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Abstract

Generalized B-spline Surfaces

of

Arbitrary Topological Type

by Charles Teorell Loop

Chairperson of the Supervisory Committee: Professor Tony DeRose

Department of Computer Science

and Engineering

B-spline surfaces, although widely used, are incapable of describing surfaces of arbi-

trary topological type. It is not possible to model a general closed surface or a surface

with handles as a single non-degenerate B-spline. In practice such surfaces are often

needed. In this thesis, a generalization of bicubic tensor product and quartic triangular

B-spline surfaces is presented that is capable of capturing surfaces of arbitrary topological

type. These results are obtained by relaxing the sufficient but not necessary smoothness

constraints imposed by B-splines and through the use of an n-sided generalization of

Bézier surfaces called S-patches.
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Chapter 2: Bézier Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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a Bézier triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A B-spline curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 A subdivision surface generated by the Catmull & Clark algorithm . . . . 8
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Chapter 1

Introduction

This thesis is concerned with the problem of generating a mathematical description of

smooth three dimensional shapes for use in Computer Aided Geometric Design (CAGD).

Such shapes are useful in the design and representation of the outer skin of a car, the

hull of a ship, the fuselage of an airplane, or any object that possesses a ‘free form’

shape. Parametric surfaces are an excellent tool for representing such smoothly vary-

ing sculptured objects, and B-spline techniques provide an intuitive user interface for

working with parametric surfaces. However, the current theory of B-splines has serious

shortcomings when modeling general closed surfaces, or surfaces with handles. In this

thesis a new modeling technique is presented that is well suited to creating smooth free

form surfaces of arbitrary topological type.

The scheme proposed here is closely related to B-spline surface techniques, yet does

not limit the topological type of surfaces it can be used to create. In certain special cases

the new scheme generalizes two types of well known B-spline surfaces: bicubic tensor

product B-splines and quartic triangular B-splines. Before providing details of these

claims, a review of surface design methods commonly used in Computer Graphics and

CAGD is presented.
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1.1 Parametric Surfaces

Parametric surfaces are the most popular method of generating free-form shapes. A

parametric surface is defined by

f(u, v) = {x(u, v), y(u, v), z(u, v)},

where u and v are the coordinates of a point in a domain plane, and x, y, and z are

coordinate functions that define a point in 3-space. These coordinate functions are

generally polynomial or rational. One reason for the popularity of parametric surfaces

is that they are easy to generate for computer display by evaluating the coordinate

functions of the surface at various locations in the domain plane. It is also easy to find

surface normals and curvatures by evaluating the derivatives of the coordinate functions.

Parametric surfaces in CAGD were originally developed as extensions of parametric

curves. A parametric curve g(t) is typically written as a linear combination of scalar

valued univarite basis functions :

g(t) =
∑

i

giGi(t),

where the Gi(t) are the basis functions associated with a vector valued coefficient gi; the

index i ranges over the basis functions for a given curve. If Gi(u) and Gj(v) are sets of

univariate basis functions in the parameters u and v respectively, a set of scalar valued

bivariate tensor product basis functions Gi,j(u, v) are formed as products of univariate

basis function :

Gi,j(u, v) = Gi(u)Gj(v).

A bivariate tensor product surface g(u, v) can thus be written

g(u, v) =
∑

i

∑
j

gi,jGi,j(u, v),

where gi,j are vector valued coefficients.

The domain of a parametric curve g(t) is generally restricted to an interval a ≤ t ≤ b.

Under a tensor product construction, the domain of a parametric surface is restricted to a
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rectangle a ≤ u ≤ b, c ≤ v ≤ d. A tensor product surface with this restriction is referred

to as a tensor product patch. Parametric surface patches with triangular, as opposed to

rectangular, domains have also seen use in CAGD. However, the mathematical form of

such triangular patches is not quite as elementary as that of the tensor product form. For

this reason triangular patches have not received the same level of attention as rectangular

patches.

The particular form of the basis functions characterize a curve or surface patch. The

Bézier (Bernstein) (Section 2.4) and B-spline (Section 3.2) representations are two bases

that are important in this work. In both of these representations, the coefficients can be

interpreted as positions, or points in space, and are hence referred to as control points.

With this interpretation, it is possible to develop geometric intuition about how the

shape of the curve or surface will behave based solely on the spatial relationships of its

control points.

A Bézier curve of degree d is a smooth approximation to d+1 control points, where

the first and last control points are interpolated (see Figure 1.1). Since the curve ap-

proximates the control points in an intuitive way, a designer has a good idea of the shape

of the curve even before the computer calculates and displays it. Similarly, changing the

position of a control point will change the curve in an intuitive and predictable way. Thus

the coefficients of the mathematical representation provide a convenient user interface.

The behavior is analogous in tensor product Bézier surface patches. A degree r by

s tensor product Bézier patch is a smooth approximation to an r + 1 by s + 1 array of

control points where the corner control points are interpolated (see Figure 1.1). Similarly,

a triangular Bézier surface patch of degree d is a smooth approximation to a triangular

array of control points where, again, the corner control points are interpolated. Just as

with Bézier curves, the shapes of tensor product Bézier patches and triangular Bézier

patches are intuitively related to their control points.

As the degree of a Bézier curve or surface goes up, more control points are available

to control shape. However, the higher the degree, the less influence a single control point
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Figure 1.1: Examples of a) a Bézier curve, b) a Bézier tensor product surface, and c) a
Bézier triangle

has over this shape. Furthermore, the time required to evaluate the curve or surface

increases as a function of the degree. Therefore, it is generally better to construct com-

plex shapes from several individual curve segments or surface patches that fit together

smoothly. Unfortunately, the constraints that must be satisfied between the control

points of adjacent Bézier elements are often quite complex. Fortunately, other bases

exist where the smoothness constraints are more easily satisfied.

B-splines provide such a basis. Unlike the Bézier basis, B-spline basis functions

are themselves smooth composite objects. Thus any linear combination of these basis

functions will in turn be a smooth composite object. Like Bézier curves and surfaces,

a B-spline curve or surface is a smooth approximation to its control points, or control

net (see Figure 1.2). Similar geometric intuition allows designers to control the shape of

a B-spline. In the case of B-splines, the number of control points can increase without
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Figure 1.2: A B-spline curve

changing the polynomial degree of the curve or surface. More importantly, B-splines

posses a local control property. Local control means that if a designer moves a control

point the B-spline curve or surface is only effected in a local region near the control

point.

Geometrically intuitive behavior based on control points, local control, and auto-

matic satisfaction of the smoothness constraints make B-splines a powerful and popular

tool in CAGD. These properties all stem from the mathematical definition of B-splines.

Mathematically, a B-spline surface can be thought of as a piecewise deformation of a

planar domain, tessellated into a regular grid of rectangles or triangles. The smoothness

constraints are analogous to matching various derivatives along patch boundaries. This
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notion of smoothness is known as parametric continuity (denoted Ck continuity). It is

precisely this treatment that limits a B-spline surface to having a strictly planar topo-

logical type1. Next, a quite different approach to surface modeling is considered that

does not limit the topological type of a surface a designer wishes to create.

1.2 Implicit Surfaces

Implicit surfaces do not suffer from the topological restrictions found in B-spline surfaces.

An implicit surface is defined as the zero set of a trivariate function :

f(x, y, z) = 0,

where x, y, and z are taken to be the coordinates of a point in 3-space. The surface is

defined to be the set of points that satisfy the above equation. The function f is often

polynomial in x, y, and z, resulting in a simple algebraic form. Implicit surfaces are

well suited to modeling surfaces of arbitrary topological type; the surface is actually a

3 dimensional contour of the trivariate function f , this contour might be any arbitrary

2-manifold.

It is precisely the topological freedom of implicit surfaces that causes trouble with

their use. The geometric behavior of an implicit surface can be difficult to control. This

can cause the topological type of an implicit surface to change in often unpredictable

ways with only a slight perturbation of its defining parameters. Additional problems are

encountered with the appearance of “ghost sheets” - pieces of surface that happen to

satisfy the implicit equation yet are not intended by a modeler’s definitions.

While this discussion is intended to focus on topology and design considerations, the

question of efficiency cannot be ignored. In state-of-the-art (1992) real-time interactive

modeling environments, computing with implicit surfaces is generally far too inefficient

to be practical. One of the problems involves algorithms used to generate a polygonal
1Cylindrical and toroidal topological types are also possible if the planar domain is

allowed to be “periodic”.
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representation of the surface suitable for computer display. These algorithms rely heavily

on numerical techniques for computing an approximation to the 3-dimensional contour.

Such algorithms are inherently slow and often plagued with stability problems. Despite

these difficults, implicit surfaces remain an effective geometric design tool, especially

in non real-time situations calling for organic shapes whose topological types might

change over time. Modeling blobs of interacting liquid material, for example, would be

exceedingly difficult using any other technique.

1.3 Subdivision Surfaces

Subdivision surfaces are not restricted in topological type like B-splines, and are rela-

tively easy to generate unlike implicit surfaces. A subdivision surface is defined algo-

rithmically. The surface is found as the result of running a subdivision algorithm on

an input control mesh. This control mesh is much like the control net of a B-spline

scheme but is not required to have a regular structure. The details and behavior of

subdivision algorithms varies considerably. For example, the fractal surfaces used by

Carpenter[Carpenter et al. 82] and others to generate rough mountainous terrain mod-

els are a type of subdivision surface. The subdivision surfaces of interest here are used

to generate smooth free form surfaces.

Subdivision surfaces are generated by subdividing the input control mesh to obtain

a refined mesh with many more control points. The points of the refined mesh are found

by a local averaging of points of the original mesh. If this process is repeated, the result

is a smooth surface whose shape mimics that of the input control mesh. The earli-

est such methods were developed by Doo/Sabin [Doo & Sabin 78] and Catmull/Clark

[Catmull & Clark 78]. Figure 1.3 illustrates an example of this process.

These early subdivision surfaces were inspired by the subdivision property of B-

splines. The subdivision property maintains that a B-spline basis function of degree r

can be represented as a linear combination of degree r B-splines of narrower support (see

Section 3.1). The implication of the subdivision property is that any B-spline surface
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Figure 1.3: A subdivision surface generated by the Catmull & Clark algorithm

with control net A can be identically represented as a B-spline surface with control net

B, where B is a refinement of A. The relationship between A and B depends on the

degree of the B-splines and the size of the supports of the underlying basis functions.

The point is that B-spline surfaces may be considered as a type of subdivision surface.

It is known that in the limit, subdivision of a B-spline control mesh will converge to a

B-spline surface [Lane & Riesenfeld 80].

Subdivision of a B-spline surface is only defined over regular (rectangular or trian-

gular) control nets. The insight provided by the early subdivision algorithms was to



9

generalize the refinement algorithms to include irregular control meshes; thus surfaces

of arbitrary topological type could be generated. This approach had two advantages.

First, since the generalized subdivision schemes are so closely related to regular B-spline

subdivision, the surfaces generated by these schemes behave much like regular B-splines.

That is, the generalized subdivision surfaces are smooth approximations to their defining

control meshes. The second advantage of generalizing B-splines is that these subdivi-

sion surfaces are B-spline surfaces over locally regular regions of the control mesh. This

property is nice because it allows these subdivision techniques to be used in conjunction

with B-splines to handle irregularities that might occur in an otherwise regular control

mesh.

In general, the only defining characteristic of a subdivision surface is as the limit

(when the number of iterations of the algorithm tends to infinity) of a particular al-

gorithm on a particular input control mesh. Subdivision surfaces, in general, cannot

be defined analytically (i.e. as a closed form expression). This can lead to practi-

cal difficulties when using subdivision surfaces. In addition to evaluation, the various

components of a CAGD system might also require derivative (and even curvature) in-

formation. Determining this information at arbitrary points on a subdivision surface

can be challenging indeed[Doo & Sabin 78]. Alternatively, a subdivision surface can be

maintained as a large collection of polygons. There must be sufficiently many polygons

in this representation to avoid any polygonal faceting artifacts. In either case, dealing

with subdivision surfaces is complex and cumbersome.

1.4 Parametric Surfaces of Arbitrary Topological Type

Subdivision and implicit surfaces allow users to create smooth organic free form shapes

that are not restricted in topological type. Neither one, however, has the convenient

analytical properties of parametric surfaces nor are as easy to display. What is needed are

parametric surfaces schemes that provide the arbitrary topological types of subdivision

and implicit surfaces.
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A great deal of work has been done toward this end. Particulars of the various

problem statements vary, as do the solutions. The most general framework assumes that

a control mesh of vertices is given. The problem is to interpolate the vertices with a

collection of parametric surfaces . Other variants of this basic problem assume that the

vertices of the mesh are tagged with normals adding additional constraints that must be

interpolated.

From this general framework, most schemes proceed by constructing a network of

curves and cross boundary tangent vectors (a transversal vector field) that interpolates

the vertex data. The method of constructing this information varies from scheme to

scheme. Some schemes [Barnhill et al. 73, Nielson 79, Charrot & Gregory 84] assume

the curve network (with or without the transversal vector fields) to be the input to

the problem. In any event, the problem becomes one of finding a set of parametric

surface patches that interpolate a boundary curve network (and possibly transversal

vector fields) in a smooth fashion. The solutions to this problem vary greatly; for a

detailed description of many of these solutions, see [Mann et al. 92].

There are two difficult aspects to the interpolation problem. The first is to construct

a smooth join between a pair of parametric surface patches. Notions of parametric

continuity must be generalized to remove the limits of a strictly planar topology and

gain the freedom necessary to capture surfaces of arbitrary topology. For this, a more

general definition of smoothness, called geometric continuity (denoted Gk) is adopted.

In particular G1 continuity, which subsumes strict C1 continuity and implies that two

patches have a common tangent plane at all points along their shared boundary, is

sufficient for a pair of surfaces to be considered “smooth”. Many authors [Farin 82,

Chiyokura & Kimura 83, Piper 87] provide constructions for joining a pair of patches

together smoothly.

A second more subtle aspect of the interpolation problem that causes a significant

amount of difficulty is the twist compatibility problem. This problem is an artifact of

the relationship between the boundary curves and the transversal vector fields. The
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interpolation problem assumes that boundary curve endpoints, and endvectors of the

transversal vector fields share common positions and tangent planes at mesh vertices. A

surface that interpolates this data will be (at least locally) in the continuity class G1.

Suppose F1(u), V1(u) and F2(v), V2(v) are a pair of curves and transversal vector fields

that share a common endpoint F1(0) = F2(0). For simplicity, assume that directions

u and v are such that dF1
du (0) = V2(0) and dF2

dv (0) = V1(0) (if this not the case, cross

boundary directions can be chosen without loss of generality such that it is the case). Let

G(u, v) be a parametric surface patch that interpolates F1, V1, F2 and V2. Interpolating

the given data does not guarantee equivalence of the mixed partial derivatives

∂2G

∂u∂v
(0, 0) =

∂2G

∂v ∂u
(0, 0).

In other words, the constraints on the input are not sufficient to guarantee that G ∈ C2.

If G �∈ C2, then G cannot be polynomial, since all polynomials are in the class C∞. This

dilemma is the central difficulty encountered when constructing a smooth patch network

of arbitrary topological type.

Constraining the transversal boundary vectors to be twist compatible is often not

possible [Watkins 88, Peters 91]. Therefore, it is impossible to construct an interpolant

that fills each region, or face, of a general curve network with a single polynomial surface

patch. Solutions to the problem often involve either filling a region with several poly-

nomial patches [Farin 83, Piper 87, Jensen 87, Shirman & Séquin 88], or using rational

patches whose mixed partial derivatives may not match (i.e. rational surface that are

not of class C2)[Gregory 74, Chiyokura & Kimura 83].

Solving the problem using a single patch per face can be done for a sufficiently re-

stricted class of meshes [Peters 91]. The restrictions require that only an odd number

(or 4) of curves meet at a single vertex. Such curve networks generally only bound at

most 3 or 4 sided regions. In this vein, schemes have been developed using exclusively

tensor product surfaces that mimic the behavior of B-splines[van Wijk 86, Goodman 91,

Lee & Majid 91]. While these techniques are general enough to model surfaces of ar-

bitrary topological type, the limits placed on the structure of the control meshes are
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unnatural from a designers point of view.

1.5 Generalized B-splines

The input to the scheme propose here is an irregular, or unrestricted, control mesh; no

normals or additional information is needed. Rather than interpolating the vertices of

this control mesh, the proposed scheme will approximate the irregular control mesh in

much the same way as a B-spline surface approximates a regular control mesh. This be-

havior is very similar to that of the subdivision surfaces generated by the Catmull/Clark

algorithm. Unlike subdivision surfaces, the surfaces generated here are always a smooth

(G1) composite of parametric surface patches. Unlike previous parametric surface solu-

tions, no domain splitting is required and all surface patches are in the class C∞. In

addition, each surface patch may have any number of boundary curves.

The scheme developed in this thesis approximates, rather than interpolates, the ver-

tices of an irregular control mesh. While the mathematics of this scheme are sufficiently

general to support an interpolating method, an approximating method was considered

preferable for two reasons. First, approximating methods tend to generate surfaces that

have an overall smoother looking shape. Even though an approximating scheme and an

interpolating scheme may both produce surfaces that satisfy some mathematical criteria

of smoothness, empirical evidence suggests that the surface generated by an approximat-

ing scheme generally will appear smoother and be more satisfactory from an aesthetic

point of view. Intuitively speaking, one reason for this smoother appearance is that

approximation tends to dampen high frequency components better than interpolation.

Interpolation is often more critically important in scientific applications where one must

be true to some real-world data. In design applications, aesthetic considerations like

“looks better” are more important than interpolating a data set that has no real-world

counterpart.

The other reason for developing an approximating scheme is to emulate the behavior

of B-splines. This was also a feature of the approximating subdivision schemes. Like
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those subdivision schemes, the scheme proposed here also generalizes B-spline surfaces.

That is, when the control mesh has a regular rectangular structure, the surface is exactly

a bicubic tensor product B-spline (see Section 3.2). Furthermore, when the control mesh

has a regular triangular structure, the surface is exactly a quartic triangular B-spline

(see Section 3.3). These claims are proved in Chapter 6. This relationship to regular B-

spline surfaces gives the more general surfaces developed here many of the same desirable

design characteristics. There is an intuitive relationship between the control mesh and

the resulting surface; moving a control vertex affects the surface in a predictable and

local way. In addition, this new surface scheme is compatible with existing B-spline

techniques in that it can be used to extend the capabilities of these well known and

widely used surface design techniques.

Like many G1 surface schemes, the scheme developed in this thesis proceeds by con-

structing a curve network based on the input control mesh. However, unlike many of

these schemes that use parametric surface patches, the new scheme does not require any

sort of split domain. That is, each hole bounded by the curve network is filled with a

single C∞ parametric surface patch. Furthermore, no limit is placed on the number n

of boundary curves possessed by such patches. This construction has a certain mathe-

matical elegance and is more like B-splines than split domain schemes. Additionally, no

extraneous boundary curves are introduced. The n-sided patch approach may thereby

generate surfaces that are smoother than an approach that requires several sub-patches

joined in a G1 fashion.

The n-sided element used here is the S-patch developed in [Loop & DeRose 89]. S-

patches generalize both Bézier tensor product and Bézier triangular patches, thus en-

abling the proposed scheme to generalize bicubic tensor product and quartic triangular

B-splines. The unifying nature of S-patches suggest that a parametric surface modeler

can be based on a single patch type. Since all patches are instances of a single general

structure, many algorithms may be derived that are independent of the number of sides

n, leading to uniformity and simplicity. This contradicts the notion that including n-
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sided patches into a geometric modeler increases complexity due to an increase in special

cases. While the S-patch representation is in itself more complicated than either tensor

product or triangular forms, it has a very nice mathematical structure. This increase in

generality arguably offsets the increase in complexity.

1.6 Overview

This thesis is organized as follows. In Chapter 2 a review of Bézier forms is presented

including: Bézier simplicies, Bézier curves, Bézier tensor product surfaces and Bézier

triangles. Chapter 3 covers the fundamentals of B-splines including: B-spline curves,

tensor product B-spline surfaces, and triangular B-splines. Chapter 4 contains the def-

inition and basic properties of S-patches that are necessary in deriving the generalized

B-spline scheme. Next, in Chapter 5 the details of the generalized B-spline scheme are

presented. In Chapter 6, special cases that arise when restrictions are placed on the

connectivity of the control mesh are considered. Finally in Chapter 7, conclusions and

directions for future work are given.



Chapter 2

Bézier Forms

A review of the basic mathematics of Bézier forms is now given. This review begins

with a few preliminary definitions. Next, Bézier forms of arbitrary degree in any number

of variables are defined; these are called Bézier simplicies [de Boor 87]. From this gen-

eral framework, the special cases of Bézier curves, tensor product Bézier surfaces, and

triangular Bézier surfaces are considered.

2.1 Preliminary Definitions

An affine space X is collection of points representing positions, and vectors representing

directions, together with the following algebra [DeRose 89]:

vector + vector 	→ vector

scalar · vector 	→ vector

point − point 	→ vector

point + vector 	→ point

The vectors in an affine space shall be denoted by dotted symbols such as v̇, to distinguish

them from affine points. A special vector 0̇, called the zero vector, exists such that
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p− p = 0̇, for all points p ∈ X. Although scalar multiplication is not defined for points,

a special form called an affine combination can be defined within affine geometry. An

affine combination is the sum of products of scalars and points as in

p = α1v1 + · · ·+ αrvr,

where v1, . . . , vr, and p are points, and α1, . . . , αr are scalars that sum to 1. A similar

vector combination, where scalars α1, . . . , αr sum to 0, results in an affine vector.

A k-simplex ∆ is a collection of points v1, ..., vk+1 such that none of the points can

be written as an affine combination of the others. For example, a 1-simplex is a line

segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and so on. Let u be a

point in an affine space X, and let v1, ..., vk+1 ∈ X form a k-simplex ∆. If every point

point u ∈ X can be written uniquely as an affine combination

u = u1v1 + · · ·+ uk+1vk+1,

then X is said to have dimension k. The scalars u1, ..., uk+1 are called the barycentric

coordinates of u with respect to the simplex ∆.

2.2 Bézier Simplicies

A multi-index  i = (i1, ..., ik+1) is a tuple of non-negative integers whose norm, denoted

by | i|, is defined to be the sum of the components of  i. Addition, subtraction and scalar

multiplication of multi-indices is defined componentwise. A special multi-index  ej is

defined whose only non-zero component is a one in the jth position (note that | e| = 1).

Let X1 be an affine space of dimension k and let X2 be an affine space of arbitrary

dimension. Let ∆ = {v1, . . . , vk+1} be a k-simplex in X1, and let u1, . . . , uk+1 be the

barycentric coordinates of point u ∈ X1 with respect to ∆. A degree d Bézier simplex

Q : X1 → X2 is defined by

Q(u) =
∑
|
i|=d

b
iB
d

i
(u1, ..., uk+1), (2.1)
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where the coefficients b
i ∈ X2 are referred to individually as Bézier control points and

collectively as the Bézier control net of Q with respect to ∆. When X2 is an affine space

of dimension one, Q(u) is a scalar valued function and the coefficients b
i are referred to

as Bézier ordinates to distinguish this special case.

The functions Bd

i
(u1, ..., uk+1) are Bernstein polynomials of degree d defined by

Bd

i
(u1, ..., uk+1) =

(
d
 i

)
ui1

1 ui2
2 · · ·u

ik+1
k+1 ,

where
(d

i

)
is the multinomial coefficient defined by(

d
 i

)
=

d!
i1! i2! · · · ik+1!

.

Bernstein polynomials form a partion of unity, i.e.

∑
|
i|=d

Bd

i
(u1, ..., uk+1) = 1,

and are non-negative, i.e

Bd

i
(u1, ..., uk+1) ≥ 0, 0 ≤ u1, ..., uk+1 ≤ 1.

These properties imply that Bézier simplices are affine invariant and that Q(u) lies

within the convex hull of the control net b
i when u lies within the convex hull of ∆.

Furthermore, Q approximates its control net and interpolates the corner control points

bd
ej
, j = 1, . . . , k + 1.

2.2.1 Polar Forms

A close relationship between Bézier simplicies and symmetric multiaffine maps has

been found by Ramshaw [de Casteljau 63, de Casteljau 86, Ramshaw 87, Ramshaw 88,

Ramshaw 89]. A map q(u1, ..., ud) is said to be multiaffine if it is affine when all but one

of its arguments are held fixed; it is said to be symmetric if its value does not depend

on the ordering of the arguments. Associated with every polynomial Q : X1 → X2 of

degree d there is a unique, symmetric d-affine map that agrees with Q on its diagonal
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(the diagonal of a function q(u1, ..., ud) is obtained when all arguments are held equal:

Q(u) = q(u, ..., u)). This multiaffine map is referred to as the polarization or polar form

of Q (the term blossom has also been used to refer to this map).

Ramshaw shows that the Bézier control net of Q relative to the simplex ∆ is given

by

b
i = q(
d︷ ︸︸ ︷

v1, ..., v1︸ ︷︷ ︸
i1

, v2, ..., v2︸ ︷︷ ︸
i2

, ..., vk+1, ..., vk+1︸ ︷︷ ︸
ik+1

).

This insight greatly simplifies the derivation of many procedures involving Bézier sim-

plicies. For example, given the polar form q of a Bézier simplex Q, the control net with

respect to another simplex Γ of dimension m is easily found by evaluating q at the ver-

tices of the Γ. The dimension m of Γ need not be the same as the dimension k of ∆.

The Bézier simplex corresponding to the simplex Γ will be of dimension m. This shows

how each edge of a domain simplex ∆ may be treated as a Bézier 1-simplex (a Bézier

curve), each face of ∆ may be treated as Bézier 2-simplex (a Bézier triangle), and so on.

2.2.2 DeCastlejau’s Algorithm

If the Bézier control net of a Bézier simplex is given, its polar form may be evaluated

algorithmically. Let u1, ..., ud ∈ X1, be such that each uj has barycentric coordinates

uj,1, ..., uj,k+1. If q denotes the polar form of Q, the value q(u1, ..., ud) can be computed

as follows:

for r = 1 to d

for | i| = d− r

br

i
← ur,1br−1


i+
e1
+ · · ·+ ur,k+1br−1


i+
ek+1

end for

end for



19

where b0

i
= b
i and bd

0,...,0 is the value q(u1, ..., ud). This procedure is known as DeCastle-

jau’s algorithm1.

2.2.3 Derivatives of Bézier Simplicies

The derivatives of a Bézier simplex Q are easily expressed in terms of its polar form.

Let ẇ1, ..., ẇr be r vectors in X1. The rth derivative of Q(u) with respect to ẇ1, ..., ẇr is

written

Dr
ẇ1,...,ẇr

Q(u) =
d!

(d− r)!
q(ẇ1, ..., ẇr, u, ..., u). (2.2)

Although the barycentric coordinates of a vector (being the difference of two points)

sum to zero, deCastlejau’s algorithm can be used to evaluate the derivative of a Bézier

simplex.

2.2.4 Degree Elevation

A degree d Bézier simplex with control points b
j may be represented as an equivalent

degree r (r > d) Bézier simplex by the following :

c
i =
∑


j+
k=
i

(d

j

)(r−d

k

)
(r

i

) b
j,

where c
i are the control points of the degree elevated Bézier simplex.

2.3 Bézier Curves

The Bézier curve form was developed independently by P. Bézier and P. deCastlejau

in the late 1950s and early 1960s as a computer aided geometric design tool for use in

the French auto industry. A Bézier curve smoothly approximates a set of control points

(collectively known as the control polygon in the curve case) and interpolates the first

and last control points. Figure 2.1 shows an example.
1Strictly speaking, deCastlejau’s algorithm requires that u1 = · · · = uk+1. For lack of

a better name, this more general algorithm shall be associated with deCastlejau’s name.
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Figure 2.1: A cubic Bézier curve.

Mathematical, a Bézier curve is a special case of a Bézier simplex. If ∆ is a 1-simplex,

i.e. a line segment, the resulting Bézier form is a curve. The multi-index notation used

for Bézier simplicies is often too cumbersome when dealing with Bézier curves. More

commonly a degree d Bézier curve is written

Q(u) =
d∑

i=0

biB
d
i (u), 0 ≤ u ≤ 1,

where the coefficients b0, ...,bd are the control points and

Bd
i (u) =

(
d

i

)
(1− u)d−iui,

are univariate Bernstein polynomials. It is generally assumed that the domain X1 of a

Bézier curve is the real line and that u ∈ [0, 1].

2.3.1 The Derivative of a Bézier Curve

The special case of the Bézier simplex derivative formula for the first derivative of a

degree d Bézier curve is

d

du
Q(u) = d

d−1∑
i=0

(bi+1 − bi)Bd−1
i (u).
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Figure 2.2: A bicubic tensor product Bézier patch

2.4 Tensor Product Bézier Surfaces

While both Bézier and deCastlejau discovered Bézier curves, their extensions to the

bivariate setting differed. Bézier based his surface on a tensor product of Bézier curves.

A degree r by s tensor product Bézier surface is defined by

Q(u, v) =
r∑

i=0

s∑
j=0

bi,jB
r
i (u)B

s
j (v),

where the coefficients bi,j , 0 ≤ i ≤ r, 0 ≤ j ≤ s are control points that form a rectangular

array. An example of a Bézier tensor product patch is shown in Figure 2.2. The domain

of a tensor product Bézier surface is generally taken to be the unit square [0, 1]× [0, 1].

A tensor product Bézier surface with a rectangular domain is known as a Bézier tensor

product patch.

Tensor product Bézier patches have many of the same properties as Bézier simplicies

such as affine invariance and the convex hull property. These follow from the analogous

properties for Bézier curves, and the curve based definition of Bézier tensor product

surfaces. Each edge of a tensor product Bézier patch is a Bézier boundary curve. For



22

example, the image of the edge corresponding to v = 0, u ∈ [0, 1] is the Bézier curve with

control points b0,0, ...,br,0.

2.4.1 Derivatives of Tensor Product Bézier Surfaces

A pair of derivative formulae for tensor product Bézier surfaces will be utilized in Chap-

ters 5 and 6. These involve partial derivatives on edges of the rectangular domain.

Consider the edge v = 0, the partial derivatives of Bézier tensor product patch Q(u, v)

are:

Du̇ Q(u, 0) = d
d−1∑
i=0

(bi+1,0 − bi,0)Bd−1
i (u), (2.3)

Dv̇ Q(u, 0) = d
d∑

i=0

(bi,1 − bi,0)Bd
i (u), (2.4)

where u̇ and v̇ correspond to the u and v axes of the domain rectangle.

2.5 Bézier Triangles

The extension of Bézier curves to the bivariate setting by deCastlejau, now called Bézier

triangles, uses a 3-sided triangular domain. deCastlejau’s work lead to the more general

theory of Bézier simplicies. In fact, a Bézier triangle is a Bézier simplex where the

domain simplex ∆ is a triangle (a 2-simplex). The definition of a Bézier triangle is

equivalent to that of a Bézier simplex where k = 2. Since there are only 3 elements in

the corresponding multi-index, the notation is often expanded with  i = (i, j, k).

A degree d Bézier triangle can then be defined by

Q(u) =
∑

|i+j+k|=d

bi,j,kB
d
i,j,k(u1, u2, u3),

where u1, u2, u3 are the barycentric coordinates of u with respect to a triangle ∆, bi,j,k

form a triangular array of Bézier control points, and

Bd
i,j,k(u1, u2, u3) =

(
d

i, j, k

)
ui

1u
j
2u

k
3 ,
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Figure 2.3: A quartic Bézier triangle

are trivariate Bernstein polynomials of degree d. An example of a Bézier triangle is

shown in Figure 2.3. Properties such as convex hull and affine invariance follow directly

from those of Bézier simplicies.



Chapter 3

B-splines

In this chapter, B-spline curves, tensor product B-spline surfaces, and triangular B-

splines will be discussed. Basic definitions and properties are given. Particular attention

is paid to relationships between B-spline and Bézier forms.

3.1 B-spline Curves

Intuitively, a B-spline curve is a smooth approximation to a set of control points. The

control points are collectively referred to as the de Boor polygon. Unlike a Bézier curve, a

B-spline curve is piecewise polynomial, i.e. a composite of one or more polynomial curve

segments. While it is possible to design smooth composite objects with Bézier curves,

satisfying the continuity constraints imposed on the positions of the Bézier control points

of adjacent curve segments can be quite complicated. B-splines curves are free from these

difficulties, automatically satisfying the continuity constraints of adjacents polynomial

curve segments.

A degree r, piecewise polynomial, B-spline curve Sr(u) is defined by

Sr(u) =
∑

i

diN
r
i (u). (3.1)

The collection of point valued coefficients di are often referred to as the de Boor points or

de Boor polygon. The N r
i (u) are normalized B-spline basis functions of degree r defined
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over a sequence of knots {i} . This knot sequence, or knot vector forms a partition of the

real u-axis. Only the case of equidistant knot spacing is important here. For simplicity,

knot sequences will be derived from the sequence

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Under these restrictions, (3.1) becomes

Sr(u) =
∑
i∈Z

diN
r(u− i). (3.2)

The N r(u− i) are translates of a single B-spline N r(u).

The N r(u) form a partition of unity, i.e.

∑
i∈Z

N r(u− i) = 1.

Hence B-spline curves are affine invariant. B-spline basis functions are non-negative, i.e.

N r(u) ≥ 0.

This condition implies that a B-spline curve lies in the convex hull of its de Boor points.

Each N r(u) has local support, that is

N r(u) = 0 if u /∈ [0, r + 1].

Thus moving a single de Boor point only effects a B-spline curve locally. N r(u) is (r−1)

times continuously differentiable. Therefore, a B-spline curve Sr ∈ Cr−1.

B-spline basis functions may be defined in several different ways[Dæhlen & Lyche 91].

Most commonly they are defined recursively:

N r(u− i) =
u− i

r
N r−1(u− i) +

i+ r + 1− u

r
N r−1(u− i− 1),

where

N0(u) =

{
0, if u ∈ [0, 1]

1, otherwise.
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B-spline basis functions can also be defined via a convolution formula:

N r+1(t) =
∫ ∞

−∞
N0(t− u)N r(u)du.

This convolution approach is the key to defining triangular B-splines (see Section 3.3).

A B-spline curve may also be subdivided. That is, one can write

Sr(u) =
∑

j∈Z/2

d̂jN
r(2(u− j)),

where d̂j is a refined de Boor polygon and N r(2(u − j)) are B-spline basis functions

with half the support of N r(u). The relationship between di and d̂j is straightforward

[Lane & Riesenfeld 80], but not important here.

Rather than evaluating the various basis functions and taking the sum of products

with the de Boor points, a B-spline curve may be evaluated directly from the de Boor

points using the de Boor algorithm:

dk
i (u) =

i+ r − k − u

r − k + 1
dk−1

i−1 (u) +
u− i+ 1
r − k + 1

dk−1
i (u), k = 1, . . . , r,

where

d0
i (u) = di.

The point dr
i (u) is the point on the curve corresponding to Sr(u).

3.1.1 B-spline Curves in Bézier Form

Since B-splines and Bézier forms are both representations of polynomials, it follows that

algorithms to convert between these two representations exist. Of particular interest

here is the conversion from a degree r B-spline curve into collections of degree r Bézier

curve segments. Algebraically, this conversion can be viewed as a simple change of

polynomial basis, from a B-spline basis to the Bézier , or Bernstein, basis. Geometrically,

the conversion is viewed as constructing the Bézier control points of individual curve

segments by taking affine combinations of the de Boor points. The particular affine

combinations needed to convert a B-spline representation into a Bézier representation
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Figure 3.1: a) A de Boor polygon b) The corresponding Bézier control points c) The
resulting curve

can be found by solving various linear systems. More direct geometric constructive

approaches have been found by Boehm[Boehm 77, Boehm 80, Boehm 81, Boehm 82b]

and Sablonníere[Sablonniére 78]. Figure 3.1 shows an example of a de Boor polygon, the

corresponding Bézier control points, and the resulting curve.

For the case of uniform knot spacing, the affine combinations needed to convert from

a B-spline representation to a Bézier representation are limited to only a few simple cases

for each degree r curve. The following are the cases r = 1, 2, 3 where bj denotes the jth

Bézier control point of the ith curve segment:

Linear case, r = 1

b0 = di,

b1 = di+1.
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Quadratic case, r = 2

b0 = 1
2di−1 + 1

2di,

b1 = di,

b2 = 1
2di + 1

2di+1.

Cubic case, r = 3

b0 = 1
6di−1 + 2

3di + 1
6di+1,

b1 = 2
3di + 1

3di+1,

b2 = 1
3di + 2

3di+1,

b3 = 1
6di + 2

3di+1 + 1
6di+2.

From these relationships it is possible to treat the de Boor points of a B-spline as a kind

of scaffolding from which a collection of Bézier curve segments meeting with Cr−1 are

constructed. This point of view is fundamental to achieving the results of this thesis.

3.2 Tensor Product B-spline Surfaces

A piecewise polynomial tensor product B-spline surface Sr,s(u, v) is defined by

Sr,s(u, v) =
∑
i∈Z

∑
j∈Z

di,jN
r,s(u− i, v − j), (3.3)

where the coefficients di,j form a rectangular lattice of control points referred to as the

de Boor net . N r,s(u− i, v − j) are normalized tensor product B-splines of degree r by s

defined over the knot vectors {i} and {j}. The knot set {i× j} forms a rectangular grid

of points.

A tensor product B-spline is the product of two independently parameterized uni-

variate B-splines, i.e.,

N r,s(u− i, v − j) ≡ N r(u− i)N s(v − j),
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where N r(u − i) and N s(v − j) are univariate B-splines of degree r and s respectively.

It follows that many of the properties and formulae for tensor product B-spline surfaces

can be derived directly from the theory of univariate B-splines. The N r,s(u − i, v − j)

form a partition of unity and are non-negative. These conditions imply that a tensor

product B-spline surface is affine invariant and lies in the convex hull of the de Boor net.

N r,s(u, v) has local support; thus a change in a single de Boor point will only affect the

surface locally. N r,s(u, v) is r − 1 and s − 1 times continuously differentiable in the u

and v directions respectively.

It is possible to demonstrate subdivision, recursion, and convolution formulae for

tensor product B-spline basis functions; these follow directly from their univariate coun-

terparts. de Boor’s algorithm can be used to evaluate a tensor product B-spline surface

by holding v constant and treating each row of the de Boor net as a de Boor polygon;

each of the corresponding ‘curves’ is evaluated in u, and the resulting column of values is

treated as the de Boor points of a curve in v and evaluated to get a point on the surface.

3.2.1 Tensor Product B-spline Surfaces in Bézier Form

Since the tensor product B-splines N r,s(u, v) are piecewise polynomial, it should be

possible to represent a tensor product B-spline surface as a collection of tensor product

Bézier patches. As in the curve case, changing a B-spline representation to a Bézier

representation is equivalent to changing the polynomial basis. Geometric constructions

for this procedure can be derived from those given previously in the curve case. Figure 3.2

shows a rectangular de Boor net, the corresponding tensor product Bézier patches, and

the resulting surface.

The bicubic case (r = s = 3) is given special attention in this work. In this case

the corresponding polynomial patches are the lowest degree patches that are smooth (at

least C1), symmetric (r = s), and in one-to-one correspondence with faces of the de Boor

net. That is, for each de Boor net face {di,j ,di+1,j,di+1,j+1,di,j+1}, there is exactly one

bicubic patch (ignoring any boundary conditions). In the bicubic case, given below, the
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Figure 3.2: a) A rectangular de Boor net b) The corresponding tensor product Bézier
control nets c) The resulting surface

points bk,l are the Bézier controls point of the patch corresponding to such a face:

Bicubic tensor product case, r = s = 3

b00 = 4
9di,j + 1

9 [di+1,j + di,j+1 + di−1,j + di,j−1]

+ 1
36 [di+1,j+1 + di−1,j+1 + di−1,j−1 + di+1,j−1], (3.4)

b10 = 4
9di,j + 2

9di+1,j + 1
9 [di,j+1 + di,j−1] + 1

18 [di+1,j+1 + di+1,j−1], (3.5)

b11 = 4
9di,j + 2

9 [di+1,j + di,j+1] + 1
9di+1,j+1. (3.6)

The remaining 13 Bézier control points for this patch are found by formulae symmetric
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to those above.

3.3 Triangular B-spline Surfaces

In his 1976 Ph.D. thesis, Sabin [Sabin 76] discovered a triangular form of B-spline sur-

faces. A triangular B-spline is written

Sr,s,t(u, v) =
∑
i,j

di,jN
r,s,t(u− i, v − j),

where the di,j are interpreted as a triangular de Boor net. A typical face of this triangular

de Boor net is labeled {di,j ,di+1,j,di+1,j+1}. That is, the triangular de Boor net is

labeled just a rectangular net with diagonal edges (di,j ,di+1,j+1).

The N r,s,t(u, v) form a partion of unity, are non-negative, have local support, and

are r − 1, s − 1 and t − 1 times continuously differentiable in the r, s and t directions

respectively. Triangular B-splines can be generated recursively [Boehm 85b], and may

be subdivided [Boehm 83]. A recursive evaluation procedure in the spirit of de Boor’s

algorithm also exists for triangular B-splines [Boehm 82a].

Sabin originally generated triangular B-spline basis functions by r, s, and t convolu-

tions in each of the three directions of a triangular grid. This definition of triangular

B-splines involves triple integrals and is mainly of theoretical interest. Triangular B-

splines have also been shown to be a member of a more general class of splines called box

splines [Dahmen & Micchelli 84, Boehm 85a, Boehm 85b]. In the box spline approach,

the basis functions are found as the shadow of a hyper-cube in an m-dimensional affine

space, projected onto a 2-dimensional affine space. The height of the basis function at

any point is proportional to the volume of the hyper-cube that is projected to that point.

Again, this definition is primarily a theoretical one.
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Figure 3.3: a) A triangular de Boor net b) The corresponding triangular Bézier control
nets c) The resulting surface

3.3.1 Triangular B-splines in Bézier Form

For practical purposes, Sabin devised an algorithm (based on convolutions) for generating

the Bézier ordinates1 of a triangular B-spline basis function N r,s,t(u, v). Once the Bézier

ordinates are known, it is possible to determine affine combinations for constructing

the Bézier control points of triangular patches from the triangular de Boor net. An

algorithm for computing the Bézier control points of triangular B-spline directly from

the de Boor net can be found in [Boehm 82b]. Figure 3.3 shows a triangular de Boor

net, the corresponding triangular Bézier patches, and the resulting surface.
1Bézier ordinates are the control points of scalar valued Bézier forms
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The case r = s = t = 2, like the tensor product bicubic B-spline case, is given special

attention. Again, in this case the resulting triangular patches are the lowest degree,

smooth, symmetric (r = s = t), patches that are in one-to-one correspondence with the

triangular faces of the de Boor net. Since the triangular patches associated with the

case r = s = t = 2 are degree 4, this case is also known as a quartic triangular B-spline

surface. Below are the formulae for constructing the Bézier control points bk,l,m of a

quartic triangular Bézier patch corresponding to a de Boor net face:

Quartic triangular B-spline case, r = s = t = 2

b400 = 1
2di,j

+ 1
12 [di+1,j + di+1,j+1 + di,j+1 + di−1,j + di−1,j−1 + di,j−1], (3.7)

b310 = 1
2di,j + 1

6di+1,j + 1
8 [di+1,j+1 + di,j−1]

+ 1
24 [di,j+1 + di−1,j−1], (3.8)

b220 = 1
3 [di,j + di+1,j ] + 1

6 [di+1,j+1 + di,j−1], (3.9)

b211 = 5
12di,j + 1

4 [di+1,j + di+1,j+1] + 1
24 [di,j+1 + di,j−1]. (3.10)

The remaining 8 Bézier points for this patch are found by formulae that are symmetric

to those just given.



Chapter 4

S-patches

S-patches are a generalization of Bézier surfaces where any number n of boundary

curves are permissible. A detailed description of the underlying theory can be found

in[Loop & DeRose 89]. In this chapter, only those results necessary in the development

of the present work are summarized.

4.1 S-patch Basics

S-patches possess a rich structure, largely because they are defined in terms of multi-

variate Bernstein polynomials and Bézier simplexes. An n-sided S-patch S is a mapping

from a domain n-gon P in a 2-dimensional affine space, to some model space M of ar-

bitrary dimension. S is conceptually constructed in two phases: first, P = {p1, ..., pn} is

embedded into an intermediate domain simplex ∆ = {v1, ..., vn} contained in an affine

space Y of dimension n− 1; next a Bézier simplex is created using ∆ as its domain and

M as its range; finally, S is defined as the composition of the embedding and the Bézier

simplex. That is, if L : P → ∆ represents the embedding, and if B : ∆ → M is the

Bézier simplex, then

S(p) = B ◦ L(p), p ∈ P, (4.1)

as indicated in Figure 4.1.
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Figure 4.1: Schematic representation of an S-patch.

Several helpful definitions are introduced in order to describe the embedding L used

to map the domain polygon P into the intermediate simplex ∆. Let functionals αi(p)

denote the ratio of the signed area of the triangle ppipi+1 to the area of the triangle

pipi+1pi+2, where the sign is chosen to be positive if p is inside P . (Note: all indices are

to be treated in cyclic fashion.) The geometry of the functionals α1, ..., αn is illustrated

in Figure 4.2. Let

πi(p) = α1(p) · · ·αi−2(p) · αi+1(p) · · ·αN (p),

for i = 1, ..., n, denote the product of all functionals except for αi−1 and αi, and let

0i(p) =
πi(p)

π1(p) + · · ·+ πn(p)
.

With these definitions, every point p ∈ P is mapped by L into the point

L(p) = 01(p)v1 + 02(p)v2 + · · ·+ 0n(p)vn, (4.2)
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Figure 4.2: The geometry of functionals α1(p), . . . , αn(p).

in Y . This embedding has the important property that it is edge-preserving, meaning

that if p lies on an edge of P , then L(p) lies on an edge of ∆; additionally, the interior

of P is mapped into the interior of ∆ [Loop & DeRose 89].

If b
i denotes the control net of a Bézier simplex B, then an S-patch S is defined as

S(p) = B ◦ L(p) =
∑

i

b
iB
d

i
(01(p), ..., 0n(p)). (4.3)

The integer d in Equation 4.3 is known as the depth of the S-patch, to avoid confusion

with the polynomial degree of the patch, which is d(n− 2). The control net b
i is taken

as the control net of S, an example of which is shown in Figure 4.1.

The compositional structure of the S-patch S together with the edge-preserving char-

acter of the embedding L endows the S-patch representation with a number of useful

properties. For example, S-patches are affine invariant and possess the convex hull prop-

erty; these properties are inherited from Bézier simplicies. DeCastlejau’s algorithm can

be used to evaluate S-patches, once the component functions 01(p), ..., 0n(p) have been de-

termined. Similarly, given an S-patch control net of depth d describing a patch S = B◦L,
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the S-patch control net of depth d+ 1 for S can be constructed by executing the Bézier

simplex degree raising algorithm (Section 2.2.4) on the control net of B. Thus, S-patch

control nets can be depth elevated.

A very useful property of S-patches is a consequence of the edge preserving nature

of the embedding map L(p). Recall that the image of an edge of the domain ∆ under

a Bézier simplex is a Bézier curve (see Section 2.2.1). Since edges of P are taken to

edges of ∆ under L, the boundary curves of an S-patch must be Bézier curves. This fact

has important practical implications. In order for a pair of S-patches to meet with C0

continuity, they need only share control points along a common boundary curve. Such

control points along a boundary curve are referred to as boundary points.

S-patch control nets consist of interconnected n-sided closed polygonal panels. For

instance, in Figure 4.1 the points V20000, V11000, V10100, V10010, V10001 form one such

panel. The panels of a control net that contain boundary points are termed boundary

panels. The tangent plane variation along a boundary curve is determined entirely by

the corresponding boundary panels.

4.2 Bézier Surfaces are Generalized

One of the most significant properties of S-patches is that they generalize Bézier surfaces.

That is, when n = 3, the S-patch form reduces to a Bézier triangle, and when n = 4, S-

patches coincide with Bézier tensor product patches (for proofs see [Loop & DeRose 89]).

This property is interesting theoretically and has many practical benefits. Until the

development of S-patches, the theories (and implementations) of triangular and tensor

product Bézier patches were treated separately. These surfaces where clearly similar in

behavior, but each had its own peculiarities. Some (cf. [Farin 90]) debated the merits

of using one form over the other, since it was believed that using both triangular and

tensor product Bézier patches in a single modeling system would result in an increase in

software complexity due to the need for separate treatments of the two distinct types.

The unification of these two types of Bézier surfaces into a single patch type (the S-patch)
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shows that this in not the case.

In the case n = 3, S-patches and Bézier triangles are equivalent. However when

n = 4, S-patches and by-d-ic tensor product Bézier patches are not quite the same,

although they are very closely related. Let wi,j be the Bézier control points of a bi-d-ic

tensor product Bézier patch, and let v
i be the control points of a depth d S-patch that

represents the same surface. The wi,j and v
i are related by the following two formulae

(see [Loop & DeRose 89] for a proof):

wi,j =
∑

�i
i2+i3=i

i3+i4=j

(d

i

)
(d
i

)(c
j

)v
i,

v
i = wi2+i3,i3+i4,

where multi-index  i = (i1, i2, i3, i4).

The generalization of Bézier surfaces is important in the thesis for the following

reason: since the goal of this work is to create a B-spline like surface scheme that

includes both bicubic B-spline and quartic triangular B-spline surfaces as proper subsets,

it is absolutely essential that a patch type exists that is general enough to represent the

individual surface patches generated by these two schemes. S-patches are ideally suited

to this purpose.

4.3 Representing Polynomials

Let X be an affine space of dimension 2 and let M be an affine space of arbitrary

dimension. Let Q : X → M be a polynomial of degree d having polar form q. The

S-patch representation of depth d for Q with respect to the polygon p1, ..., pn has control

points given by

b
i = q(p1, ..., p1︸ ︷︷ ︸
i1

, p2, ..., p2︸ ︷︷ ︸
i2

, ..., pn, ..., pn︸ ︷︷ ︸
in

). (4.4)

For a proof see Claim 6.3 [Loop & DeRose 89]. The importance of this fact here is that

Equation (4.4) provides an algorithm for representing a degree d polynomial as a depth
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d S-patch. This principal is important when joining S-patches together smoothly.

In order to appreciate the significance of Equation (4.4), it is important to understand

the associated geometry. If all but one argument of q is held fixed, the resulting map

is, by definition, affine in the one remaining argument. In each S-patch panel, the polar

form associated with each control point of the panel differs in only one argument. Hence

each S-patch panel is the image of polygon p1, ..., pn under an affine map. Therefore,

in the S-patch control net found by Equation (4.4) all S-patch panels are planar, affine

n-gons.

4.4 Joining S-patches Smoothly

In this Section, the precise definition of what is meant by a smooth join between a pair

of S-patches is given. The constructive approach used in this thesis is then outlined and

shown to satisfy this definition, at least in the absence of parametric irregularities.

“Smooth” in this context refers to first order geometric continuity, denoted G1. If a

collection S of two or more patches meet with G1 continuity, then the notation S ∈ G1

is used to denoted this fact [DeRose 85]. Informally, G1 means that a pair of surface

patches have a continuous tangent plane along a shared boundary. However, this simple

notion does not exclude a ‘razor sharp’ join between a pair of patches (i.e. one where

the patches lie on the same side of their common boundary), or a join between patches

whose boundary tangent planes degenerate. For these reasons, a more precise definition

of first order geometric continuity is needed.

Before giving the definition of G1 continuity, a few preliminary definitions are in

order. Let S : P → M and T : Q → M be a pair of S-patches with domain polygons

P = {p1, ..., pn} and Q = {q1, ..., qm} respectively (see Figure 4.3). Let ṡ = p2 − p1 and

ṫ = pn − p1 be a pair of directions in the domain of S, and ṙ = qn − q1 and ẇ = q2 − q1

be a pair of directions in the domain of T . Let Ep(t) = p1 + tṡ and Eq(t) = q1 + tṙ be a

pair of functions that map [0, 1] into the domains of S and T respectively.

The following definition contains 4 conditions that are generally accepted for a pair
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Figure 4.3: A depiction of the setup assumed in the definition of G1 continuity.

of patches (S-patches) to meet with G1 continuity [Peters 91].

Definition 4.4.1: S-patches S and T meet with G1 continuity if and only if there

exist functions φ(t), ρ(t), and τ(t), t ∈ [0, 1], such that

I.

S(Ep(t)) = T (Eq(t))

II.

φ(t)Dṡ S(Ep(t)) = ρ(t)Dṫ S(Ep(t)) + τ(t)Dẇ T (Eq(t))

III.

ρ(t)τ(t) > 0
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IV.

Dṡ S(Ep(t))×Dṫ S(Ep(t)) �= 0̇

Condition I states that S and T must share a common boundary curve. That is, S and

T are continuous (also known as G0 continuous). Condition II insures that S and T have

a continuous tangent plane along their common boundary. This condition is equivalent

to Dṡ S(Ep(t)),Dṫ S(Ep(t)) and Dẇ T (Eq(t)) being linearly dependent. Condition III

requires S and T to have proper orientation with respect to one another. This condition

excludes ‘razor sharp’ joins between patches. Finally, Condition IV requires that the

tangent plane shared by S and T is well defined. Without Condition IV, Conditions II

and III might be trivially satisfied if one of Dṡ S(Ep(t)),Dṫ S(Ep(t)) or Dẇ T (Eq(t))

were to vanish.

Next, the method used in this thesis to construct a smooth join between a pair of

S-patches is shown to satisfy Conditions I and II. Condition III is easily verified after the

details for the proposed construction are presented in Chapter 5. Condition IV is not

necessarily satisfied by patches constructed using the method proposed in this thesis.

Irregularities of the type Condition IV is intended to exclude can occur when control

mesh edges degenerate, or when available shape parameters (introduced in Chapter 5)

are set to extreme values. It should also be pointed out that regular B-spline surfaces

are susceptible to exactly the same problem.

The method of joining S-patches together smoothly involves the construction of an

auxiliary surface G, known as an edge map, that characterizes the behavior (position

and tangent plane) along the proposed join. Let directions u̇ and v̇ and point o form a

coordinate system in the domain of G, and define G(o+ tu̇), t ∈ [0, 1] to be the common

edge. Since only the behavior of G along the line o+ tu̇ is of interest, points on this line

are represented by their parameter value t. Therefore, G(o + tu̇) is denoted simply as

G(t). The tangent plane along G(t) is the span of Du̇ G(t) and Dv̇ G(t). Chapter 5 will

cover the details for constructing the edge maps G; for now, it can be assumed that such

a mapping exists for the common boundary edge.
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Given the edge map G, one can construct a pair of patches S and T that meet G1

simply by interpolating the position and tangent plane of G(t). Interpolating position is

trivially accomplished by assigning

S(Ep(t)) = T (Eq(t)) = G(t).

As a side effect, this assignment implies that derivatives in the direction of the boundary

are equal, that is

Dṡ S(Ep(t)) = Dṙ T (Eq(t)) = Du̇ G(t). (4.5)

Interpolating the tangent plane alongG is somewhat more involved. If it were the case

that only one pair of patches were being joined along a single edge, then an assignment

of the form

Dṫ S(Ep(t)) = D−ẇ T (Eq(t)) = Dv̇ G(t)

would be adequate to interpolate the tangent plane of G(t). However, the intent here is

to create G1 joins along all the edges of a patch. In this more general setting, patches S

and T will share a common tangent plane at all points along their common boundary if

functions µp, νp, µq and νq can be defined such that

Dṫ S(Ep(t)) = µp(t)Du̇ G(t) + νp(t)Dv̇ G(t), (4.6)

and

Dẇ Q(Eq(t)) = µq(t)Du̇ G(t) + νq(t)D−v̇ G(t). (4.7)

Constructing the functions µp and νp so that a given patch will meet an adjacent patch

smoothly is an important part of this thesis. These functions (determined in Chapter 5)

are found subject to constraints that ensure a consistent mixed partial derivative at

patch corners.

It is straightforward to show that patches S and T constructed subject to the interpo-

lation conditions outlined in Equations (4.5), (4.6), and (4.7) will meet G1. Condition I

follows immediately from Equation (4.5). Condition II is satisfied with the following
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assignments:

φ(t) = µp(t)νq(t) + µq(t)νp(t),

ρ(t) = νq(t),

τ(t) = νp(t).

The functions νp and νq (determined in Chapter 5) are strictly positive for t ∈ [0, 1],

thus satisfying Condition III.

This method of constructing a smooth join between a pair of S-patches is not entirely

generally. The specialization results from using edge maps G(t), and functions µ(t) and

ν(t) that are strictly polynomial (as opposed to rational functions). This means that the

differential D S(E(t)) as a function of the edges of the domain polygon of each S-patch S

is strictly polynomial. This fact has a rather interesting geometric interpretation: recall

that if a depth d S-patch S represents a degree d polynomial, then all of its S-patch

panels are affine n-gons (see Section 4.3). If the differential of S is polynomial along the

boundary, then the boundary panels are affine n-gons.



Chapter 5

The Generalized B-spline Scheme

The generalized B-spline scheme is fully developed in this chapter. Like the traditional, or

regular B-spline surface schemes described in Chapter 3, the new scheme takes as input

a control mesh and generates as output a smooth (G1) composite of surface patches.

Unlike regular B-spline surface schemes, the new scheme is not limited to approximating

control meshes with a regular rectangular or triangular structure. The bulk of this work

consists of a detailed description of the various geometric constructions used to build

the approximation to an irregular control mesh. Before presenting these details, more

precise definitions of the input and output of the scheme are given.

5.1 Input and Output

The input to the generalized B-spline scheme is a control mesh and the output is a col-

lection of S-patches that meet smoothly along their common boundaries. Conceptually,

a control mesh M may be thought of as a possibly concave polyhedron, with possibly

non-planar faces, that may or may not be closed. More formally, a control mesh is

defined to be a 3-tuple

M = (V,E,F),

where
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V = {v|v ∈M} is a set of vertices,

E = {(v,w)|v,w ∈ V} is a set of edges,

F = {(v1, . . . ,vn)|(vi,vi+1) ∈ E, i = 1, . . . , n mod n} is a set of faces.

The order of a vertex v ∈ V, denoted |v|, is defined to be the number of vertices w, such

that (v,w) or (w,v) ∈ E. Similarly, the order of a face f ∈ F, denoted |f |, is defined to

be the number of vertices (equivalently edges) that f contains.

The control meshM is intended to represent a tessellated, oriented 2-manifold (pos-

sibly with boundary). Because of this, the sets E and F may not be completely arbitrary.

For example, each directed edge (v,w) can belong to exactly one face. This requirement

does not limit the possible surfaces that the scheme can represent; rather it serves to

guarantee that a control mesh represents a valid surface. In order to prevent the type of

degeneracies Condition IV from the definition of G1 continuity excludes (see Chapter 4)

it is also necessary to require that for all |v| ∈ V and |f | ∈ F, |v| > 2 and |f | > 2.

It is quite possible that the pair (v,w), (w,v) ∈ E belong to distinct faces. Such

edges are called interior edges. If (v,w) ∈ E and (w,v) �∈ E then (v,w) is termed a

boundary edge. For simplicity, it is assumed throughout the subsequent constructions

that all edges are interior edges. This does not mean that a control mesh cannot contain

boundary edges; only that constructions involving boundary edges are not defined.

The output of the scheme is a spline surface S = (Si, Pi), where Si is an S-patch

defined over a regular polygon Pi, such that

⋃
i

Si ∈ G1.

The number of S-patches that form the surface S is equal to the number of faces in

F when M is closed. When M is not closed, fewer S-patches are generated since the

constructions are not defined over boundary edges. In this case, one S-patch will be

generated for each interior face (an interior face is one consisting only of interior edges).
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5.2 Overview of the Scheme

The procedure for converting a control meshM (the input) into a smooth spline surface

S (the output) consists of a sequence of affine invariant geometric constructions to de-

termine the control points of the patches Si ∈ S, such that S ∈ G1 and S approximates

the input control meshM. A property of this construction is that S andM are of the

same topological type. That is, there exists an embedding

Φ :M→ S.

While it is not a goal to explicitly build Φ, its existence is assumed so that the intent of

the various stages of the constructions is made more apparent. If vertex v ∈ V, then the

point Φ(v) is the corresponding point on S where |v| patches meet. If e ∈ E, then Φ(e)

is the boundary curve shared by two surface patches. If f ∈ F, then Φ(f) is a surface

patch. A consequence of the existence of Φ is that each n-sided S-patch Si is in 1-to-1

correspondence with a face fi ∈ F where |fi| = n.

The derivation of the generalized B-spline scheme is presented in the next three

sections. Conceptually, each of these sections corresponds to finding, respectively, the

images of the vertices, edges, and finally the faces of a control mesh under Φ. For each

control mesh vertex v ∈ V, a piecewise cubic map F is constructed in Bézier triangular

form. The purpose of these vertex maps is to characterize S up to second order at the

points Φ(v). Next, a network of boundary curves is constructed. These boundary curves

correspond to edges of the control mesh. If e = (v0,v1) ∈ E with vertex maps F0 and F1

respectively, then a boundary curve Φ(e) is found that interpolates second order data of

the maps F0 and F1. Similarly, a vector valued function that characterizes a transversal

tangent vector along a boundary curve is also found. This function, together with the

corresponding boundary curve, is referred to as an edge map; it characterizes the position

and tangent plane of S along Φ(e). Once the edge maps have been constructed for each

edge of a face f ∈ F, an S-patch is found that interpolates these edge maps corresponding

to Φ(f).
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The notation in the following sections needs some explanation. Recall that a dot over

a symbol is used to distinguish affine vectors from affine points. A superscript is used to

order quantities that orbit a vertex; it is always a cyclic index whose value is assumed

to be taken modulo the vertex order. Subscripts are used to order quantities over an

edge or face, these are typically curve or patch control points. Many quantities will have

both superscripts and subscripts; for example, ci
k would denote the kth control point of

the ith curve about some vertex, bi

j
would denote the control point b
j belonging to the

ith face about a vertex.

5.3 Vertex Behavior

The first step in the construction is to define, up to second order, the behavior of S at

the points Φ(v), v ∈ V. Conceptually, this behavior is defined by constructing a set of

piecewise maps

F : X →M,

where X is a 2 dimensional affine space and M is the model space (an affine space

of arbitrary dimension). The goal of this section is to construct the maps F in 1-to-1

correspondence with vertices V. Each map F takes an open neighborhood about a point

p ∈ X onto an open neighborhood about a point Φ(v) of S such that F (p) = Φ(v).

Let v̇1, . . . , v̇k be a set of k (k = |v|) distinct directions in X such that each v̇i

lies between v̇i−1 and v̇i+1 (assume for now that v̇i−1 and v̇i+1 are independent). Each

direction v̇i is associated with edge (v,vi) ∈ E, where v1, . . . ,vk are the ordered set

of edge sharing neighbors of v. The directions v̇1, . . . , v̇k, together with the point p,

partition X into k “wedges” (see Figure 5.1). Let F i : X → M, i = 1, . . . , k, be a

collection of polynomial maps. The composite map F is defined by

F (q) = F i(q) if |v̇i × (q − p)| ≥ 0, |(q − p)× v̇i+1| ≥ 0,

where × denotes vector cross product and q ∈ X. The idea is that if a point q lies in

the wedge defined by p, v̇i, and v̇i+1, then F (q) takes on the value of F i(q). Note that if
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Figure 5.1: Vertex map F

v̇i × (q − p) = 0, then F (q) = F i(q) = F i+1(q), implying that F ∈ C0.

Suppose that F ∈ C1 in an open neighborhood about p. The following proposition

demonstrates that not only are the first derivatives of the F i at p constrained, but certain

second derivatives are constrained as well.

Proposition 5.3.1: If F ∈ C1 in an open neighborhood about p, then

D2
v̇i,v̇i F

i(p) = siD2
v̇i−1,v̇i F

i−1(p) + tiD2
v̇i+1,v̇i F

i(p),

where

v̇i = siv̇i−1 + tiv̇i+1.

Proof : F ∈ C1 about p implies that there exists a δ such that for all ε, 0 ≤ ε < δ,

Dẇ F i(p+ εv̇i) = Dẇ F i−1(p+ εv̇i), for all ẇ ∈ X . Therefore taking ẇ = v̇i

Dv̇i F i(p+ εv̇i) = siDv̇i−1 F i−1(p+ εv̇i) + tiDv̇i+1 F i(p+ εv̇i).
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Differentiating this equation with respect to ε and evaluating at ε = 0 gives the desired

result. ✷

Proposition 5.3.1 indicates an important relationship that must exist among polyno-

mial patches (or any C2 functions) that meet C1. A collection of patches that meet C1

at a point, and satisfy Proposition 5.3.1, are said to be twist compatible.

To summarize, in order to construct the composite map F to be twist compatible,

F i, i = 1, . . . , k must satisfy:

F i−1(p) = F i(p), (5.1)

Dv̇i F i(p) = siDv̇i−1 F i−1(p) + tiDv̇i+1 F i(p), (5.2)

D2
v̇i,v̇i F

i(p) = siD2
v̇i−1,v̇i F

i−1(p) + tiD2
v̇i+1,v̇i F

i(p), (5.3)

where

v̇i = siv̇i−1 + tiv̇i+1.

In many surface interpolation problems where a boundary curve network is given a

priori, Constraints (5.1) and (5.2) can be satisfied by any collection of patches that

interpolate the curve network (assuming the curves of the network share a common

position and tangent plane at the vertices). Satisfying Constraint (5.3) involves solving

a corresponding k × k (k = |v|) linear system of equations. Unfortunately, this system

is in general non-singular only when k is odd. Therefore, constructing boundary curves

a priori will not work in general, since polynomial patches cannot always be found that

satisfy Constraint (5.3).

One way to avoid this difficulty, is to construct the boundary curve network to

interpolate C2 data at the vertices [Peters 91]. This is sufficient, but not necessary. A

more general approach is taken in this thesis that involves first constructing the twist

vectors D2
v̇i,v̇i+1 F

i(p), then using Constraint (5.3) to determine D2
v̇i,v̇i F

i(p). Once these

derivatives have been determined, boundary curves and transversal vector fields are

constructed that interpolate the second order data of the vertex maps.
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5.3.1 Vertex Maps in Bézier Triangular Form

Instead of constructing the vertex maps F i, i = 1, ..., k in Taylor form (i.e. finding F i(p),

Dv̇i F i(p),D2
v̇i,v̇i+1 F

i(p), and D2
v̇i,v̇i F

i(p), i = 1, . . . , k), these maps are found in the

more geometrically intuitive Bernstein form by constructing Bézier control points. The

geometric relationships that exist between Bézier control points are generally much easier

to visualize and comprehend than are the relationships between the Taylor coefficients

which are derivatives of various orders at p.

Each F i will be represented as a degree 3 Bézier triangle (see Section 2.5) with

domain triangle p, p+ v̇i, p+ v̇i+1, and control points bi

i
, where | i| = 3, and i = 1, . . . , k

(see Figure 5.1). Since F ∈ C0, it must be that

bi−1
300 = bi

300, (5.4)

bi−1
201 = bi

210, (5.5)

bi−1
102 = bi

120, (5.6)

bi−1
003 = bi

030. (5.7)

The following identities, based on formulae for a Bézier triangular patch, provide the

relationships between the Taylor and Bézier forms of the maps F i:

F i(p) = bi
300, (5.8)

Dv̇i F i(p) = 3(bi
210 − bi

300), (5.9)

D2
v̇i,v̇i F

i(p) = 6(bi
120 − 2bi

210 + bi
300), (5.10)

D2
v̇i,v̇i+1 F

i(p) = 6(bi
111 − bi

210 − bi
201 + bi

300). (5.11)

Using these relationships, Constraints (5.1) through (5.3) may be rewritten

bi
300 = bi+1

300 , (5.12)

bi
210 = ribi

300 + sibi−1
210 + tibi+1

210 , (5.13)

bi
120 = ribi

210 + sibi−1
111 + tibi+1

111 , (5.14)
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where ri = 1 − si − ti. Note that the points bi
030,b

i
021,b

i
012, and bi

003, i = 1, . . . , k,

do not affect the second order behavior of F (p). Therefore, these points need not be

specified. This seems to indicate that constructing the F i as quadratic, rather than

cubic, triangular patches would be sufficient. The reason for choosing cubics has to

do with generalizing the constructions of B-spline surface. These constructions have a

much “cleaner” geometric interpretation if the vertex maps are assumed to be cubic.

This should become evident in the next section.

5.3.2 Constructing b111

The first step in computing the Bézier representation of the maps F i is to construct

the control points bi
111. In [Loop & DeRose 90], these points were referred to as key

points. This name reflected the importance of these points in influencing the shape of

the resulting surface, as well as their pivotal role in constructing the remaining Bézier

control points of the maps F i. A more fitting name in keeping with the CAGD literature

might have been twist points, due their close relationship to the twist vectors or mixed

partial derivatives.

A great deal of latitude exists in determining the positions of the bi
111. These points

could reasonably be left as undetermined shape parameters subject to user specification.

However, this approach would place an unnecessary burden on users, requiring them to

make a multitude of decisions to design even simple shapes. Instead, reasonable default

positions are given. These points can subsequently be manipulated if the resulting shape

is not acceptable.

As a default, the points bi
111 are constructed to lie on control mesh faces, f ∈ F. If

|f | = n, then n key points are constructed to lie on the surface of face f . This surface is

defined by considering the vertices of f as control points of a depth 1 S-patch. Let

qj = 1
3pj−1 + 1

3pj + 1
3pj+1,

be a point inside an n-sided domain polygon p1, . . . , pn. Let f = (v1, . . . ,vn), and let

01, . . . , 0n be the component functions of the S-patch embedding map (see Section 4.1).
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Figure 5.2: The construction of keypoints b1,111, . . . ,bn,111 on a single face

The key points associated with face f are constructed by

bj,111 = 01(qj)v1 + · · ·+ 0n(qj)vn, j = 1, . . . , n. (5.15)

This construction is illustrated in Figure 5.2. Each keypoint is uniquely associated with

a vertex-face pair. Note that relative to its defining face, the key point is indexed by a

subscript, relative to the vertex it orbits, it would be indexed by a superscript.

The positioning of key points is an important parameter that influences the shape

of the surface. Many possibilities exist and it should be understood that the proposed

values have no special significance other than being simple to describe. Empirical tests

have shown reasonable results. More insight into defining values for key points is needed.
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5.3.3 Constructing b300

The next step is to construct the points bi
300. These points lie on the surface S and

coincide with the points Φ(v). Constraint (5.4) indicates that bi−1
300 = bi

300, i = 1, . . . , k;

thus the superscript i is dropped from bi
300.

The point b300 is found as the point that breaks the line containing the control mesh

vertex v and the centroid of the key points that orbit v into a ratio of 1− α : α, where

α is scalar weighting factor to be determined shortly. This construction is expressed as

b300 = αv + 1−α
k b1

111 + · · ·+ 1−α
k bk

111, (5.16)

where b1
111, . . . ,b

k
111 are the keypoints orbiting v constructed in the previous section.

Construction (5.16) is illustrated in Figure 5.3.

The weighting factor α can be used as a shape parameter, i.e. as α→ 1, the surface

gets closer to v; as α→ 0, the surface gets closer to the centroid of the keypoints. While

this extra freedom is potentially useful, it will be ignored in the present scheme. Instead,

a value of α is determined that generalizes the constructions of bicubic tensor product,

and quartic triangular B-splines. This is achieved by setting

α = 1
2 cos

2π
k ,

where k = |v|. Empirically, this value of α gives good results and has been used in all

examples throughout this thesis.

5.3.4 Constructing b210

Next, the points bi
210 are constructed subject to Constraint (5.13). This constraint

requires that the points bi
210, i = 1, . . . , k, together with the point b300 be coplanar1. In

fact, the plane spanned by these points will be the tangent plane of S at Φ(v).

Although Constraints (5.12) through (5.14) allow a very general relationship to exist

among the Bézier control points of a vertex map, this generality is not fully exploited
1Coplanarity is necessary but not sufficient to satisfy Constraint (5.13)
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Figure 5.3: The construction of the point b300

here. Instead, it is assumed that the points b1
210, . . . ,b

k
210 form an affine k-gon with

centroid b300. This fact will lead to many subsequent simplifications, and is the basis of

the following construction:

bi
210 = αv +mi−1b1

111 +mi−2b2
111 + · · ·+mi−kbk

111, (5.17)

where

mj = 1
k [1 − α+ β(cos 2πj

k − tan π
k sin

2πj
k )], (5.18)

and where β is another scalar weighting factor. The weighting factor β can be used as a

shape parameter that controls the magnitude of tangent vectors about the point Φ(v).

However, for the remainder of this work it will be assumed that beta = 1. The parameter

β is included here merely to highlight its existence.

The following claim establishes formally that Construction (5.17) satisfies Constraint (5.13).

Claim 5.3.1: If bi
210, i = 1, ..., k, are found by Construction (5.17), then

bi
210 = rbi

300 + sbi−1
210 + tbi+1

210 ,
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where

r = 1− sec 2π
k , s = 1

2 sec
2π
k , t = 1

2 sec
2π
k .

Proof : Taking advantage of standard trigonometric identities, it follows that

rbi
300 + sbi−1

210 + tbi+1
210

= αv +
k∑

j=1

[r 1−α
k + smi−j−1 + tmi−j+1]b

j
111,

= αv +
k∑

j=1

1
k [1− α+ β sec 2π

k ((cos 2π(i−j−1)
k + cos 2π(i−j+1)

k

− tan π
k (sin

2π(i−j−1)
k + π

k sin 2π(i−j+1)
k ))]bj

111,

= αv +
k∑

j=1

1
k [1− α+ β(cos 2π(i−j)

k − tan π
k sin

2π(i−j)
k )]bj

111,

= αv +
k∑

j=1

mi−jb
j
111,

= bi
210.

✷

Thus, if v̇i = 1
2 sec

2π
k (v̇i−1 + v̇i+1), i = 1, . . . , k, then Constraint (5.17) is satisfied. It is

important to point out that when k = 4 (hence cos π
2 = 0), this expression is not well

defined. This exception manifests itself in the next section as a degree of freedom in

determining the boundary curves.

5.3.5 Constructing b120

Finally, the points bi
120 are constructed. These points must be constructed subject to

Constraint (5.14). Since the points bi
111 and bi

210, and scalars r, s, and t have been

determined, it follows immediately from Constraint (5.14) that

bi
120 = (1− sec 2π

k )bi
210 +

1
2 sec

2π
k bi−1

111 + 1
2 sec

2π
k bi

111. (5.19)

The purpose of constructing the vertex maps F i, i = 1, ..., k, is to partially define the

spline surface S (in open neighborhoods about the points Φ(v)). The data defined by
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these maps is next interpolated to form a network of boundary curves and transversal

vector fields.

5.4 Edge Behavior

The data contained in the vertex maps defined in the previous section are now interpo-

lated to form a network of boundary curves and transversal vector fields. These functions

are combined in a single map

G : X →M,

where X is a 2 dimensional affine space and M is an affine space of arbitrary dimension.

This edge map characterizes the first order behavior of Φ(e), e ∈ E. Strictly speaking,

the parameter of the function G is a point from the 2 dimensional affine space X ;

however, only values of G and its differential DG restricted to a 1 dimensional subset of

X are important here. Therefore, in the interest of preventing excessively cumbersome

notation, the bivariate function G will be abbreviated so that the parameter to G is a

real number. Thus G(u) should be interpreted as G(u) = G((1 − u)u0 + u u1), u ∈ [0, 1]

and u0, u1 ∈ X. With this notation G(u) is a curve, and Dv̇ G(u) is a transversal vector

field.

Let (v0,v1) be an edge belonging to some face f ∈ G, and let F0 and F1 be the

vertex maps corresponding to v0 and v1 respectively. Assume that v̇1
0 is the direction in

the domain of F0 that corresponds to edge (v0,v1); similarly, assume v̇1
1 is the direction

in the domain of F1 that corresponds to edge (v1,v0). Define directions u̇1
0, . . . , u̇

k0
0

and u̇1
1, . . . , u̇

k0
1 in the domain of G such that u̇i

0 = 1
2 sec

2π
k0
(u̇i−1

0 + u̇i+1
0 ) and u̇i

1 =
1
2 sec

2π
k1
(u̇i−1

1 + u̇i+1
1 ), where k0 = |v0| and k1 = |v1|. Geometrically, the end points of

the vectors u̇1
0, . . . , u̇

k0
0 and u̇1

1, . . . , u̇
k0
1 form the affine images of a regular k0-gon and

k1-gon respectively. Note that u̇1
0 = −u̇1

1. These definitions are illustrated in Figure 5.4.

The idea is to construct the edge map G so that at endpoint u0, G interpolates the

vertex map F0, and at u1, G interpolates F1. This means that in a neighborhood about
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Figure 5.4: Edge map G

u0, G is interpreted as

G = F0 ◦ U0,

where U0 is the unique affine map such that

U0 : v0 → u0, U0 : v̇i
0 → u̇i

0, i = 1, . . . , k0.

A similar interpretation exists about the other endpoint u1.

This idea is made explicit by making the following assignment among the discrete



58

quantities

G(0) = F0(v0), G(1) = F1(v1),

Du̇1
0
G(0) = Dv̇1

0
F 1

0 (v0), Du̇1
1
G(1) = Dv̇1

1
F 1

1 (v1),

Du̇2
0
G(0) = Dv̇2

0
F 1

0 (v0), D
u̇

k1
1

G(1) = D
v̇

k1
1

F 1
1 (v1),

D2
u̇1
0,u̇1

0
G(0) = D2

v̇1
0 ,v̇1

0
F 1

0 (v0), D2
u̇1
1,u̇1

1
G(1) = D2

v̇1
1 ,v̇1

1
F 1

1 (v1),

D2
u̇1
0,u̇2

0
G(0) = D2

v̇1
0 ,v̇2

0
F 1

0 (v0), D2
u̇1
1,u̇

k1
1

G(1) = D2
v̇1
1 ,v̇

k1
1

F 1
1 (v1).

It remains to determine the values of G(u) and DG(u), 0 < u < 1. This procedure is

quite straightforward: G(u) and Dv̇ G(u) are found as the minimum degree polynomials

that interpolate the data at the endpoints. The details appear in the next two sections.

5.4.1 Boundary Curves

In the general case, G(u) is found to be the unique quintic polynomial that interpolates

the vertex data at the endpoints of G. Let

G(u) =
5∑

i=0

ciB
5
i (u),

where c0, . . . , c5 are Bézier control points. Let b0,
i and b1,
i be the Bézier control points

of the vertex maps F 1
0 and F k1

1 respectively. The Bézier control points of G(u) can be

determined from the vertex map control points as follows

c0 = b0,300,

c1 = 2
5b0,300 + 3

5b0,210,

c2 = 1
10b0,300 + 6

10b0,210 + 3
10b0,120,

c3 = 1
10b1,300 + 6

10b1,201 + 3
10b1,102,

c4 = 2
5b1,300 + 3

5b1,201,

c5 = b1,300.

Recall that control points b120 are not constrained when k = 4. Therefore, the

number of constraints on a boundary curve is reduced by one for each order 4 vertex.
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This property can be used to reduce the polynomial degree of a boundary curve. If the

vertices at both endpoints are order 4, then the boundary curve need only be cubic. If

only one vertex is order 4, then the boundary curve need only be quartic. Otherwise in

the general case, the boundary curve must be quintic. This freedom can be dealt with by

computing the free control point b120 from other known control points. If |v0| = |v1| = 4

then

b0,120 = b1,201.

If |v0| = 4 and |v1| �= 4, then set

b0,120 = b1,201 + b1,102 − b0,201.

These formulae are derived uniquely since all degrees of freedom are removed by requiring

lower degree boundary curves. Once b0,120 is computed, the above formulae for c0, . . . , c5

will suffice for all boundary curves.

5.4.2 Boundary Differential

Once the boundary curves have been determined, the next step is to construct the

differential DG(u) along each boundary. For each fixed value of u, the differential of

G(u) is a linear map

DG(u) : X →M

on vectors of X. Let the vectors u̇ and v̇ be orthonormal (i.e. u̇ · v̇ = 0, u̇ · u̇ = 1

and v̇ · v̇ = 1). Since G(u) is known, it’s derivative Du̇ G(u) is also known. Therefore,

DG(u) will be completely determined once Dv̇ G(u) is known. The function Dv̇ G(u) is

equivalent to the transversal vector field and is found so that the data defined by F0 and

F1 at the endpoints is interpolated.

Since the points u0+ u̇i
0, i = 1, . . . , k0 form a regular k0-gon, the relationship between

u̇, v̇ and u̇i+1
0 can be expressed

u̇i+1
0 = cos 2πi

k0
u̇+ sin 2πi

k0
v̇.
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By linearity of differentiation it follows that

Du̇2
0
G(0) = cos 2π

k0
Du̇ G(0) + sin 2π

k0
Dv̇ G(0).

Therefore the differential of G in the direction of v̇, evaluated at zero can be expressed

Dv̇ G(0) = − cot 2π
k0

Du̇1
0
G(0) + csc 2π

k0
Du̇2

0
G(0). (5.20)

By a similar argument,

Dv̇ G(1) = − cot 2π
k1

Du̇1
1
G(1) + csc 2π

k1
D

u̇
k1
1

G(1). (5.21)

Equations (5.20) and (5.21) are differentiated with respect to u̇ to obtain

D2
u̇,v̇ G(0) = − cot 2π

k0
D2

u̇1
0,u̇1

0
G(0) + csc 2π

k0
D2

u̇1
0,u̇2

0
G(0), (5.22)

D2
u̇,v̇ G(1) = − cot 2π

k1
D2

u̇1
1,u̇1

1
G(1) + csc 2π

k1
D2

u̇1
1,u̇

k1
1

G(1). (5.23)

Since Dv̇ G(0),D2
u̇,v̇ G(0),D

2
u̇,v̇ G(1), and Dv̇ G(1) are known, Dv̇ G(u) can be found

as a cubic. Let

Dv̇ G(u) =
3∑

i=0

ċiB
3
i (u),

be the representation of Dv̇ G(u) in Bernstein form, where ċ are Bézier control vectors.

Combining Equations (5.20) through (5.23) and Equations (5.9) through (5.11) along

with the definition of G’s endpoint behavior results in the following formulae:

ċ0 = 3r0b0,300 + 3s0b0,210 + 3t0b0,201, (5.24)

ċ1 = r0(b0,300 + 2b0,210) + s0(b0,210 + 2b0,120) + t0(b0,201 + 2b0,111), (5.25)

ċ2 = r1(b1,300 + 2b1,201) + s1(b1,201 + 2b1,102) + t1(b1,210 + 2b1,111), (5.26)

ċ3 = 3r1b1,300 + 3s1b1,201 + 3t1b1,210, (5.27)

where

rj = cot 2π
kj
− csc 2π

kj
, sj = − cot 2π

kj
, tj = csc 2π

kj
, j = 0, 1.

Determining G(u) and Dv̇ G(u) for each pair of adjacent vertex maps completely

specifies a boundary curve network with associated transversal vector field. These func-

tions interpolate the data from the vertex maps. In the next section, these edge maps

are interpolated to form patches.
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5.5 Face Behavior

The behavior of the surface S corresponding to an entire face f ∈ F can now be deter-

mined. This is accomplished by finding a map

H : X →M

where X is a 2 dimensional affine space and M is an affine space of arbitrary dimension.

The idea is that the mapping H will take a domain polygon P ⊂ X onto Φ(f), f ∈ F.

The mapping H is found in S-patch form by interpolating a set of edge maps computed

in the previous section.

Let the face f = (v1, . . . ,vn), and let Gi be the edge map for (vi,vi+1) ∈ E, i =

1, . . . , n, as computed in Section 5.4. Let p1, . . . , pn ∈ X be the vertices of the regular

n-gon P , let ṫi be the vector pi+1 − pi, and let Ei denote the ith edge of P , that is,

Ei(t) = (1− t)pi + tipi+1, t ∈ [0, 1]. The S-patch H will interpolate the boundary curves

G1(t), . . . , Gn(t) by requiring that

H(Ei(t)) = Gi(t), t ∈ [0, 1], i = 1, . . . , n. (5.28)

Interpolating the tangent planes spanned by DGi(t) is considerably more difficult.

Simply equating the differentials DH(Ei(t)) and DGi(t) will not suffice, since in

general DGi−1(1) �= DGi(0). The solution is to expandDH(Ei(t)) as a pair of functions

Dṫi
H(Ei(t)) and D−ṫi−1

H(Ei(t)) that together characterize the differential of H along

the perimeter of P .

It follows from Equation (5.28) that in boundary directions

Dṫi
H(Ei(t)) = Du̇i Gi(t), t ∈ [0, 1]. (5.29)

In this equation, ṫi and u̇i are directions in the domains of H and Gi respectively along a

boundary corresponding to the parameter t. Defining DH(Ei(t)) in directions transver-

sal to a boundary is done by finding functions µi, νi over [0, 1] such that

D−ṫi−1
H(Ei(t)) = µi(t)Du̇i Gi(t) + νi(t)Dv̇i Gi(t). (5.30)
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The functions µi and νi are found as polynomials subject to constraints. Once these

functions have been determined, H(Ei(t)) and DH(Ei(t)) are used to determine the

S-patch boundary panels of H. Finally, the remaining behavior of H on the interior of

P is determined.

5.5.1 Determining the Functions µ and ν

The functions µi and νi are found by setting up a system of constraints involving the

values and derivatives of the edge maps Gi, i = 1, . . . , n,at the endpoints 0 and 1. Since

the edge maps Gi interpolate common vertex map data at endpoints, it follows that

Gi−1(1) = Gi(0), (5.31)

D−u̇i−1 Gi−1(1) = Dṡi Gi(0), (5.32)

Dṙi−1 Gi−1(1) = Du̇i Gi(0), (5.33)

D2
−u̇i−1,ṙi−1

Gi−1(1) = D2
u̇i,ṡi

Gi(0), (5.34)

where

ṡi = αiu̇i + βiv̇i, (5.35)

ṙi = −αi+1u̇i + βi+1v̇i. (5.36)

The scalars αi and βi are known from Section 5.4 to be

αi = cos 2π
ki
, βi = sin 2π

ki
,

where ki = |vi|, i = 1, . . . , n. In order maintain generality, all that is assumed about αi

and βi is that they exist so that Conditions (5.31) through (5.34) are satisfied.

The first set of constraints are found by setting ti = 0 in Equation (5.30), and using

Equation (5.29) and Condition (5.31) to show that

Dṡi Gi(0) = µi(0)Du̇i Gi(0) + νi(0)Dv̇i Gi(0).

Therefore, from Equation (5.35) it follows that

µi(0) = αi, νi(0) = βi, i = 1, . . . , n.
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The second set of constraints are found by observing that since P is a regular n-gon,

it can be shown that

−ṫi−1 = −2 cos 2π
n ṫi + ṫi+1.

Therefore, by linearity of differentiation

D−ṫi−1
H = −2 cos 2π

n Dṫi
H +Dṫi+1

H.

Substituting this into Equation (5.30) and replacing i by i− 1 yields

Dṫi
H(Ei−1(t)) = (µi−1(t) + 2 cos 2π

n )Du̇i−1 Gi−1(t) + νi−1(t)Dv̇i−1 Gi−1(t). (5.37)

Setting t = 1, and using

Dṫi
H(pi) = Du̇i Gi(0) = Dṙi−1 Gi−1(1),

it follows that

Dṙi−1 Gi−1(1) = (µi−1(1) + 2 cos 2π
n )Du̇i−1 Gi−1(1) + νi−1(1)Dv̇i−1 Gi−1(1).

Hence using Equation (5.36)

µi(1) = −αi+1 − 2 cos 2π
n , νi(1) = βi+1, 1 = 1, . . . , n.

Thus far, the values of µi and νi, i = 1, . . . , n, have been constrained at the endpoints

0 and 1. The final set of constraints involves the derivatives µ′
i and ν ′

i at the endpoints.

These constraints are found by requiring that µi, νi, i = 1, . . . , n must be constructed so

that the resulting S-patch is twist compatible, i.e.

D2
−ṫi−1,ṫi

H(pi) = D2
ṫi,−ṫi−1

H(pi). (5.38)

The left hand side of Equation (5.38) is expanded by differentiating Equation (5.30) with

respect to ṫi and evaluating at t = 0, resulting in

D2
−ṫi−1,ṫi

H(Ei(0)) = µ′
i(0)Du̇i Gi(0) − µi(0)D2

u̇i,u̇i
Gi(0)

+ ν′
i(0)Dv̇i Gi(0)− νi(0)D2

v̇i,u̇i
Gi(0). (5.39)
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The right hand side of Equation (5.38) is expanded by differentiating Equation (5.37)

with respect to −ṫi−1 and evaluating at t = 1, resulting in

D2
ṫi,−ṫi−1

H(Ei−1(1)) = −µ′
i−1(1)Du̇i−1 Gi−1(1)

+ (µi−1(1) + 2 cos 2π
n )D2

u̇i−1,u̇i−1
Gi−1(1)

− ν ′
i−1(1)Dv̇i−1 Gi−1(1)

+ νi−1(1)D2
v̇i−1,u̇i−1

Gi−1(1). (5.40)

From Equations (5.35) and (5.36), Conditions (5.31), (5.32), and (5.33), and by

linearity of differentiation, the following identities hold:

Dv̇i Gi(0) =
1
βi

Dṡi Gi(0)−
αi

βi
Du̇i Gi(0),

D2
v̇i,u̇i

Gi(0) =
1
βi

D2
ṡi,u̇i

Gi(0) −
αi

βi
D2

u̇i,u̇i
Gi(0),

Dv̇i−1 Gi−1(1) =
1
βi

Dṙi−1 Gi−1(1) +
αi

βi
Du̇i−1 Gi−1(1),

=
1
βi

Du̇i Gi(0)−
αi

βi
Dṡi Gi(0),

D2
v̇i−1,u̇i−1

Gi−1(1) =
1
βi

D2
ṙi−1,u̇i−1

Gi−1(1) +
αi

βi
D2

u̇i−1,u̇i−1
Gi−1(1),

= − 1
βi

D2
u̇i,ṡi

Gi(0) +
αi

βi
D2

ṡi,ṡi
Gi(0).

Substituting these indentities into Equations (5.39) and (5.40) shows

µ′
i(0)Du̇i Gi(0)− µi(0)D2

u̇i,u̇i
Gi(0)+

ν ′
i(0)(

1
βi

Dṡi Gi(0)−
αi

βi
Du̇i Gi(0))−

νi(0)(
1
βi

D2
ṡi,u̇i

Gi(0) −
αi

βi
D2

u̇i,u̇i
Gi(0))

=

µ′
i−1(1)Dṡi Gi(0) + (µi−1(1) + 2 cos 2π

n )D2
ṡi,ṡi

Gi(0)−
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ν ′
i−1(1)(

1
βi

Du̇i Gi(0)−
αi

βi
Dṡi Gi(0))+

νi−1(1)(−
1
βi

D2
u̇i,ṡi

Gi(0) +
αi

βi
D2

ṡi,ṡi
Gi(0)).

This expression is rearranged to get

[µ′
i(0)−

αi

βi
ν′

i(0) +
1
βi
ν′

i−1(1)]Du̇i Gi(0)+

[
1
βi
ν ′

i(0) − µ′
i−1(1) −

αi

βi
ν′

i−1(1)]Dṡi Gi(0)+

[−µi(0) +
αi

βi
νi(0)]D2

u̇i,u̇i
Gi(0)+

[− 1
βi
νi(0) +

1
βi
νi−1(1)]D2

ṡi,u̇i
Gi(0)+

[−µi−1(1)− 2 cos 2π
n −

αi

βi
νi−1(1)]D2

ṡi,ṡi
Gi(0) = 0.

This equality is satisfied, in general, if and only if

βiµ
′
i(0) = αiν

′
i(0)− ν ′

i−1(1), (5.41)

ν ′
i(0) = βiµ

′
i−1(1) + αiν

′
i−1(1). (5.42)

To summarize, the constraints that µi and νi, i = 1, . . . , n, must satisfy are

µi(0) = αi, νi(0) = βi,

βiµ
′
i(0) = αiν

′
i(0)− ν′

i−1(1), ν ′
i(0) = βiµ

′
i−1(1) + αiν

′
i−1(1),

µi(1) = −αi+1 − 2 cos 2π
n , νi(1) = βi+1.

The next step is to solve for the unknowns µ′
i(0), ν′

i(0), µ′
i(1), and ν′

i(1), i = 1, . . . , n.

This is done by setting up a linear system in the polynomial coefficients of µi and νi.

Quadratic Solution

The constraints can be satisfied if µi and νi are assumed to be quadratic. Unfortunately,

the quadratic solution has rather peculiar asymmetric behavior that renders it unusable

in general. The derivation of the quadratic solution is included here for completeness.

This section can safely be skipped without any loss of continuity.
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Let µi and νi be quadratic polynomials with Bernstein coefficients µi,0, µi,1, µi,2 and

νi,0, νi,1, νi,2 respectively. Using a basic property of Bernstein polynomials it follows that

µ′
i(0) = 2(µi,1 − µi,0), ν′

i(0) = 2(νi,1 − νi,0),

µ′
i(1) = 2(µi,2 − µi,1), ν′

i(1) = 2(νi,2 − νi,1).

Also note that

µi,0 = αi, νi,0 = βi,

µi,2 = −αi+1 − 2 cos 2π
n , νi,2 = βi+1.

Using these facts, Constraints (5.41) and (5.42) are rewritten

βiµi,1 = νi−1,1 + αiνi,1 − βi,

βiµi−1,1 = βi(1− 2 cos 2π
n )− αiνi−1,1 − νi,1,

where i = 1, . . . , n.

These constraints form a system of 2n equations in 2n unknowns. This system may

be reduced to n× n by dividing the right hand side by βi, substituting i for i− 1 in the

second constraint and equating to get

βi+1νi−1,1 + (αiβi+1 + βiαi+1)νi,1 + βiνi+1,1 = βiβi+1(2− 2 cos 2π
n ).

Once this system has been solved for ν1,1, . . . , νn,1, µ1,1, . . . , µn,1 may be found by sub-

stitution into either constraint.

Cubic Solution

Suppose µi and νi are cubic polynomials with Bernstein ordinates µi,0, µi,1, µi,2, µi,3 and

νi,0, νi,1, νi,2, νi,3 respectively. It follows that

µ′
i(0) = 3(µi,1 − µi,0), ν′

i(0) = 3(νi,1 − νi,0),

µ′
i(1) = 3(µi,3 − µi,2), ν′

i(1) = 3(νi,3 − νi,2).
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Also it is known that

µi,0 = αi, νi,0 = βi,

µi,3 = −αi+1 − 2 cos 2π
n , νi,3 = βi+1.

Using these facts, Constraints (5.41) and (5.42) become

βiµi,1 = νi−1,2 + αiνi,1 − βi, (5.43)

βiµi−1,2 = βi(1− 2 cos 2π
n )− αiνi−1,2 − νi,1. (5.44)

These constraints form a system of 2n equations in 4n unknowns. This leaves 2n

degrees of freedom, so many solutions are possible. The system may be simplified to

n equations in 3n unknowns by isolating νi−1,2 in both equations, then equating. This

gives

(αiαi − 1)νi,1 = αiβiµi,1 + βiµi−1,2 + βi(αi − 1 + 2 cos 2π
n ) (5.45)

A system of n× n equations is obtained if µi, i = 1, . . . , n, are assumed to be linear.

Under this assumption, it can be deduced from degree elevation that

µi,1 =
2αi − αi+1 − 2 cos 2π

n

3
,

µi,2 =
αi − 2αi+1 − 4 cos 2π

n

3
.

Substituting these values into Equation (5.45) shows that νi,1 may be found directly.

Values of νi,2 may be found by substituting into either constraint (5.43) or (5.44).

Using the known values αi = cos 2π
ki

and βi = sin 2π
ki
, the Bernstein coefficients of µi

and νi can be written

µi,0 = cos 2π
ki
, (5.46)

µi,1 =
2cos 2π

ki
− cos 2π

ki+1
− 2 cos 2π

n

3
, (5.47)

µi,2 =
cos 2π

ki
− 2 cos 2π

ki+1
− 4 cos 2π

n

3
, (5.48)

µi,3 = − cos 2π
ki+1
− 2 cos 2π

n , (5.49)
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and

νi,0 = sin 2π
ki
, (5.50)

νi,1 =
3− cos 2π

ki−1
− 2 cos 2π

n − cos 2π
ki
(1 + 2 cos 2π

ki
− cos 2π

ki+1
− 2 cos 2π

n )

3 sin 2π
ki

, (5.51)

νi,2 =
3− cos 2π

ki+2
− 2 cos 2π

n − cos 2π
ki+1

(1 − cos 2π
ki

+ 2 cos 2π
ki+1
− 2 cos 2π

n )

3 sin 2π
ki+1

,(5.52)

νi,3 = sin 2π
ki+1

. (5.53)

Note that for an edge (vi,vi+1) ∈ E only the orders ki−1, ki, ki+1, and ki+2 of the vertices

vi−1, vi,vi+1, and vi+2 respectively are involved in computing µi and νi. Since µi given

above is actually linear, it may be written equivalently as

µi(u) = cos 2π
ki
(1− u) + [− cos 2π

ki+1
− 2 cos 2π

n ]u.

Once the functions µi and νi have been determined, the differential DH(Ei(t)), i =

1, . . . , n is determined for the boundary of the domain polygon P by Equation (5.30).

In the next section, this information is used to compute the S-patch control points that

characterize its boundary differential.

5.5.2 Boundary Panels

The S-patch control points that characterize the boundary differential are collectively

referred to as boundary panels. These are the S-patch panels along the boundary of H.

In this section, the control points of the S-patch boundary panels are computed from

H(Ei(t)) and DH(Ei(t)), i = 1, . . . , n.

In order to compute the S-patch control points of H, some discussion of the depth of

H is in order. Recall that the depth of an S-patch is equal to the degree of its defining

Bézier simplex (see Section 4.1). From Equation (5.30):

D−ṫi−1
H(Ei(t)) = µi(t)Du̇i Gi(t) + νi(t)Dv̇i Gi(t),
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it is clear that degree(D−ṫi−1
H(Ei(t))) is equal to the greater of degree(µi)+degree(Du̇i Gi)

and degree(νi) + degree(Dv̇ Gi). Therefore it follows that

depth(H) ≥ max(degree(µi) + degree(Gi),degree(νi) + degree(Dv̇ Gi) + 1),

In the general case, it has been established in the previous sections that

degree(Gi) = 5, degree(Dv̇ Gi) = 3, degree(µi) = 1, degree(νi) = 3.

Therefore

depth(H) ≥ 7.

Many special cases exist for which depth(H) < 7, these are discussed in the Chapter 6.

Since the boundary behavior of H is strictly polynomial (as opposed to rational),

the boundary panels are all planar affine n-gons. Therefore, once three points of each

boundary panel are known, the remaining points can be uniquely determined. The

procedure for finding the boundary panels is as follows: first, the control points of the

boundary curves of H are found, yielding at least two points for each boundary panel;

second, D−ṫi−1
H(Ei(t)) is used to compute a third point for each panel; finally, the

remaining n− 3 points for each boundary panel are found by taking affine combinations

of the first three points found.

Since the boundary of H is found as

H(Ei(t)) = Gi(t), i = 1, . . . , n,

the boundary control points of H are computed by degree raising Gi(t). The degree 5

curve Gi(t) is degree raised to obtain the control points of the degree 7 boundary curve

H(Ei(t)) by the following formulae

h7
ei
= ci,0,

h6
ei+
ei+1 = 5
7ci,1 + 2

7ci,0,

h5
ei+2
ei+1 = 10
21ci,2 + 10

21ci,1 + 1
21ci,0,
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h4
ei+3
ei+1 = 10
35ci,3 + 20

35ci,2 + 5
35ci,1,

h3
ei+4
ei+1 = 5
35ci,4 + 20

35ci,3 + 10
35ci,2,

h2
ei+5
ei+1 = 1
21ci,5 + 10

21ci,4 + 10
21ci,3,

h
ei+6
ei+1 = 2
7ci,5 + 5

7ci,4,

where ci,0, . . . , ci,5 are the Bézier control points of Gi from Section 5.4. This step will

generate at least two points for each boundary panel.

When DH(Ei(t)) has polynomial behavior, a third point on each panel can be found

by writing D−ṫi−1
H(Ei(t)) in terms of its S-patch control points

D−ṫi−1
H(Ei(t)) = 7

6∑
k=0

(h[
ei−1+(6−k)
ei+k
ei+1] − h[(7−k)
ei+k
ei+1])B
6
k(t).

This is rearranged to get

6∑
k=0

h[
ei−1+(6−k)
ei+k
ei+1]B
6
k(t) =

6∑
k=0

h[(7−k)
ei+k
ei+1])B
6
k(t) +

1
7D−ṫi−1

H(Ei(t)). (5.54)

Substituting the definitions of D−ṫi−1
H(Ei(t)), Gi(t),Dv̇ Gi(t), µi(t), and νi(t) into Equa-

tion (5.54) results in

h
ei−1+5
ei+
ei+1 = 12−5µi,0−5µi,3
42 ci,0 +

30−15µi,0+5µi,3
42 ci,1 +

10µi,0
21 ci,2

+ νi,1
14 ċi,0 +

νi,0
14 ċi,1,

h
ei−1+4
ei+2
ei+1 = 1−µi,3
21 ci,0 +

10−4µi,0−3µi,3
21 ci,1 +

10−2µi,0+4µi,3
21 ci,2 +

2µi,0
7 ci,3

+ νi,2
35 ċi,0 +

3νi,1
35 ċi,1 +

νi,0
35 ċi,2,

h
ei−1+3
ei+3
ei+1 = 1−µi,3
7 ci,1 +

8−3µi,0−µi,3
14 ci,2 +

4+µi,0+3µi,3
14 ci,3 +

µi,0
7 ci,4

+ νi,3
140 ċi,0 +

9νi,2
140 ċi,1 +

9νi,1
140 ċi,2 +

νi,0
140 ċi,3,

h
ei−1+2
ei+4
ei+1 = 2−2µi,3
7 ci,2 +

12−4µi,0+2µi,3
21 ci,3 +

3+3µi,0+4µi,3
21 ci,4 +

µi,0
21 ci,5
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+ νi,3
35 ċi,1 +

3νi,2
35 ċi,2 +

νi,1
35 ċi,3,

h
ei−1+
ei+5
ei+1 = 10−10µi,3
21 ci,3 +

20−5µi,0+15µi,3
42 ci,4 +

2+5µi,0+5µi,3
42 ci,5

+ νi,3
14 ċi,2 +

νi,2
14 ċi,3,

where ċi,0, . . . , ċi,3 are the Bézier control vectors of Dv̇i Gi(t) found by Equations (5.24)

through (5.27).

The boundary panels are completed by taking appropriate affine combination of the

three points found thus far. This is done with the following CompletePanels algorithm

(with d = 7 below):

for i = 2 to n− 2

r ← 1− cos 2πi
n − tan π

n sin 2πi
n

2(1− cos 2π
n )

s←
cos 2πi

n − cos 2π
n

1− cos 2π
n

t←
1− cos 2πi

n + tan π
n sin 2πi

n

2(1 − cos 2π
n )

for j = 1 to n

for k = 1 to d− 1

 i← (d− k) ej + (k − 1) ej+1

h
i+
ei+j
← rh
i+
ej−1

+ sh
i+
ej
+ th
i+
ej+1

end for

end for

end for

The scalars r, s, and t are the barycentric coordinates with respect to triangle pnp1p2 of

the kth vertex of an affine n-gon p1, . . . , pn. An S-patch with completed boundary panels
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Figure 5.5: The boundary panels of S-patch H

is shown in Figure 5.5.

5.5.3 Interior Points

In this section, a procedure for determining the interior control points of an S-patch H

is given. This particular procedure has no special significance, other than it is relatively

simple, the resulting surfaces are aesthetically well behaved, and it generalizes regular B-

splines. This last property is given more attention in Chapter 6. The basic procedure is

as follows: a depth 4 S-patch is constructed that is approximately equivalent to the depth

7 S-patch whose interior control points are unknown. This auxiliary patch is then depth

elevated to depth 7 using the Bézier simplex degree elevation algorithm of Section 2.2.4.

In what follows, let P = {p1, . . . , pn} be a regular n-gon in a 2 dimensional affine
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space; let f = {v1, . . . ,vn} be the control mesh face associated with the S-patch H

whose interior points are unknown; and let A be a depth 4 S-patch with control points

a
i. The idea is to enscribe the control net of A on the face f , where f is the depth 1

S-patch with vertices v1, . . . ,vn. The boundary panels of A are then modified, and A is

subsequently depth elevated.

Step 1. Compute the initial control points of A as follows:

a
i = 01(q
i)v1 + · · ·+ 0n(q
i)vn,

where  i = (i1, . . . , in), | i| = 4, and where

q
i =
i1p1 + · · ·+ inpn

n
.

The functions 01, . . . 0n come from the S-patch embedding given in Section 4.1.

Step 2. Three control points from each boundary panel of A are modified as follows:

a4
ei
= c0,i,

a3
ei+
ei+1 = 5
4c1,i − 1

4c0,i,

a2
ei+2
ei+1 = 1
12c0,i − 5

12c1,i + 5
6c2,i + 5

6c3,i − 5
12c4,i + 1

12c5,i,

a
ei+3
ei+1 = 5
4c4,i − 1

4c5,i,

a
ei−1+2
ei+
ei+1 = 10µi,0−5µi,3−3
12 ci,0 +

15−30µi,0+5µi,3
12 ci,1 +

10µi,0
6 ci,2

+ νi,1−νi,0
4 ċi,0 +

νi,0
4 ċi,1,

a
ei−1+
ei+2
ei+1 = 10−10µi,3
6 ci,3 +

30µi,3−5µi,0−10
12 ci,4 +

2+5µi,0−10µi,3
12 ci,5

+ νi,3
4 ċi,2 +

νi,2−νi,3
4 ċi,3,

where i = 1, . . . , n. These modifcations are intended to endow A with a boundary

behavior approximately the same as the depth 7 S-patch H constructed in the previous

sections.

Step 3. Run the CompletePanels procedure given in Section 5.5.3 on the control

net of A. After this procedure is run, the positions, tangents, and mixed partials (in
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boundary curve directions) of A at patch corners will be identical to those of the S-patch

H. The S-patches A and H will differ slightly in position and tangent plane along their

boundaries. However unlike H, the control net of S-patch A is completely defined.

Step 4. Elevate the control net of A to depth 7 and equate the unknown interior

control points of H with those of A. The S-patch depth elevation procedure is equivalent

to the Bézier simplex degree raising formula given in Section 2.2.4.

The procedure for determining interior control points outlined in Steps 1 through

4 has a few unnecessary operations that an optimized implementation might want to

avoid. In Step 1, there is no need to compute points belonging to boundary panels since,

in Steps 2 and 3, the boundary panels of A are re-computed. Also, in Step 3 some

control points are found redundantly by the CompletePanels procedure. These details

are ignored here in the interest of simplicity.

The construction of H is completed once the interior points have been determined.

Computing the boundary panels of H, then determining the interior points is a logical

progression when presenting this construction. However, it may be more space efficient

first to determine the interior points, then to compute the boundary panels. The inte-

rior control point construction just presented does not depend on the boundary panel

construction. So these two stages could be run in either order (or in parallel).

5.6 Summary

In this chapter, the construction for the generalized B-spline scheme based on S-patches

was presented. This construction proceeded in three phases. In the first phase, a col-

lection of Bézier control points was constructed corresponding to control mesh vertices.

These Bézier control points formed a “vertex map” that characterized up to second or-

der, the behavior of the spline surfaces at points shared by several patches. In the second

phase, “edge maps” were constructed whose endpoint behavior matched a pair of vertex

maps from the previous step. The positions and derivatives of these endpoint vertex

maps were blended at all other points of an edge map. Finally, in the third phase, an
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S-patch was constructed to interpolate the boundary curves and transversal vector fields

prescribed by the surrounding edge maps.

Several examples of control meshes and the resulting S-patch surfaces are shown in

Figures 5.6 through 5.10. In these figures each S-patch has been colored to distinguish

it from neighboring patches.

In the next chapter, it is demonstrated that the S-patches determined by the general-

ized B-spline scheme may, in certain special cases, be lower than depth 7. These results

are key to showing that this general construction generalizes regular B-splines.
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Figure 5.6: The classic ”suitcase corner” problem
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Figure 5.7: A 5-sided patch in an otherwise rectangular control mesh
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Figure 5.8: A closed surface with a handle
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Figure 5.9: A closed branching surface
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Figure 5.10: A surface with an irregular control net



Chapter 6

Specializations

The primary goal of this work has been to create a general purpose geometric construction

for generating smooth spline surfaces. The resulting surfaces mimic the behavior of B-

spline surfaces, yet are not limited by the constraints imposed on the form of the control

mesh. Simply behaving like a regular B-spline has not been the only goal. In cases

where the control mesh satisfies the constraints of a B-spline mesh, that is the mesh has

a regular structure, the construction should exactly reproduce a B-spline surface. This

goal is important for several reasons:

1. The algorithm is an extension of a widely used geometric modeling paradigm; its

incorporation into geometric modeling tools might achieve broader acceptance than

an entirely new method.

2. The algorithm can be used to deal with the irregularities of a nearly regular B-spline

control mesh.

3. The patches generated over regular regions of a control mesh will be lower degree

than those found by the general algorithm.

These reasons stem from both practical and theoretical concerns. In many design appli-

cations, control meshes may contain large regular regions, punctuated by irregularities

to handle corners, branches, or to close off a solid object. By generalizing B-splines,
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patches constructed over the regular regions of a control mesh will be lower degree than

in the general case. This will result in a significant saving of time and space when dealing

with many common control mesh topologies.

It is no coincidence that the geometric constructions presented here generate B-spline

surfaces over regular control meshes. The ideas underlying many of the constructions

given in Chapter 5 came from studying and generalizing the B-spline constructions of

Chapter 3. As an interesting side effect, the generalized B-spline scheme can often

generate lower depth S-patches even over semi-regular control meshes. In this chapter,

it will be demonstrated that for certain control mesh restrictions, either on the order of

the faces or the order of the vertices or both, reductions in the depth of the S-patches

generated by the generalized scheme often occur. In the cases of regular rectangular or

triangular control meshes, not only does the depth of the patches drop, it will be shown

that the scheme is capable of generating tensor product bicubic and quartic triangular

B-surfaces.

6.1 Degree Reductions

The degree reductions are based on the following formula given in Chapter 5

7︷ ︸︸ ︷
depth(H) ≥ max(

1︷ ︸︸ ︷
degree(µi)+

5︷ ︸︸ ︷
degree(Gi),

3︷ ︸︸ ︷
degree(νi)+

3︷ ︸︸ ︷
degree(Dv̇ Gi)+1),

where the polynomial degree (or S-patch depth) of the various functions are written above

them. If the value of one or more of degree(µi), degree(Gi),degree(νi), or degree(Dv̇ Gi)

should happen to be less than the value shown, then the depth(H) may actual be less

than the general case value of 7. Such degree reductions take place as a result of local

restrictions on the form of the control mesh. These restrictions and the resulting degree

reductions are outlined in the following propositions.

The first proposition states that if the vertex orders of four consecutive vertices of a

single face are equal, then the degree of the function νi associated with an edge of the

face is in fact lower than the general value of 3.
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Proposition 6.1.1: Let f = (v1, . . . ,vn) be a face in F. If |vi−1| = |vi| = |vi+1| =

|vi+2| = k, then νi is quadratic.

Proof : Replacing ki−1, ki, ki+1, and ki+2 by k in Equations (5.50) through (5.53) and

simplifying, one gets

νi,0 = sin 2π
k ,

νi,1 = 1
3 sin

2π
k + 2

3 tan
π
k (1− cos 2π

n ),

νi,2 = 1
3 sin

2π
k + 2

3 tan
π
k (1− cos 2π

n ),

νi,3 = sin 2π
k .

Given these values, it follows that

νi(u) = νi,0B
3
0(u) + νi,1B

3
1(u) + νi,2B

3
2(u) + νi,3B

3
3(u),

= νi,0(1− u)3 + 3νi,1(1 − u)2u+ 3νi,2(1− u)u2 + νi,3u
3,

= sin 2π
k [(1− u)3 + (1− u)2u+ (1− u)u2 + u3]

+2 tan π
k (1− cos 2π

n )[(1 − u)2u+ (1− u)u2],

= sin 2π
k [(1− u)2 + u2] + 2 tan π

k (1− cos 2π
n )[(1− u)u],

= sin 2π
k B2

0(u) + tan π
k (1− cos 2π

n )B2
1(u) + sin 2π

k B2
2(u).

✷

The control mesh restrictions of Proposition 6.1.1 indicate that whenever a face is

made up of vertices of equal order, then the depth of the S-patch corresponding to the

face will be less than 7. Precisely this type of restriction is present in the control meshes

used by [Loop & DeRose 90]. In that scheme, faces were allowed to have arbitrary order

while the order of vertices was required to be 4. Given these restriction, the resulting

S-patches are at most depth 6.

Further reductions in the polynomial degree of the functions νi occur if, in addition

to restricting local vertex orders, the order of a face is restricted. The second proposition

demonstrates this fact.
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Proposition 6.1.2: If |vi−1| = |vi| = |vi+1| = |vi+2| = k and cos 2π
k = − cos 2π

n , then

νi is constant.

Proof : By Proposition 6.1.1 it follows that

νi(u) = sin 2π
k B2

0(u) + tan π
k (1− cos 2π

n )B2
1(u) + sin 2π

k B2
2(u),

= sin 2π
k B2

0(u) +
sin 2π

k

1 + cos 2π
k

(1 + cos 2π
k )B2

1(u) + sin 2π
k B2

2(u),

= sin 2π
k B2

0(u) + sin 2π
k B2

1(u) + sin 2π
k B2

2(u),

= sin 2π
k .

✷

The control mesh restrictions of Proposition 6.1.2 are consistent with regular con-

trol meshes. A similar result holds for the functions µi as demonstrated in the third

proposition.

Proposition 6.1.3: If |vi| = |vi+1| = k and cos 2π
k = − cos 2π

n , then µi is constant.

Proof :

µi(u) = cos 2π
k B1

0(u) + [− cos 2π
k − 2 cos 2π

n ]B1
1(u),

= cos 2π
k B1

0(u) + [− cos 2π
k + 2 cos 2π

k ]B1
1(u),

= cos 2π
k B1

0(u) + cos 2π
k B1

1(u),

= cos 2π
k .

✷

Propositions 6.1.2 and 6.1.3 indicate that for regular control meshes the functions

µi and νi are actually constants. These results are used in the next section to help

demonstrate the close relationship between the generalized B-spline scheme of this thesis

and traditional regular B-spline schemes.

6.2 Generalizing B-spline Surfaces

In this section it is demonstrated that the general construction can be used to generate

regular B-spline surfaces - in particular, bicubic tensor product B-splines and quartic
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triangular B-splines. In both cases, it is shown that the boundary curves and transversal

vector fields found by the constructions for these regular B-spline schemes are equivalent

to those found by the general construction of this thesis for specific keypoints and shape

parameters, and an appropriately restricted control mesh. It it also shown that the

method for constructing the unknown interior points of S-patches is consistent with the

regular B-spline constructions.

6.2.1 Bicubic B-spline Surfaces

It is now demonstrated that the general spline construction is equivalent to bicubic

tensor product B-splines when, for all faces f ∈ F and vertices v ∈ V, the control mesh

is restricted so that |f | = |v| = 4. The equivalence of bicubic B-splines and the general

construction also depends on setting the keypoints and shape parameter properly.

Let G be an edge map (as in Section 5.4) corresponding to a canonical edge in the

restricted control mesh. Recall that G(u) and Dv̇ G(u), u ∈ [0, 1] are a boundary curve

and transversal vector field respectively. Let Q(u) and Dv̇ Q(u) represent the boundary

curve and transversal vector field of a patch from a bicubic tensor product B-spline

surface corresponding to same canonical edge as G. Let H be a 4-sided S-patch found

by the construction of Chapter 5 such that some edge of H(E(u)) is constructed from

the edge map G (here E(u) maps [0, 1] to an edge of H’s domain polygon). Recall that

this means

H(E(u)) = G(u), (6.1)

and

Dv̇ H(E(u)) = µ(u)Du̇ G(u) + ν(u)Dv̇ G(E(u)), (6.2)

where µ and ν are functions for this edge found in Section 5.5.1. Due to the mesh

restrictions present in this case, Propositions 6.1.2 and 6.1.3 show that

µ(u) = 0, and ν(u) = 1.
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Therefore the relationship between Dv̇ H(E(u)) and DG(u) of Equation (6.2) simplifies

to

Dv̇ H(E(u)) = Dv̇ G(u).

This indicates that H(E(u)) = Q(u) and Dv̇ H(E(u)) = Dv̇ Q(u) if

G(u) = Q(u), (6.3)

and

Dv̇ G(u) = Dv̇ Q(u). (6.4)

That is, the boundary curve and transversal vector field of an S-patch found by the

general construction will be equivalent to those of a tensor product patch of a bicubic

B-spline scheme if Equalities (6.3) and (6.4) hold. Once these equalities are established

the patches found by the two schemes can only differ away from their boundaries. It will

then be argued that this cannot be the case since the interior control point construction

of Section 5.5.3 preserves bicubic behavior in this case.

Establishing Equalities (6.3) and (6.4) is relatively straightforward; the Bézier control

points of G(u) and Q(u) and the control vectors of Dv̇ G(u) and Dv̇ Q(u) are determined

in terms of control mesh vertices. Equality of corresponding control points (vectors)

is equivalent to equality of curves (similarly transversal vector fields). Let the faces

surrounding a single control mesh vertex be labeled as in Figure 6.1. The formulae for

the Bézier control points of a bicubic B-spline patch from Section 3.2.1 (Equations (3.4)

through (3.6)) are rewritten in terms of this labeling as

b00 = 4
9v + 1

9 [v1 + v2 + v3 + v4] + 1
36 [w1 +w2 + w3 +w4], (6.5)

b10 = 4
9v + 2

9v1 + 1
9 [v2 + v4] + 1

18 [w1 +w4], (6.6)

b11 = 4
9v + 2

9 [v1 + v2] + 1
9w1. (6.7)

The points b00,b10, and b11 are three of the Bézier control points of the tensor product

bicubic patch corresponding to face {v,v1,w1,v2}. The remaining control points are

found similarly by symmetric formulae.
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Figure 6.1: The labeling of a tensor product B-spline control mesh

A boundary curve of this patch is written as

Q(u) = b00B
3
0(u) + b10B

3
1(u) + b20B

3
2(u) + b30B

3
3(u).

A transversal vector field is written as

Dv̇ Q(u) = q̇0B
3
0(u) + q̇1B

3
1(u) + q̇2B

3
2(u) + q̇3B

3
3(u),

where

q̇0 = 3(b01 − b00),

q̇1 = 3(b11 − b10),

q̇2 = 3(b21 − b20),

q̇3 = 3(b31 − b30).
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By substituting in Equations (6.5) through (6.7) and simplifying, these vectors are rewrit-

ten

q̇0 = 1
3 [v

2 − v4] + 1
12 [w1 +w2 −w3 −w4], (6.8)

q̇1 = 1
3 [v

2 − v4] + 1
6 [w1 −w4]. (6.9)

Similar formulae for q̇2 and q̇3 are found symmetrically.

Now consider the general construction. Recall that in the case of an edge (v,v1)

where |v| = |v1| = 4 the boundary curve G(u) had 2 vector degrees of freedom not

present in general. These degrees of freedom were set so that the boundary curve G(u)

would be cubic, rather than quintic. In this case, such a boundary curve can be written

G(u) = b300B
3
0(u) + b210B

3
1(u) + b1

201B
3
2(u) + b1

300B
3
3(u),

where b300 and b210 are Bézier control points from the vertex map (see Section 5.3)

associated with vertex v and b1
300 and b1

201 are Bézier control points from the vertex

map associated with vertex v1.

In the construction of the vertex map associated with vertex v, let shape parameters

α = 0 and β = 1 (the default values for this case, see Section 5.3), and let the keypoint

associated with vertex v and face {v,v1,w1,v2} be found by

b111 = 4
9v + 2

9 [v1 + v2] + 1
8w1 + 1

72 [w3 −w2 −w4]. (6.10)

This keypoint construction differs from the one given in the general case (see Equa-

tion (5.15)) and does not correspond to the “twist point” b11 of a bicubic B-spline patch

as one might expect. The reason for this apparent discrepancy has to do with the dif-

ference between the tensor product and S-patch representations of 4-sided patches (see

Section 4.2).

Equation (5.16) from Section 5.4 for b300 can be expanded for this case using (6.10)

as follows:

b300 = 1
4b

1
111 +

1
4b

2
111 +

1
4b

3
111 +

1
4b

4
111,
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= 1
4 [

4
9v + 2

9(v1 + v2) + 1
9w1] + · · ·+ 1

4 [
4
9v + 2

9(v4 + v1) + 1
9w4],

= 4
9v + 1

9 [v1 + v2 + v3 + v4] + 1
36 [w1 +w2 +w3 +w4]. (6.11)

This construction is identical to Equation (6.5).

Equation (5.17) from Section 5.4 is similarly expanded to get

b210 = (0)v +m0b1
111 +m1b2

111 +m2b3
111 +m3b4

111,

= 1
2b

1
111 +

1
2b

4
111,

= 1
2 [

4
9v + 2

9(v1 + v2) + 1
8w1 + 1

72 (w3 −w2 −w4)]

+1
2 [

4
9v + 2

9(v4 + v1) + 1
8w4 + 1

72(w2 −w1 −w3)],

= 4
9v + 2

9v1 + 1
9 [v2 + v4] + 1

18 [w1 +w4] (6.12)

This construction is equivalent to Equation (6.6).

Equations (6.11) and (6.12) show that the Bézier control points b00 and b10 of Q(u)

are identical to b300 and b210 of G(u) respectively. Similar symmetric results hold to

show that b20 = b1
201 and b30 = b1

300. From this it can be concluded that G(u) = Q(u).

That is, the boundary curves constructed by the general scheme are identical to the

boundary curves of tensor product bicubic B-splines (with appropriate shape parameters

and keypoints).

The transversal vector field Dv̇ G(u) is

Dv̇ G(u) = ċ0B
3
0(u) + ċ1B

3
1(u) + ċ2B

3
2(u) + ċ3B

3
3(u),

where

ċ0 = 3(b210 − b300), (6.13)

ċ1 = (b201 + 2b111)− (b300 + 2b210), (6.14)

ċ2 = (b1
210 + 2b1

111)− (b1
300 + 2b1

201), (6.15)

ċ3 = 3(b1
210 − b1

300), (6.16)

are Equations (5.24) through (5.27) specialized to this regular case.
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Equation (6.13) can be expanded to show that

ċ0 = 3(b210 − b300),

= −4
3v −

1
3 [v1 + v2 + v3 + v4]− 1

12 [w1 +w2 + w3 +w4]

+4
3v −

2
3v

2 + 1
3 [v1 + v3]− 1

6 [w1 +w2],

= 1
3 [v

2 − v4] + 1
12 [w1 +w2 −w3 −w4]. (6.17)

This construction is identical to Equation (6.8).

Similarly Equation (6.14) can be expanded to show that

ċ1 = (b201 + 2b111)− (b300 + 2b210),

= −4
9v −

1
9 [v1 + v2 + v3 + v4]− 1

36 [w1 +w2 + w3 +w4]

−8
9v −

4
9v1 − 2

9 [v2 + v4]− 1
9 [w1 +w4]

+4
9v + 2

9v2 + 1
9 [v1 + v3] + 1

18 [w1 +w2]

+8
9v + 4

9 [v1 + v2] + 1
4w1 + 1

36 [w3 −w2 −w4],

= 1
3 [v

2 − v4] + 1
6 [w1 −w4]. (6.18)

This construction is identical to Equation (6.9).

Equations (6.17) and (6.18) show that the Bézier control vectors q̇0 and q̇1 of Dv̇ Q(u)

are identical to ċ0 and ċ1 of Dv̇ G(u) respectively. Similar symmetric results hold to

show that q̇2 = ċ2 and q̇3 = ċ3. From this it can be concluded that Dv̇ G(u) = Dv̇ Q(u).

That is, the transversal vector fields constructed by the general scheme (with appropriate

shape parameters and keypoints) are identical to the transversal vector fields of tensor

product bicubic B-splines.

All that remains to demonstrate the equivalence of the patches constructed by the

two schemes is to show that the interior points found for the S-patch in Section 5.5.3 are

consistent with a degree elevated bicubic patch. The following argument should suffice:

in Step 1 of the interior point construction, the control net of a depth 4 auxiliary patch

is enscribed on a face of the control mesh; in Steps 2 and 3, the boundary panels of this

auxiliary patch are modified to approximate the boundary behavior of the real S-patch
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H; in this special regular case, this approximation is in fact an interpolation (i.e. the

boundary behavior of the auxiliary patch and the real S-patch are identical); the only

point of the auxiliary patch not effected by Steps 2 and 3 is a single point at the centroid

of the face. This point is precisely where it needs to be for the auxiliary patch to be

identical to the regular bicubic B-spline patch; therefore, after Step 4 the resulting patch

is still identical to a bicubic B-spline patch.

6.2.2 Quartic Triangular B-spline Surfaces

In this section, it is demonstrated that the general spline construction is equivalent to

quartic triangular B-splines when, for all control mesh faces f ∈ F and control mesh

vertices v ∈ V, |f | = 3 and |v| = 6. Again, the equivalence depends on keypoint

placement and the values of available shape parameters.

Let G be an edge map corresponding to a canonical edge of the regular triangular

control mesh. G(u) and Dv̇ G(u) are the boundary curve and transversal vector field

respectively. Let Q(u) and Dv̇ Q(u) represent the boundary curve and transversal vector

field of a patch from a quartic triangular B-spline surface corresponding to the same

canonical edge as G. Let H be the 3-sided S-patch (Bézier triangle) found by the

generalized B-spline construction, such that H(E(u)) is constructed from edge map G.

This means that G and H are related by Equations (6.1) and (6.2). Just as before, the

mesh restrictions present in this case are consistent with Propositions 6.1.2 and 6.1.3

and show that

µ(u) = 0, and ν(u) = 1.

Therefore the relationship between Dv̇ H(E(u)) and DG(u) again simplifies to

Dv̇ H(E(u)) = Dv̇ G(u),

indicating that H(E(u)) = Q(u) and Dv̇ H(E(u)) = Dv̇ Q(u) if Equations (6.3) and

(6.4) are again satisfied.

Let the faces surrounding a single control mesh vertex be labeled as in Figure 6.2.

The formulae for the Bézier control points of a quartic triangular B-spline surface from
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Figure 6.2: The labeling of a triangular B-spline control mesh

Section 3.3.1 (Equations (3.7) through (3.10)) are rewritten in terms of this labeling as

b400 = 1
2v + 1

12v
1 + 1

12v
2 + 1

12v
3 + 1

12v
4 + 1

12v
5 + 1

12v
6, (6.19)

b310 = 1
2v + 1

6v
1 + 1

8v
2 + 1

24v
3 + 1

24v
5 + 1

8v
6, (6.20)

b220 = 1
3v + 1

3v
1 + 1

6v
2 + 1

6v
6, (6.21)

b211 = 5
12v + 1

4v
1 + 1

4v
2 + 1

24v
3 + 1

24v
6. (6.22)

The points b400,b310,b220, and b211 are four of the Bézier control points of a quartic

triangular patch corresponding to face {v,v1,v2}. The remaining control points are

found by symmetric formulae.

The boundary curve of a patch is, in this case, the quartic written

Q(u) = b400B
4
0(u) + b310B

4
1(u) + b220B

4
2(u) + b130B

4
3(u) + b040B

4
4(u).
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Since Q is the edge of a quartic patch any derivative function Dẇ Q(u), where ẇ is an

arbitrary direction, is at most cubic. Therefore, a transversal vector field can be written

Dv̇ Q(u) = q̇0B
3
0(u) + q̇1B

3
1(u) + q̇2B

3
2(u) + q̇3B

3
3(u),

where

q̇0 = − 4√
3
b400 − 4√

3
b310 + 8√

3
b301,

q̇1 = − 4√
3
b310 − 4√

3
b220 + 8√

3
b211,

q̇2 = − 4√
3
b220 − 4√

3
b130 + 8√

3
b121,

q̇3 = − 4√
3
b130 − 4√

3
b040 + 8√

3
b031.

Substituting in Equations (6.19) through (6.22) and simplifying shows

q̇0 = 1
2
√

3
v2 + 1

2
√

3
v3 − 1

2
√

3
v5 − 1

2
√

3
v6, (6.23)

q̇1 = 5
6
√

3
v2 + 1

6
√

3
v3 − 1

6
√

3
v5 − 5

6
√

3
v6. (6.24)

Similar formulae for q̇2 and q̇3 can be found symmetrically.

Now consider the general construction. In general G(u) is a quintic boundary curve

defined by

G(u) = c0B
5
0(u) + c1B

5
1(u) + c2B

5
2(u) + c3B

5
3(u) + c4B

5
4(u) + c5B

5
5(u),

where (repeating formulae from Section 5.4)

c0 = b300, (6.25)

c1 = 2
5b300 + 3

5b210, (6.26)

c2 = 1
10b300 + 6

10b210 + 3
10b120. (6.27)

The points b300,b210, and b120 are Bézier control points from the vertex map associated

with vertex v. Formulae for c3, c4, and c5 are defined similarly. For G(u) = Q(u) it

must be that G(u) is actual a quartic curve and that G(u)’s quartic Bézier control points

coincide with the control points of Q(u).
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If G(u) is quartic then it should be possible to write

G(u) = f0B4
0(u) + f1B4

1(u) + f2B4
2(u) + f3B4

3(u) + f4B4
4(u),

where

f0 = c0, (6.28)

f1 = 5
4c1 − 1

4c0, (6.29)

f2 = 5
3c2 − 5

6c1 + 1
6c0. (6.30)

The points f3 and f4 can be written symmetrically in terms of c4 and c5. It must also be

possible to write f2 in terms of c3, c4 and c5; both forms must be true (and equivalent)

if G(u) is quartic. By substituting Equations (6.25) through (6.27), Equations (6.28)

through (6.30) can be rewritten

f0 = b300, (6.31)

f1 = 1
4b300 + 3

4b210, (6.32)

f2 = 1
2b210 + 1

2b120. (6.33)

For a regular triangular control mesh the keypoints b111 are constructed by setting

bi
111 =

1
3v + 1

3v
i + 1

3v
i+1. (6.34)

This coincides with Construction (5.15) of Section 5.3. Assuming the default shape

parameter values α = 1
4 , β = 1, Constructions (5.16) through (5.19) are specialized to

the regular triangular case as follows:

b300 = 1
4v + 1

8b
1
111 +

1
8b

2
111 + · · ·+ 1

8b
6
111,

= 1
4v + 1

8 [
1
3v + 1

3v
1 + 1

3v
2] + · · ·+ 1

8 [
1
3v + 1

3v
6 + 1

3v
1],

= 1
2v + 1

12v
1 + 1

12v
2 + 1

12v
3 + 1

12v
4 + 1

12v
5 + 1

12v
6. (6.35)

b210 = 1
4v +m0b1

111 +m1b2
111 +m2b3

111 +m3b4
111 +m4b5

111 +m5b6
111,
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= 1
4v + 7

24b
1
111 +

1
8b

2
111 − 1

24b
3
111 − 1

24b
4
111 +

1
8b

5
111 +

7
24b

6
111,

= 1
4v + 7

24 [
1
3v + 1

3v
1 + 1

3v
2] + · · ·+ 7

24 [
1
3v + 1

3v
6 + 1

3v
1],

= 1
2v + 7

36v
1 + 5

36v
2 + 1

36v
3 − 1

36v
4 + 1

36v
5 + 7

36v
6. (6.36)

b120 = (−1)b210 + (1)b1
111 + (1)b6

111,

= −[12v + 7
36v

1 + 5
36v

2 + · · ·+ 7
36v

6] + [13v + 1
3v

1 + 1
3v

2] + [13v + 1
3v

6 + 1
3v

1],

= 1
6v + 17

36v
1 + 7

36v
2 − 1

36v
3 + 1

36v
4 − 1

36v
5 + 5

36v
6. (6.37)

By substituting Equations (6.19) through (6.21), Equations (6.31) through (6.33) may

be rewritten

f0 = 1
2v + 1

12v
1 + 1

12v
2 + 1

12v
3 + 1

12v
4 + 1

12v
5 + 1

12v
6, (6.38)

f1 = 1
2v + 1

6v
1 + 1

8v
2 + 1

24v
3 + 1

24v
5 + 1

8v
6, (6.39)

f2 = 1
3v + 1

3v
1 + 1

6v
2 + 1

6v
6. (6.40)

A similar argument about the vertex v1 could be used to find f4 and f5. This argument

yields the same value for f2, proving that G(u) must be quartic. Since Equations (6.38)

through (6.40) are identical to Equations (6.19) through (6.21), the quartic Bézier control

points of Q(u) and G(u) are identical, hence Q(u) = G(u). That is, the boundary curves

of a quartic triangular B-spline patch and an S-patch from the general construction are

identical for the specified keypoints and shape parameters.

The transversal vector field Dv̇ G(u) is

Dv̇ G(u) = ċ0B
3
0(u) + ċ1B

3
1(u) + ċ2B

3
2(u) + ċ3B

3
3(u),

where

ċ0 = − 3√
3
b300 − 3√

3
b210 + 6√

3
b201, (6.41)

ċ1 = − 1√
3
(b300 + 2b210)− 1√

3
(b210 + 2b120) + 2√

3
(b201 + 2b111) (6.42)
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are Equations (5.24) and (5.25) specialized to the regular triangular case. Similar for-

mulae exist for ċ2 and ċ3. Equations (6.41) and (6.42) may be expanded by substituting

Equations (6.34) through (6.37). This will show that ċ0 = q̇0 and ċ1 = q̇1 (similarly

that ċ2 = q̇2 and ċ3 = q̇3), thus Dv̇ Q(u) = Dv̇ G(u). That is, the transversal vector

field of a quartic triangular B-spline patch and an S-patch from the general construction

are equivalent. Therefore, patches from these schemes can only differ away from patch

boundaries.

A similar argument to the one used previously in the bicubic B-spline case shows

that the interior points found for S-patches in Section 5.5.3 are consistent with a degree

elevated quartic triangular B-spline patch. In Step 1 of the interior point construction

all enscribed points belong to boundary panels; in Steps 2 and 3, the boundary panels

of the auxiliary patch are set to approximate the behavior of the real S-patch H. Again

in this special regular case, the approximation is an interpolation; therefore, after Steps

2 and 3 the auxiliary patch and real S-patch are identical. Step 4 only raises the degree

of this patch, which is identical to a quartic triangular B-spline patch.

6.3 Other Special Cases

Propositions 6.1.1, 6.1.2, and 6.1.3 can be used to show that other special cases exist

besides the bicubic tensor product and the quartic triangle B-spline specializations just

presented. For example, whenever all of the vertices of a face are of the same order,

the conditions of Proposition 6.1.1 are satisfied and the corresponding S-patch will drop

from depth 7 to depth 6. Precisely this sort of restriction is imposed on the control mesh

of a predecessor to the scheme presented here[Loop & DeRose 90]. In that scheme, all

control vertices are required to be of order 4, although faces could be of arbitrary order.

That scheme also generalized bicubic tensor product B-splines for regular control meshes,

but in general generated depth 6 S-patches. The present scheme is also a generalization
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Table 6.1: Reductions that occur for various mesh restrictions

|v| |f | degree(G) degree(Dv̇ G) degree(µ) degree(ν) depth(H)
6 3 4 2 0 0 4
4 4 3 3 0 0 3
3 6 5 3 0 0 5
4 ∗ 3 3 1 2 6
k ∗ 5 3 1 2 6
∗ ∗ 5 3 1 3 7

of that earlier scheme, when all control mesh vertices are of order 41.

The reductions in the depths of S-patches constructed by the generalized B-spline

scheme for various control mesh restrictions are summarized in Table 6.3. Strictly speak-

ing, the cases |v| = 6, |f | = 3 and |v| = |f | = 4 (the regular B-spline cases) would in

general result in depth 5 patches. However, the lower depth results are shown since they

have been shown to exist. Note that in the case of a regular hexagonal control mesh

|v| = 3, |f | = 6, the general construction generates depth 5 S-patches. It is likely that

keypoints and shape parameters exist for this case that result in lower depth S-patches.

1The interior point construction presented here is slightly different than that of
[Loop & DeRose 90]



Chapter 7

Conclusions

The motivation for this work has been to find mathematical connections between various

B-spline surfaces and to extend the topological range of surfaces that schemes like these

can be used to design and represent. It is doubtful that B-spline theorists would call

the surfaces created by the methods of this thesis true B-splines. True B-splines have

many characteristics that the surfaces presented here do not share. Among these are

subdivision, convolution, and a recursive definition that these generalized B-splines do

not possess. It may well be that the great many intriguing and elegant properties of

B-splines are artifacts of the regular control mesh with which they are associated. If so,

it is doubtful whether true B-splines defined over irregular control meshes really exist.

In the absence of such an elegant and general theory, the scheme proposed here serves

as a practical attempt to fill this void.

Generalized B-spline surfaces based on S-patches have advantages over the subdivi-

sion surfaces of Catmull and Clark[Catmull & Clark 78] which are also a generalization

of bicubic tensor product B-splines (although not a generalization of quartic triangu-

lar B-splines). The Catmull/Clark surfaces are defined algorithmically, not analytically.

Evaluation and analysis of a surface and its geometric characteristics such as normals

and curvatures is considerable more difficult for subdivision surfaces than for an ana-

lytically defined S-patch based surface. Furthermore, a patch based system allows for
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a pipelined software design were each pipeline stage can work on individual surface ele-

ments without regard for the surface as a whole. Tessellation into polygons can be put

off until absolutely needed, or avoided altogether.

In an interactive design environment it is highly computationally intensive to display

in real-time the surface as one or more control mesh vertices are manipulated. It is

quite feasible on the other hand to display just the boundary curves of patches. These

additional shape queues can help give a designer a much better understanding of the

surface being creating than the control mesh alone. A system based on subdivision sur-

faces would require significantly more computational overhead to display the analogous

boundary information in real-time.

Qualitatively, generalized B-splines based on S-patches generate smooth, well-behaved,

free form surfaces. Quantitatively, however, there is a serious drawback encountered

when dealing with S-patches. Compared to other parametric surface schemes based

on triangular or tensor product patches, an S-patch based scheme is considerably less

efficient in terms of storage space and evaluation time.

The number of control points needed to define an n-sided depth d S-patch is(
n+ d− 1

d

)
.

Specific examples for various values of n and d are given in Table 7. Evaluating an

S-patch using deCastlejau’s algorithm (Section 2.2.2) requires roughly

n

(
n+ d

d

)

vector additions and vector-scalar multiplications. Therefore, the complexity of de-

Castlejau’s algorithm is O(dn). There are more efficient, albeit less stable, algorithms

for evaluating S-patches (i.e., multivariate polynomials). At best however, a more effi-

cient algorithm will lower this complexity by only one order of magnitude. Even if an

upper limit is placed on depth (this limit is 7 here) the amount of time and space required

for evaluating and storing S-patches is an exponential function of the number of sides.

This is rather unfortunate and may prevent S-patches in general, and this generalized
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Table 7.1: The number of S-patch control points for a given number of sides (down) and
depth (across)

1 2 3 4 5 6 7
3 3 6 10 15 21 28 36
4 4 10 20 35 56 84 120
5 5 15 35 70 126 210 330
6 6 21 56 126 252 462 792
7 7 28 84 210 462 924 1716
8 8 36 120 330 792 1716 3432

B-spline scheme in particular, from seeing wide spread use. These facts, perhaps more

than any others, underscore the importance of the generalizing nature of this work. If

patches with 5 or more sides are the exception, rather than the rule, then the efficiency

concerns become somewhat less important.

Further research may be able to eliminate this dilemma. Recall that only the bound-

ary panels play a role in determining a smooth join among S-patches. The interior

control points, which in general constitute the majority of the control points, are needed

because the Bernstein basis (Section 2.2) and the deCastlejau algorithm require them. A

reasonable basis that is a subspace of the Bernstein basis could perhaps be found whose

coefficients are exactly the S-patch boundary panels. The difficult part of finding such

reasonable a basis is making sure that the corresponding surfaces have good shape. If

such a basis does exist, only dn2 control points would be needed to store each n-sided

patch.

More significant than space considerations is evaluation time. If an algorithm of

sufficiently low complexity for evaluating a surface based solely on boundary panels were

found, say O(dn2), then the surface scheme proposed in this thesis would be extremely

viable. In fact, such an algorithm can be formulated as follows: Associate a rational

weight of zero with each interior point and a weight of one with each boundary panel

point. Run deCastlejau’s algorithm on the points with corresponding weights treated as

an extra dimension, but do no work when a zero weight point is encountered. Finally,
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normalize the output of deCastlejau’s algorithm, i.e. divide the point result by the weight

result. By carefully avoiding steps that involve only zero weight points, this modified

deCastlejau algorithm has the desired complexity. Unfortunately, the resulting surfaces

tend to have hollow regions in the interiors of patches. More work is needed to determine

if an algorithm like this can be found that generates aesthetically pleasing surfaces.

Additional work is also needed for determining keypoint placement (Section 5.3.2).

In an interactive design system, these points would give users a great deal of control to

fine tune a given shape. However, the default placement of keypoints should give good

results in the majority of cases. A more careful study of how these points affect the shape

of a surface could provide additional insights into keypoint placement algorithms. Alter-

natively, non-linear optimization techniques could be brought to bare to find keypoints

that result in a best surface, for some reasonable definition of best.

The S-patches constructed here are in one-to-one correspondence with the faces of the

control mesh. Alternatively, G1 surfaces can be constructed from an arbitrary control

mesh where the S-patches are in one-to-one correspondence with the vertices of the

control mesh. Such a scheme would be a generalization of biquadratic B-spline surfaces.

A partial solution to this dual problem is presented in [Loop & DeRose 90]. This solution

required all control mesh faces f to have exactly 4 edges. The patches constructed in

such dual schemes are generally of lower depth than patches of the corresponding primal

schemes, i.e. schemes where patches correspond to faces. It may be that depth 6 S-

patches suffice for a dual scheme without mesh restrictions. This question merits further

investigation.
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[Ramshaw 88] L. Ramshaw. Béziers and b-splines as multiaffine maps. In R. Earnshaw,

editor, Theoretical Foundations of Computer Graphics and CAD, pages 757–776.

Springer Verlag, 1988.



106

[Ramshaw 89] L. Ramshaw. Blossoms are polar forms. Technical report, Digital Systems

Research Center, Palo Alto, Ca, 1989.

[Sabin 76] M. Sabin. The use of piecewise forms for the numerical representation of

shape. PhD dissertation, Hungarian Academy of Sciences, Budapest, Hungary,

1976.
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