION
nentl,. The final data are thus in the form ¢f, a,l,),
which is the form of data defined in Section 2. Further-
more,p(a | ) = 1/k and is assumed to be known.

We now consider policy optimization (classifier learning).

Since DM is significantly worse on all datasets, as indicated
in Fig. 1, we focus on the comparison between IPS and DR.
Table 1 summarizes the benchmark problems adopted fro

the UCI repository (Asuncion & Newman, 2007). rI‘qere, we apply the data transformation in Section 5.1.1 to

the training data, and then learn a classifier based on the
loss estimated by IPS and DR, respectively. Specifically,
for each dataset, we repeat the following stgpsmes:

Here, we investigate whether the DR technique indeed
gives more accurate estimates of the policy value (or clas-
sification error in our context). For each dataset:

5.1.2. PLIcY EVALUATION

1. We randomly split data into training %) and test
(30%) sets;

2. We apply the transformation in Section 5.1.1 to the

1. We randomly split data into training and test sets of training data to obtain a partially labeled set;

(roughly) the same size; 3. We then use the IPS and DR estimators to impute un-
2. On the training set with fully revealed losses, we revealed losses in the training data;

run a direct loss minimization (DLM) algorithm of 4. Two cost-sensitive multiclass classification algorishm

McAllester et al. (2011) to obtain a classifier (see Ap- are used to learn a classifier from the losses completed

pendix A for details). This classifier constitutes the by either IPS or DR: the first is DLM (McAllester

policy = which we evaluate on test data; et al., 2011), the other is the Filter Tree reduction of

3. We compute the classification error on fully observed Beygelzimer et al. (2008) applied to a decision tree
test data. This error is treated as the ground truth for  (see Appendix B for more details);
comparing various estimates; 5. Finally, we evaluate the learned classifiers on the test
4. Finally, we apply the transformation in Section 5.1.1 data to obtain classification error.
to the test data to obtain a partially labeled set, fro

m, . . . . .
which DM, IPS, and DR estimates are computed. Again, we use least-squares ridge regression to build a lin-

ear loss estimatorf(x,a) = w, - . However, since the
Both DM and DR require estimating the expected condi-training data is partially labeledy,, is fitted only using
tional loss denoted ax, a) for given (x,a). We use a training data(z, a’, l,+) for whicha = «'.

linear loss modeli(x,a) = w, - =, parameterized by
weight vectorwq }ae1,...,x}, @and use least-squares ridge
regression to fitv, based on the training set.

Average classification errors (obtained in Step 5 above) of
the 30 runs are plotted in Fig. 2. Clearly, for policy opti-
mization, the advantage of the DR is even greater than for
Step 4 is repeated00 times, and the resulting bias and policy evaluation. In all datasets, DR provides substéptia
rmse (root mean squared error) are reported in Fig. 1.  more reliable loss estimates than IPS, and results in signif

As predicted by analysis, both IPS and DR are unbiasech:antly improved classifiers.

since the probability estimati/k is accurate. In contrast, Fig. 2 also includes classification error of the Offset Tree
the linear loss model fails to capture the classificationrerr reduction, which is designed specifically for policy opti-
accurately, and as a result, DM suffers a much larger biasmization with partially labeled data.While the IPS ver-

. . _ . sions of DLM and Filter Tree are rather weak, the DR ver-
While IPS and DR estimators are u_nb|ased, .'t IS apparentio s are competitive with Offset Tree in all datasets, and
from the rmse plot that th(_e DR estimator enjoys a lower, some cases significantly outperform Offset Tree.
variance, which translates into a smaller rmse. As we shahn
see next, such an effect is substantial when it comes to poFinally, we note DR provided similar improvements to two
'cy optimization. 2We used decision trees as the base learner in Offset Trees.
The numbers reported here are not identical to those by Beyge
imer & Langford (2009) probably because the filter-treecttites
in our implementation were different.
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Figure 1.Bias (upper) and rmse (lower) of the three estimators forFigure 2.Classification error of direct loss minimization (upper)

classification error. and filter tree (lower). Note that the representations ugdalliM
and the trees differ radically, conflating any comparisotwien
the approaches. However, the Offset and Filter Tree appesac

very different algorithms, one based on gradient descenghare a similar representation, so differences in perfoceare

the other based on tree induction. It suggests the DR tectpurely a matter of superior optimization.

nigue is generally useful when combined with different al-

gorithmic choices.

calculated the number of visits by each selected bcookie
5.2. Estimating Average User Visits during this window. To summarize, the dataset contains
é\/v = 3854689 data: D = {(bi,xi,’vi)}izl,___,]\], Wherebi
IS thei-th (unique) bcookiey; is the corresponding binary
feature vector, and; is the number of visits.

The next problem we consider is estimating the averag
number of user visits to a popular Internet portal. Rea
user visits to the website were recorded for abbumil-
lion bcookied randomly selected from all bcookies during If we can sample fronD uniformly at random, the sample
March 2010. Each bcookie is associated with a sparse bimean ofv; will be an unbiased estimate of the true aver-
nary feature vector of size arous®00. These features age number of user visits, which 8.8 in this problem.
describe browsing behavior as well as other informatiorHowever, in various situations, it may be difficult or im-
(such as age, gender, and geographical location) of thpossible to ensure a uniform sampling scheme due to prac-
bcookie. We chose a fixed time window in March 2010 andtical constraints, thus the sample mean may not reflect the
%A bcookie is unique string that identifies a user. Strictly true qqantlty of interest. This is known agvanatg shift .
speaking, one user may correspond to multiple bcookiesitbut @ Special case of our problem formulated in Section 2 with
suffices to equate a bcookie with a user for our purposes here. k& = 2 arms. Formally, the partially labeled data consists
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Figure 3.Comparison of IPS and DR: rmse (top), bias (bottom).
The ground truth value i23.8.

of tuples(z;, a;,7;), wherea; € {0, 1} indicates whether

bcookieb; is sampledy; = a;v; is the observed number of
visits, andp; is the probability that; = 1. The goal here

is to evaluate the value of a constant polieyz) = 1.

To define the sampling probabilities, we adopted a sim-

ilar approach as in Gretton et al. (2008). In particular, weGijven

obtained the first principal component (denotgdof all
features{z;}, and projected all data onta Let N be a
univariate normal distribution with mean + (m — m)/3
and standard deviatiofin — m)/4, wherem andm were

The DR estimator required building a reward mogdet),
which, given featurer, predicted the average number of
visits. Again, least-squares ridge regression was used to fi
a linear modep(z) = w - « from sampled data.

Fig. 3 summarizes the estimation error of the two methods
with increasing data size. For both IPS and DR, the esti-
mation error goes down with more data. In terms of rmse,
the DR estimator is consistently better than IPS, espgciall
when dataset size is smaller. The DR estimator often re-
duces the rmse by a fraction betweki¥:, and20%, and

on average by3.6%. By comparing to the bias and std
metrics, it is clear that DR’s gain of accuracy came from a
lower variance, which accelerated convergence of the esti-
mator to the true value. These results confirm our analysis
that DR tends to reduce variance provided that a reasonable
reward estimator is available.

6. Conclusions

Doubly robust policy estimation is an effective technique
which virtually always improves on the widely used inverse
propensity score method. Our analysis shows that doubly
robust methods tend to give more reliable and accurate es-
timates. The theory is corroborated by experiments on both
benchmark data and a large-scale, real-world problem.

In the future, we expect the DR technique to become com-
mon practice in improving contextual bandit algorithms.
As an example, it is interesting to develop a variant of Off-
set Tree that can take advantage of better reward models,
rather than a crude, constant reward estimate (Beygelzimer
& Langford, 2009).
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A. Direct Loss Minimization

cost-sensitive multiclass classification data
{(z,l1,...,1x)}, we perform approximate gradient

descent on the policy loss (or classification error). In
the experiments of Section 5.1, poliayis specified by

k weight vectorsdy, ..., 0. Givenx € X, the policy

the minimum and mean of the projected values. Thenpredicts as followstr(z) = argmax,e 1,k {z - 0a}-

p; = min{N (x; - z),1} was the sampling probability of
thei-th bcookie p;.

To control data size, we randomly subsampled a fractioret al. (2011) as follows: given any data, [,

f € {0.0001,0.0005,0.001,0.005,0.01,0.05} from the
entire dataseD. For each bcooki; in this subsample,
seta; = 1 with probabilityp;, anda; = 0 otherwise. We

To optimize 0,, we adapt the “towards-better” version
of the direct loss minimization method of McAllester
..., lx)and
the current weightd,, the weights are adjusted by

oy < Oa, + 1,

0o, < O,

—nx

then calculated the IPS and DR estimates on this subsam-

ple. The whole process was repeatéd times.

where a;

argmax, {z -0, —€l,}, as
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B. Filter Tree Horvitz, D. G. and Thompson, D. J. A generalization

The Filter Tree (Beygelzimer et al., 2008) is a reduction of sampling Without replacement from a finite universe.
from cost-sensitive classification to binary classificatio J. Amer. Statist. Assqel7.663-685, 1952.
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