
Ditto - A System for Opportunistic Caching in
Multi-hop Wireless Networks

Fahad R. Dogar, Amar Phanishayee, Himabindu Pucha, Olatunji Ruwase, David G. Andersen

Carnegie Mellon University

{fdogar, amarp, hpucha, oor, dga}@cs.cmu.edu

ABSTRACT
This paper presents the design, implementation, and evalu-
ation of Ditto, a system that opportunistically caches over-
heard data to improve subsequent transfer throughput in
wireless mesh networks. While mesh networks have been
proposed as a way to provide cheap, easily deployable Inter-
net access, they must maintain high transfer throughput to
be able to compete with other last-mile technologies. Un-
fortunately, doing so is difficult because multi-hop wireless
transmissions interfere with each other, reducing the avail-
able capacity on the network. This problem is particularly
severe in common gateway-based scenarios in which nearly
all transmissions go through one or a few gateways from the
mesh network to the Internet.

Ditto exploits on-path as well as opportunistic caching
based on overhearing to improve the throughput of data
transfers and to reduce load on the gateways. It uses content-
based naming to provide application independent caching
at the granularity of small chunks, a feature that is key
to being able to cache partially overheard data transfers.
Our evaluation of Ditto shows that it can achieve significant
performance gains for cached data, increasing throughput by
up to 7x over simpler on-path caching schemes, and by up
to an order of magnitude over no caching.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; C.2.6
[Computer-Communication Networks]: Internetwork-
ing

General Terms
Design, Performance, Experimentation

Keywords
Multi-hop Wireless Networks, Mesh Networks, Opportunistic
Caching, Performance, Throughput

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’08, September 14–19, 2008, San Francisco, California, USA.
Copyright 2008 ACM 978-1-60558-096-8/08/09 ...$5.00.

1. INTRODUCTION
Wireless mesh networks are an appealing way to provide

Internet access because of their potential low cost and easy
deployment. A key challenge in mesh networks is maintaining
high transfer throughput. Unfortunately, doing so is difficult
because these networks inherently suffer from interference
due to the broadcast nature of the wireless medium. This
interference manifests itself in several ways: First, increasing
the number of hops from source to destination decreases
the path throughput because subsequent hops interfere with
each other. Second, the probability of loss increases with the
number of hops, which can drastically reduce TCP through-
put. Third, a common communication pattern in a mesh
network exacerbates the situation: Every mesh router ob-
tains Internet access by communicating with a gateway node.
Congestion thus increases near the gateway as the medium
around the gateway becomes a hot-spot.

This paper presents Ditto1, a system that improves transfer
performance in mesh networks by opportunistically caching
data both at nodes on the path of a transfer and at nodes
that overhear the data transfer. This caching is exploited
through Ditto-enabled mesh routers, which act as proxies
for data requests from clients, satisfying requests from cache
when possible and otherwise passing those requests on to the
next hop.

Ditto targets traditional applications for content caching
(popular Web content, large software and operating system
updates, and large data downloads such as those on peer-to-
peer networks. etc.) as well as emerging applications such
as high-bandwidth video downloads. In this regard, Ditto is
similar to much prior work in caching and content delivery,
and its target applications and expected cache hit rates are
largely the same. Because it operates on lossy lower band-
width wireless links, however, Ditto’s potential performance
benefits are much higher. As we show in Section 6, Ditto
can improve throughput by up to an order of magnitude.

Ditto leverages content-based naming for opportunistic
caching: data objects or parts of data objects are identified
by their hash value. This naming mechanism allows Ditto to
provide application independent caching at the granularity
of chunks. Because chunks are typically small (8 – 32 KB),
nodes are more likely to overhear a complete chunk compared
to a whole file. This makes caching based on overhearing
effective in a multi-hop wireless setting where losses would
prevent overhearing complete files. Ditto furthermore uses
multiple transmissions at different hops to create more op-

1The comic strip Hi and Lois features two twins, Dot and
Ditto, from which our system’s name is copied.

Figure 1: Impact of multi-hop transfers in a mesh
network.

portunities for an overhearing node to reconstruct a chunk.
To do so, Ditto uses inter-stream TCP reassembly at an over-
hearing node to construct a chunk that is being transmitted
in multiple TCP streams.

We evaluate the effectiveness of Ditto by conducting exper-
iments on two separate wireless network testbeds: MAP [1], a
28 node indoor/outdoor campus-wide wireless mesh testbed
and Emulab’s indoor 802.11b testbed. We conduct two sets
of experiments: 1) analyzing chunk reconstruction efficiency
by making each node in the testbed download a file from the
gateway and measuring the proportion of chunks that were
successfully reconstructed at every other node; and 2) mea-
suring the throughput gain that is achieved by opportunistic
caching in Ditto compared to i) no caching and ii) on-path
caching by proxies.

Our results show that reconstructing chunks based on over-
hearing is feasible. Nodes are able to successfully reconstruct
chunks of the order of 32KBs in size, although reconstruction
efficiency goes down as the chunk size is increased. More
specifically, our results show that 25% of the observers in
the campus testbed and 50% in Emulab could reconstruct
more than 50% of the total chunks transferred. This high
reconstruction efficiency also results in significantly improved
throughput: Ditto’s opportunistic caching increased through-
put by up to an order of magnitude compared to the no-
caching scenario and 7× compared to on-path caching.

In the next two sections, we discuss the key challenges
and opportunities that Ditto faces in the wireless environ-
ment (Section 2) and how it overcomes these challenges and
exploits the available opportunities (Section 3). We then
explain Ditto’s design (Section 4) and implementation (Sec-
tion 5). We present the evaluation of Ditto with respect to
reconstruction effectiveness and throughput efficiency (Sec-
tion 6). Section 7 summarizes the work most closely related
to Ditto.

2. CHALLENGES AND OPPORTUNITIES
FOR MESH DATA TRANSFERS

We begin by illustrating the challenge presented by increas-
ing hop lengths in a wireless mesh network. Towards this end,
we measured the impact of hop length on transfer throughput

using a 28 node campus testbed.2 In these measurements,
each node initiated a TCP transfer to every other node using
netperf. The transfers were conducted one-at-a-time with a
five-second idle interval between sessions to avoid interfer-
ence. The results below show only measurements from the
654 working paths.

Figure 1 shows the CDF of the TCP throughput obtained
over all 1, 2, 3 and 4 hop paths in the network. The TCP
throughput falls rapidly as the hop count grows. UDP trans-
fers exhibit a similar drop, though their absolute throughput
was higher than that of TCP. Our results agree with those
observed in other testbeds (e.g., Roofnet [3]). Compounding
the problem, one common access pattern in a mesh network
consists of many mesh routers communicating with a few
gateways to obtain Internet access. This creates hot-spots
in the network and the resulting congestion further reduces
transfer throughput.

Despite the challenges identified above, there are several
opportunities that might be exploited to improve throughput
in a mesh network. These opportunities include i) locality and
similarity in the workload transferred over a mesh network,
and ii) the opportunity to overhear and cache data transferred
between other nodes, and possibly using it to improve the
performance of a subsequent transfer.

Locality in a workload implies that multiple clients request
the same data object over time or that multiple clients from
different parts of the network request the same object at the
same time. Workload locality is common on the Internet [5].
Because many mesh networks are used to provide Internet
access (e.g., Meraki [16]), we believe that this locality will
also be present in mesh networks. The recent “MeshCache”
project [8] provides evidence of locality in Internet access
workloads for client population typically found in a mesh
network. Popular transfers such as software updates also
create significant opportunities to exploit locality.

Similarity exists between parts of different data objects.
This observation applies across general IP packets on network
links [21], within email messages [9, 23], remote filesystem
use [19, 24], software [7], Web pages [11, 18], and media
files [20]. A transfer system that can opportunistically exploit
data similarity at a granularity finer than that of an entire
object has even more opportunities to exploit locality in
access patterns in order to improve transfer performance.

3. DITTO OVERVIEW
Ditto improves throughput in mesh networks by using the

broadcast nature of the wireless medium to exploit content
similarity and access locality. Ditto does so using application
independent caching at nodes on the path of a data transfer
as well as at nodes overhearing the data transfer. While
earlier efforts have looked at on-path caching to improve
throughput in mesh networks [8], Ditto’s novelty comes from
the synergistic combination of caching using content-based
chunk naming and caching overheard data. Ditto’s caching
can reduce the load on the gateway and decrease the average
hop length of data transfers. Ditto’s use of content-based
naming allows it to aggressively use multiple opportunities
of overhearing a given data transfer provided by data trans-
missions that span multiple hops and by retransmissions,
turning sources of performance degradation into additional
caching opportunities.

2details in Section 6.1

Figure 2: Example illustrating Ditto’s effectiveness.

3.1 An Example Scenario using Ditto
We illustrate how Ditto can exploit locality and similarity

to improve transfer performance using an example. The
details of these mechanisms are presented in the following
sections.

Consider the wireless mesh network shown in Figure 2.
Alice requests a video object of the documentary “Planet
Earth” in English using a p2p file sharing application. The
request results in a cache miss in the network and is obtained
via the gateway and returned to Alice. During this trans-
fer, Ditto caches the video at router 1 (Alice’s access mesh
router), at routers 2 and 5 (which form the multi-hop path
to the gateway) and at the gateway router GW 1. Ditto also
overhears and caches part of the video at routers 3 and 4,
which are in radio range of routers 2 and 5 respectively.

If Carol subsequently requests the same video file, her
request can be satisfied by router 3, which overheard the
transfer via router 2 to Alice earlier, instead of traveling three
hops to the gateway node. Similarly, Bob and Dylan benefit
from on-path caching at routers 1 and 2 if they request the
same video.

Because Ditto uses application independent caching at
the granularity of chunks, it can benefit a) transfers that
are made by different applications: e.g. Bob might view
“Planet Earth” through a web-app rather than using p2p
software, and b) transfers that contain similarity between
objects requested: e.g. Dylan views a trailer for the same
documentary, possibly in a different language. In both cases,
as the contents of the data being requested are either the
same or similar to the data that Alice requested earlier, Ditto
can improve transfers by identifying chunks in the requests
that might have been cached at routers, thereby avoiding
going all the way to the gateway for the entire data.

4. DITTO DESIGN
The core of Ditto’s design is its mechanisms for proxying,

caching, and overhearing data transferred through the mesh
network. This design encompasses three key points: (1) The
mechanism that nodes use to perform file transfers; (2) The
way Ditto proxies service requests for data; and (3) The
mechanisms that Ditto nodes use to cache overheard data.
In our design of Ditto, we consider a multi-hop mesh network
in which all nodes are Ditto-enabled. We assume that the

sender and receivers use the same transfer mechanisms that
Ditto does, or that they are suitably equipped with proxies
that translate existing protocols (e.g., HTTP) into Ditto’s
protocol.

4.1 Ditto Data Transfers
In order to cache data at a fine granularity, Ditto uses ex-

isting content-based naming techniques for its data transfers.
(As we explain further in Section 5, we use Data-Oriented
Transfer, or DOT, for this purpose [23].) From our perspec-
tive, the pertinent features of content-based naming are:

1. Chunk-based transfers: Objects are split into smaller
(2-64KB) chunks, and each chunk is transferred inde-
pendently. A common technique is to define chunk
boundaries using Rabin fingerprinting, a technique pio-
neered in the LBFS filesystem to increase the chances
of finding identical chunks in similar files [19]. Before
the actual transfer begins, the receiver typically obtains
a list of chunks that make up the object it desires, and
then requests each chunk in order.

2. Hash-based chunk naming: Chunks are named in
a self-verifying manner by their content hash. As a
result, a receiver can verify that it received the correct
data for a chunk.

Each of these properties is important to Ditto’s effective-
ness. First, content-based naming allows Ditto proxies to
be application independent, though those applications must
be modified or proxied to work with Ditto’s chosen transfer
service.

Second, chunk-based transfers permit Ditto to operate at
a much finer granularity than whole-object caching systems
do. This property is critical in the lossy wireless environ-
ment: the chance of correctly overhearing the entire file
decreases exponentially with the size of the file. While the
direct receiver of the transfer benefits from both link-level
and transport-level retransmissions to recover from losses, an
overhearing node does not have the same luxury as its losses
may not be correlated with losses at the direct receiver. It
therefore is vanishingly unlikely that the overhearing node
would properly reconstruct an entire large file. (This shrink-
ing probability is also relevant to the choice of chunk size, a
choice we evaluate in more detail in Section 6.)

Finally, Ditto leverages the self-verifying nature of content-
based naming to ensure that its data transfers are correct
even if it overhears a corrupted packet.

4.2 Ditto Proxies
Ditto transfers chunks using per-hop proxying. This mech-

anism is much like hierarchical web caching: Each Ditto
proxy serves the data to its previous hop, either from its
cache or by requesting it from its next-hop Ditto proxy. Each
proxy caches all chunks that it transfers during this process.
As we discuss in more detail below, the sniffer module also
adds overheard chunks to the proxy’s cache. Figure 3 outlines
the Ditto proxy structure.

Locating data: One important design decision for the proxy
architecture was how to locate data. Several nodes in the
mesh might have cached a particular chunk. When a proxy
needs to locate a chunk, from which other proxy should
it request the data? We chose to design Ditto with the
simple and robust choice of always requesting data from

Figure 3: Ditto proxy design.

the next-hop proxy (the one through which traffic would
go to reach the gateway). As a result, requests can never
move “backwards” away from the ultimate source of the
data. In effect, this choice turns Ditto’s dissemination into a
tree, rooted at the gateway, potentially sacrificing rare uphill
caching opportunities for robustness and simplicity. Ditto
obtains the identity of the next-hop by periodically querying
the operating system for the next-hop route.

Per-hop TCP connections: A consequence of Ditto’s
per-hop proxying is that data is transferred over a series
of different TCP connections, one per hop. As we discuss
below, this makes the design of the Sniffer module more
complicated. The module must be able to reassemble chunks
where it hears part of the chunk on one TCP stream, and
part of the chunk on a different TCP stream.

4.3 The Sniffer Module
The Ditto sniffer module constructs chunks from overheard

data transmissions. It passes these reconstructed chunks
to the proxy for caching. The sniffer must address three
challenges: First, it must re-assemble overheard TCP streams.
Second, it must identify data chunks within those streams.
Finally, as noted above, it must be able to re-assemble chunks
that were heard partly from one TCP stream and partly from
another, a process we term inter-stream reassembly.

Stream and Chunk Reconstruction: The sniffer module
reassembles TCP streams using standard techniques: it iden-
tifies each flow using the (src, dst, src port, dst port)
tuple, and reassembles the flow based on its TCP sequence
numbers. The streams, of course, are likely to be missing
bytes, may have corrupted packets, and the sniffer must deal
appropriately with retransmissions and duplicates.

As it creates a contiguous stream of the transfer, the Sniffer
scans for chunk start markers in the stream. It passes this
section of the reconstructed byte-stream to a module that
decodes the transfer protocol and extracts the chunk. For
this purpose, we modified the DOT protocol to include the
chunk name and length at the beginning of its response, a
feature that greatly simplifies the system’s ability to take ad-
vantage of overheard data while adding only small additional
overhead.

Inter-stream reassembly: The Sniffer module uses mul-
tiple TCP streams to reconstruct a chunk. In a multi-hop
transfer, an overhearing node may have several chances to

Figure 4: Inter-stream reassembly of chunks.

hear the same data as it traverses different hops. As noted
above, however, these hops each use a different TCP stream,
which complicates reassembly.

Figure 4 shows how inter-stream reassembly works in Ditto.
The sniffer module identifies that the same chunk is being
transmitted in two different streams by looking at the Ditto
header, which contains the chunk id. Therefore, as a first step
the sniffer needs to overhear the ditto header of a particular
chunk in each stream in order to make use of inter-stream
re-assembly. Once the chunk is identified, the sniffer only
requires at least one of the streams to overhear a packet and
it can use that to fill gaps in the chunk. For example, in
Figure 4 TCP stream A missed packet 2 while TCP Stream B
missed packet 3. In both cases, the other stream was able to
contribute the missing packet towards chunk reconstruction.
If a packet is received in multiple streams, as is the case with
packet 4, only one copy of this needs to be maintained and
the rest can be flushed from the memory. Therefore, Ditto’s
inter-stream re-assembly improves the chances of successfully
reconstructing chunks and also reduces the memory overhead
by eliminating similar content that is present in multiple
streams.

5. IMPLEMENTATION
Ditto’s implementation consists of two major parts: the

DOT enabled proxies and the sniffer module.

5.1 DOT enabled Proxies
Ditto proxies use Data-Oriented Transfer, or DOT [23],

as their data transfer protocol.3 DOT uses an RPC-based
protocol to transfer chunks across the network. We made
one change to this transfer protocol to add the chunk ID and
length at the beginning of every response. This information
is unnecessary for the actual receiver, since it is known from
context, but it greatly simplifies the process of reassembling
chunks based on overhearing.

Figure 5 shows the steps involved in a typical DOT enabled
file transfer in the presence of proxies. The receiver makes an
application-level request for a file to the sender application.
The sender application contacts its local DOT service to get
the OID and Hints corresponding to the requested file. An
“OID” is an object ID, which is simply the hash of the file
being requested. The “Hints” tell the receiver who to ask for
in order to retrieve the object in question. The OID and Hints
information is returned back to the receiver. The receiver’s

3Our implementation is based on the DOT snapshot
dot_snap_20070206.

Figure 5: A file transfer in Ditto

DOT service gets the chunk IDs (CIDs) corresponding to the
OID (this step is not shown in the figure for simplicity). The
DOT service at the receiver then requests the desired chunks
from its next hop Ditto proxy. The proxy is a straightforward
extension to DOT that checks the (existing) DOT cache for a
chunk and, if not found, passes the request on to the next hop.
This process is repeated until the chunk is found at some
proxy/source. Once a chunk is received, each proxy stores
it in its DOT cache and serves it to its upstream neighbor.
Finally, once the data is received by the DOT service at the
receiver, it is served to the receiver application.

5.2 Sniffer Implementation
Ditto’s sniffer module is a stand-alone process that runs

on the same host as a Ditto proxy module. It uses libpcap

in promiscuous mode to overhear TCP packets and attempts
to extract Ditto chunks from reconstructed TCP streams
(flows). It sends overheard chunks to the Ditto proxy using
RPC over a unix domain socket.

Data Structures: The chunk reconstruction algorithm
maintains three main data structures, shown in Figure 6. The
first is a table of overheard flows (flowTable), indexed by
flowID. Corresponding to each flow, the flowTable includes
overheard packets that do not belong to any chunk being
currently reconstructed. We store these packets because of
the possibility of re-ordering; a late arrival of a re-ordered
Ditto header packet may make these packets useful.

The second data structure is a table of partially recon-
structed chunks (chunkTable), which is indexed by chunkID.
This table maintains information about all the flowIDs that
are contributing to a chunk along with the sequence number
of the first packet of the chunk in each flow. The third data
structure, flowChunkMap maintains a list of all the chunkIds

observed in each flow.
Flows and partially reconstructed chunks are represented

as a linked list of blocks of contiguous bytes. Each block
includes the following

• Offset of the first byte of the block within the chunk/flow.

• Length of the block.

• Actual bytes that make up the block.

Blocks are maintained in increasing order of block offsets.
The block data structure makes it easy to support gaps in the
flow or partially reconstructed chunks. Blocks are merged
whenever possible. Chunk reconstruction is complete when

Figure 6: Data Structures used in Sniffer implemen-
tation

Figure 7: Ditto packet format. Shaded fields are
invariant across Ditto responses and the Sniffer uses
these to identify a Ditto chunk.

there remains only one block in the list which is of the length
of the chunk. At this point, the chunk entry is removed from
the chunkTable and the chunk is sent to the proxy module.

Packet Processing: The inter-stream re-assembly algo-
rithm performs the following actions for each overheard
packet. The packet is added to the corresponding flow in the
flowTable entry if one exists, else a new flow is created. The
newly modified (or created) flow is checked for the existence
of a Ditto header. Figure 7 shows the format of a Ditto re-
sponse. The shaded fields are used to identify a Ditto chunk
within the stream. It suffices to check only the contiguous re-
gion between packets preceding and following the new packet.
If a Ditto header is found, the chunkID is extracted, and
if a corresponding chunk entry is found in the chunkTable,
then the flow is added to the list of flows contributing to that
chunk. If no corresponding entry is found, a new entry is
created, and all the packets corresponding to the new chunk
are copied from the flowTable into the chunkTable to form

4

37

15

2

11

13

23

22

14

5

38

25

73

18

28

29

1

16

31

12

19

9

27

34

30

32

20

17

26

Figure 8: MAP testbed. Nodes represented with
a circle are on the second floor while those with a
square are on the third floor. Node 11 is the gateway
node.

the partially reconstructed chunk. Since the Ditto header
contains the length of the chunk, all the packets that belong
to a chunk can be correctly identified within the flow.

If on the other hand, a Ditto header was not found, the
packet could still aid in chunk reconstruction as follows. All
the chunks to which the flow is contributing, obtained from
the flowChunkMap, are scanned to identify the chunk the new
packet belongs to. For each chunkTable entry, the length of
the chunk and starting sequence number of the Ditto header
corresponding to the flow are compared against the sequence
number of the new packet to identify the relevant chunk. The
chunk is then updated with the relevant bytes from the new
packet. If the packet is unable to aid in chunk reconstruction
immediately it is left in the flowTable.

The algorithm has the limitation that it requires that the
Ditto header be overheard on any flow before that flow can
contribute to chunk reconstruction. However it correctly
handles the corner cases where a Ditto header spans two
TCP packets and the length of the chunk is not a multiple
of packet length.

6. EVALUATION
Our evaluation of Ditto shows that: (1) caching using op-

portunistic overhearing is practical and effective in wireless
multi-hop networks, (2) the performance of chunk recon-
struction is improved both by using smaller chunk sizes and
by proximity to transfer paths, and (3) Ditto significantly
improves transfer throughput in a real testbed deployment.

6.1 Method
Testbeds. We evaluate Ditto’s performance using two wire-
less testbeds: (1) The MAP testbed at Purdue University [1]
– a campus wireless mesh testbed, and (2) Emulab’s indoor
wireless testbed.

The campus testbed consists of 28 mesh routers spread
across four academic buildings (Figure 8). The mesh nodes

Figure 9: Emulab testbed. Nodes represented with
a filled circle are on the third floor while those with
a hollow circle are on the fourth floor. Nodes repre-
sented by dark circles are the nodes we used for our
experiments and the dashed black lines indicate the
routes taken by the nodes while communicating to
the gateway node (node 8).

are small form factor desktops, with heterogeneous hard-
ware specifications. Each node has two PCI-card radios—an
Atheros 5212 based 802.11a/b/g wireless card and a Senao
802.11b card using the Prism2 chipset. Each radio is at-
tached to a 2dBi rubber duck omni-directional antenna with
a low loss pigtail. Each node runs Mandrake Linux 10.1 with
the open-source madwifi and hostap drivers. IP addresses
are statically assigned. The testbed deployment environment
is not wireless friendly, having floor-to-ceiling office walls in-
stead of cubicles as well as some laboratories with structures
that limit the propagation of wireless signals. Apart from
structural impediments, the testbed experiences interference
from other 802.11b networks. We configured the testbed to
use the Atheros radio in the 802.11b mode. We used channel
11 because it was the band furthest away from those being
already used on the campus. This testbed has both indoor
and outdoor links.

We use Emulab’s wireless testbed [25] as our second testbed.
This entirely indoor wireless testbed consists of 24 nodes
located in different rooms across two floors. We picked 8
available nodes for our experiments as depicted in Figure 9.
All nodes are “pc3000w” machines with a 3.0 GHz processor
and 1 GB RAM. They are equipped with Atheros 5212 based
802.11 a/b/g wireless cards and are operated in 802.11b
mode. Each node runs Fedora core 4 with the open-source
madwifi driver.

In both networks, there is no other traffic in the mesh
network apart from the traffic from our experiments. We
use the wired network to control the experiments and collect
logs. We use the OLSR routing protocol with distributed link
quality information to setup routes between nodes. Once the
routes are setup and all the nodes in the network can reach
the gateway node, we terminate OLSR on all the nodes to
avoid route flapping.

Metrics. To capture the effectiveness of overhearing and
Ditto’s chunk reconstruction schemes, we use three metrics:

(1) Average reconstruction efficiency. The average per-
centage of chunks completely reconstructed at every node
across multiple runs. (2) Memory overhead. The average
percentage unused bytes of total Ditto traffic overheard at
each node. These unused bytes represent packets that could
not be successfully used to reconstruct a chunk. Retaining
these packets for as long as possible improves the opportuni-
ties to reconstruct the incomplete chunk at a later instant.
Thus, the lower the memory overhead from a reconstruc-
tion scheme, the higher the chance of retaining more unused
bytes. (3) Throughput. To demonstrate the performance
improvement using Ditto over existing schemes, we present
throughput across receivers for a given traffic pattern.

To capture summary statistics, we present the percentage
of observers that achieve a given value of the metric. For
every transfer between a given gateway-receiver pair, we
define the remaining nodes in the testbed as observers
that can passively overhear the ongoing communication. For
example, in the 28-node campus testbed, a transfer between
node 11 (gateway) and node 1 (receiver) has 26 observers.
When we change the receiver to node 2, we have 26 new
observers. For an entire experimental run with each node
receiving once, we have 26 · 27 = 702 observers.

Schemes. We compare Ditto’s performance to three other
approaches:

• End-to-end: In this scheme, the transfer request from
a receiver is sent directly to the the gateway, with
intermediate nodes in the network acting as IP routers.
The transfer throughput does not benefit from caching
or overhearing.

This scheme is valuable because it represents an ideal
scenario for chunk reconstruction efficiency—because
the sender and the receiver use a single end-to-end
TCP connection, the same TCP packets for a given
chunk transfer traverse multiple hops. As a result, a
node that overhears the transfer more than once will
observe the same packet multiple times; if it misses
the opportunity to capture the packet on one of the
attempts, it might capture it from the transmission on
the following hops.

• On-path caching: The on-path caching scheme uses
per-hop proxying similar to that in Ditto. However,
the nodes in this scheme only cache chunks for which
they are the intermediate hops, and not the chunks
they overhear. This scheme is an improvement over an
existing approach, MeshCache [8], which also benefits
from on-path caching. While MeshCache’s caching is
on a per-file basis, our scheme provides chunk-level
caching.

• Ditto without inter-stream reassembly: To eval-
uate the design choices in Ditto’s chunk reconstruction,
we compare Ditto with a variant that does not per-
form inter-stream reassembly. The overhearing node
reconstructs chunks by independently analyzing each
overheard TCP stream.

We transfer a 1 MB file and present the average across
three runs unless otherwise specified. All experiments use
node 11 as the gateway in the campus testbed and node 8
in the Emulab testbed. The routes to the gateway for the
Emulab and MAP testbeds are shown in Figures 9 and 10
respectively.

node11---node30---node13---node1
node11---node37---node2
node11---node30---node3
node11---node37---node4
node11---node5
node11---node30---node29---node7
node11---node30---node13
node11---node14
node11---node22---node15
node11---node30---node13---node16
node11---node30---node28---node18
node11---node37---node4---node19
node11---node22
node11---node30---node13---node1---node25
node11---node34---node27
node11---node30---node28
node11---node30---node29
node11---node30
node11---node34
node11---node37
node11---node30---node13---node16---node38

Figure 10: Routes to the gateway node (node 11) in
the MAP testbed.

6.2 Overhearing Effectiveness
This section characterizes the potential benefit from Ditto’s

passive overhearing and caching by measuring the reconstruc-
tion efficiency across all observers. Each node in the testbed
performs a transfer, one at a time, by requesting data from
the gateway. The caches on the nodes are reset after each
transfer.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

b
s
e

rv
e

rs

Average reconstruction effectiveness (% chunks)

Campus testbed
Emulab testbed

Figure 11: CDF of average reconstruction efficiency
in Ditto across observers for the campus testbed and
Emulab.

Figure 11 shows that observers in both testbeds can poten-
tially benefit from Ditto: 40% of the observers in the campus
testbed and 70% of the observers in the Emulab testbed
could reconstruct complete chunks from passive overhearing.
In fact, 25% of the observers in the campus testbed and 50%
in Emulab could completely reconstruct more than 50% of
the total chunks transferred. The campus testbed obtains
less benefit than Emulab. We believe that this is a result of
the larger scale of the campus testbed: when nodes closer to
the gateway are the receivers, the nodes at the edge of the
testbed cannot benefit from overhearing. We investigate this
effect further by analyzing the impact of proximity on the
nodes in the campus testbed.

6.2.1 Effect of proximity
Figure 12 confirms our intuition that nodes spatially closer

to the gateway (nodes 14, 30, 34, 5, 37, 22 are all one hop
away) overhear transfers from several receivers and hence
have a high median reconstruction efficiency across all their
observations. On the other hand, nodes at the edge of the
network have fewer opportunities to overhear and hence
exhibit a median reconstruction efficiency of zero.

 0

 1

 2

 3

 4

 5

R
e
la

ti
v
e
 d

is
ta

n
c
e

 f
ro

m
 g

a
te

w
a
y

 0

 20

 40

 60

 80

 100

n
o
d
e
3
1

n
o
d
e
1
9

n
o
d
e
1
2

n
o
d
e
2
5

n
o
d
e
1
8

n
o
d
e
4

n
o
d
e
3
8

n
o
d
e
1
5

n
o
d
e
2

n
o
d
e
7

n
o
d
e
3

n
o
d
e
2
8

n
o
d
e
1
6

n
o
d
e
1

n
o
d
e
2
7

n
o
d
e
1
3

n
o
d
e
2
9

n
o
d
e
2
2

n
o
d
e
3
7

n
o
d
e
5

n
o
d
e
3
4

n
o
d
e
3
0

n
o
d
e
1
4

A
v
e
ra

g
e
 r

e
c
o
n
s
tr

u
c
ti
o
n
 e

ff
e
c
ti
v
e
n
e
s
s
 (

%
 c

h
u
n
k
s
)

Figure 12: Impact of proximity on the median and
the maximum per-node reconstruction effectiveness
(MAP testbed). Nodes (X-axis) are sorted by their
median reconstruction effectiveness (primary) with
a secondary sort on the max value.

6.2.2 Effect of chunk size
Due to losses in the wireless network, the probability of

overhearing the entire file decreases exponentially with the
file size, and opportunities from overhearing parts of a file
are wasted. Caching smaller chunks improves the chances of
a node to overhear the entire chunk transfer.

Figure 13 shows this effect for transfer of a 1MB file from
the gateway to the receivers. In the campus testbed, 20%
of the observers were able to reconstruct atleast 60% of the
chunks when the chunk size is 32KB. In contrast, for a chunk
size of 8KB, 20% of the observers were able to reconstruct
atleast 80% of the chunks. Reducing chunk size similarly
improves reconstruction efficiency in Emulab.

The resulting improvement in reconstruction efficiency
provides a second advantage: It reduces Ditto’s memory
overhead, thereby allowing the incomplete chunks to be
retained longer. Figure 14 depicts this improvement for the
campus testbed. For instance, 60% of observers reduced their
memory overhead from less than 70% to less than 35% when
the chunk size was reduced from 32KB to 8KB.

Reducing the chunk size, however, increases the number
of wireless transmissions: A smaller chunk size increases
the overhead from chunk request packets. To balance the
overhead and the increased efficiency, we choose a chunk size
of 8KB for Ditto.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

b
s
e

rv
e

rs

Average reconstruction effectiveness (% chunks)

32KB
16KB

8KB

Figure 13: CDF of average reconstruction efficiency
across observers showing the effect of varying chunk
sizes. (MAP testbed).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

b
s
e

rv
e

rs

Memory overhead (% bytes)

8KB
16KB
32KB

Figure 14: CDF of memory overhead (percentage
unused bytes of total Ditto traffic overheard) across
observers showing the effect of varying chunk sizes.
(MAP testbed).

6.3 Effect of Inter-stream Reassembly
We first investigate the benefit from Ditto’s ability to

reassemble chunks overheard via multiple TCP streams by
comparing Ditto to Ditto without inter-stream reassembly.
As seen in Figure 15, Ditto performs similarly with or without
inter-stream reassembly. Our inspection of the topology
indicates that both testbeds provide very few opportunities
for observers to overhear multiple flows. In fact, when there
were multiple TCP streams that an observer could overhear,
the benefit from inter-stream reassembly is significant. In the
campus testbed, for example, when node 1 is communicating
with the gateway (node 11) via route 1-13-30-11, node 7
combines TCP streams from all the three proxy hops to
obtain 10% better reconstruction efficiency.

Further, Figure 16 shows that the increased reconstruction
efficiency reduces Ditto’s memory overhead. Thus, Ditto’s
inter-stream reassembly provides two advantages: (1) im-
proved reconstruction efficiency in the presence of multiple
chances of overhearing, and (2) lower memory overhead, both
at no performance penalty.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

b
s
e

rv
e

rs

Average reconstruction effectiveness (% chunks)

End-to-end
Ditto (w/o inter-stream reassembly)

Ditto

Figure 15: CDF of average reconstruction effi-
ciency across observers for different schemes. (MAP
testbed).

A deliberate choice in Ditto’s design requires a node to
overhear the first packet of each chunk (containing the chunk
identifier) in every TCP stream that the chunk may appear
in order to correlate multiple streams and reconstruct the
chunks. This potentially results in lost opportunities and
lower reconstruction efficiency in Ditto since, given an ideal
implementation, as long as every byte of a chunk is overheard
at least once, the chunk should be successfully reconstructed.
To analyze the performance impact of this design choice, we
compare Ditto to the end-to-end scheme. Figure 15 indicates
that in our campus testbed, Ditto performs comparably to
the end-to-end scheme. This observation was also true for
the Emulab testbed.

We further analyze the effect of this design decision through
an offline analysis of tcpdump logs of an experimental run.
The analysis showed that the requirement to observe the first
packet of the chunk on each stream cost ditto the opportunity
to reconstruct up to 6% more chunks than it is able to. Due to
the complexity of matching packets without the initial chunk
identity, we believe this design decision is sound, though we
intend to revisit it on more dense topologies that have more
overhearing opportunities.

6.4 Ditto Performance
In this section, we compare the throughput improvement

from deploying Ditto with existing schemes under a variety
of traffic patterns. We first deploy Ditto on all the nodes in
the testbed. Leaf nodes in the network then request the same
file from the gateway. We vary the time interval between
these requests such that the requests are either (1) entirely
sequential (one transfer does not interfere with the next), or
(2) staggered (the time interval between consecutive transfers
is set to 5 seconds). We also vary the order in which the
receivers make their requests. Note that because all the
nodes are Ditto enabled, even the nodes making the request
can overhear prior data transfers.

6.4.1 Example
We first analyze Ditto’s performance gain in comparison

to an end-to-end transfer and to the on-path caching scheme
using an example traffic scenario. Figure 17 shows the aver-
age throughput achieved by each receiver when requesting a

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

b
s
e

rv
e

rs

Memory overhead (% bytes)

Ditto
Ditto (w/o inter-stream reassembly)

Figure 16: CDF of memory overhead across ob-
servers showing the effect of inter-stream reassem-
bly. (MAP testbed).

 100

 1000

 10000

 100000

 1e+06

node1 node2 node3 node5 node7

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Receivers

End-to-end
On-path caching

Ditto

Figure 17: Average throughput achieved by each
receiver when requesting sequentially. Note that the
receivers are sorted in the request order. (Emulab).

1MB file sequentially. The receivers are arranged in the order
in which they made requests i.e., the first request was made
by node 1 and node 7 made the last request.4 The results
clearly indicate the differences in the three schemes. The first
request, made by node 1, achieved the same throughput in
all three schemes because data was not cached anywhere in
the network. In all the subsequent requests, Ditto benefited
from caching overheard bytes and outperformed end-to-end
and on-path schemes. Only node 3 benefited from on-path
caching: when node 2 was the receiver, the data was cached
at node 4 (its intermediate hop). Node 3 exploited the cache
at node 4 to obtain the data in a single hop (vs. the 2
hops in the end-to-end case) and obtained better throughput.
For node 5, Ditto performed significantly better because the
data was already present in its local cache as a result of
overhearing. Thus, Ditto significantly improves throughput
performance by obtaining data over fewer hops.

4Please refer to Figure 9 for the placement of these nodes.

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

%
 r

e
c
e

iv
e

rs

Throughput (Kbps)

End-to-end
On-path caching

Ditto
 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000

%
 r

e
c
e

iv
e

rs

Throughput (Kbps)

End-to-end
On-path caching

Ditto

(a) MAP testbed (b) Emulab

Figure 18: CDF of throughput across receivers when requesting sequentially in one chosen request order.

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

%
 r

e
c
e

iv
e

rs

Throughput (Kbps)

End-to-end
On-path caching

Ditto

Figure 19: CDF of throughput across receivers
with staggered requests in one chosen request order.
(Emulab).

6.4.2 Overall Performance
Figure 18 shows the CDF of the transfer throughput across

all the receivers for both the testbeds. We chose one random
order of receivers and the requests were sequential. Both the
campus and the Emulab testbeds show significantly improved
median throughput using Ditto:

End-to-end On-path Ditto
Campus 540 Kbps 1380 Kbps 5370 Kbps
Emulab 960 Kbps 1150 Kbps 4330 Kbps

In Emulab, the median throughput achieved using Ditto
is 4.5× better than end-to-end and 3.7× better than on-
path caching. Similarly, the median number in the campus
testbed is 3.5× better than on-path caching, but 10× better
than end-to-end transfers. Since the requests are sequential,
the gain in these scenarios is a result of the reduced hop
count to the data enabled by Ditto’s overhearing and caching
mechanisms.

We then changed our request pattern to be staggered across
receivers. In this scenario, consecutive transfers potentially
contend for the wireless medium. Figure 19 presents the

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

%
 r

e
c
e

iv
e

rs

Throughput (Kbps)

End-to-end
On-path caching

Ditto

Figure 20: CDF of throughput across receivers
when requesting sequentially in randomly chosen re-
quest order (Across ten runs in Emulab).

performance gain from Emulab (note that the throughput
in this figure is in log-scale). The results show a wider
performance gap between Ditto and existing schemes in
comparison to the sequential case, with median throughputs
of:

End-to-end On-path Ditto
Sequential 960 Kbps 1150 Kbps 4330 Kbps
Staggered 690 Kbps 1500 Kbps 4470 Kbps

Ditto is 6.5× better than end-to-end in the staggered
scenario vs. the 3.7× improvement in the sequential case.
Here, Ditto’s caching reduces the transfer time of requests
thereby decreasing the likelihood of contention for the wire-
less medium due to overlapping requests.

Finally, we vary the request order among receivers in
Emulab over ten runs to more exhaustively characterize the
range of gains possible using Ditto. Our results show that
Ditto significantly outperforms existing schemes (Figure 20):
Ditto’s median throughput is 8.8× better than end-to-end
and 7× better than on-path caching.

7. RELATED WORK
Ditto is most related to four significant areas of work:

Caching, particularly hierarchical and packet level caching,
and three techniques that attempt to turn wireless broad-
cast from a liability to an advantage: opportunistic routing,
network coding, and partial packet recovery.

Hierarchical caching is used to improve throughput
and reduce load on long-distance links by satisfying multiple
client requests for the same data from a nearby source [5,
22, 12]. In the caching arena, the project closest to Ditto is
the recent MeshCache system, which places a hierarchical
Web cache at each node in a wireless mesh network [8]. As
our evaluation showed (Section 6), Ditto’s overhearing can
increase throughput by up to 7x for cached files compared
to simple on-path caching. This difference is fundamental to
Ditto’s use of per-chunk content naming, which frees it from
both being application-specific and needing to cache whole
files, which limits the opportunities for Web-cache-based
approaches such as MeshCache.

An alternate approach is to enable caching at a packet/sub-
packet granularity. In the RTS-id approach [2], nodes main-
tain a cache of recently overheard packets. The RTS message
contains the id of the packet that a node wants to send; if
the receiver already has the packet in the cache it acknowl-
edges this via the CTS message. This avoids redundant
transmissions by leveraging recently overheard packets that
are present in the cache. In contrast, Ditto’s caching works
on a longer time scale (multiple requests for the same file)
and at the granularity of application data chunks. Similarly,
Spring & Wetherall also provide sub-packet content caching
on a single Internet link [21]. Like Ditto, this technique uses
content-based hashing to identify shared chunks between
packets. Unfortunately, this technique makes use of a syn-
chronized dictionary between the routers at each end of the
link, which makes it challenging to extend their approach to
wireless overhearing: a sender has no way of knowing which,
if any, other nodes overheard its prior packet transmissions.
Ditto can successfully use overheard transmissions, but at the
cost of coarser-grained sharing: Ditto uses roughly 8KB sized
chunks to amortize the overhead of explicitly transmitting
hash values, where the technique of Spring & Wetherall can
take advantage of similarities on the order of a few hundred
bytes.

Opportunistic routing takes a different approach to us-
ing the broadcast nature of wireless networks, by forwarding
packets based upon which nodes actually received the trans-
mission instead of using one pre-determined path. These
approaches include the pioneering ExOR system [4] and the
more recent XOR [15] and MORE [6] systems, among oth-
ers. These systems operate independently of the transport
protocol used, but do impose a requirement that the trans-
port protocol be able to tolerate significant (8-100 packet)
amounts of batching when performing data transfers. As
a result, to date these protocols require a new transport
protocol, similar to Ditto’s requirement that applications use
a data-oriented transfer system. Because their benefits are
independent of the longer-term locality exploited by Ditto,
we believe that combining these approaches is a promising
avenue of future work.

Network coding attempts to optimize the simultaneous
transmission of packets by combining multiple packets into
a single transmission, such that they can be independently
decoded by different receivers. Examples of network coding

systems include COPE [15]. Like opportunistic routing,
the way that Ditto takes advantage of wireless broadcast is
complimentary to the approaches used in network coding.
Combining them, however, is a more challenging aspect of
future work, because the packets overheard by a node in a
network coding system may not be directly decodable by a
third party.

Partial packet recovery techniques leverage the fact
that different parts of an IP-layer packet may be received
by different sets of receivers [17, 14]. Ditto’s partial chunk
recovery scheme draws directly from these techniques to re-
assemble application-layer chunks that were received from
independent transmissions. The techniques differ in that
Ditto must decode the TCP and RPC layers, as appropriate,
and deal with the potential that different transmissions of the
same chunk may use different packet sizes or be offset to dif-
ferent locations in the TCP stream (and therefore packetized
differently).

8. DISCUSSION
Real world traffic study: A key factor that impacts
Ditto’s performance is the cache size at each node; shared
data should not be evicted from the cache before it can even
be used. A detailed study on this parameter is challenging
since it requires access to traffic traces from real world mesh
deployments. We do, however, shed some light on its impact
by collecting aggregate statistics in two real world Meraki
deployments: (1) one with 20 Meraki Minis, and (2) one with
10. We logged the total traffic volume in these networks over
a 24 hour period for a week in March and April. A worst case
scenario for cache size (assuming every node can overhear
every other node) results in a median value of 3 GBytes and
a maximum of 13 GBytes per node per day. Considering a
software update scenario, a study from Microsoft Research
noted that 80% of software update downloads happen in the
first day after a patch is released [13]. Putting these together,
we can infer that using Ditto with a cache size larger than
3 GBytes, the networks can benefit by caching the shared
data.

Intelligent proxy selection: MeshCache [8] demonstrates
throughput improvement from routing away from a gateway
by alleviating the congestion around the gateway (a hotspot).
Ditto already alleviates hotspots using overhearing; an inter-
esting area of future research would be determining whether
further benefit could be obtained in Ditto by selecting proxies
not enroute to the gateway.

Convergent encryption: Ditto targets applications that
require high transfer efficiency but have little or no privacy
requirements. One possible option to provide Ditto’s effi-
ciency while providing some confidentiality to data transfers
is the use of convergent encryption [10], which uses the hash
of the content as an encryption key. This provides a middle
ground in the trade-off between high level of privacy and
improved transfer efficiency.

On-Path Opportunistic Caching: In Ditto, only later
requests benefit from opportunistic caching. As a future
extension, nodes on the path of a transfer might benefit from
overhearing prior hops in the transfer, and could thus cancel
their pending request. For example, consider three consec-
utive nodes on a path: A, B, and C. If A can successfully
overhear a complete chunk while it is being transferred from

C to B, it can cancel its request for that chunk from B. This
is similar to ExOR routing which employs a similar idea at
the granularity of individual packets. Ditto can work at the
granularity of chunks while ensuring that existing transport
and MAC protocols need not be changed to fully leverage
this idea.

9. CONCLUSION
This paper presented the design, implementation, and

evaluation of Ditto, a system for opportunistic caching in
multi-hop wireless mesh networks. Ditto uses content-based
naming to cache chunks of data in an independent manner.
This use of content-base naming enables Ditto’s key contri-
bution: it caches data either when it sends it to a client or
when it overhears it being transferred by other nodes.

Our evaluation on two wireless testbeds showed that not
only is this scheme feasible, but that it significantly out-
performs prior schemes that only cache along the actual data
transfer path. Our evaluation shed light on Ditto’s design
decisions for supporting inter-stream reassembly, favoring a
robust and simple mechanism that works well in practice, and
provided insight into the effects of chunk size and proximity.
Taken in total, Ditto improved the performance of repeated
data transfers by up to an order of magnitude over end-to-end
transfers, and by 3-7× compared to simple on-path caching.

Acknowledgments
We are very grateful to the people who made our wireless
experiments possible—David M. Johnson and the Emulab
team and Y. Charlie Hu, Dimitrios Koutsonikolas and Syed
Ali Raza Jafri for the MAP testbed. We also thank Jeff Pang,
Brad Karp and the anonymous reviewers for their valuable
feedback. This work was supported by NSF award CNS-
0546551 and by DARPA grant HR0011-07-1-0025. The data
analysis was performed on the NSF-funded Datapository,
supported by grant MRI-0619525.

10. REFERENCES
[1] MAP: Purdue University Wireless Mesh Network Testbed.

https://engineering.purdue.edu/MESH.
[2] M. Afanasyev, D. G. Andersen, and A. C. Snoeren.

Efficiency through eavesdropping: Link-layer packet caching.
In Proc. 5th USENIX NSDI, San Francisco, CA, Apr. 2008.

[3] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture
and evaluation of an unplanned 802.11b mesh network. In
Proc. ACM Mobicom, Cologne, Germany, Sept. 2005.

[4] S. Biswas and R. Morris. ExOR: opportunistic multi-hop
routing for wireless networks. In Proc. ACM SIGCOMM,
Philadelphia, PA, Aug. 2005.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and
implications. In Proc. IEEE INFOCOM, pages 126–134,
New York, NY, Mar. 1999.

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading
structure for randomness in wireless opportunistic routing.
In Proc. ACM SIGCOMM, Kyoto, Japan, Aug. 2007.

[7] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making
backup cheap and easy. In Proc. 5th USENIX OSDI, Boston,
MA, Dec. 2002.

[8] S. M. Das, H. Pucha, and C. Y. Hu. Mitigating the gateway
bottleneck via transparent cooperative caching in wireless
mesh networks. Ad Hoc Networks (Elsevier) Journal,
Special Issue on Wireless Mesh Networks, 2007, 2007.

[9] T. E. Denehy and W. W. Hsu. Duplicate management for
reference data. Research Report RJ10305, IBM, Oct. 2003.

[10] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In Proc. 22nd Intl. Conf on
Distributed Computing Systems, Vienna, Austria, July 2002.

[11] F. Douglis and A. Iyengar. Application-specific
delta-encoding via resemblance detection. In Proceedings of
the USENIX Annual Technical Conference, San Antonio,
Texas, June 2003.

[12] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
cache: A scalable wide-area Web cache sharing protocol. In
Proc. ACM SIGCOMM, pages 254–265, Vancouver, British
Columbia, Canada, Sept. 1998.

[13] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and
M. Vonjović. Planet scale software updates. In Proc. ACM
SIGCOMM, Pisa, Italy, Aug. 2006.

[14] K. Jamieson and H. Balakrishnan. PPR: Partial packet
recovery for wireless networks. In Proc. ACM SIGCOMM,
Kyoto, Japan, Aug. 2007.

[15] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Mèdard, and
J. Crowcroft. XORs in the air: practical wireless network
coding. In Proc. ACM SIGCOMM, pages 243–254, Pisa,
Italy, Aug. 2006.

[16] Meraki Wireless Network. http://meraki.com/.
[17] A. K. Miu, H. Balakrishnan, and C. E. Koksal. Improving

loss resilience with multi-radio diversity in wireless networks.
In Proc. ACM Mobicom, Cologne, Germany, Sept. 2005.

[18] J. C. Mogul, Y. M. Chan, and T. Kelly. Design,
implementation, and evaluation of duplicate transfer
detection in HTTP. In Proc. First Symposium on Networked
Systems Design and Implementation (NSDI), San Francisco,
CA, Mar. 2004.

[19] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In Proc. 18th ACM
Symposium on Operating Systems Principles (SOSP), Banff,
Canada, Oct. 2001.

[20] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting
similarity for multi-source downloads using file handprints.
In Proc. 4th USENIX NSDI, Cambridge, MA, Apr. 2007.

[21] N. T. Spring and D. Wetherall. A protocol-independent
technique for eliminating redundant network traffic. In Proc.
ACM SIGCOMM, Stockholm, Sweden, Sept. 2000.

[22] Squid Web Proxy Cache. http://www.squid-cache.org/.
[23] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An

architecture for Internet data transfer. In Proc. 3rd
Symposium on Networked Systems Design and
Implementation (NSDI), San Jose, CA, May 2006.

[24] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,
A. Perrig, and T. Bressoud. Opportunistic use of content
addressable storage for distributed file systems. In Proc.
USENIX Annual Technical Conference, pages 127–140, San
Antonio, TX, June 2003.

[25] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proc. 5th USENIX OSDI, pages 255–270,
Boston, MA, Dec. 2002.

https://engineering.purdue.edu/MESH
http://meraki.com/
http://www.squid-cache.org/

	Introduction
	Challenges and Opportunities for Mesh Data Transfers
	Ditto Overview
	An Example Scenario using Ditto

	Ditto Design
	Ditto Data Transfers
	Ditto Proxies
	The Sniffer Module

	Implementation
	DOT enabled Proxies
	Sniffer Implementation

	Evaluation
	Method
	Overhearing Effectiveness
	Effect of proximity
	Effect of chunk size

	Effect of Inter-stream Reassembly
	Ditto Performance
	Example
	Overall Performance

	Related Work
	Discussion
	Conclusion
	References

