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Abstract—New waves of consumer-centric applications, such
as voice search and voice interaction with mobile devices and
home entertainment systems, increasingly require automatic
speech recognition (ASR) to be robust to the full range of real-
world noise and other acoustic distorting conditions. Despite its
practical importance, however, the inherent links between and
distinctions among the myriad of methods for noise-robust ASR
have yet to be carefully studied in order to advance the field
further. To this end, it is critical to establish a solid, consistent,
and common mathematical foundation for noise-robust ASR,
which is lacking at present.

This article is intended to fill this gap and to provide a
thorough overview of modern noise-robust techniques for ASR
developed over the past 30 years. We emphasize methods that
are proven to be successful and that are likely to sustain or
expand their future applicability. We distill key insights from
our comprehensive overview in this field and take a fresh look at
a few old problems, which nevertheless are still highly relevant
today. Specifically, we have analyzed and categorized a wide
range of noise-robust techniques using five different criteria:
1) feature-domain vs. model-domain processing, 2) the use of
prior knowledge about the acoustic environment distortion, 3)
the use of explicit environment-distortion models, 4) deterministic
vs. uncertainty processing, and 5) the use of acoustic models
trained jointly with the same feature enhancement or model
adaptation process used in the testing stage. With this taxonomy-
oriented review, we equip the reader with the insight to choose
among techniques and with the awareness of the performance-
complexity tradeoffs. The pros and cons of using different noise-
robust ASR techniques in practical application scenarios are
provided as a guide to interested practitioners. The current
challenges and future research directions in this field is also
carefully analyzed.

I. INTRODUCTION

Automatic speech recognition (ASR) is the process and the
related technology for converting the speech signal into its
corresponding sequence of words or other linguistic entities
by means of algorithms implemented in a device, a computer,
or computer clusters [1]], [2]]. Historically, ASR applications
have included voice dialing, call routing, interactive voice
response, data entry and dictation, voice command and con-
trol, structured document creation (e.g., medical and legal
transcriptions), appliance control by voice, computer-aided
language learning, content-based spoken audio search, and
robotics. More recently, with the exponential growth of big
data and computing power, ASR technology has advanced to
the stage where more challenging applications are becoming
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a reality. Examples are voice search and interactions with
mobile devices (e.g., Siri on iPhone, Bing voice search on win-
Phone, and Google Now on Andriod), voice control in home
entertainment systems (e.g., Kinect on xBox), and various
speech-centric information processing applications capitalizing
on downstream processing of ASR outputs [3]. For such large-
scale, real-world applications, noise robustness is becoming
an increasingly important core technology since ASR needs
to work in much more difficult acoustic environments than in
the past [4].

A large number of noise-robust ASR methods, in the order
of hundreds, have been proposed and published over the past
30 years or so, and many of them have created significant im-
pact on either research or commercial use. Such accumulated
knowledge deserves thorough examination not only to define
the state of the art in this field from a fresh and unifying
perspective but also to point to fruitful future directions in the
field. Nevertheless, a well-organized framework for relating
and analyzing these methods is conspicuously missing. The
existing survey papers [S]-[13] in noise-robust ASR either
do not cover all recent advances in the field or focus only
on a specific sub-area. Although there are also few recent
books [14], [15], they are collections of topics with each
chapter written by different authors and it is hard to provide
a unified view across all topics. Given the importance of
noise-robust ASR, the time is ripe to analyze and unify the
solutions. In this paper, we elaborate on the basic concepts
in noise-robust ASR and develop categorization criteria and
unifying themes. Specifically, we hierarchically classify the
major and significant noise-robust ASR methods using a con-
sistent and unifying mathematical language. We establish their
interrelations and differentiate among important techniques,
and discuss current technical challenges and future research
directions. This paper also identifies relatively promising,
short-term new research areas based on a careful analysis
of successful methods, which can serve as a reference for
future algorithm development in the field. Furthermore, in the
literature spanning over 30 years on noise-robust ASR, there is
inconsistent use of basic concepts and terminology as adopted
by different researchers in the field. This kind of inconsistency
sometimes brings confusion to the field, especially for new
researchers and students. It is therefore important to examine
discrepancies in the current literature and re-define consistent
terminology, another goal of this overview paper.

This paper is organized as follows. In Section[[I, we discuss
the fundamentals of noise-robust ASR. The impact of noise
and channel distortions on clean speech is examined. Then,
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we build a general framework for noise-robust ASR and define
five ways of categorizing noise-robust ASR techniques. (This
expands the previous taxonomy-oriented review from the use
of two criteria to five [10].) Section is devoted to the first
category — feature-domain vs. model-domain techniques. The
second category, detailed in Section comprises methods
that exploit prior knowledge about the signal distortion. Meth-
ods that incorporate an explicit distortion model to predict the
distorted speech from a clean one define the third category,
covered in Section [V| The use of uncertainty constitutes the
fourth way to categorize a wide range of noise-robust ASR
algorithms, and is covered in Section Uncertainty in either
the model space or feature space may be incorporated within
the Bayesian framework to promote noise-robust ASR. The
final, fifth way to categorize and analyze noise-robust ASR
techniques utilizes joint model training, described in Section
With joint model training, environmental variability in
the training data is removed in order to generate canonical
models. We conclude this overview paper in Section [VIII, with
discussions on future directions for noise-robust ASR.

II. THE BACKGROUND AND SCOPE

In this section, we establish some fundamental concepts
that are most relevant to the discussions in the remainder of
this paper. Since mathematical language is an essential tool
in our exposition, we first introduce our notation in Table
Throughout this paper, vectors are in bold type and matrices
are capitalized.

TABLE I
DEFINITIONS OF A SUBSET OF COMMONLY USED SYMBOLS AND NOTIONS
IN THIS ARTICLE

Symbol  Meaning

T number of frames in a speech sequence

X sequence of clean speech vectors (x1,Xa2, ...... ,XT)
Y sequence of distorted speech vectors (y1,y2, -.... ,yT)
0 sequence of speech states (01,02, ...... ,01)

A acoustic model parameter

1N language model parameter

C discrete cosine transform (DCT) matrix

X clean speech in the cepstral domain

y distorted speech in the cepstral domain

n noise in the cepstral domain

h channel in the cepstral domain

Ihx clean speech mean in the cepstral domain

Iy distorted speech mean in the cepstral domain

n noise mean in the cepstral domain

Uh channel mean in the cepstral domain

N Gaussian distribution

A. Modeling Distortions of Speech in Acoustic Environments

Mel-frequency cepstral coefficients (MFCCs) [16] are the
most widely used acoustic features. The short-time discrete
Fourier transform (STDFT) is applied to the speech signal,
and the power or magnitude spectrum is generated. A set of
Mel scale filters is applied to obtain Mel-filter-bank output.

Then the log operator is used to get the log-filter-bank output.
Finally, the discrete cosine transform (DCT) is used to generate
MEFCCs. In the following, we use MFCCs as the acoustic
feature to elaborate on the relation between clean and distorted
speech.

Figure [I] shows a time domain model for speech degraded
by both additive noise and convolutive channel distortions [5].
The observed distorted speech signal y[m], where m denotes
the discrete time index, is generated from the clean speech
signal z[m] with additive noise n[m| and convolutive channel
distortions h[m] according to

ylm] = x[m] * h[m] + n[m], ey

where '+’ denotes the convolution operator.

Fig. 1. A model of acoustic environment distortion in the discrete-time
domain relating clean speech samples x[m] to distorted speech samples y[m)].

Hm] o+ 217

x[m]

| m]

After applying the STDFT, the following equivalent relation
can be established in the spectral domain:

ylk] = @[k]h[k] + n[k]. 2

Here, k is the frequency bin index. Note that we left out the
frame index for ease of notation. To arrive at Eq{2] we assumed
that the impulse response h[m] is much shorter than the DFT
analysis window. Then we can make use of the multiplicative
transfer function approximation by which a convolution in the
time domain corresponds to a multiplication in the STDFT
domain [17]. This approximation does not hold in the presence
of reverberated speech, because the acoustic impulse response
characterizing the reverberation is typically much longer than
the STDFT window size. Thus Eq{2]is not adequate to describe
reverberated speech in the STDFT domain.

The power spectrum of the distorted speech can then be
obtained as:

|9[K1> = |2[K] *[A[K]|* + [[k)[* + 2|2 (k]| |2 [k]||2[%]| cos Bk,

(3)
where (35 denotes the (random) angle between the two com-
plex variables n[k] and Z[k]h[k]. If cos () is set as 0, Eq
will become:

[Gk][* = [&[k] 2Rk + 7 [K] . @)

Removing this “phase” term is a common practice in the
formulation of speech distortion in the power spectral domain;
e.g. in the spectral subtraction technique. So is approximating
the phase term in the log-spectral domain; e.g. [18]. While
achieving simplicity in developing speech enhancement algo-
rithms, removing this term is a partial cause of the degradation
of enhancement performance at low SNRs (around 0 dB) [19].

By applying a set of Mel-scale filters (L in total) to the
power spectrum in Eq{3] we have the [-th Mel-filter-bank
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energies for distorted speech, clean speech, noise and channel:
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where the [-th filter is characterized by the transfer function
Wk[l] > 0 with Zk Wk[l] = 1.

The phase factor a[l] of the [-th Mel-filter-bank is [[19]
_ S Wil (R [R]| cos B

][R L)

Then, the following relation is obtained in the Mel-filter-bank
domain for the [-th Mel-filter-bank output

all] €)

G017 = [P + R + 202 RD]RD], (10)

By taking the log operation in both sides of Eq{I0 we have
the following in the log-Mel-filter-bank domain, using vector
notation

y:>~<+l~1+log<1+exp(ﬁf§cfﬁ)

P
+2a. * exp(nx)> .

The .x operation for two vectors denotes element-wise product,
and taking the logarithm and exponentiation of a vector above
are also element-wise operations.

By applying the DCT transform to Eq{II]} we can get the
distortion formulation in the cepstral domain as

(1)

\}

y =x+h+ Clog (1+exp(C™"(n—x—h))

+2ax. * exp(C_ln_;_h)> , (12)
where C denotes the DCT matrix.

In [[19], it was shown that the phase factor «[l] for each Mel-
filter [ can be approximated by a weighted sum of a number
of independent zero-mean random variables distributed over
[—1,1], where the total number of terms equals the number
of DFT bins. When the number of terms becomes large, the
central limit theorem postulates that «[!] will be approximately
Gaussian. A more precise statistical description has been
developed in [20], where it is shown that all moments of a[!]
of odd order are zero.

If we ignore the phase factor, Eq{I1] and Eq{I2] can be
simplified to

y:
y:

% +h +log(1 + exp(ii — X — h)), (13)
x 4+ h + Clog(1 + exp(C™ ! (n — x — h))), (14)

which are the log-Mel-filter-bank and cepstral representations,
respectively, corresponding to Eqf] in the power spectral
domain. Eq{I3] and Eq{I4] are widely used in noise-robust
ASR technology as the basic formulation that characterizes

the relationship between clean and distorted speech in the
logarithmic domain. The effect of the phase factor is small
if noise estimates are poor. However, with an increase in the
quality of the noise estimates, the effect of the phase factor is
shown experimentally to be stronger [19].

In ASR, Gaussian mixture models (GMMs) are widely used
to characterize the distribution of speech in the log-Mel-filter-
bank or cepstral domain. It is important to understand the
impact of noise, which is additive in the spectral domain,
on the distribution of noisy speech in the log-Mel-filter-bank
and cepstral domains. Using Eq while setting h = 0 for
simplicity, we can simulate noisy speech in the log-filter-bank
domain. In Figure[2] we show the impact of noise on the clean
speech signal in the log-filter-bank domain with increasing
noise mean values, i.e., decreasing SNRs. The clean speech
shown with solid lines is Gaussian distributed, with a mean
value of 25 and a standard deviation of 10. The noise 1 is also
Gaussian distributed, with different mean values and a standard
deviation of 2. The noisy speech shown with dashed lines
deviates from the Gaussian distribution to a varying degree.
We can use a Gaussian distribution, shown with dotted lines,
to make an approximation. The approximation error is large
in the low SNR cases. When the noise mean is raised to 20
and 25, as in Figure and 2(d)] the distribution of noisy
speech is skewed far away from a Gaussian distribution.

A natural way to deal with noise in the acoustic environment
is to use multi-style training [21]], which trains the acoustic
model with all available noisy speech data. The hope is that
one of the noise types in the training set will appear in the
deployment scenario. However, there are two major problems
with multi-style training. The first is that during training it is
hard to enumerate all noise types and SNRs encountered in test
environments. The second is that the model trained with multi-
style training has a very broad distribution because it needs to
model all the environments. Given the unsatisfactory behavior
of multi-style training, it is necessary to work on technologies
that directly deal with the noise and channel impacts. In the
next section, we lay down a general mathematical framework
for noise-robust speech recognition.

B. A General Framework for Noise-Robust Speech Recogni-
tion

The goal of ASR is to obtain the optimal word sequence W,
given the spoken speech signal X, which can be formulated
as the well-known maximum a posteriori (MAP) problem:

(15)

W = argmax Py r(W|X),
w

where A and T are the acoustic model (AM) and language
model (LM) parameters. Using Bayes’ rule
PAX|W) Pr(W)
Pyr(W|X) = ,
(W[X) oX)

(16)

Eq{I5] can be re-written as:

W = argmax py (X|W)Pr(W), (17)
w

where pa(X|W) is the AM likelihood and Pr(W) is the
LM probability. When the time sequence is expanded and the
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(c) noise mean = 20

Fig. 2.
and a standard deviation of 10. The noise has a standard deviation of 2.

observations x; are assumed to be generated by hidden Markov
models (HMMs) with hidden states 6;, we have

T
W = argmax Pr(W) Y [ pa(x¢/0:) Pa(6:]0:—1), (18)
w 9 t=1
where 6 belongs to the set of all possible state sequences for
the transcription W.
When the noisy speech Y is presented, the decision rule
becomes

W = argmax P, r(W|Y). (19)
w

Introducing clean speech as a hidden variable, we have

PAr(WIY) = /PA,F(W\X7Y)p(X|Y)dX

= /PA,F(W\X)p(XW)dX. (20)

In Eqf20] we exploited the fact that the distorted speech
signal Y doesn’t deliver additional information if the clean
speech signal X is given. With Eq{16] Py r(W]|Y) can be
re-written as

pA(X[W)

Por(WIY) = Pr(w) [ PEESapv)x. e
Note that
pa(XIW) =" pa(X[0, W) PA(0]W) (22)

0

012

clean speech
noisy speech
rrrrrrr Gaussianized noisy speech

(b) noise mean = 10

clean speech
noisy speech

0.12
‘ rrrrrrr Gaussianized noisy speech

0.08

0.06

(d) noise mean = 25

The impact of noise, with varying mean values from 5 in (a) to 25 in (d), in the log-filter-bank domain. The clean speech has a mean value of 25

and then Eq{21] becomes

Under some mild assumptions this can be simplified to [11],
[22]

(23)

T
_ pA(x¢|0:)p(x:|Y) N
Py (W]Y) _PF(W)§E/ o) dx;

Pr(0:]0:—-1). (24)

One key component in Eq24]is p(x,|Y), the clean speech’s
posterior given noisy speech Y. In principle, it is computed
via

p(x¢|[Y) o p(Y[xs)p(xt),

i.e., employing an a priori model p(x;) of clean speech and
an observation model p(Y|x;), which relates the clean to
the noisy speech features. Noise robustness techniques may
be categorized by the kind of observation models used, also
according to whether an explicit or an implicit distortion model
is used, and according to whether or not prior knowledge about
distortion is employed to learn the relationship between x; and
y+, as we will further develop in later sections of the article.

For simplicity, many noise-robust ASR techniques use a
point estimate. That is, the back-end recognizer considers
the cleaned or denoised signal X;(Y) as an estimate without

(25)
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uncertainty:
p(xe|Y) = 6(x¢ — %:(Y)), (26)

where §(.) is a Kronecker delta function. Then, Eq{24] is
reduced to

Pyr(W]Y) =

ZHPA Xt

6 t=1

PA(9t|9t 1)

27)
Because the denominator, p(x;(Y)), is independent of the
underlying word sequence, the decision is further reduced to

ZHPA x:(Y

0 t=1

W = argmax Pr(W )|6:) Pa(0¢|60:—1).
A%

(28)
Eq{28] is the formulation most commonly used. Comparing
with Eq{18] the only difference is that %, (Y) is used to replace
x;. In feature processing methods, only the distorted feature y,
is enhanced with x;(Y), without changing the acoustic model
parameter, A.
In contrast, there is another major category of model-domain
processing methods, which adapt model parameters to fit the

distorted speech signal
A=F(AY) (29)

and in this case the posterior used in the MAP decision rule
is computed using

P[\ F(W|Y

Z HPA Yt|9t

0 t=1

3 (0¢]0:—1). (30)

C. Five Ways of Categorizing and Analyzing Noise-Robust
ASR Techniques: An Overview

The main theme of this article is to provide insights from
multiple perspectives in organizing a multitude of noise-
robust ASR techniques. Based on the general framework
in this section, we provide a comprehensive overview, in a
mathematically rigorous and unified manner, of noise-robust
ASR using five different ways of categorizing, analyzing, and
characterizing major existing techniques. The categorization
is based on the following key attributes of the algorithms in
our review:

1) Feature-Domain vs. Model-Domain Compensation: The
acoustic mismatch between training and testing conditions
can be viewed from either the feature domain or the model
domain, and noise or distortion can be compensated for
in either space. Some methods are formulated in both the
feature and model domains, and can thus be categorized as
“hybrid”. Feature-space approaches usually do not change
the parameters of acoustic models. Most feature-space
methods use Eq{28] to compute the posterior Py r(W][Y)
after “plugging in” the enhanced signal %X;(Y). On the
other hand, model-domain methods modify the acoustic
model parameters with Eq{29] to incorporate the effects of
the distortion, as in Eq{30] In contrast with feature-space
methods, the model-domain methods are closely linked

with the objective function of acoustic modeling. While
typically achieving higher accuracy than feature-domain
methods, they usually incur significantly larger computational
costs. We will discuss both the feature- and model-domain
methods in detail in Sections and Specifically,
noise-resistant features, feature moment normalization, and
feature compensation methods are presented in

and [[II-A3] respectively.

2) Compensation Using Prior Knowledge about Acoustic
Distortion: This axis for categorizing and analyzing noise-
robust ASR techniques examines whether the method exploits
prior knowledge about the distortion. Details follow in Section
Some of these methods, discussed in Section learn
the mapping between clean and noisy speech features when
they are available as a pair of “stereo” data. During decoding,
with the pre-learned mapping, the clean speech feature x;:(Y)
can be estimated and plugged into Eq{28] to decode the word
sequence. Another method presented in Section builds
multiple models or dictionaries of speech and noise from
multi-environment data. Some examples discussed in
collect and learn a set of models first, each corresponding
to one specified environment in training. These pre-trained
models are then combined online to form a new model A
that fits the test environment best. The methods described in
section are usually based on source separation — they
build clean speech and noise exemplars from training data,
and then reconstruct the speech signal %;(Y) only from the
exemplars of clean speech. With variable-parameter HMM
methods, examined in the acoustic model parameters
or transforms are polynomial functions of an environment
variable.

3) Compensation with Explicit vs. Implicit Distortion
Modeling: To adapt the model parameters in Eq{29] general
technologies make use of a set of linear transformations to
compensate for the mismatch between training and testing
conditions. This involves many parameters and thus typically
requires a large amount of data for estimation. This difficulty
can be overcome when exploiting an explicit distortion model
which takes into account the way in which distorted speech
features are produced. That is, the distorted speech features
are represented using a nonlinear function of clean speech
features, additive noise, and convolutive distortion. This
type of physical model enables structured transformations
to be used, which are generally nonlinear and involve only
a parsimonious set of free parameters to be estimated. We
refer to a noise-robust method as an explicit distortion
modeling one when a physical model for the generation of
distorted speech features is employed. If no physical model is
explicitly used, the method will be referred to as an implicit
distortion modeling method. Since physical constraints are
modeled, the explicit distortion modeling methods exhibit
high performance and require a relatively small number of
distortion parameters to be estimated. Explicit distortion
models can also be applied to feature processing. With the
guide of explicit modeling, the enhancement of speech often
becomes more effective. Noise-robust ASR techniques with
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explicit distortion modeling will be explored in Section |V| In
particular, parallel model combination is briefly described in
Section [V-A] and vector Taylor series (VTS) is presented in
Section along with the details of VTS model adaption,
distortion estimation, VTS feature enhancement, and recent
improvements. Finally, sampling-based methods, such as
data-driven PMC and the unscented transform, are examined

in Section [V-C]

4) Compensation with Deterministic vs. Uncertainty
Processing: Most noise-robust ASR methods use a
deterministic strategy; i.e., the compensated feature is a
point estimate from the corrupted speech feature with Eq{26]
or the compensated model is a point estimate as adapted from
the clean speech model with Eq{29] We refer to methods in
this category as deterministic processing methods. However,
strong noise and unreliably decoded transcriptions necessarily
create inherent uncertainty in either the feature or the model
space, which should be accounted for in MAP decoding.
When a noise-robust method takes that uncertainty into
consideration, we call it an uncertainty processing method.
In the feature space, the presence of noise brings uncertainty
to the enhanced speech signal, which is modeled as a
distribution instead of a deterministic value. In the general
case, p(x¢|Y) in Eq4] is not a Kronecker delta function
and there is uncertainty in the estimate of X; given Y.
Uncertainty can also be introduced in the model space when
assuming the true model parameters are in a neighborhood
of the trained model parameters A, or compensated model
parameters A. We will study uncertainty methods in feature
and model spaces in Sections and respectively.
Then joint uncertainty decoding is described in Section [VI-C|
and missing feature approaches are discussed in Section

5) Disjoint vs. Joint Model Training: Finally, we can cat-
egorize most existing noise-robust techniques in the literature
into two broad classes depending on whether or not the
acoustic model, A, is trained jointly with the same process of
feature enhancement or model adaptation used in the test stage.
Among the joint model training methods, the most prominent
set of techniques are based on a paradigm called noise adaptive
training (NAT) which applies consistent processing during
the training and testing phases while eliminating any residual
mismatch in an otherwise disjoint training paradigm. Further
developments of NAT include joint training of a canonical
acoustic model and a set of transforms under maximum
likelihood estimation or a discriminative training criterion. In
Section [VII] these methods will be examined in detail.

Note that the chosen categories discussed above are by no
means orthogonal. While it may be ambiguous under which
category a particular noise-robustness approach would fit the
best, we have used our best judgement with a balanced view.

D. Standard Evaluation Database

In the early years of developing noise-robust ASR technolo-
gies, it was very hard to conclude which technology was better
since different groups used different databases for evaluation.

The introduction of a standard evaluation database and training
recipes finally allowed noise-robustness methods developed by
different groups to be compared fairly using the same task,
thereby fast-tracking development of these methods. Among
the standard evaluation databases, the most famous tasks
are the Aurora series developed by the European Telecom-
munications Standards Institute (ETSI), although there are
some other tasks such as Noisex-92 [23|], SPINE (SPeech In
Noisy Environments) [24]], and the recently developed CHIME
(Computational Hearing in Multisource Environments) task
[25]].

The first Aurora database is Aurora 2 [26], a task of rec-
ognizing digit strings in noise and channel distorted environ-
ments. The evaluation data is artificially corrupted. The Aurora
3 task consists of noisy speech data recorded inside cars as
part of the SpeechDatCar project [27]. Although still a digit
recognition task, the utterances in Aurora 3 are collected in
real noisy environments. The Aurora 4 task [28] is a standard
large vocabulary continuous speech recognition (LVCSR) task
which is constructed by artificially corrupting the clean data
from the Wall Street Journal (WSJ) corpus [29]. Aurora 5 [30]]
was mainly developed to investigate the influence of hands-
free speech input on the performance of digit recognition
in noisy room environments and over a cellular telephone
network. The evaluation data is artificially simulated. The
progression of the Aurora tasks after Aurora 2 show a clear
trend: from real noisy environments (Aurora 3), to a LVCSR
task (Aurora 4), to working in the popular cellular scenario
(Aurora 5). This is consistent with the need to develop noise-
robust ASR technologies for real-world deployment.

E. The Scope of This Overview

Noise robustness in ASR is a vast topic, spanning research
literature over 30 years. In developing this overview, we
necessarily have to limit its scope. In particular,

o we only consider single-channel input, thus leaving out
the topics of acoustic beamforming, multi-channel speech
enhancement and source separation;

« we assume that the noise can be considered more station-
ary than speech, thus disregarding for the most part the
recognition of speech in the presence of music or other
competing speakers;

o we assume that the channel impulse response is much
shorter than the frame size; i.e., we do not consider the
case of reverberation, but rather convolutional channel
distortions caused by, e.g., different microphone charac-
teristics.

Readers interested in the topic of multi-channel speech pro-
cessing are referred to recent books in this field, which
provide overview articles on acoustic beamforming, multi-
channel speech enhancement, source separation and speech
dereverberation [[15], [31]-[33]. Recognition of reverberant
speech is covered by the book of Woelfel and McDonough
[34]] and tutorial articles of more recent developments are [35]],
[36[]. Further, [37] provides an overview of speech separation
in the presence of non-stationary distortions. A source of many
good tutorial articles on recent developments in automatic
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speech recognition is [[38]]. Some specific techniques pertaining
to the above topics not covered in this article can be found
in [39] for multi-sensory speech detection, in [40], [41] for
nonstationary noise estimation and ASR robustness against
nonstationary noise, in [42]] for a new multichannel framework
for speech source separation and noise reduction, in [43]], [44]]
for robustness against reverberation, and in [45] for speech-
music separation.

What remains is still a huge field of research. We hope that
despite the limited scope the reader will find this overview
useful.

III. FEATURE-DOMAIN AND MODEL-DOMAIN METHODS

Feature-space approaches usually do not change the pa-
rameters of the acoustic model (e.g., HMMs). They either
rely on auditory features that are inherently robust to noise
or modify the test features to match the training features.
Because they are not related to the back-end, usually the
computational cost of these methods is low. In contrast, model-
domain methods modify the acoustic model parameters to
incorporate the effects of noise. While typically achieving
higher accuracy than feature-domain methods, they usually
incur significantly larger computational cost.

A. Feature-space approaches

Feature-space methods can be classified further into three
sub-categories:

o noise-resistant features, where robust signal processing is
employed to reduce the sensitivity of the speech features
to environment conditions that don’t match those used to
train the acoustic model;

o feature normalization, where the statistical moments of
speech features are normalized; and

o feature compensation, where the effects of noise embed-
ded in the observed speech features are removed.

1) Noise-Resistant  Features:  Noise-resistant  feature
methods focus on the effect of noise rather than on the
removal of noise. One of the advantages of these techniques
is that they make only weak or no assumptions about the
noise. In general, no explicit estimation of the noise statistics
is required. On the other hand, this can be a shortcoming
since it is impossible to make full use of the characteristics
specific to a particular noise type.

a) Auditory-Based Feature: Perceptually based linear
prediction (PLP) [46], [47] filters the speech signal with a
Bark-scale filter-bank. The output is converted into an equal-
loudness representation. The resulting auditory spectrum is
then modeled by an all-pole model. A cepstral analysis can
also be performed.

Many types of additive noise as well as most channel
distortions vary slowly compared to the variations in speech
signals. Filters that remove variations in the signal that are
uncharacteristic of speech (including components with both

slow and fast modulation frequencies) improve the recogni-
tion accuracy significantly [48]]. Relative spectral processing
(RASTA) [49], [50] consists of suppressing constant additive
offsets in each log spectral component of the short-term
auditory-like spectrum. This analysis method can be applied
to PLP parameters, resulting in RASTA-PLP [49], [50]. Each
frequency band is filtered by a noncausal infinite impulse
response (IIR) filter that combines both high- and low-pass
filtering. Assuming a frame rate of 100 Hz, the transfer
function

1242 +27l— 273 2,74
' 1—-0.98271

yields a spectral zero at zero modulation frequency and a pass-
band approximately from 1 to 12 Hz. While the design of
the IIR-format RASTA filter in Eq{31] is based on auditory
knowledge, the RASTA filter can also be designed as a linear
finite impulse response (FIR) filter in a data-driven way using
technology such as linear discriminant analysis (LDA) [S1]].

There are plenty of other auditory-based feature extraction
methods, such as zero crossing peak amplitude (ZCPA) [52],
average localized synchrony detection (ALSD) [53]l, percep-
tual minimum variance distortionless response (PMVDR) [54]],
power-normalized cepstral coefficients (PNCC) [55]], invariant-
integration features (IIF) [56]], amplitude modulation spectro-
gram [57], Gammatone frequency cepstral coefficients [58]],
sparse auditory reproducing kernel (SPARK) [59]], and Gabor
filter bank features [[60], to name a few. [61] provides a rel-
atively complete review on auditory-based features. All these
methods are designed by utilizing some auditory knowledge.
However, there is no universally-accepted theory about which
kind of auditory information is most important to robust
speech recognition. Therefore, it is hard to argue which one
in theory is better than another.

Since there is no universally-accepted auditory theory
for robust speech recognition, it is sometimes very hard to
set the right parameter values in auditory methods. Some
parameters can be learned from data [62]], but this may not
always be the case. Although the auditory-based features
can usually achieve better performance than MFCC, they
have a much more complicated generation process which
sometimes prevents them from being widely used together
with some noise-robustness technologies. For example, in
Section the relation between clean and noisy speech
for MFCC features can be derived as Eq{I2] However,
it is very hard to derive such a relation for auditory-
based features. As a result, MFCC is widely used as the
acoustic feature for methods with explicit distortion modeling.

H(z)=0 31)

b) Neural Network Approaches: Artificial neural net-
work (ANN) based methods have a long history of providing
effective features for ASR. For example, ANN-HMM hybrid
systems [63]] replace the GMM acoustic model with an ANN
when evaluating the likelihood score. The ANNs used before
2009 usually had the multi-layer perceptron (MLP) structure
with one hidden layer. Hybrid systems have been shown to
have comparable performance to GMM-based systems.

The TANDEM system was later proposed in [64] to com-
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bine ANN discriminative feature processing with a GMM,
and it demonstrated strong performance on the Aurora 2
noisy continuous digit recognition task. Instead of using the
posterior vector for decoding as in the hybrid system, the
TANDEM system omits the final nonlinearity in the ANN
output layer and applies a global decorrelation to generate a
new set of features used to train a GMM system. One reason
the TANDEM system has very good performance on noise-
robust tasks is that the ANN has the modeling power in small
regions of feature space that lie on phone boundaries [64].
Another reason is due to the nonlinear modeling power of the
ANN, which can normalize data from different sources well.

Another way to obtain probabilistic features is TempoRAL
Pattern (TRAP) processing [65]], which captures the appropri-
ate temporal pattern with a long temporal vector of log-spectral
energies from a single frequency band. One main reason for
the noise-robustness of TRAP is the ability to handle band-
specific processing [[66]. Even if one band of speech is polluted
by noise, the phoneme classifier in another band can still
work very well. TRAP processing works on temporal patterns,
differing from the conventional spectral feature vector. Hence,
TRAP can be combined very well with MFCC or PLP features
to further boost performance [67].

Building upon the above-mentioned methods, bottle-neck
(BN) features [68|] were developed as a new method to
use ANNs for feature extraction. A five-layer MLP with a
narrow layer in the middle (bottle-neck) is used to extract
BN features. The fundamental difference between TANDEM
and BN features is that the latter are not derived from the
posterior vector. Instead, they are obtained as linear outputs
of the bottle-neck layer. Principal component analysis (PCA)
or heteroscedastic linear discriminant analysis (HLDA) [69]]
is used to decorrelate the BN features which then become
inputs to the GMM-HMM system. Although current research
of BN features is not focused on noise robustness, it has been
shown that BN features outperform TANDEM features on
some LVCSR tasks [68]], [70]. Therefore, it is also possible
that BN features can perform well on noise-robust tasks.

More recently, a new acoustic model, referred to as the
context-dependent deep neural network hidden Markov model
(CD-DNN-HMM), has been developed. It has been shown,
by many groups [71]-[75], to outperform the conventional
GMM-HMMs in many ASR tasks. The CD-DNN-HMM
is also a hybrid system. There are three key components
in the CD-DNN-HMM: modeling senones (tied states)
directly even though there might be thousands or even tens
of thousands of senones; using deep instead of shallow
multi-layer perceptrons; and using a long context window
of frames as the input. These components are critical for
achieving the huge accuracy improvements reported in [71],
[73], [[76]. Although the conventional ANN in TANDEM also
takes a long context window as the input, the key to success
of the CD-DNN-HMM is due to the combination of these
components. With the excellent modeling power of the DNN,
in [77] it is shown that DNN-based acoustic models can easily
match state-of-the-art performance on the Aurora 4 task [28]],
which is a standard noise-robustness LVCSR task, without
any explicit noise compensation. The CD-DNN-HMM is

expected to make further progress on noise-robust ASR due
to the DNN’s ability to handle heterogeneous data [77], [[78]].
Although the CD-DNN-HMM is a modeling technology, its
layer-by-layer setup provides a feature extraction strategy
that automatically derives powerful noise-resistant features
from primitive raw data for senone classification. In addition
to using the standard feed-forward structure of DNNSs,
recurrent neural networks (RNN) that model temporal signal
dependence in an explicit way have also been exploited for
noise-robust ASR, either in modeling the posterior [79] or
predicting clean speech from noisy speech [80].

2) Feature Moment Normalization: Feature moment
normalization methods normalize the statistical moments of
speech features. Cepstral mean normalization (CMN) [81]
and cepstral mean and variance normalization (CMVN) [82]]
normalize the first and second order statistical moments,
respectively, while histogram equalization (HEQ) [83]
normalizes the higher order statistical moments through the
feature histogram.

a) Cepstral Mean Normalization: Cepstral mean nor-
malization (CMN) [81]] is the simplest feature moment nor-
malization technique. Given a sequence of cepstral vectors
[x0,X1, ..., X7—1], CMN subtracts the mean value g, from
each cepstral vector x; to obtain the normalized cepstral vector
X;. After normalization, the mean of the cepstral sequence is
0. It is easy to show that, in absence of noise, the convolutive
channel distortion in the time domain has an additive effect
in the log-Mel-filter-bank domain and the cepstral domain.
Therefore, CMN is good at removing the channel distortion. It
is also shown in [9] that CMN can help to improve recognition
in noisy environments even if there is no channel distortion.

Instead of using a single mean for the whole utterance,
CMN can be extended to use multi-class normalization. Better
performance is obtained with augmented CMN [84]], where
speech and silence frames are normalized to their own refer-
ence means rather than a global mean.

For real-time applications, CMN is unacceptable because
the mean value is calculated using the features in the whole
utterance. Hence, it needs to be modified for deployment in
a real-time system. CMN can be considered as a high-pass
filter with a cutoff frequency that is arbitrarily close to 0 Hz
[1]. Following this interpretation, it is reasonable to use other
types of high-pass filters to approximate CMN. A widely used
one is a first-order recursive filter, in which the cepstral mean
is a function of time according to

(32)
(33)

ax; + (1 —a)p,, |,

Xt = Mg,

Ky,
Xy =

where « is chosen in the way that the filter has a time
constant of at least 5 seconds of speech [1]]. Other types of
filters can also be used. For example, the band-pass IIR filter
of RASTA shown in Eq{31] performs similarly to CMN [85].
Its high-pass portion of the filter is used to compensate for
channel convolution effects as with CMN, while its low-pass
portion helps to smooth some of the fast frame-to-frame
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spectral changes which should not exist in speech.

b) Cepstral Mean and Variance Normalization: Cepstral
mean and variance normalization (CMVN) [82] normalizes
the mean and covariance together. After normalization, the
sample mean and variance of the cepstral sequence are 0 and
1, respectively. CMVN has been shown to outperform CMN
in noisy test conditions. [9] gives a detailed comparison of
CMN and CMVN, and discusses different strategies to apply
them. [86] proposes a method is to combine mean subtraction,
variance normalization, and ARMA filtering (MVA) post-
processing together. An analysis showing why MVA works
well is also presented in [86].

Although mean normalization is directly related to
removing channel distortion, variance normalization cannot
be easily associated with removing any distortion explicitly.
Instead, CMN and CMVN can be considered as ways to
reduce the first- and second-order moment mismatches
between the training and testing conditions. In this way, the
distortion brought by additive noise and a convolutive channel
can be reduced to some extent. As an extension, third-order
[87] or even higher-order [88] moment normalization can
be used to further improve noise robustness. Multi-class
extensions can also be applied to CMVN to further improve
robustness [89].

c) Histogram Equalization: A natural extension to the
moments normalization techniques is to normalize the dis-
tribution between training and testing data. This normalizes
all of the moments in the speech-feature distribution. This
approach is called histogram equalization method (HEQ) [|83]],
[90]-[92]. HEQ postulates that the transformed speech-feature
distributions of the training and test data are the same. Each
feature vector dimension is normalized independently. HEQ
can be applied either in the Mel-filter-bank domain [92], [93]]
or the cepstral domain [91]], [94].

The following transformation function f(.) is applied to the
test feature y:

fly) = C.H(Cy(y)),

where C,(.) is the cumulative distribution function (CDF) of
the test data, and C;!(.) is the inverse CDF of the training
data. Afterwards, the transformed test feature will have the
distribution of the training data. In this way, HEQ reduces the
systematic statistical mismatch between test and training data.

While the underlying principle is rather straightforward,
the problem is how to reliably estimate CDFs. When a large
amount of data is available, the CDFs can be accurately ap-
proximated by the cumulative histogram. Such approximations
become unreliable for short test utterances. Order-statistics
based methods tend to be more accurate and reliable when
there is an insufficient amount of data [91]], [94].

There are several implementation methods for HEQ. Table-
based HEQ (THEQ) is a popular method [90] that uses a
cumulative histogram to estimate the corresponding CDF value
of the feature vector elements. In THEQ, a look-up table is
used as the implementation C;; ! in Eq This requires that
all of the look-up tables in every feature dimension are kept

(34)

in memory, causing a large deployment cost that applications
with limited resources may find unaffordable. Also, the testing
CDF is not as reliable as the training CDF because limited
data is available for the estimation. Therefore, several methods
are proposed to work with only limited test data, such as
quantile-based HEQ (QHEQ) [95] and polynomial-fit HEQ
(PHEQ) [96]. Instead of fully matching the training and test
CDF, QHEQ calibrates the test CDF to the training CDF in
a quantile-corrective manner. To achieve this goal, it uses
a transformation function which is estimated by minimizing
the mismatch between the quantiles of the test and training
data. In PHEQ, a polynomial function is used to fit C;;t. The
polynomial coefficients are learned by minimizing the squared
error between the input feature and the approximated feature
for all the training data.

One HEQ assumption is that the distributions of acoustic
classes (e.g., phones) should be identical or similar for both
training and test data. However, a test utterance is usually too
short for the acoustic class distribution to be similar enough
to the training distribution. To remedy this problem, two-class
971, 98] or multi-class HEQ [99]-[101] can be used. All
of these methods equalize different acoustic classes separately
according to their corresponding class-specific distribution.

Conventional HEQ always equalizes the test utterance after
visiting the whole utterance. This is not a problem for offline
processing. However, for commercial systems with real-time
requirements this is not acceptable. Initially proposed to
address the time-varying noise issue, progressive HEQ
[102] is a good candidate to meet the real-time processing
requirement by equalizing with respect to a short interval
around the current frame. The processing delay can be
reduced from the length of the whole utterance to just half of
the reference interval.

3) Feature Compensation: Feature compensation aims to
remove the effect of noise from the observed speech features.
In this section, we will introduce several methods in this
class, but leave some to be discussed in later sections.

a) Spectral Subtraction: The spectral subtraction [[103]
method assumes that noise and clean speech are uncorrelated
and additive in the time domain. Assuming the absence of
channel distortions in Eq4] the power spectrum of the noisy
signal is the sum of the noise and the clean speech power
spectrum:

[yIk]P = X[k + [n[k])P?, (35)
The method assumes that the noise characteristics change
slowly relative to those of the speech signal. Therefore, the
noise spectrum estimated during a non-speech period can
be used for suppressing the noise contaminating the speech.
The simplest way to get the estimated noise power spectrum,
In[k]|2, is to average the noise power spectrum in N non-
speech frames:

R 1 N-1
BRIP = < D 133lkllP, (36)
=0



10 IEEE TRANS. AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X, XXX 2013

where |y;[k]|?> denotes the kth bin of the speech power
spectrum in the ith frame.
Then the clean speech power spectrum can be estimated by

subtracting |n[k]|? from the noisy speech power spectrum:

XIKIP = [y[K]? - k] 37)
[ [K][* G [K] (38)
where
- SNR(k)
GlE] = 1+ SNR(k) (39)
is a real-valued gain function, and
: 2 |s 2
xR (k) - W1 w0)
n[k][?

is the frequency-dependent signal-to-noise ratio estimate.
While the method is simple and efficient for stationary or
slowly varying additive noise, it comes with several problems:

o The estimation of the noise spectrum from noisy speech
is not an easy task. The simple scheme outlined in Eq-
relies on a voice activity detector (VAD). However,
voice activity detection in low SNR is known to be
error-prone. Alternatives have therefore been developed
to estimate the noise spectrum without the need of a VAD.
A comprehensive performance comparison of state of the
art noise trackers can be found in [104].

« The instantaneous noise power spectral density will fluc-
tuate around its temporally and spectrally smoothed esti-
mate, resulting in amplification of random time frequency
bins, a phenomenon known under the name musical noise
[[105]], which is not only annoying to a human listener but
also leads to word errors in a machine recognizer.

« The subtraction in Eq{37] may result in negative power
spectrum values because |f1[k] |2 is an estimated value and
may be greater than |y[k]|2. If this happens the numerator
of Eq{40| should be replaced by a small positive constant.

Many very sophisticated gain functions have been proposed
which are derived from statistical optimization criteria.

b) Wiener Filtering: Wiener filtering is similar to spectral
subtraction in that a real-valued gain function is applied in
order to suppress the noise.

Wiener filtering aims at finding a linear filter g[m] such that
the sequence

o0

x[m] = ylm] * glm] = > glily[m — i

i=—00

(41)

has the minimum expected squared error from x[m]. This
results in the frequency domain filter
Sulk]
Syy[F]

Glk] = (42)
Here, S;, and Sy, are the cross power spectral density
between clean and noisy speech and the power spectral density
of noisy speech, respectively.

With the assumption that the clean speech signal and the
noise signal are independent, Eq{42] becomes

Sexlk] + Snnlk]’
which is referred to as the Wiener filter [[106]], [[107], and can
be realized only if S,.(f) and S, (f) are known.

In practice the power spectra have to be estimated, e.g., via
the periodograms |X[k]|2 and |n[k]|2. Plugging them in Eq
we obtain

Gk = 43)

GlH] = [y [k]|* — [n[k]?
v (k]2
= M’ (44)
1+ SNR(k)
which shows that Wiener filtering and spectral subtraction are
closely related.

From Eqf4] it is easy to see that the Wiener filter
attenuates low SNR regions more than high SNR regions.
If the speech signal is very clean with very large SNR
approaching to oo, G[k] is close to 1, resulting in no
attenuation. In contrast, if the speech is buried in the noise
with very low SNR approaching 0, G[k] is close to O,
resulting in total attenuation. Similar reasoning also applies
to spectral subtraction.

c¢) Advanced Front-End: In 2002, the advanced front-
end (AFE) for distributed speech recognition (DSR) was
standardized by ETSI [108]. It obtained 53% relative word
error rate reduction from the MFCC baseline on the Aurora
2 task [109]. The AFE is one of the most popular methods
for comparison in the noise robustness literature. It integrates
several noise robustness methods to remove additive noise
with two-stage Mel-warped Wiener filtering [109] and SNR-
dependent waveform processing [110]], and mitigates the chan-
nel effect with blind equalization [[111].

The two-stage Mel-warped Wiener filtering algorithm is
the main body of the noise reduction module and accounts
for the major gain of noise reduction. It is a combination
of the two-stage Wiener filter scheme from [112] and the
time domain noise reduction proposed in [[113]]. The algorithm
has two stages of Mel Wiener filtering. The denoised signal
in the first stage is passed to the second stage, which is
used to further reduce the residual noise. Although having
outstanding performance, the two-stage Mel-warped Wiener
filtering algorithm has a high computational load which is
significantly reduced in [114] by constructing and applying
Wiener filters in the Mel-warped filter-bank domain.

The basic idea behind SNR-dependent waveform processing
[110] is that the speech waveform exhibits periodic maxima
and minima in the voiced speech segments due to the glottal
excitation while the additive noise energy is relatively constant.
Therefore, the overall SNR of the voiced speech segments can
be boosted if one can locate the high (or low) SNR period
portions and increase (or decrease) their energy.

Blind equalization [[111]] reduces convolutional distortion by
minimizing the mean square error between the current and tar-
get cepstrum. The target cepstrum corresponds to the cepstrum
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of a flat spectrum. Blind equalization is an online method to
remove convolutional distortion without the need to first visit
the whole utterance as the standard CMN does. As shown
in [111], it can obtain almost the same performance as the
conventional offline cepstral subtraction approach. Therefore,
it is preferred in real-time applications.

B. Model-space approaches

Model-domain methods modify the acoustic model pa-
rameters to incorporate the effects of noise. While typically
achieving higher accuracy than feature-domain methods, they
usually incur significantly higher computational cost. The
model-domain approaches can be further classified into two
sub-categories: general adaptation and noise-specific com-
pensation. General adaptation methods compensate for the
mismatch between training and testing conditions by using
generic transformations to convert the acoustic model param-
eters. These methods are general, applicable not only to noise
compensation but also to other types of acoustic variations.

As in Eq{29] model-domain methods only adapt the model
parameters to fit the distorted speech signal. The model
adaptation can operate in either supervised or unsupervised
mode. In supervised mode, the correct transcription of the
adapting utterance is available. It is used to guide model
adaptation to obtain the adapted model, f\ used to decode
the incoming utterances. In unsupervised mode, the correct
transcription is not available, and usually two-pass decoding
is used. In the first pass, the initial model A is used to decode
the utterance to generate a hypothesis. Usually one hypothesis
is good enough. The gain from using a lattice or N-best list
to represent multiple hypotheses is limited [[115]. Then, A
is obtained with the model adaptation process and used to
generate the final decoding result.

Popular speaker adaptation methods such as maximum a
posteriori (MAP) and its extensions such as structural MAP
(SMAP) [116], MAPLR [117], and SMAPLR [118]], may
not be a good fit for most noise-robust speech recognition
scenarios where only a very limited amount of adaptation
data is available, e.g., when only the utterance itself is used
for unsupervised adaptation. Most popular methods use the
maximum likelihood estimation (MLE) criterion [[119], [[120]].
Discriminative adaptation is also investigated in some studies
[121]-[123]. Unlike MLE adaptation, discriminative adaption
is very sensitive to hypothesis errors [124]. As a result, most
discriminative adaptation methods only work in supervised
mode [[121], [122]]. Special processing needs to be used for
unsupervised discriminative adaptation. In [[123]], a speaker-
independent discriminative mapping transformation (DMT) is
estimated during training. During testing, a speaker-specific
transform is estimated with unsupervised ML, and the speaker-
independent DMT is then applied. In this way, discriminative
adaptation is implicitly applied without the strict dependency
on a correct transcription.

In the following, popular MLE adaptation methods will
be reviewed. Since they are general adaptation methods not
specific to the problem of noise robustness, we will not address
them in detail. Maximum likelihood linear regression (MLLR)

is proposed in [119]] to adapt model mean parameters with a
class-dependent linear transform

py(m) = A(rm) g (m) +b(rm),

where p,(m) and p,(m) are the clean and distorted mean
vectors for Gaussian component m, and r,, is the correspond-
ing regression class. A(r,,) and b(r,,) are the regression-
class-dependent transform and bias to be estimated, which can
be put together as W (r,,) = [A(rm)b(rm)].

The expectation-maximization (EM) algorithm [[125]] is used
to get the maximum likelihood solution of W (r,,,). First, an
auxiliary @) function for an utterance is defined

Q=>_ w(m)logps(yilm),
t,m

(45)

(46)

where A denotes the adapted model, and ~ (m) is the posterior
probability for Gaussian component m at time t. W (r,,) can
be obtained by setting the derivative of Q w.r.t. W(ry,) to 0.
A special case of MLLR is the signal bias removal algorithm
[126], where the only single transform is simply a bias. The
MLE criterion is used to estimate this bias, and it is shown
that signal bias removal is better than CMN [126].

The variance of the noisy speech signal also changes with
the introduction of noise. Hence, in addition to transforming
mean parameters with Eq{43] it is better to also transform
covariance parameters [120], [127] as

2y (m) = H(rm)Ze (m)H" (ry,). 47)

A two-stage optimization is usually used. First, the mean
transform W (r,,,) is obtained, given the current variance.
Then, the variance transform H(r,,) is computed, given the
current mean. The whole process can be done iteratively. The
EM method is used to obtain the solution, which is done in a
row-by-row iterative format.

Constrained MLLR (CMLLR) [|120] is a very popular model
adaption method in which the transforms of the mean and
covariance, A (r,,,) and H(r,,), are constrained to be the same:

H(rp) (1, (m) — g(rm)), (48)
H(r,,) 3. (m)H (r,,). (49)

By (m)
Ey(m) =

Rather than adapting all model parameters, CMLLR can be
efficiently implemented in the feature space with the following
relation

y =H(rm)(x = g(rm)), (50)

or
x=A(rp)y +b(rm), (51)

with A(r,,) = H(r,,) ! and b(r,,,) = g(,,). The likelihood
of the distorted speech y can now be expressed as

P(yIm) = [Ara)IN(A(r)y + B(rm); p, (m), S (m))
(52)
As a result, CMLLR is also referred to as feature space
MLLR (fMLLR) in the literature. Note that signal bias removal
is a special form of CMLLR with a unit scaling matrix.
In [128]], fMLLR and its projection variant (fMLLR-P)
[129] are used to adapt the acoustic features in noisy envi-
ronments. Adaptation needs to accumulate sufficient statistics
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for the test data of each speaker, which requires a relatively
large number of adaptation utterances.

As reported in [[130] and [128]], general adaptation methods
such as MLLR and fMLLR in noisy environments yield mod-
erate improvement, but with a large gap to the performance of
noise-specific methods [[131]], [132]] on the same task. Noise-
specific compensation methods usually modify model param-
eters by explicitly addressing the nature of the distortions
caused by the presence of noise. Therefore, they can address
the noise-robustness issue better. The representative methods
in this sub-category are parallel model combination (PMC)
[133] and model-domain vector Taylor series [[134]. Some
representative noise-specific compensation methods will be
discussed in detail in Section [V]

IV. COMPENSATION USING PRIOR KNOWLEDGE ABOUT
DISTORTION

In addition to training an HMM, all methods analyzed in this
section have the unique attribute of exploiting prior knowledge
about distortion in the training stage. They then use such prior
knowledge as a guide to either remove noise or adapt models
in the testing stage.

A. Learning from Stereo Data

There are many methods that use stereo data to learn
the mapping from noisy speech to clean speech. The stereo
data consists of time-aligned speech samples that have been
simultaneously recorded in training environments and in repre-
sentative test environments. The success of this kind of method
usually depends on how well the representative training sam-
ples for the test environments really match test scenarios.

1) Empirical Cepstral Compensation: One group of meth-
ods is called empirical cepstral compensation [135]], devel-
oped at CMU. In Eq{I4] the distorted speech cepstrum y
is expressed as the clean speech signal x plus a bias v. In
empirical cepstral compensation, this bias v can be dependent
on the SNR, the location of vector quantization (VQ) cluster
k, the presumed phoneme identity p, and the specific testing
environment e. Hence, Eq-@] can be re-written as

y=x+V(SNR,k,p,e). (53)

v(SNR,k,p,e) can be learned from stereo training data.
During testing, the clean speech cepstrum can be recovered
from the distorted speech with

x=y—vV(SNR,k,p,e). (54)

Depending on how Vv(SNR,k,p,e) is defined, there are
different cepstral compensation methods. If SNR is the only
factor for v, it is called SNR-dependent cepstral normalization
(SDCN) [136]]. During training, frame pairs in the stereo data
are allocated into different subsets according to SNR. Then,
the compensation vector v(SNR) corresponding to a range
of SNRs is estimated by averaging the difference between the
cepstral vectors of the clean and distorted speech signals for all
frames in that range. During testing, the SNR for each frame
of the input speech is first estimated, and the corresponding

compensation vector is then applied to the cepstral vector for
that frame with Eq{54}

Fixed codeword-dependent cepstral normalization (FCDCN)
[5] is a refined version of SDCN with the compensation
vector as V(SNR,k), which depends on both SNR and
VQ cluster location. Phone-dependent cepstral normalization
(PDCN) [137] is another empirical cepstral compensation
method in which the compensation vector depends on the
presumed phoneme the current frame belongs to. It can
also be extended to include SNR as a factor, and is called
SNR-dependent PDCN (SPDCN) [137]. Environment is also
a factor of the compensation vector. FCDCN and PDCN can
be extended to multiple FCDCN (MFCDCN) and multiple
PDCN (MPDCN) when multiple environments are used in
training [97].

2) SPLICE: Stereo-based Piecewise LInear Compensation
for Environments (SPLICE), proposed originally in [138] and
described in more detail in [40], [[139]], is a popular method
to learn from stereo data and is more advanced than the
above-mentioned empirical cepstral compensation methods. In
SPLICE, the noisy speech data, y, is modeled by a mixture
of Gaussians

p(y, k) = P(k)p(ylk) = P(E)N (y; u(k), 2(k)),

and the a posteriori probability of clean speech vector x given
the noisy speech y and the mixture component & is modeled
using an additive correction vector b(k):

p(x|y, k) = N(x;y + b(k), ®(k)),

where W (k) is the covariance matrix of the mixture component
dependent posterior distribution, representing the prediction
error. The dependence of the additive (linear) correction vector
on the mixture component gives rise to a piecewise linear re-
lationship between the noisy speech observation and the clean
speech, hence the name of SPLICE. The feature compensation
formulation is

(55)

(56)

K
%= P(kly)(y +b(k)).
k=1

(57)

The prediction bias vector, b(k), is estimated by minimizing
the mean square error (MMSE) as

_ > P(klye) (e — ye)

A W R Y
and ¥(k) can be obtained as
_ 2 PlElye) (e —yo)(xe —ye)" T
= >, P(klye) R,

To reduce the runtime cost, the following rule can be used

-

argmax p(y, k),
k

% = y+by (60)

Note that for implementation simplicity, a fundamental
assumption is made in the above SPLICE algorithm that the
expected clean speech vector x is a shifted version of the noisy
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speech vector y. In reality, when x and y are Gaussians given
component k, their joint distribution can be modeled as

N({;}’[ZE@]’{EI(M Ezy(k)D. 61)

Bya(k)  2y(k)
and a rotation on y is needed for the conditional mean as

E(xly,k) = A(k)y+b(k), (62)
where
A(k) oy ()2, (k) (63)
b(k) = p,(k) = Zay (k)5 (k) (k). (64)
The feature compensation formulation in this case is
K
x =2 P(kly)(A(R)y +b(k)). (65)
k=1

It is interesting that feature space minimum phone error
(fMPE) training [140], a very popular feature space discrim-
inative training method, can be linked to SPLICE to some
extent [141]]. Originally derived with the MMSE criterion,
SPLICE can be improved with the maximum mutual infor-
mation criterion [[142]] by discriminatively training A (k) and
b(k) [|143]). In [144], dynamic SPLICE is proposed to not only
minimize the static deviation from the clean to noisy cepstral
vectors, but to also minimize the deviation between the delta
parameters. This is implemented by using a simple zero-phase,
non-causal IIR filter to smooth the cepstral bias vectors.

In addition to SPLICE, the MMSE-based stereo mapping
is studied in [145], and the MAP-based stereo mapping is
formulated in [[146], [[147]. Most stereo mapping methods use
a GMM to construct a joint space of the clean and noisy speech
signal. This is extended in [[148]], where a HMM is used. The
mapping methods can also be extended into a discriminatively
trained feature space, such as the fMPE space [149].

One concern for learning with stereo data is the requirement
of stereo data, which may not be available in real-world appli-
cation scenarios. In [150], the pseudo-clean features generated
with a HMM-based synthesis method [[151]] are used to replace
the clean features which are usually hard to get in a real
deployment. It is shown that this pseudo-clean feature is even
more effective than the ideal clean feature [150].

In addition to the above-mentioned methods, a recurrent
neural network (RNN) has also been proposed to predict the
clean speech from noisy speech [80] by modeling temporal
signal dependencies in an explicit way. With its nonlinear
modeling power, the RNN has been shown to be a very
effective noise-cleaning method [80]. This is further improved
with a bidirectional long short-term memory (BLSTM) struc-
ture [[152] which allows for a more efficient exploitation of
temporal context, leading to an improved feature mapping
from noisy speech to clean speech.

B. Learning from Multi-Environment Data

Usually, the speech model can be trained with a multi-
condition training set to cover a wide range of application
environments. However, there are two major problems with

multi-style training. The first is that during training it is hard
to enumerate all of the possible noise types and SNRs that
may be present in future test environments. The second is that
the distribution trained with multi-style training is too broad
because it needs to model the data from all environments.
Therefore, it is better to build environment-specific models,
and use the model that best fits the test environment when
doing runtime evaluation.

1) Linear Model Combination: The model combination
methods build a set of acoustic models, each modeling one
specific environment. During testing all the models are com-
bined, usually with the MLE criterion, to construct a target
model used to recognize the current test utterance. Assume that
K environment-specific models share the same covariance ma-
trix and only differ in mean parameters. The mean parameters
for each environment-specific model are concatenated together
to form mean supervectors (sg,k = 1...K), and the mean
supervector of the testing utterance, s, is obtained as a linear
combination of K mean supervectors of the environment-

specific models
K
S = g WSk,
k=1

where wy is the combination weight for the k-th mean
supervector, and w = [wy, wa, . .., w] T .

The EM algorithm is used to find the solution of w
iteratively. The auxiliary function is defined as the following
by ignoring standard constants and terms independent of w

1
Q(W7 WO) = _5 Z 'Yt(m)(}’t - /’l’wrz)Tz;Ll (Yt - ""m)’ (67)
m,t

(66)

where wy is the previous weight estimate, 7:(m) is the
posterior of Gaussian component m at time ¢ determined
using previous parameters, and y; is the feature vector of
frame ¢. p,, is the adapted mean of Gaussian component m,
represented as

K

Hp = E WESk,m = Smw,
k=1

(68)

where sy, ,,, is the subvector for Gaussian component m in su-
pervector s; and S,,, = [51,m, R SKW}. 3, 1is the variance
of Gaussian component m, shared by all the environment-
specific models. By maximizing the auxiliary function, the
combination weight w can be solved as

-1
w = lz %(m)SfLEmISm] D u(m)SLE e (69)
m,t m,t

This model combination method is very similar to general
speaker adaptation methods such as cluster adaptive training
(CAT) [153] and eigenvoice [154]. In the CAT approach,
the speakers are clustered together and s; stands for clusters
instead of individual speakers. In the eigenvoice approach,
a small number of eigenvectors are extracted from all the
supervectors and are used as s;. These eigenvectors are
orthogonal to each other and guaranteed to represent the
most important information. Although originally developed
for speaker adaptation, both CAT and eigenvoice methods
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can be used for noise-robust speech recognition. Storing K
supervectors in memory during online model combination may
be too demanding. One way to reduce the cost is to use
methods such as eigenMLLR [[155]], [156] and transform-based
CAT [153] by adapting a canonical mean with environment
dependent transforms. In this way, only K transforms are
stored in memory. Moreover, adaptive training can be used
to find the canonical mean as in CAT [153].

One potential problem of ML model combination is that
usually all combination weights are not zero, i.e., every
environment-dependent model contributes to the final model.
This is obviously not optimal if the test environment is exactly
the same as one of the training environments. There is also a
scenario where the test environment can be approximated well
by interpolating only few training environments. Including
unrelated models into the construction brings unnecessary
distortion to the target model. This can be solved by ensemble
speaker and speaking environment modeling [157]], in which
an online cluster selection is first used to locate the most
relevant cluster and then only the supervectors in this selected
cluster contribute to the model combination. Another way is
to use Lasso (least absolute shrinkage and selection operator)
[158] to impose an L; regularization term in the weight
estimation problem. In [[159], it is shown that Lasso usually
shrinks the weights of the mean supervectors not relevant to
the test environment to zero. By removing some irrelevant
supervectors, the resulting mean supervectors are found to be
more robust to noise distortions.

Note that the noisy speech signal variance changes with
the introduction of noise, therefore simply adjusting the mean
vector of the speech model cannot solve all of the problems.
It is better to adjust the model variance as well. One way
is to combine the pre-trained CMLLR matrices as in [160].
However, this is not trivial, requiring numerical optimization
methods, such as the gradient descent method or a Newton
method as in [160].

2) Source Separation: In Section[[V-BT] the acoustic model
for the current test utterance is obtained by combining the pre-
trained acoustic models. Recently, there is increasing interest
to use exemplar-based methods for general ASR [[161]], [162]]
and noise-robust ASR [[163]-[[165]]. Exemplar refers to an ex-
ample speech segment from the training corpus. In exemplar-
based noise-robust ASR [163]]-[[165], noisy speech is modeled
by a linear combination of speech and noise [[163]], [165] (or
other interfering factors, such as music [[164]) exemplars. If
the reconstructed speech consists of only the exemplars of
clean speech, the impact of noise is removed. This is a source
separation approach, and non-negative matrix factorization
(NMF) [166] has been shown to be a very successful method
[167], [168]], and can directly benefit noise-robust ASR [163]—
[165], [169]]. The source separation process with NMF is
described below.

First the training corpus is used to create a dictionary
x;(1 <1 < L) of clean speech exemplars and a matrix X
is formed as X = [x1X3...x7]|. The exemplars are drawn
randomly from a collection of magnitude spectral vectors in a
training set. Similarly, the noise matrix N is formed with noise

exemplars. Then speech and noise exemplars are concatenated
together to form a single matrix A = [XIN], with a total of K
exemplars. The exemplars of A are denoted Ay, 1 < k < K.
The reconstruction signal is

K
y = Zkak =Aw, st wp>0
k=1

(70)

with w as the K-dimension activation vector. All exemplars
and activation weights are non-negative. The objective is to
minimize the reconstruction error d(y, Aw) between the ob-
servation y and the reconstruction signal ¥ while constraining
the matrices to be element-wise non-negative. It is also good
to embed sparsity into the objective function so that the noisy
speech can be represented as a combination of a small set of
exemplars. This is done by penalizing the nonzero entries of
w with the L; norm of the activation vector w, weighted by
element-wise multiplication (operation .*) of a non-negative
vector A. Therefore the objective function is

dly,Aw) + || A xw||; s.t. wr >0 (71)

If all the elements of X\ are zero, there is no enforced sparsity
[164]. Otherwise, sparsity is enforced [[163[], [165]. In [166],
two measures are used for the reconstruction error, namely
Euclidean distance and divergence. In most speech-related
work [163[]-[[165], Kullback-Leibler (KL) divergence is used
to measure the reconstruction error.

E
N Ye N
d(y7Y) = Zye log (:&) — Ye + Ye,
e=1 €

where E is the vector dimension.

To solve Eq{7I] the entries of the vector w are initialized
to unity. Then Eq{71|can be minimized by iteratively applying
the update rule [[165]]

W w.  (A(y./(Aw)))./(A1 + A)

(72)

(73)

with .x and ./ denoting element-wise multiplication and divi-
sion, respectively. 1 is a vector with all elements set to 1.

After getting w, the clean speech feature can be recon-
structed by simply combining all the speech exemplars with
nonzero weights [167]. Good recognition performance has
been observed particulary at very low SNR (below O dB).
Better results are reported by using the following filtering
[[164], [165], [170] as

x=y. * A"w"./(A"W" + A"w"), (74)

where A” and w” denote the exemplars and activation vector
for clean speech, respectively, and A™ and w"” denote the
exemplars and activation vector for noise, respectively. This is
referred as feature enhancement (FE) in [165]], [170].

Instead of cleaning the noisy speech magnitude spectrum,
a sparse classification (SC) method is proposed in [163] to
directly use the activation weights to estimate the state or
word likelihood. Since each frame of each speech exemplar in
the speech dictionary has state or word labels obtained from
the alignment with conventional HMMs, the weights of the
exemplars in the sparse representation w® can be used to
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calculate the state or word likelihood. Then, these activation-
based likelihoods are used in a Viterbi search to obtain the
state sequence with maximum likelihood.

Although the root methodology of FE and SC are the
same, i.e., NMF source separation, it is shown in [170],
[171] that they are complementary. If combined together,
more gain can be achieved. There are also variations of
standard NMF source separation. For example, a sliding time
window approach [172], that allows the exemplars to span
multiple frames is used for decoding utterances of arbitrary
length. Convolutive extension of NMF is proposed to handle
potential dependencies across successive input columns [[171]],
[173]. Prior knowledge of the co-occurrence statistics of
the basis functions for each source can also be employed
to improve the performance of NMF [174]. In [175],
by minimizing cross-coherence between the dictionaries
of all sources in the mixed signal, the bases set of one
source dictionary can be prevented from representing the
other source signals. This clearly gives better separation
results than the traditional NMF. Superior digit recognition
accuracy has been reported in [170] with the exemplar-based
method by increasing the number of update iterations and
exemplars, designing artificial noise dictionary, doing noise
sniffing, and combining SC with FE. An advantage of the
exemplar-based approach is that it can deal with highly
non-stationary noise, such as speech recognition in the
presence of background music. However, there are still plenty
of challenges. e.g., how to deal with convolutive channel
distortions, how to most effectively deal with noise types in
testing that have not been previously seen in the development
of the noise dictionary, and how to generalize to LVCSR tasks.

3) Variable-Parameter HMM: Variable-parameter HMM
(VPHMM) [176] models the speech Gaussian mean and
variance parameters as a set of polynomial functions of
the environment variable v, which is SNR in [176].
Hence, the Gaussian component m is now modeled as
N (y; p(m,v), E(m,v)). pw(m,v) and X(m,v) are poly-
nomial functions of environment variable v. For example,
p(m,v) can be denoted by

P
p(m,v) = cy(mp?, (75)
p=0

where c,(m) is a vector with the same dimension as the
input feature vectors. The choice of polynomial function is
based on its good approximation to continuous functions, its
simple derivation operations, and the fact that the change of
means and variances in terms of the environment is smooth
and can be modeled by low order polynomials. Other functions
can also be used. For example, in [177], piecewise spline
interpolation is used to represent the dependency of the HMM
parameters on the conditioning parameters. To reduce the
total number of parameters for VPHMM, parameter clustering
can be employed [178]. The VPHMM parameters can be
trained either with the MLE criterion [176] or a discriminative
criterion [179]. In addition to Gaussian mean and variance
parameters, other model parameters can also be modeled.

In [180], [181]], a more generalized form of VPHMM is
investigated by modeling tied linear transforms as a function
of environment variables.

During testing, speech model parameters can be calculated
with the estimated environment variable. Even if the estimated
environment is not seen during training, the curve fitting opti-
mization naturally uses the information on articulation/context
from neighboring environments. Therefore, VPHMM can
work well in unseen environments.

V. EXPLICIT DISTORTION MODELING

An explicit distortion modeling method is a noise-robustness
method that employs a physical model of how distorted speech
features are generated. Because the physical constraints are
explicitly modeled, the explicit distortion modeling methods
require only a relatively small number of distortion parameters
to be estimated. They also exhibit high noise-robustness per-
formance due to the explicit modeling of the distorted speech
generation process.

A. Parallel Model Combination

Parallel model combination (PMC) uses the explicit dis-
tortion model to adapt the clean speech model. The model
parameters of clean speech and noise in the cepstral domain
are first transformed to the log-Mel-filter-bank domain and
further to the Mel-filter-bank domain. Then, the model pa-
rameters of distorted speech in the Mel-filter-bank domain
can be calculated by using the explicit distortion model which
assumes that noise and clean speech are independent and addi-
tive in the Mel-filter-bank domain. With either the log-normal
approximation [133]] or the log-add approximation [[133]], the
model parameters of distorted speech in the log-Mel-filter-
bank domain can be obtained and finally are transformed back
to the cepstral domain with the DCT transform.

The basic PMC method can also be extended for situations
where there is channel distortion as well as additive noise
[133]]. A simple technique presented in [133]] uses a one state
single Gaussian speech model to calculate the convolutive
component. An approximate solution of the convolutive com-
ponent by steepest descent methods has also been reported
[182], which relies on the Viterbi approximation and does not
handle mixture of Gaussian distributions. The method in [183]
uses an additional universal speech Gaussian mixture model
and incorporates an existing bias estimation procedure [184]]
for channel estimation.

As shown in [[185]], the vector Taylor series (VTS) ap-
proximation appears to be more accurate than the log-normal
approximation in PMC. Therefore, many studies of explicit
distortion modeling have switched to the VTS direction over
the last decade.

B. Vector Taylor Series

In recent years, a model-domain approach that jointly
compensates for additive and convolutive (JAC) distortions
(e.g., [131]], [132], [134], [185]-[189]) has yielded promising
results. The various methods proposed so far use a parsimo-
nious nonlinear physical model to describe the environmental
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distortion and use the VTS approximation technique to find
closed-form HMM adaptation and noise/channel parameter
estimation formulas. Although some methods are referred to
with different names, such as Jacobian adaptation [[186] and
JAC [131], [132], [[188]], they are in essence the VTS methods
since VTS is used to linearize the involved nonlinearity, from
which the solutions are derived.

Eq{I4]is a popular nonlinear distortion model between clean
and distorted speech in the cepstral domain. It can be re-
written as

y =x+h+g(x,hn), (76)

where

g(x,h,n) = Clog(1 +exp(C '(n—x —h)))). (77)

In standard VTS adaptation [134]], the nonlinear function
in Eq{77] is approximated using a first order VTS expansion
at point (p,(m), pp,, ,,)- (M), p,., and w, are the static
cepstral means of the clean speech Gaussian component m,
noise, and channel, respectively.

Denoting
ay 8y

G(m), (78)

|uT(m),umuh |uf(m),umuh

3y

I- G(m) = F(m), (79)

|uz (M), s,

where G(m) is the Jacobian matrix for Gaussian component
m, defined as

1
(p‘n -

G(m)=Cdiag ( ) c 1
Ko (m) — pp))

(80)

Eq-@ can then be approximated by a vector Taylor series

expansion, truncated after the linear term:

1+ exp(C—1!

Y, (m)ops o, = Mg (M) + py, + g0, (M), 1y, 1)
+G(m)(x — p,(m))+G(m)(h — ) +F(m)(n — p,), (81)

With Eq{81] the distorted speech y is now a linear function
of the clean speech x, the noise n, and the channel h,
in the cepstral domain. This linearity facilitates the HMM
model adaptation and distortion parameter estimation by
providing possible closed-form solutions because a Gaussian
distribution, dominantly used in ASR, with linear operation
is still a Gaussian distribution.

1) Vector Taylor Series Model Adaptation: By taking the
expectation on both sides of Eq{8] the static mean of the
distorted speech signal p, for Gaussian component m can be
written as

and the static variance of the distorted speech signal p,, for
Gaussian component m can be obtained by taking the variance
operation on both sides of Eq{81}

3y (m) = diag(G(m) 2, (m)G(m)" + F(m)S,F(m)"),
(83)

The delta parameters can be updated [185] with the contin-
uous time approximation [[190]:

Say(m) ~ diag (G(m)Sag(m)G(m)"
+F(m)Za,F(m)7), (85)

The delta-delta model parameters are updated similarly.

Note that although the cepstral distortion formulation,
i.e., Eq{[4] is widely used in VTS studies, the log spectral
distortion formulation, i.e., Eq-@ can also be used [188].
Some studies [191] even work in the linear frequency
domain. However, this brings a large computational cost and
the diagonal covariance assumption used in [[191] may not be
valid for linear frequency. Therefore, there are only a small
number of VTS methods working in the linear frequency
domain.

2) Distortion Estimation in VTS: Although proposed in
1996 [[134]], VTS model adaptation has shown great accuracy
advantages over other noise-robustness methods only recently
[131]], [132] when the distortion model parameters are re-
estimated based on the first-pass decoding result with the
expectation-maximization (EM) algorithm [131]], [132]]. First,
an auxiliary @ function for an utterance is

Q= Z’Yt

where A denotes the adapted model, and ~;(m) is the posterior
probability for the Gaussian component m of the HMM, i.e.,

=Pji, (le)a

where A, denotes the previous model.

To maximize the auxiliary function in the M-step of the EM
algorithm, the derivatives of () are taken with respect to p,,
and p,,, and are set to 0. Then, the mean of the noise p,, can
be updated according to [132]:

)log p; (yelm), (86)

Yi(m) (87)

P = B+ AL by, (88)
with
An =Y 3 m)F(m)TS (m)F(m),  (89)
t,m
by = > 7 (m)F(m) S, (m)(yi — py0(m)),  (90)
t,m
Hy,o(m) = p,(m) — HKro — g(p,(m), Hh0> l"’n,O)‘ 9n

where p,, , and p,, o are the VIS expansion points for p,,
and p;,, respectively. The channel mean p,; can be updated
similarly as in [[I32]]. Newton’s method, an iterative second
order approach, is used to estimate the noise variance [132].

Distortion parameter estimation can also be done in other
ways. In [192], a gradient-descent method is used to obtain
the noise variance estimate. Since there is no guarantee that
the auxiliary function will increase, a back-off step is needed.
In [[193]], a Gauss-Newton method is used by discarding the
second derivative of the residual with respect to the distortion
parameters when calculating the Hessian. In [187]], both the
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static mean and variance parameters in the cepstral domain are
adjusted using the VTS approximation technique. In that work,
however, noise was estimated on a frame-by-frame basis,
which is complex and computationally costly. It is shown in
[194] that the estimation method used in this section [131]],
[132] is clearly better than the estimation method in [187].

3) VIS Feature Enhancement: As shown in [132], VTS
model adaptation achieves much better accuracy than several
popular model adaptation technologies. Although VTS model
adaptation can achieve high accuracy, the computational cost
is very high as all the Gaussian parameters in the recognizer
need to be updated every time the environmental parameters
change. This time-consuming requirement hinders VT'S model
adaptation from being widely used, especially in LVCSR tasks
where the number of model parameters is large.

On the other hand, VTS feature enhancement has been
proposed as a lower-cost alternative to VT'S model adaptation.
For example, a number of techniques have been proposed
that can be categorized as model-based feature enhancement
schemes [[134]], [195]-[197]]. These methods use a small GMM
in the front-end and the same methodology used in VTS model
adaptation to derive a minimum-mean-square-error (MMSE)
estimate of the clean speech features given the noisy obser-
vations. In addition to the advantage of a low runtime cost,
VTS feature enhancement can be easily combined with other
popular feature-based technologies, such as CMN, HLDA,
fMPE, etc., which are challenging to VTS model adaptation.

In general, the MMSE method can be used to get the
estimate of clean speech

x = E(xly) = [ xp(xiy)dx ©2)
Denote the clean-trained GMM as
K
pa(z) = ) (k)N (x; p, (k), Zu(k)), (93)
k=1

along with Eq{I4] the MMSE estimate of clean speech be-
comes

K
Z (kly)
/C log(1 4 exp(C ™ (n — x — h)))p(x|y, k)dx(94)

where P(k|y) is the Gaussian posterior probability, calculated

as

c(R)N(y; py (), 2y (K))
Skt €N (v: oy (), 2y (k)
If the Oth-order VTS approximation is used for the nonlinear

term in Eq{94] the MMSE estimate of cleaned speech x is
obtained as

P(kly) =

95)

K

h-) P

(k|ly)Clog(14+exp(C~

(96)

l(l'l’n_u;c(k)_l'l’h)))'

This formulation was first proposed in [134]]. In [195]], another

solution was proposed when expanding Eq{I4] with the Ist-

order VTS. For the kth GMM component, the joint distribution

of x and y is modeled as Eq{61]

The following can be derived [195]]

E(x|y, k) =ty (k) = b (k) + Sy (k)2 (k) (v — 1, (k).
o7

Then the MMSE estimate of clean speech is [195]]

Mw

P(ly) (1 (k) + B ()G () S, () (y — 12, (K)))

(98)

Two key aspects of VTS feature enhancement are how to
obtain reliable estimates of the noise and channel distortion
parameters and how to accurately calculate the Gaussian oc-
cupancy probability. In contrast to using static features alone to
calculate the Gaussian occupancy probability [[189]], both static
and dynamic features are used to obtain more reliable Gaussian
occupancy probabilities. Then, these probabilities are plugged
into Eq{96| or Eq{98] In [198], it is shown that recent improve-
ments in VTS model adaptation can be incorporated into VTS
feature enhancement to improve the algorithm performance:
Updating all of the environment distortion parameters [131]]
and subsequently carrying out noise adaptive training [[199]].

A common concern of feature enhancement is that after
the enhancement, the clean speech signal is distorted and the
accuracy on clean testing will drop. As shown in [200], VTS
feature enhancement enjoys the nice property that it signif-
icantly improves accuracy in noisy test conditions without
degrading accuracy in clean test conditions.

By incorporating the recent advances in VTS model
adaptation, VTS feature enhancement can obtain very high
accuracy on some noisy tasks [198]]. However, it is shown
that there is still a small accuracy gap between VTS feature
enhancement and VTS model adaptation [[198]]. Regarding the
runtime cost, VIS model adaptation needs to adapt HMM
parameters twice, while VTS feature enhancement needs
to adapt GMM parameters twice. Usually, the number of
parameters in a front-end GMM is much smaller than that in
the back-end HMM. Furthermore, two rounds of decoding
are needed in VTS model adaptation while only one round
of decoding is performed in VTS feature enhancement. As
a consequence, VTS feature enhancement has a much lower
computational cost than VTS model adaptation. Therefore,
the tradeoff between accuracy and computational cost will
determine which technology is more suitable in a real world
deployment scenario.

k=1

4) Improvements over VTS: Recently, there has been a se-
ries of studies focusing on how to improve the performance of
VTS. A natural extension to the VTS methods described in the
previous section is to use high-order VTS expansion instead
of first-order VTS expansion. That way, the nonlinear relation
found in Eq{I4]can be well modeled. There are several studies
[201]]-[203]] along this line. As shown in [203]], the 2nd-order
VTS is shown to achieve a noticeable performance gain over
the lst-order VTS, although the accuracy gap between the
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3rd-order VTS and 2nd-order VTS is small. Another way to
address the inaccuracy problem of the first-order Taylor series
expansion in the VTS is to use piecewise functions to model
the nonlinearity, such as a piecewise linear approximation
[204] or linear spline interpolation [205].

Eq{I4] is simplified from Eq{I2] of the phase-sensitive
model, by approximating «[l] as 0 [19]. There is some work
[202] that uses the phase-sensitive model for better modeling
of the distortion. & can be estimated from the training set
[202]. Due to its physical interpretation, the value of elements
in « ranges from -1 to 1. In [206]], this value constraint is
broken by assigning a constant value « to the elements of c.
If o is set to 0 and 1, VTS can be considered to work with
MFCCs extracted from the power spectrum and magnitude
spectrum, respectively [[132]. It is shown in [206] that the best
accuracy is obtained on the Aurora 2 task when the value
is set to around 2.5, which is larger than 1, the theoretical
maximum value. Similar observations are also reported in
later work [207]], [208|]. Therefore, the phase-sensitive model
with a constant o value can also be considered to be a
generalization function of the distortion model. The phase-
sensitive model with a large o value may be considered
as a way to compensate the loss brought by the inaccurate
approximation in VTS. Another way to handle the phase term
is to use the ALGONQUIN algorithm [209]], which models
the phase term as the modeling error with Eq{76

In standard VTS, the delta and delta-delta model parameters
are updated [[185] with the continuous time approximation
[190], which makes the assumption that the dynamic cepstral
coefficients are the time derivatives of the static cepstral
coefficients. In [210], extended VTS is proposed to provide
a more accurate form to adapt dynamic model parameters.
Extended VTS has been shown to outperform standard VTS
with the cost of more expensive computation [210].

As mentioned before, high computational cost is a concern
for VTS model adaptation. Feature VTS enhancement uses
a small GMM on the front-end and the same methodology
used in VTS model adaptation to derive a MMSE estimate
of the clean speech features given the noisy observations.
However, even after employing the recent advanced methods
in VTS model adaptation, feature VTS enhancement still
has an obvious accuracy gap between it and VTS model
adaptation [198]. In [200], VTS model adaptation with a
diagonal Jacobian approximation method is proposed to have
a relatively small accuracy loss and to offer a drastic savings
in computational cost over all three major components in stan-
dard VTS model adaptation. The computational cost reduction
is on a scale of O(D) for the Jacobian calculation and most
parts of parameter adaptation, and O(D?) for online distortion
estimation, where D is the dimension of static cepstral feature.
There is also a family of joint uncertainty decoding (JUD)
methods [211]-[213] that can reduce the computational cost of
VTS by changing the Jacobian in Eq{80|from being Gaussian-
dependent to regression-class-dependent. We will discuss these
methods in Section

C. Sampling-Based Methods

The PMC methods in Section rely on either the log-
normal or the log-add approximation while the VTS methods
in Section rely on the first-order or higher-order VTS
approximation. These approximations inevitably cause loss
in model adaptation or feature enhancement. To improve
the implementation accuracy of explicit distortion modeling,
sampling-based methods can be used.

1) Data-Driven PMC: Data-driven parallel model combi-
nation (DPMC) [133]] can be used to improve the modeling
accuracy of PMC. This method is based on Monte-Carlo
(MC) sampling by drawing random samples from the clean
speech and noise distributions. In a non-iterative DPMC,
the frame/state component alignment within a state does not
change, and the clean speech samples are drawn from each
Gaussian of the clean speech distributions.

x(m) ~ N(p,(m),Es(m))

n ~ N(p, ) ©9)

Then, the distorted speech samples can be obtained with Eqg-
[[4] and the static mean and variance of the distorted speech
for Gaussian component m are estimated as the sample mean
and variance of N distorted speech samples.

As N — oo, the sample mean and covariance are
approaching the true values. However, due to the nature of
random sampling, N needs to be very large to guarantee the
approximation accuracy. Hence, the biggest disadvantage of
DPMC is the computational cost. As a solution, a model
adaptation method based on the unscented transform [214] is
proposed in [215], [216].

2) Unscented Transform: Originally developed to improve
the extended Kalman filter and introduced to the field of robust
ASR in [215], [216], the unscented transform (UT) [214]] gives
an accurate estimate of the mean and variance parameters of
a Gaussian distribution under a nonlinear transformation by
drawing only a limited number of samples. This is achieved by
systematically drawing samples jointly from the clean speech
and noise distributions, described in the following.

An augmented signal s = [x?,nT]T is formed with a D-
dimensional clean speech cepstral vector x and a noise cepstral
vector n, with dimensionality Dy, = D, + D,, = 2D. The UT
algorithm samples the Gaussian-dependent augmented signal
with 4D + 1 sigma points s;(m).

In the feature space, the transformed sample y;(m) from
the sigma point s;(m) = [x;(m)?,nT]7 is obtained with the
mapping function of Eq{I4] Then, the static mean and variance
of the distorted speech are estimated as the sample mean and
variance of these 4D + 1 transformed samples.

It is shown in [214] that the UT accurately matches the
mean and covariance of the true distribution. Due to the
special sampling strategy of the UT, the number of samples
to be computed, 4D + 1, is much smaller than N. Therefore
model adaptation with the UT is more affordable than the MC
method.

In [216], the static mean and variance of nonlinearly
distorted speech signals are estimated using the UT, but the
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static noise mean and variance are estimated from a simple
average of the beginning and ending frames of the current
utterance. This technique was improved in [217], where the
static noise parameters were estimated online with MLE using
the VTS approximation and the estimates were subsequently
plugged into the UT formulation to obtain the estimate of
the mean and variance of the static distorted speech features.
In [218]], a robust feature extraction technique is proposed
to estimate the parameters of the conditional noise and
channel distribution using the UT and embed the estimated
parameters into the EM framework. In all of these approaches
[216]-[218]], sufficient statistics of only the static features
or model parameters are estimated using the UT although
adaptation of the dynamic model parameters with reliable
noise and channel estimations has shown to be important
[131], [132]]. As a solution, an approach is proposed in [219]
to unify static and dynamic model parameter adaptation with
online estimation of noise and channel parameters in the UT
framework.

3) Methods Beyond the Gaussian Assumption: As shown in
Figure 2] with the introduction of noise, the distorted speech
is no longer Gaussian distributed. Therefore, the popular
one-to-one Gaussian mapping used in the above-mentioned
methods has a theoretic flaw. The iterative DPMC method
[133] solves this problem by sampling from GMMs instead
of Gaussians and then uses the Baum-Welch algorithm to
re-estimate the distorted speech parameters. This is extended
in [220], where a variational method is used to remove
the constraint that the samples must be used to model the
Gaussians they are originally drawn from. This is also
extended to variational PCMLLR [220], which is shown
to be better than PCMLLR [211] and has a much lower
computational cost than variational DPMC. In [221] the
Gaussian at the input of the nonlinearity is approximated
by a GMM whose individual components have a smaller
variance than the original Gaussian. A VTS linearization of
the individual GMM components then incurs fewer errors
than the linearization of the original Gaussian. Thus the
overall modeling accuracy could be improved.

The explicit distortion modeling methods discussed in this
section separate the clean speech feature from the environment
(noise and channel) factors. This can be further extended to
an acoustic factorization [222] problem: separate the clean
speech feature/model from the multiple speaker and environ-
mental factors irrelevant to the phonetic classification. There
are plenty of recent studies addressing acoustic factorization
[223]-{228]).

From the work on explicit distortion modeling and acoustic
factorization, we can see the trend of building increasingly
sophisticated models to characterize the impact of different
distortion sources, such as noise, channel, and speaker, on
clean speech. Importantly, these better and better explicit dis-
tortion models and the related techniques are already providing
outstanding performance which is superior to other methods
exploiting less powerful distortion models. A greater perfor-
mance gap is expected in the future as more advanced explicit

distortion models are being developed and incorporated into
noise-robust ASR methods.

VI. COMPENSATION WITH UNCERTAINTY PROCESSING

The effects of strong noise necessarily create inherent
uncertainty, either in the feature or model space, which can be
beneficially integrated into the popular plug-in MAP decod-
ing in the ASR process. When a noise-robust method takes
into consideration that uncertainty, we call it an uncertainty
processing method.

A. Model-Domain Uncertainty

Uncertainty in the HMM parameters has been represented
by their statistical distribution [229]]. In order to take advantage
of the model parameter uncertainty, the decision rule for
recognition can be improved from the conventional MAP
decision rule in Eq{I00]

W = argmax p (Y |W)Pr(W). (100)
w
to the minimax decision rule [230
W = argmax (PF(W) mapr(Y|W)> , (101)
W AeQ

or to the Bayesian prediction classification (BPC) rule [231]],
[232]

W — argana ([ pa(XIW)p(A]6. W)aA ) Fe(W)
w AeQ

(102)
where ¢ is the hyper-parameter characterizing the distribution
of acoustic model parameter A, and ) denotes the space
that A lies in. Both minimax classification and BPC consider
the uncertainty of the estimated model, reflected by (2. They
change the decision rule to address this uncertainty using
two steps. In the first step, either the maximum value of
pA(Y|W) within the parameter neighborhood (as in minimax
classification) or the integration of p (Y|W) in this parameter
neighborhood (as in BPC) for word W is obtained. In the
second step, the value obtained in the first step is plugged
into the MAP decision rule.

It is usually difficult to define the parameter neighborhood
Q. Moreover, with two-stage processing the computational
cost of model space uncertainty using the modified decision
rule is very large. It usually involves a very complicated
implementation, which prevents this type of method from
being widely used although there was some research into
minimax classification [230]], [233]] and BPC [231]], [232] until
around 10 years ago. An alternative treatment of uncertainty
is by integrating over the feature space instead of over the
model space. This will offer a much simpler system imple-
mentation and lower computational cost. Therefore, research
has switched to feature space uncertainty or joint uncertainty
decoding as described in the following sections.

IThis is derived from minimizing the upper bound of the worse-case
probability of classification error.
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B. Feature-Domain Uncertainty

1) Observation Uncertainty: Although it has been shown
that more gain can be obtained with a context window (e.g.,
[64], [234]), it is still a very popular assumption in most noise-
robust ASR methods that the clean feature is only dependent
on the distorted feature of current frame. In this way, p(x;|Y)
is replaced by p(x;|y;) and Eq{24] becomes

xtot Xt|Yt
ZH/PA |Xt§ |Y)

0 t=1

Pyr(W|Y) = Pr(W

P (0:]6:-1)(103)

As in Eq{26] the most popular noise robustness techniques
use a point estimate which means that the back-end recognizer
considers the cleaned signal X,(Y) to be noise free. However,
the de-noising process is not perfect and there may exist some
residual uncertainty. Hence, in the observation uncertainty
work [235], instead of using a point estimate of clean speech,
a posterior is passed to the back-end recognizer. The prior
p(x¢) always has a larger variance than the posterior p(x¢|y:).
If it is much larger, the denominator p(x;) in Eq{103|can be
considered constant in the range of values around x¢. As a
consequence, the denominator p(x;) is neglected in [236]-
[238], and Eq{I03] becomes

)Y ITi—y J pa(xel00)
Pr(0¢]01-1).

PA,F(W|Y) = PF(W Xt|Yt)dXt

(104)

If the de-noised speech is %x;(Y), the clean speech es-
timate can be considered as a Gaussian distribution x; ~
N (x¢;%¢, 7). Then, the integration in Eq reduces to

YN (Xt|9t) (Xt|Yt)dXt

= 3 clmIN (s (m). S (m) + ).

It is clear that during recognition, every Gaussian component
in the acoustic model has a variance bias X; in observa-
tion uncertainty methods. The key is to have this frame-
dependent variance X;, which depends on which noise-
robustness method is used to clean the noise. If SPLICE is
used as in Section the bias variance is given in Eq{59}
In [235]], it is a polynomial function of SNR.

Eq{103] is reduced to Eq{104] by omitting p(x;) with the
belief that it has a larger variance than the posterior p(x;|y:).
However, this assumption may not be always true. Another
better variation of Eq{I03]is to multiply both the numerator
and denominator by p(y:). By applying Bayes’ rule, we get

/ pA(Xe|0:)p(xe|ye) dx,
186)

p(x¢)
Then, Eq is plugged into Eq and p(y;) is omitted
since it does not affect the MAP decision rule, and we obtain

ZH/FA X¢|00)p(ye|xe ) dxy

6 t=1

\

(105)

Z/pA(Xt|‘9t) (yelxe) dXt

Pyr(W|Y) =

Pp(6¢0:—1).(107)

We can denote

pa(yelf:) = /pA(Xt\9t)p(Yt|Xt)dXt- (108)
The key to calculating pa(y:|6:) is to estimate the condi-
tional distribution p(y:|x:) because pa(x:|0:) has already
been trained. It is better to denote p(y:|x:) as a Gaussian or
GMM so that the integration of Eq{I08]is still a Gaussian or
GMM. Eq{I07] is used in uncertainty decoding with SPLICE
[239] and joint uncertainty decoding work [[192], [212], [240],
[241]] which we will discuss in detail in the next section.
An interesting alternative supervised approach to estimate
uncertainties was proposed in [242]]. A more recent study on
propagating uncertainties from short-time Fourier transform
into the nonlinear feature domain appeared in [243] for noise-
robust ASR.

C. Joint Uncertainty Decoding

Joint uncertainty decoding (JUD) uses a feature transform
derived from the joint distribution between the clean and
noisy speech and an uncertainty variance bias to modify the
decoder. While the joint distribution can be estimated from
stereo data as in SPLICE [139], the most popular way to
obtain it is to use the physical distortion model as in Section
[Vl JUD has two implementation forms: front-end JUD and
model JUD. In front-end JUD, a front-end GMM is built and
one of its components is selected to pass one single transform
and bias variance to the decoder. In contrast, model JUD is
connected with the acoustic model and generates transform
and uncertainty variance bias based on the regression class
that the individual acoustic model component belongs to.

1) Front-end JUD: In front-end JUD, p(y:|x:) is repre-
sented by a GMM

ZP (k|x¢ )N

where f,,(x¢, k) and fx.(x¢, k) are functions used to calculate
the mean vector and covariances matrix. The joint distribution
of clean and noisy speech can be modeled the same as in
Eq{61] It can be either obtained from stereo training data or
derived with physical distortion modeling as in Section [V] In
most JUD methods, the latter option is used given the difficulty
to obtain stereo data.

The Gaussian conditional distribution in Eq{I09] can be
derived front the joint distribution as [212]

N (ye; fu(xe, k), f(x4,k))

P(yelxe) (ye; fu(xe, k), fu(x, k), (109)

= [A(K)INV (A(k)y: +b(k);xi, Zp(k)),  (110)
with

Ak) = Bk, (k) (111)

b(k) = p,(k)—Alk)p,(k) (112)

(k) = AR)Z,(K)AT (k) - (k) (113)

These transforms can be obtained using VTS related schemes.
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Using Eq and a rough assumption that P(k|x;) =~
P(k|y:), Eq can be re-written as [212]]

ZZ P(kly:)|A(k)|

N(A(k)yHrb(k), m(m),Ex( ) + 2 (k))

PA yt‘at
(114)

The summation in Eq{IT4]is time consuming, involving the
clean speech GMM component m and the front-end GMM
component k. One popular approach is to select the most
dominating front-end component k*

K = axgmax P(kly:) (115)
and Eq{TT4] can be simplified as
palyilde) = 3 clm)|AGK)|
N (AGE )y + b(k*): iy (), Sam) + (k) (116)

Comparing Eq{I16] with Eq{I03] we can see that front-end
uncertainty decoding transfers the distorted feature y; in
addition to adding a variance bias. SPLICE with uncertainty
decoding [239] is similar to front-end JUD, but with a different
format of A(k), b(k), and Xy (k).

As discussed in [212], [244]], in low SNR conditions where
noise dominates the speech signal, the conditional distribution
p(y+|x:) degenerates to the distribution of additive noise n;
as
17

p(yelxi) = N(ng; p,, ).

Then the distribution of distorted speech in Eq also
becomes the distribution of additive noise

pA(Yt\et) = N(nt; 1 22°% En)'

With Eq{I18] the distribution of every state is the
same. Therefore, the current frame cannot contribute to
differentiating states using acoustic model scores. This is the
biggest theoretical issue with front-end uncertainty decoding,
although SPLICE with uncertainty decoding can circumvent
this issue with additional processing [239].

(118)

2) Model JUD: 1In front-end JUD, its conditional distribu-
tion is completely decoupled from the acoustic model used for
recognition. In contrast, model JUD [192] links them together
with

AN (ye; fu(Xesmm), fe(Xe,mm))

where 7, is the regression class index of acoustic model
Gaussian component m, generated with the method in [245].
The joint distribution of clean and noisy speech can be
modeled similarly as in Eq{6I] by replacing the front-end
component index k with the regression class index r,,. With
a similar derivation as in front-end JUD, the likelihood of
distorted speech can be denoted by

pa(yel8e) = Y c(m)|A(rm) N (A(rm)ye +b(rm);

m

po (M), B (m) + 35 (1))

p(yelx:) (119)

(120)

Comparing Eq{I20|with Eq{IT6] we can tell that the difference
between model JUD and front-end JUD is that in front-
end JUD only the best component k£* selected in front-end
processing is passed to modify the likelihood evaluation during
decoding while in model JUD every Gaussian component is
associated with a regression-class-dependent transform. There-
fore, in model JUD, the distorted feature y; is transformed
by multiple transforms, similar to CMLLR [120]. However,
it differs from CMLLR due to the regression-class-dependent
variance term 3, (7).

There are several extensions of model JUD. X (r,,) in Eq-
is a full covariance matrix. This brings a large computa-
tional cost when evaluating the likelihood. One direct solution
is to diagonalize it, however, this solution turns out to have
poor performance [244]. Predictive CMLLR (PCMLLR) [211]
can be used to avoid the full covariance matrix by applying
a CMLLR-like transform in the feature space transformed by
model JUD

¥i = A(rpn)y: + b(ry,). (121)
The likelihood for PCMLLR decoding is given by
Pa(yel0s) = > e(m)|Ap(rn)||A(rm) N (Ap(rm)F:
+ bp(“ﬂ)? Moy (m), 3 (m)) (122)

A, (ry,) and by, (r,,) are obtained by using CMLLR, with the
statistics obtained from the model JUD transformed feature
¥+. With Eq{I22] the clean acoustic model is unchanged.

Another alternative is with VTS-JUD [213|], [246] in which
the likelihood is computed as

S elmIN (v H(r) (11, (m) — b(r)),

m

rm) (B (m) + B (rm) ) HT (1))

PA(yel0:) ~

diag(H( (123)
where H(r,,) = A7(r,,). VTS-JUD can be considered as
the model space implementation of model JUD, very similar
to VTS but with less computational cost. In [247]], noise
CMLLR is also proposed to extend the conventional CMLLR
in Section to reflect additional uncertainty from noisy
features by introducing a covariance bias with the same form
as Eq{IT9] All of model JUD, VTS-JUD, and PCMLLR use
VTS in Section [V] to calculate the regression-class-dependent
transforms. If the number of regression classes is identical to
the number of Gaussians, it can be proven that all of these
methods are the same as VTS. By using regression classes,
some computational cost can be saved. For example, in Eq-
of VTS-JUD, although it still needs to apply transforms
to every Gaussian mean and variance of the clean acoustic
model, the cost of calculating transforms is reduced because
they are now regression-class-dependent instead of Gaussian-
dependent.

Recently, subspace Gaussian mixture models (SGMM) are
proposed in [248]] with better performance than GMMs. In
[249], an extension of JUD when using SGMMs is presented
with good improvements in noisy conditions.
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D. Missing-Feature Approaches

Missing-feature approaches [250], [251], also known as
missing-data approaches, introduce the concept of uncertainty
into feature processing. The methods are based on the inherent
redundancy in the speech signal: one may still be able to recog-
nize speech effectively even with only a fraction of the spectro-
temporal information in the speech signal. They attempt to
determine which time-frequency cells are unreliable due to
the introduction of noise or other types of interference. These
unreliable cells are either ignored or filled in by estimates of
their putative values in subsequent processing [252]], [253]].

There are two major types of missing-feature approaches,
namely, feature vector imputation and classifier modification
[254]. Feature imputation methods treat unreliable spectral
components as missing components and attempt to reconstruct
them by utilizing spectrum statistics. There are several typical
methods. In correlation-based reconstruction [255]], the spec-
tral samples are considered to be the output of a Gaussian
wide-sense stationary random process which implies that the
means of the spectral vectors and the covariance between
spectral components are independent of their positions in the
spectrogram. A joint distribution of unreliable components
and reliable neighborhood components can be constructed and
the reconstruction is then estimated using a bounded MAP
estimation procedure. On the other hand, in cluster-based
reconstruction [255]] the unreliable components are recon-
structed only based on the relationships among the components
within individual vectors. Soft-mask-based MMSE estimation
is similar to cluster-based reconstruction, but with soft masks
[256].

In the second category of missing-feature approaches, clas-
sifier modification, one may discern between class-conditional
imputation and marginalization. In class-conditional imputa-
tion, HMM state-specific estimates are derived for the missing
components [257]]. Marginalization, on the other hand, directly
performs optimal classification based on the observed reliable
and unreliable components. One extreme and popularly-used
case is where only the reliable component is used during
recognition.

While with feature vector imputation recognition can be
done with features that may be different from the recon-
structed log-spectral vectors, it was, until recently, common
understanding that state-based imputation and marginalization
precluded the use of cepstral features for recognition. This was
a major drawback, since the log-spectral features to be used
instead exhibit strong spatial correlations, which either resulted
in a loss of recognition accuracy at comparable acoustic model
size or required significantly more mixture components to
achieve competitive recognition rates, compared to cepstral
features. However, recently it has been demonstrated that the
techniques can be applied in any domain that is a linear
transform of log-spectra [258]]. In [259] it has been shown
that (cepstral) features directly computed from the masked
spectrum can outperform imputation techniques, as long as
variance normalization is applied on the resulting features.
Given the ideal binary mask, recognition on masked speech
has been shown to outperform recognition on reconstructed

speech. However, mask estimation is never perfect, and as
the quality of the mask estimation degrades, recognition on
reconstructed speech begins to outperform recognition on
masked speech [260].

The most difficult part of missing-feature methods is the
accurate estimation of spectral masks which identify unreliable
spectrum cells. The estimation can be performed in multiple
ways: SNR-dependent estimation [261]]-[263]], Bayesian esti-
mation [264], [265]], and with perceptual criteria [266]], [267]].
Also, deep neural networks have been employed for supervised
learning of the mapping of the features to the desired soft mask
target [268].

However, it is impossible to estimate the mask perfectly.
Unreliable mask estimation significantly reduces the recog-
nition accuracy of missing-feature approaches [265]. This
problem can be remedied to some extent by using soft masks
[264], [263], [269] which use a probability to represent the
reliability of a spectrum cell. Strictly speaking, missing feature
approaches using soft masks can be categorized as uncertainty
processing methods, but not those that use binary masks.
In [258]] it was shown how soft masks can be used with
imputation techniques. Further, the estimation of the ideal ratio
mask, a soft mask version of the ideal binary mask, was shown
to outperform the estimated ideal binary mask in [268]]. There
is a close link between missing data approaches employing a
soft mask and optimal MMSE estimation of the clean speech
features, as was shown, among others, in [270].

Instead of treating the mask estimation and the classification
as two separate tasks, combining the two promises superior
performance. A first approach in this direction was the speech
fragment decoder of [253]]. The fragment decoder simultane-
ously searches for the optimal mask and the optimal HMM
state sequence. Its initial limitations, which were that ASR
had to be carried out in the spectral domain and that the time-
frequency fragments were formed prior to the ASR decoding
stage and therefore could not benefit form the powerful ASR
acoustic models, have been recently overcome [271]-[274].
In [272] ASR-driven mask estimation is proposed. Similarly,
the bidirectional speech decoding of [274] also exploits the
modeling power of the ASR models for mask estimation. It
generates multiple candidate ASR features at every time frame,
with each candidate corresponding to a particular back-end
acoustic phonetic unit. The ASR decoder then selects the most
appropriate candidate via a maximum likelihood criterion.
Ultimately one could envision an iterative process, where a
baseline recognizer will generate first hypotheses for mask
estimation. Using the estimated mask ASR is improved which
in turn results in improved mask estimation [272].

To summarize, the state of the art in missing data techniques
has matured in recent years and the method has become a high-
performance noise robust ASR technique also for medium to
large vocabulary tasks.

VII. COMPENSATION WITH JOINT MODEL TRAINING

Most noise-robust methods assume that the ASR recognizer
has been trained from clean speech, and in the testing stage
noise robustness methods are used to reduce the mismatch
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between the clean acoustic model and distorted speech with
either feature enhancement or model adaptation techniques.
However, it is very difficult to collect clean training data
in most practical ASR deployment scenarios. Usually, the
training set may contain distorted speech data obtained in all
kinds of environments. There are several issues related to the
acoustic model trained from multi-style training data. First, the
assumption of most noise-robust methods is no longer valid.
For example, in the explicit modeling technique discussed in
Section [V] such as vector Taylor series (VTS), the explicit
distortion model assumes that the speech model is only trained
from clean data. Another issue is that the trained model is too
broad to model the data from all environments. It fails to give
a sharp distribution of speech classes because it needs to cover
the factors from different environments.

All of these problems can be solved with joint model
training which applies the same process at both the training
and testing stage so that the same sources of variability
can be removed consistently. More specifically, the feature
compensation or model adaptation technique used in the test
stage is also used in the training stage so that a pseudo-clean
acoustic model is obtained in training. Using the criterion of
whether the ASR models are trained jointly with the process
of feature compensation or model adaptation in the test stage,
we can categorize most existing noise-robust techniques in the
literature into two broad classes: disjoint and joint model train-
ing. The disjoint model training methods are straightforward.
We will focus on joint model training in this section.

Among the joint model training methods, the most promi-
nent set of techniques are based on a paradigm called noise
adaptive training (NAT) first published in year 2000 [138]],
which can also be viewed as a hybrid strategy of feature
enhancement and model adaptation. One specific example
of NAT is the multi-style training of models in the feature
enhanced domain, where noisy training data is first cleaned
by feature compensation methods, and subsequently the en-
hanced features are used to retrain the acoustic model for
the evaluation of enhanced test features. This feature-space
NAT (fNAT) strategy can achieve better performance than the
standard noisy matched scheme, because it applies consis-
tent processing during the training and testing phases while
eliminating residual mismatch in an otherwise disjoint training
paradigm. The feature compensation can be any form of noise
reduction or feature enhancement. The model compensation
can be any form of MLE or discriminative training, where it
is multi-style training operating on the feature-compensated
training data.

fNAT is popular because it is easy to implement and has
been shown to be very effective, and hence it has been adopted
as one of the two major evaluation paradigms, called multi-
style training (after denoising), in the popular series of Aurora
tasks. However, fNAT decouples the optimization objective
of the feature compensation and model training parts, which
are not jointly optimized under a common objective function.
In contrast, the model-space NAT (mNAT) methods jointly
train a canonical acoustic model and a set of transforms or
distortion parameters under MLE or discriminative training
criteria, with examples such as source normalization training

[275]], joint adaptive training (JAT) [241], irrelevant variability
normalization (IVN) [[121]], [276], and VTS-NAT [199], [277].
All of these model-space joint model training methods share
the same spirit with speaker adaptive training (SAT) [278]],
proposed in 1996 for speaker adaptation. One difference
between SAT and NAT methods is whether there is a golden
target for canonical model learning. In NAT, the golden target
is the truly clean speech features or the model trained from it.
However, in SAT, there is no such predefined golden speaker
as the target.

A. Speaker Adaptive and Source Normalization Training

General adaptation methods, such as MLLR and CMLLR,
are initially proposed for speaker adaptation. A speaker-
independent acoustic model is obtained from a multi-speaker
training set using the standard MLE method. In testing,
speaker-dependent transforms are estimated for specific speak-
ers. However, the acoustic model estimated in this way may
be a good model for average speakers, but not optimal for any
specific speaker. SAT [278] is proposed to train a canonical
acoustic model with less inter-speaker variability. A com-
pact HMM model A, and the speaker-dependent transforms
W = (WO WE W) are jointly estimated from a
R-speaker training set by maximizing the likelihood of the
training data

(Aca W) = aI}\gmaX Hf:l‘c(Y(r)a W(T) (AC))a
W

(124)

where Y(") is the observation sequence of speaker r. A
transform W (") = [A(Mb(")] for speaker r in the training set
maps the compact model A, to a speaker dependent model
in the same way as the speaker adaptation methods used in
the testing stage. With the compact model A., the speaker-
specific variation in the training stage is reduced and the
trained compact model represents the phonetic variation more
accurately.

Eq{124|can be solved with the EM algorithm by maximizing
the auxiliary @) function when the MLLR transform is used

Q=Y %" (m)logN(y{"; A p(m) + b, B(m)).

r,t,m

o (125)
As shown in Figure [3] SAT is done with an iterative two-
stage scheme. In the first stage, the auxiliary ) function is
maximized with respect to the speaker-dependent transforms
W while keeping the Gaussian model parameters of the
compact model A, fixed. By setting the derivative of () with
respect to VW to 0, the solution of VW can be obtained as
in Section In the second stage, the model parameters
are updated by maximizing the auxiliary () function while
keeping the speaker-dependent transforms )V fixed. By setting
the derivative of @) with respect to p(m) and X(m) to 0, the
model parameters can be obtained.

While the SAT formulations are derived with MLLR as the
adaptation method, a similar process can also be applied to
other adaptation methods, such as CMLLR described in [[TI-B}
Although initially proposed to reduce speaker-specific varia-
tion in training, SAT can also be used to reduce environment-
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Fig. 3. Speaker adaptive training
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specific variation when MLLR or CMLLR is used to adapt
models in noisy environments.

In some real applications, we need to adapt to a cluster
of distortions such as a group of speakers or background
noise instead of individual speakers. Source normalization
(SNT) training [275] generalizes SAT, by introducing another
hidden variable to model distortion sources. SNT subsumes
SAT by extending the speaker ID to a hidden variable in
training and testing. In SNT the distortion sources (e.g. a
speaker) do not have to be tagged; they are discovered by
unsupervised training with the EM algorithm. SNT was used to
explicitly address environment-specific normalization in 1997
[275]. In [275]], an environment can refer to speaker, handset,
transmission channel or noise background condition.

MLLR and CMLLR are general adaptation technologies,
and cannot work as effectively as the noise-specific explicit
modeling methods in noise-robust ASR tasks. Therefore, the
SAT-like methods are not as popular as the model space
noise adaptive training methods of the next section which are
coupled with the explicit distortion model methods in Section

Y|

B. Model Space Noise Adaptive Training

The model space noise adaptive training (mNAT) scheme
is very similar to SAT in Figure [3] The speaker-dependent
transforms WV are replaced with the distortion model & =
(@M, ®) . (M), where R is the total number of training
utterances. Every utterance » = 1... R, has its own utterance-
dependent noise, channel, and adapted HMM parameters.
However, all utterances share the same set of canonical HMM
parameters. Similar to SAT, the mNAT methods are effective
when the same model adaptation methods are used in both
training and testing stages. The representative mNAT methods
are joint adaptive training (JAT) [241]], irrelevant variability
normalization (IVN) [276], and VTS-NAT [199]], [277]]. The
JAT work uses joint uncertainty decoding (JUD) [192], [240]
as its model adaptation scheme. The IVN work uses the VTS
algorithm presented in [[187] for model adaptation. The VTS-
NAT work is coupled with VTS adaptation in [131], [132],
which is described in detail in Section

VTS-NAT model estimation is also done with an iterative
two-stage scheme. In the first stage, the auxiliary () function is
maximized with respect to the utterance-dependent distortion
model parameters ®(") while keeping the canonical Gaussian
model parameters fixed. The auxiliary ) function can be

Update HMM
Parameters A
Update Speaker- .
Dependent

written as
Q=Y " m)logpsey (vi7m).  (126)
t,r,m
where A(") denotes the adapted model for utterance r. Com-

paring this with the auxiliary function in Eq{86] an additional
term r is summed in Eq{I26] to include all the training
utterances. The solution is the same as in Section [V-B1l

In the second stage, the canonical model parameters are
updated by maximizing the auxiliary ) function while keep-
ing the utterance-dependent distortion model parameters & (")
fixed. The mean parameters of the canonical model are ob-
tained by taking the derivative of () with respect to them and
setting the result to zero.

Similar to the solution of noise variance update in VTS, a
Newton’s method can be used to update the model variance
[199]. All of the joint model training techniques learn the
canonical model to represent the pseudo-clean speech model,
and the transforms are then used to represent the non-linguistic
variability such as environmental variations. It has been well
established that joint training methods achieve consistent im-
provement over the disjoint training methods. The latter are
much easier to implement, and easier to train the acoustic
model parameters alone without making them compact and
without removing the non-linguistic variability.

Coupled with model JUD instead of VTS, JAT [241] is
another variation of NAT. Similar to VTS-NAT, the adaptive
transform in JAT is parameterized, and its parameters are
jointly trained with the HMM parameters by the same kind
of maximum likelihood criterion. While most noise adaptive
training studies are based on the maximum likelihood criterion,
discriminative adaptive training can be used to further improve
accuracy [279]]. To do so, standard MLE-based noise adaptive
training [241] is first performed to get the HMM parameters
and distortion model parameters. Then, the distortion model
parameters are fixed and the discriminative training criterion is
applied to further optimize the HMM parameters. While JAT
is initially proposed to handle GMMs, it is extended in [208]]
to work with subspace GMMs to get further improvement.

The idea of irrelevant variability normalization (IVN) is a
very general concept. The argument is that HMMs trained
from a large amount of diversified data, which consists of dif-
ferent speakers, acoustic environments, channels etc., may tend
to fit the variability of data irrelevant to phonetic classification.
The term IVN is proposed in [280] to build a better decision
tree that has better modeling capability and generalizability by
removing the speaker factors during the decision tree building
process. Then from 2002, IVN is widely used as a noise-
robustness method for jointly training the front-end and back-
end together for stochastic vector mapping [281]], which maps
the corrupted speech feature to a clean speech feature by a
transform. Every environment can have a bias vector [281],
[282], or one environment-dependent transform [283]], or even
multiple environment transforms [284].

Although some forms of IVN are similar to SAT, IVN is
designed for noise robustness by using environment-dependent
transforms and biases to map the corrupted speech feature
to the clean speech feature. In [276], IVN is further linked
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with VTS (VTS-IVN) by using explicit distortion modeling to
characterize the distortion caused by noise.

VIII. SUMMARY AND FUTURE DIRECTIONS

In this paper, we have provided an overview of noise-robust
ASR techniques guided by a unified mathematical framework.
Since noise robustness for ASR is a very large subject, a
number of topics had to be excluded to keep the overview
reasonably concise. Among the topics excluded are robustness
against room reverberation, blind speaker separation, micro-
phone array processing, highly nonstationary noise, and voice
activity detection. The included topics have covered major core
techniques in the field, many of which are currently exploited
in modern speech recognition systems.

To offer insight into the distinct capabilities of these tech-
niques and their connections, we have conducted this overview
using the taxonomy-oriented approach. We have used five key
attributes — feature vs. model domain processing, explicit vs.
implicit distortion modeling, use of prior knowledge about
distortion or otherwise, deterministic vs. uncertain processing,
and joint vs. disjoint training, to organize the vast amount of
material and to demonstrate the commonalities and differences
among the plethora of noise-robust ASR methods surveyed
in this paper. We conclude this paper by summarizing the
methods surveyed in this paper in Table [[I] using the five
distinct attributes discussed in this study. Note that the column
with the heading “explicit modeling” refers to the use of
an explicit model for the physical relation between clean
and distorted speech. As such, signal processing methods,
such as PLP and RASTA, while having auditory modeling
inside, are not classified as explicit distortion modeling. CMN
is considered to be an explicit modeling method because it
can remove the convolutive channel effect while CMVN is
considered to be a representative of implicit modeling because
cepstral variance normalization does not explicitly address any
distortion. We classify observation uncertainty and front-end
uncertainty decoding as hybrid (domain) methods in Table
because the uncertainty is obtained in the feature space and
is then passed to the back-end recognizer by modifying the
model covariance with a bias.

In our survey we note that some methods were proposed a
long time ago, and they were revived when more advanced
technologies were adopted. As an example, VTS was first
proposed in 1996 [134] for both model adaptation and feature
enhancement. But VTS has only quite recently demonstrated
an advantage with the advanced online re-estimation for all
the distortion parameters [131]], [132]. Another example is
the famous Wiener filter, proposed as early as 1979 [106] to
improve the performance on noisy speech. Only after some
20 years, in 2002, two-stage Mel-warped Wiener filtering
was proposed to boost the performance of Wiener filtering
in several key aspects, and has become the main component
of the ETSI advanced front-end. Furthermore, ANN-HMM
hybrid systems [|63]] were studied in the 1990s, and again only
after 20 years, expanded to deep architectures with improved
learning algorithms to achieve much greater success in ASR
and in noise robustness in particular [71]], [73]. Hence, un-
derstanding current well-established technologies is important

for providing a foundation for further technology development,
and is one of the goals of this overview paper.

In the early years of noise-robust ASR research, the focus
was mostly on feature-domain methods due to their efficient
runtime implementation. Runtime efficiency is always a factor
when it comes to deployment of noise-robustness technologies.
A good example is CMLLR which can be effectively realized
in the feature space with very small cost although it can
also be implemented in the model space with a much larger
cost by transforming all of the acoustic model parameters
instead of very limited ones (e.g. a single vector per frame)
as in MLLR. Feature normalization methods come with very
low cost and hence are widely used. But they address noise-
robustness problems in an implicit way. In contrast, spectral
subtraction, Wiener filtering, and VTS feature enhancement
use explicit distortion modeling to remove noise, and are
more effective. Note that most feature-domain methods are
decoupled from the ASR objective function, hence they may
not perform as well as model-domain methods. In contrast,
while typically achieving higher accuracy than feature-domain
methods, model-domain methods usually incur significantly
larger computational costs. With increasing computational
power, research on model-domain methods is expected to be-
come increasingly active. With the introduction of bottleneck
features enabled by the DNN, and the use of DNN technology
itself as acoustic models for ASR, we also expect increasing
activity in neural-network-based noise-robustness methods for
ASR in the coming years.

As we have reviewed in this paper, many of the model
and feature domain methods use explicit distortion models to
describe the physical relationship between clean and distorted
or noisy speech. Because the physical constraints are explicitly
represented in the models, the explicit distortion modeling
methods require only a relatively small number of distortion
parameters to be estimated. In contrast to the general-purpose
techniques, they also exhibit high performance due to the
explicit exploitation of the distorted speech generation process.
One of the most important explicit distortion modeling tech-
niques is VTS model adaptation [131]], [132]], which has been
discussed in detail in this paper. However, all of the model
adaptation methods using such explicit distortion models rely
on validity of the physical constraints expressed by the partic-
ular features used. Even with a simple feature normalization
technology such as CMN, the distortion model such as in
Eq{I4] is no longer valid. As a result, model adaption using
explicit distortion modeling cannot be easily combined with
all of the feature post-processing technologies, such as CMN,
HLDA, and fMPE etc. One solution is to use VTS feature
enhancement, which still utilizes explicit distortion modeling
and can also be combined with other feature post-processing
technologies, despite the small accuracy gap between VTS fea-
ture enhancement and VTS model adaptation [198]. Another
advantage of VTS feature enhancement is that it can reduce the
computational cost of VTS model adaptation, which is always
an important concern in ASR system deployment. JUD [192],
PCMLLR [211]], and VTS-JUD [246] have been developed
also addressing such concerns. As shown in Section [V] better
distortion modeling results in better algorithm performance,



26 IEEE TRANS. AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X, XXX 2013

TABLE I
A SUMMARY OF THE REPRESENTATIVE METHODS IN NOISE-ROBUST ASR SURVEYED IN THIS PAPER. THEY ARE ARRANGED ALPHABETICALLY.

Methods Time Model vs. | Explicit Use prior | Deterministic Joint  vs.
of feature do- | vs. implicit | knowledge Vs. disjoint
publi- main distortion about uncertainty training
cation modeling distortion processing

or not

ANN-HMM hybrid systems [[63]] 1994 feature implicit not use deterministic disjoint

Bayesian predictive classification (BPC) [231] 1997 model implicit not use uncertainty disjoint

bottle-neck feature [68]] 2007 feature implicit not use deterministic disjoint

cepstral mean normalization (CMN) [81]] 1974 feature explicit not use deterministic disjoint
cepstral mean and variance normalization (CMVN) [82] 1998 feature implicit not use deterministic disjoint
constrained MLLR (CMLLR) [120] 1998 both implicit not use deterministic disjoint
context-dependent deep neural network HMM (CD-DNN- | 2010 feature implicit not use deterministic disjoint

HMM) [71], [73]]

empirical cepstral compensation [3]], [135], [136] 1990 feature implicit use deterministic disjoint

exemplar-based reconstruction use non-negative matrix fac- | 2010 feature explicit use deterministic disjoint

torization [163], [164]

eigenvoice [154] 2000 model implicit use deterministic disjoint

ETSI advanced front-end (AFE) [[108] 2002 feature explicit not use deterministic disjoint

feature space noise adaptive training (NAT) [[138] 2000 feature implicit both deterministic joint

front-end uncertainty decoding [239], [240] 2002 hybrid implicit use uncertainty disjoint
histogram equalization method (HEQ) [83] 2003 feature implicit use deterministic disjoint
irrelevant variability normalization [276], [281] 2002 both both both deterministic joint
joint adaptive training (JAT) [241] 2007 hybrid explicit not use uncertainty joint
joint uncertainty decoding (JUD) [240] 2005 hybrid explicit not use uncertainty disjoint

Mel-warped Wiener filtering [[109]], [114] 2002 feature explicit not use deterministic disjoint

maximum likelihood linear regression (MLLR) [119] 1995 model implicit not use deterministic disjoint

missing feature [250], [252], [255] 1994 feature implicit not use uncertainty disjoint
multi-style training [21] 1987 model implicit use deterministic disjoint
observation uncertainty [235]], [236], [238] 2002 hybrid implicit both uncertainty disjoint
parallel model combination (PMC) [[133] 1995 model explicit not use deterministic disjoint
perceptual linear prediction (PLP) [46] 1985 feature implicit not use deterministic disjoint
relative spectral processing (RASTA) [49], [285] 1991 feature implicit not use deterministic disjoint
speaker adaptive training (SAT) [278] 1996 model implicit not use deterministic joint

spectral subtraction [103]] 1979 feature explicit not use deterministic disjoint
stereo piecewise linear compensation for environment | 2000 feature implicit use deterministic disjoint

(SPLICE) [138§]

TANDEM |[64] 2000 feature implicit not use deterministic disjoint

TempoRAL Pattern (TRAP) processing [65]] 1998 feature implicit not use deterministic disjoint

unscented transform (UT) [216], [219] 2006 model explicit not use deterministic disjoint

variable-parameter HMM (VPHMM) [[176] 2007 model implicit use deterministic disjoint
vector Taylor series (VTS) model adaptation [[132], [[134], 1996 model explicit not use deterministic disjoint

[185]

[~ VTS feature enhancement [134]], [195], [198] 1996 feature explicit not use deterministic disjoint
VTS-JUD [213]], [246] - 2009 model explicit not use deterministic disjoint
VTS-NAT [199], [277] 2009 model explicit not use deterministic joint
Wiener filter [|106] 1979 feature explicit not use deterministic disjoint

but also incurs a large computation cost (e.g., UT [216], [219]).
While most adaptation is a one-to-one mapping between the
clean Gaussian and the distorted Gaussian due to easy imple-
mentation, recent work has appeared covering distributional
mappings between the GMMs [220]]. In conclusion, research
in explicit distortion modeling is expected to grow, and an
important direction will be how to combine better modeling
with runtime efficiency and how to make it capable of working
with other feature processing methods.

Without explicit distortion modeling, it is very difficult to
predict the impact of noise on clean speech during testing if
the acoustic model is trained only from clean speech. The
more prior knowledge of that impact we have, the more we
can better recognize the corrupted speech during testing. The
methods utilizing prior knowledge about distortion discussed
in this paper are motivated by such reasoning. Methods like
SPLICE learn the environment-dependent mapping from cor-
rupted speech to clean speech. The extreme case is exemplar-

based reconstruction with NMF, which restores cleaned speech
by constructing the noisy speech with pre-trained clean speech
and noise exemplars and by keeping only the clean speech
exemplars. However, the main challenge in the future direction
is that methods utilizing prior knowledge need to preform also
well for unseen environments, and we expect more research
in this direction in the future.

Since neither feature enhancement nor model adaptation is
perfect, there always exists uncertainty in feature or model
space, and uncertainty processing has been designed to ad-
dress this issue as reviewed in this paper. The initial study
in the model space modified the decision rule to use the
minimax rule or the BPC rule. Although the mathematics
is well grounded, the computational cost is very large and
it is difficult to define the model neighborhood. Research
was subsequently switched to the feature space, resulting in
the methods exploiting observation uncertainty and JUD. The
latter also serves as an excellent approximation to VTS with
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much lower computational cost. Future research in uncertainty
processing is expected to focus on the feature space, and on
combining the technique with advances in other areas such as
explicit distortion modeling.

Joint training is a good way to obtain canonical acoustic
models. Feature-space NAT is a common practice that is
now widely used while model-space NAT is much harder to
develop and deploy partly because of the difficulty in finding
closed-form solutions in model learning and because of the
computational complexity. Despite the difficulty, joint training
is more promising in the long run because it removes the
irrelevant variability to phonetic classification during training,
and multi-style training data is easier to obtain than clean
training data in real world applications. Better integrated
algorithm design, improved joint optimization of model and
transform parameters, and clever use of metadata as labels for
the otherwise hidden “distortion condition™ variables are all
promising future research directions.

By comparing the methods in Table [l we clearly see
the advantages of explicit distortion modeling, using prior
knowledge, uncertainty, and joint training methods over their
counterparts. When developing a noise-robust ASR method,
their combinations should be explored. For real-world appli-
cations, there are also some other factors to consider. For
example, there is always a tradeoff between high accuracy
and low computational cost. Special attention should also be
paid to non-stationary noise. Some methods such as NMF
can handle non-stationary noise very well because the noise
exemplars are extracted from a large dictionary which can
consist of different types of noise. The effectiveness of many
frame-by-frame feature compensation methods (e.g., spectral
subtraction and Wiener filtering) depends on whether the noise
tracking module is good at tracking non-stationary noise. Some
methods such as the standard VTS may not directly handle
non-stationary noise well because they assume the noise is
Gaussian distributed. This problem can be solved by relaxing
the assumption using a time-dependent noise estimate (e.g.,
[286]).

Finally, the recent acoustic modeling technology, CD-DNN-
HMM, brings new challenges to conventional noise-robustness
technologies. We classify CD-DNN-HMM as a feature-based
noise robust ASR technology since its layer-by-layer setup
provides a feature extraction strategy that automatically de-
rives powerful noise-resistant features from primitive raw
data for senone classification. In [77], the CD-DNN-HMM
trained with multi-style data easily matches the state-of-the-
art performance obtained with complicated conventional noise-
robustness technology on GMM systems [227]. With deep
and wide hidden layers, the DNN provides a very strong
normalization to heterogeneous data [77], [78[], [287]. The
noise, channel, and speaker factors may already be well nor-
malized by the complex nonlinear transform inside the DNN.
In other words, the layer-by-layer feature extraction strategy in
deep learning provides an opportunity to automatically derive
powerful features from primitive raw data for HMM state
classification. However, this does not mean that the noise-
robustness technologies are not necessary when used together
with CD-DNN-HMM. It is shown in [288[]-[290]] that a robust

front-end 1is still helpful if the CD-DNN-HMM is trained
with clean data, and tested with noisy data. In a multi-style
training setup, although some robust front-ends cannot benefit
DNNs [[77], [289]], VTS with explicit distortion modeling and
DOLPHIN (dominance based locational and power-spectral
characteristics integration) are still very useful to improve the
ASR performance [288], [290]. One possible reason is that
the nonlinear distortion model used in VTS and the spatial
information used in DOLPHIN are not available to the DNN.
Therefore, one potential way to work with a CD-DNN-HMM
is to incorporate technologies utilizing the information not
explicitly exploited in DNN training. The explicit modeling
technologies such as VTS should work very well. The DNN
also makes it easy to work on all kinds of acoustic features,
which may be hard for a GMM. For example, log-filter-bank
features are usually not used as the input to a GMM because of
the correlation among feature dimensions. In [[78]], [291]], it is
shown that log-filter-bank features are significantly better than
the widely-used MFCCs when used as the input to the DNN.
And in [292], the filter bank is replaced with a filter bank
layer that is learned jointly with the rest of DNN by taking
the linear frequency power spectrum as the input. Furthermore,
some of the noise-robustness methods, as surveyed in this
paper, have the underlying assumption that a GMM is used
for state likelihood evaluation. If the CD-DNN-HMM is used,
this assumption is no longer valid. One potential solution is
to use the DNN-derived bottleneck features in a GMM-HMM
system, thereby utilizing both the power of DNN nonlinear
normalization and the GMM assumption validating many of
the currently successful noise-robustness approaches described
in this paper. The impact of using the DNN and DNN-induced
bottleneck features on noise-robustness ASR deserve intensive
research.
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