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How can a client extract useful work from a server without trusting it to compute correctly?

A modern motivation for this classic question is third party computing models in which

customers outsource their computations to service providers (as in cloud computing).

In principle, deep results in complexity theory and cryptography imply that it is

possible to verify that an untrusted entity executed a computation correctly. For instance,

the server can employ probabilistically checkable proofs (PCPs) in conjunction with cryp-

tographic commitments to generate a succinct proof of correct execution, which the client

can efficiently check. However, these theoretical solutions are impractical: they require thou-

sands of CPU years to verifiably execute even simple computations.

is dissertation describes the design, implementation, and experimental evaluation
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of a system, called Pepper, that brings this theory into the realm of plausibility. Pepper in-

corporates a series of algorithmic improvements and systems engineering techniques to im-

prove performance by over  orders of magnitude, relative to an implementation of the the-

ory without our refinements.ese include a new probabilistically checkable proof encoding

with nearly optimal asymptotics, a concise representation for computations, a more efficient

cryptographic commitment primitive, and a distributed implementation of the server with

GPU acceleration to reduce latency.

Additionally, Pepper extends the verification machinery to handle realistic applica-

tions of third party computing: those that interact with remote storage or state (e.g., MapRe-

duce jobs, database queries). To do so, Pepper composes techniques from untrusted storage

with the aforementioned technical machinery to verifiably offload both computations and

state. Furthermore, to make it easy to use this technology, Pepper includes a compiler to

automatically transform programs in a subset of C into executables that run verifiably.

One of the chief limitations of Pepper is that verifiable execution is still orders of

magnitude slower than an unverifiable native execution. Nonetheless, Pepper takes powerful

results from complexity theory and verifiable computation a few steps closer to practicality.
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Chapter 

Introduction

How can a computer execute a program in such a way that an external entity can verify the
correctness of the execution?

Amodernmotivation for this question is outsourcing of computations and storage to
a third party, as in cloud computing [, , ]. On the one hand, cloud computing is appealing
to customers. It allows anyone to rent virtually unlimited computing resources from a ser-
vice provider, on a pay-per-use basis. Other benefits include high availability (as the cloud is
geographically distributed and is accessible over the Internet), low cost (due to economies of
scale), and resource elasticity (a customer can increase or decrease the amount of resources
rented at any time). On the other hand, customers may not want to completely trust the
cloud with their computations and data. First, the cloud is operated by a third party whose
incentives may not be aligned with those of the customers. Second, the cloud is opaque to
its users (by design). ird, cloud services use large-scale distributed systems (running on
thousands or even millions of nodes), and at this scale, many things can and do go wrong
(e.g., corruption of data in storage or in transit, soware bugs, correlated hardware failures,
misconfigurations). Indeed, when the cloud executes a computation on behalf of a client,
how can the client be sure that the server computed correctly?

Variants of this problemhave appeared under different names in the theory literature:
checking computations [], delegating computation [], verifiable computation [], etc.
We group all of these notions of checking program executions under the category of verifiable
computation.

A simple solution for verifiable computation is to replicate computations [, , ]:
execute the same computation on multiple servers, and then select an output computed by

Our use of this term is broader than its definition by Gennaro et al. []; Chapter  provides details.





a majority. However, this strategy assumes that a majority of the servers computes correctly,
which does not hold in the presence of correlated failures.

ere are other pragmatic solutions, such as trusted hardware-based attestation [,
, ] and auditing [, , ], but, like replication, they require assumptions about
the failure modes of the server. Trusted hardware-based solutions assume a chain of trust
rooted in the trusted hardware’smanufacturer and that the trusted hardware works correctly;
auditing assumes that the server either computes correctly or corrupts a large portion of its
work.

In contrast to the above pragmatic approaches, deep results in complexity theory and
cryptography imply solutions that do not make any assumptions about the failure modes
of the server except, perhaps, cryptographic hardness assumptions. For instance, the server
can employ interactive proofs (IPs) [, , , ], or probabilistically checkable proofs
(PCPs) [, , ] coupled with cryptographic commitments (called efficient arguments [,
, , , ]) to convince the client that it executed a computation correctly. However, these
theoretical solutions are wildly impractical: they require thousands of years of CPU time to
verifiably execute even simple computations.

Despite these costs, the theory presents enormous promise for verifiable computa-
tion and beyond. First, it applies to a general class of computations, and its guarantees hold
regardless of the correctness of the server’s hardware and soware. Second, it can be ap-
plicable in scenarios far beyond verifying outsourced computation (for example, nodes in
a message-passing distributed system could require each message to be accompanied by a
short proof to convince its receiver that themessagewas generated by following a pre-defined
protocol [], a CPU could check computations it offloads to a GPU, or a base could validate
a remotely deployed robot).

Several years ago, motivated by the above promise, we asked, can we refine and incor-
porate strands of this theory into a built system that takes significant steps toward practicality,
and then use it to verifiably outsource computations? []. It was not clear whether we were
going to make any progress toward this vision, since it requires reducing resource costs by a
huge factor (e.g., from thousands of years to, say, a few seconds, in CPU time), which in turn
calls for algorithmic improvements in an esoteric body of theory. Furthermore, in an early
work on PCPs, theorists considered this exact application [] (as noted above), and, despite
a long line of work on establishing the theory of IPs, PCPs, and arguments—including re-
cent efforts to improve the asymptotic efficiency of IPs [] and PCPs [–]—the theory





remained impractical. us, as expected, we faced nontrivial hurdles when we attempted to
realize our vision.

Nonetheless, we have made significant progress. We have built a system, called Pep-
per, that brings strands of the aforementioned theory fromwild impracticality into the realm
of plausibility [, –, ].

Despite dramatic improvements ( orders of magnitude in some cases), Pepper is
not yet truly practical. However, it has had impact. For instance, following our research
agenda [], there is now a thriving research area focused on building systems for verifi-
able computation [–, , , , , , , , ]. We compare these works with
Pepper in Chapter .

is dissertation describes Pepper; it builds on efficient argument protocols. We di-
vide our contributions and results into two categories; each category corresponds to a sub-
system of Pepper (as noted on page xiv).

() Verifiability for stateless computations (Chapter ). e contributions in this cate-
gory include a series of algorithmic refinements and systems engineering techniques to im-
prove performance of an efficient argument protocol [], by over  orders of magnitude
(compared to an implementation of the protocol without our refinements).emost notable
innovations in the improved efficient argument protocol are as follows.

• It includes an enhanced version of the cryptographic machinery of Ishai, Kushilevitz,
and Ostrovsky (IKO) []. e enhanced version decreases end-to-end CPU and net-
work costs for both the client and the server by several orders of magnitude. It is also
simpler.

• It incorporates a new PCP construction based on a novel formalism to encode pro-
gram executions, called quadratic arithmetic programs (QAPs), due to Gennaro, Gen-
try, Parno, and Raykova (GGPR) []. e server’s work is now O(T ⋅ logT) instead
of O(T2), where T is the number of steps in the corresponding computation.

We implement the aforementioned argument protocol in a system, calledZaatar.e
system includes a compiler to automatically transform programs expressed in a high-level
language into executables that run verifiably. Furthermore, the system includes a distributed
implementation of the server and GPU acceleration for cryptographic operations to reduce
latency.
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() Verifiability for stateful computations (Chapter ). Zaatar and related verifiable com-
putation systems [, , , , , , , ] make great strides to bring the aforemen-
tioned theory toward practice. However, almost none of these systems support a notion of
memory or state. e fundamental reason is that their underlying theory requires computa-
tions to be expressed as a set of constraints (§.), which is essentially a stateless model of
computation. Without a notion of memory or state, these systems cannot support common
uses of third party computing (e.g., MapReduce jobs over remotely stored massive data sets).

To solve this problem, we have refined the theory and built a system, called Pantry.
It makes the following contributions.

• Pantry extends the technical machinery behind Zaatar (Chapter ) and Pinocchio [,
] to support a notion of remote storage. To do so, Pantry composes techniques from
untrusted storage [, , , ] with machinery for verifying stateless computations.

• Using the extended machinery, we build applications that require remote storage (a
framework for verifiably executing MapReduce jobs, a simple database that supports
a small subset of SQL) and a random access memory (RAM).

• We compose a variant of Pinocchio that supports a cryptographic property, zero-knowledge [],
with Pantry’s solution to remote storage to support programs that compute over the
server’s private state.

We experimentally demonstrate that the client in Zaatar and Pantry can save comput-
ing resources, fromoutsourcing, under certain regimes.We also find that verifiable execution
is still many orders of magnitude (up to  in our benchmarks) more expensive compared to
an unverifiable execution. Nonetheless, Zaatar and Pantry can be considered nearly practi-
cal in scenarios where there are not pragmatic alternatives. Examples include () tasks that
process a lot of remotely stored data, or compute intensive, or both, and need verifiability
(§.), and () computations that work over the server’s private state (§.).

Most importantly, Zaatar and Pantry take several significant steps toward making
powerful theoretical results and verifiable computation practical. Furthermore, as we de-
scribe in Chapter , Zaatar, Pantry, and their contemporaries suggest that a low overhead
version of PCP-based machinery could be achievable in the future and that PCPs could ulti-
mately find their way into real systems.
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Roadmap. Chapter  contains an overview of work related to Zaatar and Pantry. Chapter 
describes theoretical constructs that Zaatar (Chapter ) and Pantry (Chapter ) build on. As
a result, Chapters  and  assume familiarity with Chapter . Chapter  describes Pantry,
which extends Zaatar (Chapter ) and a related system, Pinocchio []; it does not assume
familiarity with Zaatar as §. provides an overview of Pantry’s baseline systems. Chapter 
summarizes and critiques Zaatar, Pantry, and the area of verifiable computation; thus, it as-
sumes familiarity with Chapters –.
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Chapter 

Related work

is chapter describes the landscape of solutions for verifiable outsourcing of computations
and compares them with the two sub-systems of Pepper, namely Zaatar and Pantry. (Chap-
ter  covers a few solutions, but we intend to provide a comprehensive overview of the solu-
tion space here; thus, we may repeat a few details from the prior chapter.)

. Approaches that make assumptions about failure modes

ere are several approaches that enable verifiable computing: state machine replication [,
, ], trusted hardware-based attestation [, , ], and auditing [, , , ].ese
solutions are oen pragmatic, but, unlike Zaatar and Pantry, they require stronger assump-
tions about the failure modes of the server.

As described in Chapter , state machine replication assumes that the server can
be replicated such that replica failures are uncorrelated, and that a majority of the replicas
always works correctly. Trusted hardware-based attestation assumes the server has a trusted
hardware that always works correctly and that its manufacturer is trusted. Auditing assumes
that whenever the server computes incorrectly, it corrupts a large portion of its work.

In addition to requiring the above assumptions, these pragmatic approaches do not
always apply (e.g., state machine replication does not provide a solution to verifiable com-
puting in which the server provides private inputs to the client’s computation).





. Approaches that apply to a restricted class of computations

Many works focus on designing protocols that enable verifying the correct execution of a
specific class of computations. A well-known example is Freivalds’ technique [, §.] for
checking the correctness of matrix multiplication. A set of works [, , , , ] design
protocols for verifying polynomial evaluations. Backes et al. [] support verifiable arith-
metic computations (mean, variance, etc.) on outsourced data. Sion [] and ompson
et al. [] design protocols to verify the integrity of database operations. Wang et al. de-
sign protocols to verifiably outsource linear programming [] and the problem of solving
a system of linear equations []. Atallah et al. [] design protocols to securely outsource
linear algebra operations. ere is also work to verify aggregate statistics computed from dis-
tributed sensors [, ]. Compared to Zaatar and Pantry, these solutions are sometimes
more efficient, but, they do not apply to a general class of computations.

. General solutions that are not geared toward practice

eory of interactive proofs, PCPs, and argument protocols. ere is a long line of sem-
inal work that established the theory of interactive proofs [, , ], probabilistically
checkable proofs [, , , ], and arguments [, , , , , ]. Many works have
improved upon the early work on IPs and PCPs with better constructions (e.g., IPs that re-
quire only a polynomial prover, as opposed to a super-polynomial one [], asymptotically
short PCPs [–]).

However, unlike Zaatar and Pantry, achieving true practicality is not an explicit goal
in these works. As a result, the constructions in these works do not admit an easy implemen-
tation and oen have astronomically large constants. ere is recent work on improving the
concrete efficiency of PCPs [], but this construction is mostly of theoretical interest at this
point, since it remains far too expensive and intricate to implement [, §.].

Approaches that rely onpowerful cryptographic primitives. Gennaro,Gentry, andParno []
formalize verifiable computation (VC) as a non-interactive cryptographic primitive; then
they describe a scheme for VC that composes Yao’s garbled circuits [] with Gentry’s
fully homomorphic encryption (FHE) []. Compared to Zaatar and Pantry, their protocol
provides privacy for inputs and outputs of a computation. However, FHE is still far too ex-
pensive, despite performance breakthroughs [, ]. us, verifiable computation schemes
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based on FHE [, ] are orders of magnitude more expensive than Zaatar and Pantry.
Chung et al. [] design protocols for verifiable computation that support a notion

of remote state. However, unlike Pantry, their protocols rely on one or more of the following
expensive building blocks: Micali’s argument protocol [] (which in turn requires asymp-
totically short PCPs), FHE, or private information retrieval.

. Systems that share an ethos with Zaatar and Pantry

ere are four other projects that have refined and implemented strands of theory similar to
those behind Zaatar and Pantry. In general, there is a tradeoff between the types of compu-
tations to which these systems apply and the associated costs.

CMT, Allspice, andaler. Cormode, Mitzenmacher, and aler (CMT) [, ] refine
and implement the interactive proofs protocol of Goldwasser, Kalai, and Rothblum [].
Furthermore, the work of aler [] includes new algorithmic techniques to make the
server in the protocol of CMT essentially optimal. Compared to Zaatar, this line of work is
oen more efficient (e.g., the server’s costs are over an order of magnitude cheaper), which is
partially because it does not require expensive cryptographic operations. Additionally, their
protocol is information theoretically secure. However, it requiresmany rounds of interaction
between the client and the server (Zaatar requires only two). Furthermore, it applies only to a
limited class of computations (specifically to computations that are naturally parallelizable).

Allspice [] alleviates some of these expressiveness limitations, but it requires the
client to pay a setup cost (which can be amortized by outsourcing multiple identical compu-
tations with potentially different inputs) to participate in the protocol.

GGPR, Pinocchio. Gennaro, Gentry, Parno, and Raykova (GGPR) [] present a novel for-
malism to encode program executions, called quadratic arithmetic programs (QAPs). ey
combine QAPs with cryptographic machinery based on powerful bilinear pairings to design
a protocol for verifiable computation. Zaatar observes that there is a connection between
QAPs and PCPs, by designing a new PCP based on QAPs (Bitansky et al. [] establish a
similar relationship in concurrent work, in a different context); then, Zaatar composes the
newPCPwith the cryptographicmachinery of Ishai et al. [] to design an efficient argument
protocol.
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Pinocchio [] refines the protocol of GGPR and implements it in full general-
ity. Compared to Zaatar, Pinocchio achieves more cryptographic properties such as zero-
knowledge, non-interactivity, public verifiability, and better amortization behavior, but it
also pays higher cryptographic expense. An early version of Zaatar transformed programs
expressed in a high-level language, called SFDL [], into executables that run verifiably.
Following Pinocchio, Zaatar supports a subset of C in addition to SFDL.

Like Zaatar, Pinocchio does not support a notion of state, but Pantry extends both Za-
atar and Pinocchio to support stateful computations; most notably, Pantry leverages Pinoc-
chio’s zero-knowledge to support computations that work over the server’s private state.

TinyRAM. Ben-Sasson et al. [, , ] design a novel compiler to transform programs
expressed in the C programming language into circuits; these circuits represent the fetch-
decode-execute loop of a simple processor. ey combine this compiler with an optimized
version of Pinocchio to obtain a system that can verifiably execute C programs. We refer to
this full system as TinyRAM, for simplicity (note that Ben-Sasson et al. use that name to refer
to the aforementioned simple processor).

Compared to Zaatar and Pantry, TinyRAM supports data-dependent looping much
more naturally, but it does not include a notion of remote state. Additionally, TinyRAM’s
costs are oen orders of magnitude worse than other systems in the area.

One of the intriguing aspects of TinyRAM is its circuit for checking memory coher-
ence; this circuit is several orders of magnitude smaller than Pantry’s Merkle-tree based cir-
cuit for checkingmemory coherence (§.. describes this design).However, recentwork []
shows how to use TinyRAM’s techniques to replace Pantry’s Merkle-tree based RAM; this re-
duces the cost of Pantry’s RAM operations by several orders of magnitude.

More recently, Ben-Sasson et al. [] refine the ideas of Bitansky et al. [] and in-
corporate them into TinyRAM. e result is that the new implementation exchanges the
client’s setup costs for far higher server’s costs: the client’s setup cost is now independent of
the length of the computation outsourced and the program itself, but the setup work is still
substantial and the server’s costs increase by several orders of magnitude.

TS [] incorporates an enhanced version of the QAPs of GGPR. Compared to Za-
atar and Pinocchio, TS has the same expressiveness, but, owing to the enhanced QAPs,
it supports set operations much more efficiently. TS’s techniques are complementary,
and they can be incorporated into Zaatar and Pantry.
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Chapter 

Problem statement and background

is chapter describes our problem statement and provides an overview of tools (probabilis-
tically checkable proofs and argument protocols) that we build on.

. Problem statement

Our goal is to implement the following protocol between two entities: a verifier, V , and a
prover, P . First, V outsources the execution of a polynomial time computation,Ψ, on input,
x, to P . Second, P executes Ψ(x), and returns an output, y. Finally, using randomness, V
interrogates P to check if y is the correct output of Ψ(x); if P convinces V , then V accepts
y, else it rejects. (Note that P is an abstraction, which could be implemented by a cluster of
machines.)

In the above protocol, V assumes that P is computationally bounded, and hence
P does not violate cryptographic hardness assumptions (e.g., P cannot solve discrete loga-
rithms in polynomial time).

We call a protocol like the above a verifiable computation protocol if it provides the
guarantees listed below. is definition is similar to the one by Gennaro et al. []; one dif-
ference is that we do not restrict the number of rounds of interaction between V and P .

. Completeness. If y = Ψ(x), then a correct P can make V accept y, always.

. Soundness. If y ≠ Ψ(x), then Pr{V accepts y} ≤ ϵ, where the probability is over V ’s
randomness, and ϵ can be made arbitrarily close to zero.

. Efficient delegation. V saves computing resources by using P relative to executing Ψ,
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perhaps on an amortized basis (e.g., when outsourcing many instances ofΨ each with
potentially different inputs).

. Verifiable computation from efficient argument protocols

An (obvious) way for V to verify ifP computed correctly is to executeΨ locally to obtain an
output and check if that output matchesP ’s output. But, under this solution, V does not save
resources from outsourcing its work to P . We now describe a way that uses powerful results
from complexity theory and cryptography.

By definition, for every NP language L, and for every problem instance C, if C ∈ L,
then there exists a witness, z, such that a deterministic polynomial-time algorithm can verify
the membership of C in L using z. Remarkably, there also exists a proof π that convinces V
of C’s membership in L but only needs to be inspected in a constant number of places—yet
if C is not in L, then for any purported proof, the probability that V is wrongly convinced
of C’s membership can be arbitrarily close to zero. is remarkable statement is the rough
content of the PCP theorem [, ].

Following [], we takeL to be Boolean circuit satisfiability: the question of whether
the input wires of a given Boolean circuit C can be set to make C evaluate to . It suffices to
consider this problem because L is NP-complete; any other problem in NP can be reduced
to it. Of course, a satisfying assignment z—a setting of all wires in C such that C evaluates to
—constitutes an (obvious) proof that C is satisfiable: V could check z against every gate in
C. Note that this check requires inspecting all of z. In contrast, the PCP theorem yields a V
that makes only a constant number of queries to an oracle π and satisfies:

• Completeness. IfC is satisfiable, then there exists a linear functionπ (called a proof oracle)
such that, aer V queries π, Pr{V accepts C as satisfiable} = 1, where the probability is
over V ’s random choices.

• Soundness. If C is not satisfiable, then Pr{V accepts C as satisfiable} < ϵ for all purported
proof functions π̃. Here, ϵ is a constant that can be driven arbitrarily low.

However, there is still a problem in the context of verifying outsourced computation:
V cannot ask P to send π (as π is significantly larger than the number of steps in Ψ), or
queryP for parts of π that it needs (the above guarantees hold only when V has oracle access

ABoolean circuit is a set of interconnected gates, eachwith input wires and an output wire, with wires taking
/ values.
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to an immutable π). Efficient argument protocols [] circumvent these issues. e idea of
efficient arguments is to use PCPs in an interactive protocol: P computes π and responds
to V ’s queries. However to force P to behave like a fixed proof, V obtains a cryptographic
commitment to π, and then decommits only those bits of π that it needs.

ere are many constructions of PCPs and argument protocols in the theory litera-
ture. We chose to build on the argument protocol of Ishai, Kushilevitz, and Ostrovsky [],
which uses the probabilistically checkable proofs construction of Arora et al. [, ] (we
justify our choice to build on these constructions in Section ..). We now turn to their
details.

.. A PCP construction by Arora et al. [, ]

Arora et al. describe a PCP construction in which a correct proof, π, is a linear function over
a finite field,F. It is also presented in [, ], andwe borrow some of our notation from these
three sources. Following [], we call such proofs linear PCPs. A linear function π∶Fn ↦ Fb

can be regarded as a b × n matrix M, where π(q) = M ⋅ q; in the case b = 1, π returns a dot
product with the input.

Recall that a motivation of PCPs is to avoid V having to check a purported assign-
ment, z, against every gate, as that would be equivalent to reexecuting its computation. In-
stead, in the PCPs of Arora et al., V will construct a polynomial Q(V,Z) that represents C,
using its randomness (see below), and π will be carefully constructed to allow evaluation of
this polynomial. Suppose that there are s gates in C. For each of the gates in C, V creates a
variable Zi ∈ {0, 1} that represents the output of gate i. V also creates s algebraic constraints,
as follows. If gate i is the AND of Zj and Zk, then V adds the constraint Zi − Zj ⋅ Zk = 0; if
gate i is the NOT of Zj, then V adds the constraint 1 − (Zi + Zj) = 0; if gate i is an input gate
for the jth input, V adds the constraint Zi − inj = 0; and finally, for the last gate, representing
the output of the circuit, we also have Zs − 1 = 0. V then obtains the polynomial Q(V,Z) by
combining all of the constraints: Q(V,Z) = ∑s

i=1 Vi ⋅ Qi(Z), where Z = (Z1, . . . ,Zs), each
Qi(Z) is given by a constraint (like the ones described above), and V chooses a value for
(V1, . . . ,Vs) uniformly and independently at random from a finite field F; we will denote
those values as v = (v1, . . . , vs). e reason for the randomness is given immediately below.

Notice that Q(v, z) detects whether z is a satisfying assignment: () if z is a satisfying
assignment to the circuit, then it also satisfies all of the {Qi(Z)}, yielding Q(v, z) = 0; but
() if z is not a satisfying assignment to the circuit, then the randomness of the {vi} makes
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Q(v, z) unlikely to equal 0 (as illustrated in the next paragraph). us, the proof oracle π
must encode a purported assignment z in such a way that V can quickly evaluate Q(v, z)
by making a few queries to π. To explain the encoding, let ⟨q1, q2⟩ represent the inner (dot)
product between two vectors q1 and q2, and q1 ⊗ q2 represent the outer product q1 ⋅ qT

2 (that
is, all pairs of components from the two vectors). Observe that V can write

Q(v,Z) = ⟨γ2,Z⊗ Z⟩ + ⟨γ1,Z⟩ + γ0.

e {γ0, γ1, γ2} are determined by the {Qi(Z)}, the values on the input wires and output
wires, and the choice of {vi}, with γ2 ∈ Fs2 , γ1 ∈ Fs, and γ0 ∈ F. e reason that V can write
Q(v,Z) this way is that all of the {Qi(Z)} are degree- functions.

Given this representation of Q(v,Z), V can compute Q(v, z) by asking for ⟨γ2, z⊗ z⟩
and ⟨γ1, z⟩. is motivates the form of a correct proof, π. We write π = (z, z⊗ z), by which
we mean π = (π(1), π(2)), where π(1)(⋅) = ⟨⋅, z⟩ and π(2)(⋅) = ⟨⋅, z⊗ z⟩. We refer to the
vector (z, z ⊗ z) as a proof vector and denote it with u in this document. At this point, we
have our first set of queries: V checks whether π(2)(γ2)+π(1)(γ1)+γ0 = 0. If z is a satisfying
assignment and π is correctly computed, the check passes. Just as important, if z′ is not a sat-
isfying assignment—which is always the case if C is not satisfiable—then V is not likely to be
convinced. To see this, first assume that V is given a syntactically correct but non-satisfying
π̃; that is, π̃ = (z′, z′ ⊗ z′), where z′ is a non-satisfying assignment. e test above—that is,
checking whether π̃(2)(γ2) + π̃(1)(γ1) + γ0 = 0—checks whether Q(v, z′) = 0. However,
there must be at least one i′ for which Qi′(z′) is not , which means that the test passes if and
only if vi′ ⋅ Qi′(z′) = −∑i≠i′ vi ⋅ Qi(z′). But the {vi} are conceptually chosen aer z′, so the
probability of this event is upper-bounded by 1/∣F∣.

e above test is called the circuit test, and it has so far been based on an assumption:
that if π̃ is invalid, it encodes some (non-satisfying) assignment. In other words, we have been
assuming that π̃(1) and π̃(2) are linear functions that are consistent with each other. But of
course a malevolently constructed oracle might not adhere to this requirement. To relax the
assumption, we need two other checks. First, with linearity tests [, ], V makes three
queries to π(1) and three to π(2), and checks the responses. If the checks pass, V develops
a reasonable confidence that π(1) and π(2) are linear functions, which is another way of
saying that π(1)(⋅) is returning ⟨⋅, z⟩ for some z and that π(2)(⋅) is returning ⟨⋅,u⟩ for some
u ∈ Fs2 . In the second test, the quadratic correction test,V makes four queries total and checks
their responses; if the checks pass, V develops reasonable confidence that these two linear





functions have the required relationship,meaning that u = z⊗z. Once these tests have passed,
the aforementioned precondition for the validity of circuit test holds.

In all, V makes ℓ = 14 queries. e details of the queries and tests, and a formal
statement of their completeness and soundness, are in [] and Appendix A.. Here, we just
informally state that if C is satisfiable, then V will always be convinced by π, and if C is not
satisfiable, then V ’s probability of passing the tests is upper bounded by a constant κ (for
any π̃). If the scheme is repeated ρ times, for µ = ℓ ⋅ ρ total queries, the error probability ϵ
becomes ϵ = κρ.

.. An argument protocol by Ishai, Kushilevitz, and Ostrovsky

Linear PCPs (like the one described above) are generally used as a building block in con-
structing more efficient PCPs, which are then used in an argument protocol. However, Ishai,
Kushilevitz, and Ostrovsky (IKO) [] design an argument protocol directly from linear
PCPs.

IKO observe that in the PCP construction of Arora et al. [, ], π is a linear func-
tion (determined by z and z ⊗ z); they develop a commitment to a linear function primitive.
In this primitive, P commits to a linear function by pre-evaluating the function at a point
chosen by V and hidden from P ; then, V submits one query, and the response must be con-
sistent with the pre-evaluation. Roughly speaking, V can now proceed as ifP ’s responses are
given by an oracle π. (More accurately, V can proceed as if P ’s responses are given by a set
of non-colluding oracles, one per PCP query.)

In more detail, V obtains a commitment from P by homomorphically encrypting a
random vector r and asking P to compute Enc(π(r)); P can do this without seeing r, by the
linearity of π and the homomorphic properties of the encryption function (we do not need
or assume fully homomorphic encryption []). V can then apply the decryption function
to recover π(r). To submit a PCP query q and obtain π(q), V asksP for π(q) and π(r+αq),
for α randomly chosen from F. V then requires that π(r + αq) = π(r) + απ(q), or else V
rejects π(q). Figure . depicts this commitment protocol. By running parallel instances of
their protocol (one for each time that V wants to inspect π), Ishai et al. convert any PCP
protocol that uses linear functions into an argument system [, ].

Arguments are defined as follows; we borrow some of our notation and phrasing
from [], andwe restrict the definition to Boolean circuits. An argument (P,V)with sound-
ness error ϵ comprises twoprobabilistic polynomial time entities,P andV , that take aBoolean
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BasicCommit+BasicDecommit protocol of Ishai, Kushilevitz, and Ostrovsky (IKO) []
e protocol assumes an additive homomorphic encryption scheme (Gen,Enc,Dec) over a finite field, F.
Commit phase
Input: Prover holds a vector u ∈ Fn, which defines a linear function π∶Fn → F, where π(q) = ⟨u, q⟩.
. Verifier does the following:

• Generates public and secret keys (pk, sk)← Gen(1λ), where λ is a security parameter.
• Generates vector r ∈R Fn and encrypts r component-wise, so Enc(pk, r) =
(Enc(pk, r1), . . . ,Enc(pk, rn)).

• Sends Enc(pk, r) and pk to the prover.
. Using the homomorphism in the encryption scheme, the prover computes e← Enc(pk, π(r))without

learning r. e prover sends e to the verifier.
. e verifier computes s← Dec(sk, e), retaining s and r.
Decommit phase
Input: the verifier holds q ∈ Fn and wants to obtain π(q).
. e verifier picks a secret α ∈R F and sends to the prover (q, t), where t = r + αq ∈ Fn.
. e prover returns (a, b), where a, b ∈ F. If the prover behaved, then a = π(q) and b = π(t).
. e verifier checks: b ?= s + αa. If so, it outputs a. If not, it rejects, outputting �.

Figure .: IKO’s commitment protocol. V decommits an evaluation ofP ’s linear function at
a location, q. To decommit P ’s function at multiple locations, IKO run multiple instances of
this protocol.

circuit C as input and meet two properties:

• Completeness. If C is satisfiable and P has access to the satisfying assignment z, then the
interaction of V(C) and P(C, z) always makes V(C) accept C’s satisfiability.

• Soundness. If C is not satisfiable, then for every efficient malicious P∗, the probability
(over V ’s random choices) that the interaction of V(C) and P∗(C)makes V(C) accept C
as satisfiable is < ϵ.
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Chapter 

Zaatar: Verifying stateless computations

Probabilistically checkable proofs (PCPs) and argument protocols imply a solution for ver-
ifiable computation (as noted in Chapter ). In more detail, PCPs and arguments enable a
verifier, V , to outsource its computation, Ψ, on its input, x, to a prover, P , and then check if
y = Ψ(x) by issuing queries, using cryptography, to P , where y is P ’s claimed output of the
computation. is solution is very promising because it does not require V to make assump-
tions about the failure modes of P (i.e., the guarantees of the theory, mentioned in §..,
hold regardless of how P behaves, provided it does not violate cryptographic hardness as-
sumptions).

While promising, this solution is completely impractical for the following reasons:

• e protocol is too complicated. Asymptotically efficient PCP constructions [–] are
far too intricate to implement and optimize.

• e prover’s overheads are far too enormous. In addition to complicated constructions,
state-of-the-art PCPs have astronomically large constants in their algorithms,whichmakes
them too expensive in practice.

• e phrasing of the computation is too primitive. Most PCP constructions use Boolean cir-
cuits to encode computations. e Boolean circuit model can encode a general class of
computations. However, Boolean circuits are usually far too verbose for most program
constructs of a high-level language (e.g., a Boolean circuit that multiplies two -bit inte-
gers contains roughly , Boolean gates). Additionally, end-to-end costs of PCPs and
argument protocols are directly proportional to the size of the representation of a com-
putation. Furthermore, writing computations as Boolean circuits is (obviously) far too
inconvenient.
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• e setup work is too high for the verifier. Transforming Ψ into a Boolean circuit, C, and
generating queries to P take much more time for V than locally executing Ψ.

e first two obstacles above can be addressed by using the protocol of Ishai, Kushile-
vitz, and Ostrovsky (IKO) []. As described in Section .., the key reason is that IKO
design an argument protocol using linear PCPs [, ], which are simpler to implement.
us, given the simplicity of the ingredients in the protocol of IKO, we chose to build on this
strand of theory.

However, this choice brings two additional obstacles:

• e prover’s asymptotics are not ideal.eprover’s work is at least quadratic in the number
of steps in Ψ.

• e commitment protocol is far too expensive. Commitment requires cryptographic oper-
ations and hence multiprecision arithmetic, and the scheme of Ishai et al. [] invokes
these operations far too much (by several orders of magnitude) to be practical.

We now turn to Zaatar, a system that refines and implements the argument proto-
col of IKO (for verifiably outsourcing computations), and addresses the remaining obstacles.
Zaatar uses algebraic constraints over a large finite field to shrink program encoding and to
broaden the space of computations (§., §.); it reduces commitment costs by requiring
fewer cryptographic operations while offering better security (§.); it uses batching to re-
duce V ’s setup costs (§.); and it employs a new probabilistically checkable proof encoding
to achieve nearly ideal asymptotics for the prover (§.).

We provide an overview of Zaatar, before describing the aforementioned innova-
tions.

. Zaatar in a nutshell

Figure . depicts Zaatar. Zaatar provides the following interface to a client or a verifier, V .
V expresses its computation, Ψ, in a a high-level language [], and sends it to a server or a
prover, P , along with a batch of different inputs, x(1), . . . , x(β). P executes Ψ β times with
different inputs to obtain a batch of outputs, y(1), . . . , y(β), and returns the outputs to V .

In Zaatar, verification is a three-step process. (We provide a summary here; the sec-
tions ahead contain details.) Step À: V and P compile Ψ into a set of algebraic constraints
over a large finite field (a generalization of arithmetic circuits). Step Á: P creates β linear
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Figure .: Zaatar in a nutshell. V outsources the execution of its computation, Ψ, on a
batch of inputs, x(1), . . . , x(β), to an untrusted prover, P , which returns a batch of out-
puts, y(1), . . . , y(β). We use superscripts to denote different instances of the same compu-
tation. Note that the prover could be distributed (i.e., each instance j could execute on a
different machine). V checks if P computed correctly, using a three-step process. Step À:
V and P compile Ψ to a set of constraints, C. Step Á: P produces satisfying assignments
z(1), . . . , z(β) to C(X=x(1),Y=y(1)), . . . ,C(X=x(β),Y=y(β)), respectively. Step Â: V and P
engage in an interactive protocol in which V checks if P knows satisfying assignments to
C(X=x(1),Y=y(1)), . . . ,C(X=x(β),Y=y(β)), which in turn implies that it computed correctly.
V ’s queries are reused across all instances in the batch. Although computation need not hap-
pen in batch, verification cannot begin until V has all y(j). See §. for additional details.

functions, π(1), . . . , π(β), to convince V that y(i) = Ψ(x(i)) for 1 ≤ i ≤ β. Step Â: V and P
engage in an interactive protocol in which V checks if P computed correctly.

Inmore detail, stepÂproceeds in twophases (Figure . provides a high level overview).
In the first phase, the commit phase, V obtains a commitment toP ’s linear functions by send-
ing an encrypted query to P . In the second phase, the decommit phase, V issues a set of PCP
queries, q1, . . . , qµ, andP responds to them by returning π(i)(qj), for 1 ≤ i ≤ β and 1 ≤ j ≤ µ.
V first checks that P ’s responses are consistent with the commitment in the first phase, and
then runs a set of PCP tests, once for each instance in the batch. If all the tests pass, V ac-
cepts y(i) as the correct output ofΨ(x(i)) (for 1 ≤ i ≤ β); otherwise, it rejects the entire batch.
(Note that the execution of a computation need not happen in batch, but verification cannot
begin until V has all the outputs.)
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create π,
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(§4.6)  

batching (§4.4)
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unless marked with † 
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PCP verification checks (
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(Fig. 4.4, §4.3) 

π(q1)+π(q2)=π(q3),  π(q7)·π(q8)= π(q9)−π(q10), .... ? ?

π(t) = π(r) + α1·π(q1) +�+ αµ·π(qµ)
?

)

)

Figure .: High-level depiction of step Â in Figure .. We formalize this picture and prove
its soundness in Appendix A..

. Arithmetic circuits, concise gates, and algebraic constraints

To address the concern about the encoding of the computation, we change the model of
computation in the protocol of Ishai et al. [] to be arithmetic circuits, instead of Boolean
circuits. In a traditional arithmetic circuit, the input and output wires take values from a large
set (e.g., a finite field or the integers). is extension is a natural one, as the PCP machinery
is already expressed as algebraic versions of Boolean circuits (recall that V creates a set of
algebraic constraints starting from a Boolean circuit, as noted in §..; the same process
naturally extends to arithmetic circuits). However, we observe that themachinery also works
with what we call concise gates, each of which encapsulates a function of many inputs (e.g., a
dot product between two large vectors). Note that a gate here does not represent a low-level
hardware element but rather a modular piece of the computation that enters the verification
algorithm as an algebraic constraint.

is simple refinement is critical to practicality for many applications. First, it is
vastly more compact to represent, say, multiplication of two -bit integers with a single
gate than as a Boolean circuit. Beyond that, for certain computations (e.g., parallelizable nu-
merical ones, such as matrix multiplication), the circuit model imposes no overhead; that is,
the “circuit” is the same as a C++ program, so the only overhead comes from proving and
verifying. However, this model has known limitations. For example, if a computation in-
vokes a comparison operation, a bitwise operation, or a logical operation, arithmetic circuits
degenerate to Boolean circuits.
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To address the above expressiveness limitations of arithmetic circuits and of concise
gates, we design algebraic constraints to encode those program constructs (instead of first
representing those program constructs as arithmetic circuits or Boolean circuits and then
transforming them into constraints). We now introduce some terminology and definitions.

A quadratic constraint is an equation of total degree  that uses additions and multi-
plications (e.g., A ⋅Z1+Z2−Z3 ⋅Z4 = 0). A set of constraints is satisfiable if the variables can be
set to make all of the equations hold simultaneously; such an assignment is called a satisfying
assignment. As a simple example, a computation that increments its input is equivalent to (in
the sense of §.) the constraint set {Y = Z+1,Z = X}. As we show in Section ., this model
of computation can concisely represent many commonly used program constructs. For now,
we focus on a simple example.

Details and an example. Using algebraic constraints requires only minor modifications to
the PCP scheme described in Section ... Here, V produces a set of algebraic constraints
(there, V transforms a Boolean circuit into a set of constraints) over s variables from a finite
field F (there, over binary variables) that can be satisfied if and only if y is the correct output
of Ψ(x) (there, if and only if the circuit is satisfiable); V then combines those constraints to
form a polynomial over s values in the field F (there, in the field GF(2)).

To illustrate the above, we use the example ofm×mmatrixmultiplication.We choose
this example because it is both a good initial test (it is efficiently encodable as a set of con-
straints) and a core primitive in many applications: image processing (e.g., filtering, rotation,
scaling), signal processing (e.g., Kalman filtering), data mining, etc.

In this example computation, let A,B,C be m×m matrices over a finite field F, with
subscripts denoting entries, so A = (A1,1, . . . ,Am,m) ∈ Fm2 (for F sufficiently large we can
represent negative numbers and integer arithmetic; see §..). e verifier V sends A and B
to the proverP , which returns C; V wants to check that A ⋅B = C. Matrix C equals A ⋅B if and
only if the following constraints over variables Z = (Za

1,1, . . . ,Za
m,m,Zb

1,1, . . . ,Zb
m,m) ∈ F2m2

can be satisfied:

Za
i,j −Ai,j = 0, for i, j ∈ [m]; Zb

i,j − Bi,j = 0, for i, j ∈ [m];

Ci,j −
m
∑
k=1

Za
i,k ⋅ Z

b
k,j = 0, for i, j ∈ [m].

V is interested in whether the above constraints can be met for some setting Z =
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z (if so, the output of the computation is correct; if not, it is not). us, V proceeds as in
Section ... V constructs a polynomial Q(V,Z) by combining the constraints: Q(V,Z) =
∑i,j va

i,j ⋅(Za
i,j−Ai,j)+∑i,j vb

i,j ⋅(Zb
i,j−Bi,j)+∑i,j vc

i,j ⋅(Ci,j−∑m
k=1 Za

i,k ⋅Z
b
k,j), where V chooses the

variables {v} randomly from F. As before, V regards the prover P as holding linear proof
oracles π = (π(1), π(2)), where π(1)(⋅) = ⟨⋅, z⟩ and π(2)(⋅) = ⟨⋅, z⊗ z⟩ for some z ∈ F2m2 .
And as before, V issues linearity test queries, quadratic correction test queries, and circuit
test queries (the randomly chosen {v} feed into this latter test), repeating the tests ρ times.

e completeness and soundness of the above scheme follows from the completeness
and soundness of the base protocol (Section ..). us, if C = A ⋅ B (more generally, if the
claimed output y equals Ψ(x)), then V can be convinced of that fact; if the output is not
correct, P has no more than ϵ = κρ probability of passing verification.

Savings. Moving from a Boolean to a non-concise arithmetic circuit saves, for a fixed m,
an estimated four orders of magnitude in the number of constraint variables (i.e., ∣{Z}∣) and
thus eight orders of magnitude in the query size and the prover’s work (which are quadratic
in the number of variables). e use of algebraic constraints decrease these quantities by
another factor of m2 (since they reduce the number of variables from m3 + 2m2 to 2m2).
In Figure ., the algebraic constraints column reflects these two reductions, the first being
reflected in the elimination of the 109 factor and the second in the move from the m6 to the
m4 term.

. Strengthening linear commitment

e commitment protocol in the base scheme of Ishai et al. [] relies on an additive ho-
momorphic encryption operation. If executed once, this operation is reasonably efficient
(hundreds of microseconds; see Section .); however, the number of times that the base
scheme invokes it is proportional to at least the square of the input size times µ, the num-
ber of PCP queries (roughly ). For the example of m × m matrix multiplication with
m = 1000, the base scheme would thus require at least (1000)4 ⋅ 1000 ⋅ 100 µs: over 
years, and that’s aer the concise representation given by the previous refinement!

While we would be thrilled to eliminate homomorphic encryptions, we think that
doing so is unlikely to work in this context. Instead, in this section we modify the com-

Note that we do not require fully homomorphic encryption []; as we discuss in Chapter , the costs of
such schemes are still prohibitive.
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Commit+Multidecommit
e protocol assumes an additive homomorphic encryption scheme (Gen,Enc,Dec) over a finite field, F.
Commit phase
Input: Prover holds a vector u ∈ Fn, which defines a linear function π∶Fn → F, where π(q) = ⟨u, q⟩.
. Verifier does the following:

• Generates public and secret keys (pk, sk)← Gen(1λ), where λ is a security parameter.
• Generates vector r ∈R Fn and encrypts r component-wise, so Enc(pk, r) =
(Enc(pk, r1), . . . ,Enc(pk, rn)).

• Sends Enc(pk, r) and pk to the prover.
. Using the homomorphism in the encryption scheme, the prover computes e← Enc(pk, π(r))without

learning r. e prover sends e to the verifier.
. e verifier computes s← Dec(sk, e), retaining s and r.
Decommit phase
Input: the verifier holds q1, . . . , qµ ∈ Fn and wants to obtain π(q1), . . . , π(qµ).
. e verifier picksµ secretsα1, . . . , αµ ∈R F and sends to the prover (q1, . . . , qµ, t), where t = r+α1q1+
⋯ + αµqµ ∈ Fn.

. e prover returns (a1, a2, . . . , aµ, b), where ai, b ∈ F. If the prover behaved, then ai = π(qi) for all
i ∈ [µ], and b = π(t).

. e verifier checks: b ?= s+α1a1+⋯+αµaµ. If so, it outputs (a1, a2, . . . , aµ). If not, it rejects, outputting
�.

Figure .: Zaatar’s commitment protocol. V decommits evaluations ofP ’s linear function at
locations, q1, . . . , qµ, with a single commitment phase.is is a strengthening of the commit-
ment protocol of IKO (depicted in Figure .) since in their protocol to decommitP ’s linear
function at µ locations, V has to µ instances of the commit phase (and hence requiring V to
perform a factor of µmore homomorphic encryptions relative to this version, and µ ≈ 1000).
e protocol assumes an additive homomorphic encryption scheme but, with small modifi-
cations, works with a multiplicative homomorphic scheme, such as ElGamal [] (details in
Appendix A.).

mitment protocol to perform three orders of magnitude fewer encryptions; Appendix A.
proves the soundness of this modification by reducing its security to the semantic security
of the homomorphic encryption scheme. Moreover, our reduction is more direct than in the
base scheme, which translates into further cost reductions.

Details. In the base scheme [], each PCP query by V (meaning each of the µ queries, as
described in §.., §., and Appendix A.) requires V and P to run a separate instance
of the commitment protocol in Figure .. us, to check one computation Ψ, V homomor-
phically encrypts µ ≈ 1000 (see Figure .) vectors, and P works over all of these cipher-
texts. is factor of  is an issue because the vectors are encrypted componentwise, and
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they have many components! (In the example above, they are elements of Fs2 or Fs, where
s = 2 ⋅ 106.)

Figure . presents ourmodified commitment protocol. It homomorphically encrypts
only one vector r ∈ Fs2+s, called the commitment query, with the encryption work amortizing
over many queries (q1, . . . , qµ). is new protocol leads to a more direct security reduction
than in the base scheme. In their central reduction, Ishai et al. establish that commitment
allows V to treat P as a set of non-colluding but possibly malicious oracles. In each repeti-
tion, their V must therefore issue extra queries (beyond the ℓ PCP queries) to ensure that
the oracles match. With our commitment protocol, V can treat P as a single (possibly cheat-
ing) oracle and submit only the PCP queries. Stated more formally, Ishai et al. reduce linear
PCP to linear MIP (multiprover interactive proof []) to the argument model, whereas we
reduce linear PCP directly to the argument model. We prove the reduction in Appendix A..

Savings. is refinement reduces the homomorphic encryptions and other commitment-
related work by three orders of magnitude, as depicted in Figure . by the elimination of the
µ′ term from the “commit” rows in the “new commit” column. As a second-order benefit, we
save another factor of three (depicted in Figure . as amove fromµ′ toµ queries), as follows.
e queries to establish the consistency of multiple oracles have error (ℓ − 1)/ℓ = 13/14.
However, the soundness error of our base PCP protocol is κ = 7/9. Since (13/14)ρ′ = (7/9)ρ

when ρ′ ≈ 3ρ, it takes roughly three times asmany repetitions of the protocol to contendwith
this extra error. Finally, the direct reduction yields a qualitative benefit: it simplifies Zaatar.

. Amortizing query costs through batching

Despite the optimizations so far, the verifier’s work remains unacceptable. First, V must ma-
terialize a set of constraints that represent the computation, yet writing these down is as
much work as executing the computation. Second, V must generate queries that are larger
than the number of steps in Ψ. For example, for m × m matrix multiplication (§.), the
commitment query has 4m4 + 2m2 components (matching the number of components in
the vector representation of the proof), in contrast to the O(m3) operations needed to ex-
ecute the computation. A similar obstacle holds for many of the PCP queries. To amortize
these costs, we modify the protocols to work over multiple computation instances and to
verify computations in batch; we also rigorously justify these modifications. Note that the
modifications do not reduce V ’s checking work, only V ’s cost to issue queries; however, this
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is acceptable since checking is fast.

Details. We assume that the computationΨ (or equivalently, C) is fixed; V andP will work
over β instances of Ψ, with each instance having distinct input. We refer to β as the batch
size. e prover P formulates β proof oracles (linear functions): π1, . . . , πβ . Note that the
prover can stack these to create a linear function π ∶ Fs2+s → Fβ (one can visualize this as a
matrix whose rows are π1, . . . , πβ).

To summarize the protocol,V nowgenerates one set of commitment andPCPqueries,
and submits them to all of the oracles in the batch. e prover now responds to queries q
with π(q) ∈ Fβ , instead of with π(q) ∈ F. By way of comparison, the previous refinement
(§.) encrypts a single r for a set of queries q1, . . . , qµ to a proof π. is one issues a single r
and a single set of queries q1, . . . , qµ to multiple proofs π1, . . . , πβ . Appendix A. details the
protocol and proves its soundness.

Savings. e most significant benefit is qualitative: without batching, V cannot gain from
outsourcing, as the query costs are roughly the same as executing the computation.e quan-
titative benefit of this refinement is, as depicted in Figure ., to reduce the per-instance cost
of commitment and PCP queries by a factor of β.

. Broadening the space of computations

As described in §., to support a general programming model, Zaatar constructs algebraic
constraints directly, instead of translating arithmetic circuits and concise gates into con-
straints. In particular, this section describes howZaatar supports computations over floating-
point fractional quantities and a programming model that includes inequality tests, logical
expressions, conditional branching, etc. Additionally, our techniques apply to themany pro-
tocols that use the constraint formalism or arithmetic circuits. Furthermore, the constraints
that we design lend themselves to automatic compilation. at is, given a computation in
a high level language, there is a mechanical process to generate a set of constraints such

Early in their paper Ishai et al. briefly mention such an approach, but they do not specify it. Later in their
paper [, §.], in a more general context, they reuse PCP queries but not commitment queries.

We suspect that many of the individual techniques are known. However, when the techniques combine, the
material is surprisingly hard to get right, so we will delve into (excruciating) detail, consistent with our focus on
built systems.
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that they are equivalent to the computation (in the sense of §., extended to a set of alge-
braic constraints), and then one could apply an argument protocol to verifiably execute the
computation (as described in §.). In fact, we have implemented a compiler (derived from
Fairplay’s []) that transforms high-level computations first into constraints and then into
verifier and prover executables.

Framework to map computations to constraints. e challenges of representing compu-
tations as constraints over finite fields include: the “true answer” to the computation may
live outside of the field; sign and ordering in finite fields interact in an unintuitive fashion;
and constraints are simply equations, so it is not obvious how to represent comparisons, log-
ical expressions, and control flow. To explain Zaatar’s solutions, we first present an abstract
framework that illustrates how Zaatar broadens the set of computations soundly and how
one can apply the approach to further computations.

Recall that in §., we used C to refer to a Boolean circuit. We now use C to refer
to a set of algebraic constraints. In our context, a set of constraints C will have a designated
input variable X and output variable Y (this generalizes to multiple inputs and outputs), and
we use C(X=x,Y=y) to denote C with variable X bound to x and Y bound to y. We say that
a set of constraints C is equivalent to a desired computation Ψ if: for all x, y, C(X=x,Y=y)
is satisfiable (i.e., there exists a setting of unbound values for variables in C(X=x,Y=y) such
that all constraints evaluate to ) if and only if y = Ψ(x).

To map a computation Ψ over some domain D (such as the integers, Z, or the ratio-
nals, Q) to equivalent constraints over a finite field, the programmer or compiler performs
three steps, as illustrated and described below:

Ψ over D
(C1)
ÐÐÐ→ Ψ over U

(C2)
ÐÐÐ→ θ(Ψ) over F

(C3)
ÐÐÐ→ C over F

C1 Bound the computation. Define a set U ⊂ D and restrict the input to Ψ such that the
output and intermediate values stay in U.

C2 Represent the computation faithfully in a suitable finite field. Choose a finite field, F, and
a map θ∶U → F such that computing θ(Ψ) over θ(U) ⊂ F is isomorphic to computing
Ψ over U. (By “θ(Ψ)”, we mean Ψ with all inputs and literals mapped by θ.)

C3 Transform the finite field version of the computation into constraints. Write a set of con-
Note that in the example mentioned in §., these designated input and output variables are implicit.
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Ψ ∶

if (X1 < X2)
Y = 3

else
Y = 4

C< =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B0(1 − B0) = 0,
B1(2 − B1) = 0,
⋮ ⋮
BN−2(2N−2 − BN−2) = 0,
θ(X1) − θ(X2) − (p − 2N−1) −∑N−2

i=0 Bi = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

CΨ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M{C<},
M(Y − 3) = 0,
(1 −M){C>=},
(1 −M)(Y − 4) = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Figure .: Pseudocode for our case study of Ψ, and corresponding constraints CΨ. Ψ’s in-
puts are signed integers x1, x2; per steps C and C (§..), we assume x1 − x2 ∈ U ⊂
[−2N−1, 2N−1), where p > 2N. e constraints C< test x1 < x2 by testing whether the bits
of θ(x1)− θ(x2) place it in [p− 2N−1, p). M{C}means multiplying all constraints in C by M
and then reducing to degree-.

straints over F that are equivalent to θ(Ψ).

.. Signed integers and floating-point rationals

We now instantiate C and C for integer and rational number computations; the next sec-
tion addresses C.

Consider m ×m matrix multiplication over N-bit signed integers. For step C, each
term in the output,∑m

k=1 AikBkj, has m additions of 2N-bit subterms so is contained in [−m ⋅
22N−1,m ⋅ 22N−1); this is our set U.

For step C, take F = Z/p (the integers mod a prime p, to be chosen shortly) and de-
fine θ∶U→ Z/p as θ(u) = u mod p. Observe that θmapsnegative integers to { p+1

2 ,
p+3
2 , . . . , p−

1}, analogous to how processors represent negative numbers with a  in the most significant
bit (this technique is standard [, ]). Of course, addition and multiplication in Z/p do
not “know” when their operands are negative. Nevertheless, the computation overZ/p is iso-
morphic to the computation over U, provided that ∣Z/p∣ > ∣U∣ (as shown in Appendix B.).
us, for the given U, we require p > m ⋅ 22N. Note that a larger p brings larger costs (see
Figure C. and §..), so there is a three-way trade-off among p,m,N.

We now turn to rational numbers. For step C, we restrict the inputs as follows: when
written in lowest terms, their numerators are (Na + 1)-bit signed integers, and their denom-
inators are in {1, 2, 22, 23, . . . , 2Nb}. Note that such numbers are (primitive) floating-point
numbers: they can be represented as a ⋅ 2−q, so the decimal point floats based on q. Now,
for m ×m matrix multiplication, the computation does not “leave” U = {a/b∶ ∣a∣ < 2N′a , b ∈
{1, 2, 22, 23, . . . , 2N′b}}, for N′a = 2Na +2Nb + log2 m and N′b = 2Nb (shown in Appendix B.).

For stepC,we takeF = Q/p, the quotient field ofZ/p. Take θ( ab) = (a mod p, b mod
p). For any U ⊂ Q, there is a choice of p such that the mapped computation over Q/p is
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isomorphic to the original computation over Q (shown in Appendix B.). For our U above,
p > 2m ⋅ 22Na+4Nb suffices.

Limitations and costs. To understand the limitations of Zaatar’s floating-point representa-
tion, consider the number a ⋅2−q, where ∣a∣ < 2Na and ∣q∣ ≤ Nq. To represent this number, the
IEEE standard requires roughly Na + logNq + 1 bits [] while Zaatar requires Na + 2Nq + 1
bits (shown in Appendix B.). As a result, Zaatar’s range is vastly more limited: with  bits,
the IEEE standard can represent numbers on the order of 21023 and 2−1022 (with Na = 53
bits of precision) while  bits buys Zaatar only numbers on the order of 232 and 2−31 (with
Na = 32). Moreover, unlike the IEEE standard, Zaatar does not support a division operation
or rounding.

However, comparing Zaatar’s floating-point representation to its integer representa-
tion, the extra costs are not terrible. First, the prover and verifier take an extra pass over
the input and output (for implementation reasons; see Appendix B. for details). Second, a
larger prime p is required. For example, m ×m matrix multiplication with -bit integer in-
puts requires p to have at least log2 m + 64 bits; if the inputs are rationals with Na = Nq = 32,
then p requires log2 m+193 bits.e end-to-end costs are about 2× those of the integers case
(see Section .). Of course, the actual numbers depend on the computation. (Our compiler
computes suitable bounds with static analysis.)

.. General-purpose program constructs

Case study: branch on order comparison. We now illustrate C with a case study of a
computation, Ψ, that includes a less-than test and a conditional branch; pseudocode for Ψ
is in Figure .. For clarity, we will restrict Ψ to signed integers; handling rational numbers
requires additional mechanisms (see Appendix B.).

How can we represent the test x1 < x2 using constraint equations? e solution is to
use special range constraints that decompose a number into its bits to test whether it is in a
given range; in this case, C<, depicted in Figure ., tests whether e = θ(x1) − θ(x2) is in the
“negative” range of Z/p (see Section ..). Now, under the input restriction x1 − x2 ∈ U, C<

is satisfiable if and only if x1 < x2 (shown in Appendix B.). Analogously, we can construct
C>= that is satisfiable if and only if x1 ≥ x2.

Finally, we introduce a / variable M that encodes a choice of branch, and then ar-
range for M to “pull in” the constraints of that branch and “exclude” those of the other. (Note
that the prover need not execute the untaken branch.) Figure . depicts the complete set of
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constraints, CΨ; these constraints are satisfiable if and only if the prover correctly computes
Ψ (shown in Appendix B.).

Logical expressions and conditionals. Besides order comparisons and if-else, Zaatar can
represent ==, &&, and || as constraints. An interesting case is !=: we can represent Z1!=Z2
with {M ⋅ (Z1 − Z2) − 1 = 0} because this constraint is satisfiable when (Z1 − Z2) has a
multiplicative inverse and hence is not zero. ese constructs and others are detailed in Ap-
pendix B..

Limitations and costs. We now assess the limitations and costs of Zaatar’s programming
model. As noted above, Zaatar includes a compiler to automatically transform programs into
a set of constraints. It compiles a subset of SFDL, the language of the Fairplay compiler [].
us, our limitations are essentially those of SFDL; notably, loop bounds have to be known
at compile time.

How efficient is our representation? e program constructs above mostly have con-
cise constraint representations. Consider, for instance, comp1==comp2; the equivalent con-
straint set C consists of the constraints that represent comp1, the constraints that represent
comp2, and an additional constraint to relate the outputs of comp1 and comp2. us, C is the
same size as its two components, as one would expect.

However, two classes of computations are costly. First, inequality comparisons re-
quire variables and a constraint for every bit position; see Figure .. Second, the constraints
for if-else and ||, as written, seem to be degree-; notice, for instance, the M{C<} in Fig-
ure .. To be compatible with the core protocol, these constraints must be rewritten to be
total degree  (as mentioned in §.), which carries costs. Specifically, if C has s variables
and ∣C∣ constraints, an equivalent total degree  representation of M{C} has s + ∣C∣ variables
and 2 ⋅ ∣C∣ constraints (shown in Appendix B.).

. A new probabilistically checkable proof encoding

As mentioned earlier in the chapter, the protocol of Ishai et al. [] faces a severe obstacle to
plausible practicality: the prover’s per-instance work and the verifier’s query setup work are
quadratic in the size of the computation. We make this statement more precise below, but for
now recall from Section .. that the server’s proof vector, u, in the protocol of Ishai et al. is
(z, z⊗ z), so ∣u∣ = ∣z∣ + ∣z∣2.
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In this section, we describe how Zaatar addresses the issue. is section describes
Zaatar’s encoding, in which the proof vector size and the verifier’s setup work are linear in
the size of the computation.

e high-level idea in Zaatar’s encoding is to retain IKO’s structure but to replace
the linear PCP of Arora et al. [] with a new linear PCP that is based on Quadratic Arith-
metic Programs (QAPs), a formalism to encode program executions introduced by Gennaro,
Gentry, Parno, and Raykova (GGPR) [, §–]. However, this encoding imposes costs. Ap-
pendix C. weighs these costs against the benefits, finding that the linear PCP is far more
favorable than the alternative.

is substitution works because (a) the linear commitment protocol requires only
that the PCP is a linear function; and (b)QAPs have a linear query structure that yields a PCP,
a key observation of Zaatar (Bitansky et al. [] concurrently make a similar observation; see
Chapter ). To obtain this QAP-based PCP, we extract the essence of GGPR’s construction
(which is more complex because it is geared to a different regime; see Section ). Once we do
so, we inherit a proverwhose proof vector is, to first approximation, the satisfying assignment
itself.

Since PCPs “derive their magic” from a highly redundant encoding of the proof, it
may seem surprising that we have a protocol in which the proof vector needs little redun-
dancy. However, as Ishai et al. [] observed, a linear PCP contains implicit redundancy be-
cause the actual proof is not the vector but rather the linear function, which is exponentially
larger than the classical proof (if written out as a string, it would contain an entry for every
point in its domain). For this reason, Ishai et al. speculated that avoiding redundancy in the
proof vector might be possible; the construction described below resolves this conjecture.

Loosely speaking, QAPs achieve this compaction by encoding circuits (we adapt the
encoding to constraints) as high-degree polynomials, in contrast to the low-degree polyno-
mials of Section ...

Details. enewPCPprotocol takes as given a constraint set C, over the variables (X,Y,Z),
that is equivalent to a computation Ψ. (Recall that X is the set of input variables, Y is the set
of output variables, Z are the unbound variables, and let ∣C∣ be the number of constraints
in C.) e protocol constructs two polynomials. e construction is somewhat analogous to

ese costs include an extra log factor applied to the number of steps in the computation. e reason is
that the size of our field F must be larger than the number of steps in the computation, and meanwhile each
entry in the proof is log ∣F∣ bits. However, we neglect this factor in our description by referring to “the size of the
computation”, which captures the field size.
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the description in Section ..; we will mention some of the parallels. e first polynomial,
which we call the divisor polynomial, D(t), is univariate (and over F) and fixed for all com-
putationsΨ of a given size; V explicitly materializes D(t). e second polynomial, Px,y(t,Z),
depends on the constraints C, the input x, and the purported output y. We write this poly-
nomial as P(t,Z); it is analogous to the polynomial Q(V,Z) in Section .., though here
t ∈ F, versus V ∈ F∣C∣. As with Q(V,Z), neither party fully materializes P(t,Z). We give the
complete construction in Appendix C. and here state the relevant properties.

e construction ensures that given z, P(t, z) can be factored as D(t) ⋅ Hx,y,z(t) for
some Hx,y,z(t) if and only if z satisfies C(X=x,Y=y). Meanwhile, this factoring (and hence
satisfiability) can be checked probabilistically, as follows. Let τ be a random choice from F.
en () If z satisfies C(X=x,Y=y), then the polynomials factor, so we haveD(τ) ⋅Hx,y,z(τ) =
P(τ, z), for all τ ∈ F; but () If z is not a satisfying assignment, then for all polynomials H̃(t),
we have D(τ) ⋅H̃(τ) ≠ P(τ, z), except with probability 2 ⋅ ∣C∣/∣F∣.is is because polynomials
that are different are equal almost nowhere in their domains (an extreme case is two lines,
which cross at most once). Since our fields are large (§.), the preceding probability is very
small.

e query procedure and P ’s proof vector, then, are designed to allow V to check
whether D(t) ⋅Hx,y,z(t) = P(t, z), by checking whether this relation holds at a point τ . Specif-
ically, they allow V to obtain the values H(τ) ∈ F and P(τ, z) ∈ F, where: V chooses τ ran-
domly from F, P holds the polynomial H(t) and the assignment z (V has no direct access
to either), and neither party materializes P(t,Z). (e analogy here is with the queries that
allow V to obtain Q(v, z), in Section ...) If D(τ) ⋅ H(τ) = P(τ, z), then V accepts and
otherwise rejects. (e analogy is with the condition that Q(v, z) = 0, in Section ...) is
procedure probabilistically checks whether z is a satisfying assignment; it is complete and
sound because of properties () and () above.

e proof vector. A correct proof vector u is (z, h), where z is a purported satisfying
assignment to C(X=x,Y=y), and h = (h0, . . . ,h∣C∣) ∈ F∣C∣+1 are the coefficients of the poly-
nomial Hx,y,z(t), introduced above. As in Section .., this proof vector u can be regarded
as two linear functions, which we denote πz(⋅) = ⟨⋅, z⟩ and πh(⋅) = ⟨⋅,h⟩. us, the proof
vector’s length is equal to the number of variables plus the number of constraints, or ∣Z∣+ ∣C∣.

e queries and check. To carry out the probabilistic check described above, V must
first ensure thatP is holding a linear function, soV issues linearity queries (as in Section ..).

Next,Vmust obtain the valueHx,y,z(τ) ∈ F. To do so,V submits qh = (1, τ, τ 2, . . . , τ ∣C∣)
to P and asks for πh(qh), which equals ⟨qh,h⟩ = ∑

∣C∣
i=0 hi ⋅ τ i = Hx,y,z(τ).
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V also needs the valueP(τ, z) ∈ F. As shown inAppendixC.,P(t,Z) is a polynomial
in t and Z, with the form

P(t,Z) =
⎛
⎝

∣Z∣
∑
i=1

Zi ⋅Ai(t) +A′(t)
⎞
⎠
⋅
⎛
⎝

∣Z∣
∑
i=1

Zi ⋅ Bi(t) + B′(t)
⎞
⎠
−
⎛
⎝

∣Z∣
∑
i=1

Zi ⋅ Ci(t) + C′(t)
⎞
⎠
,

for some polynomials {Ai(t),Bi(t),Ci(t)}i=1...∣Z∣ and {A′(t),B′(t),C′(t)}. Now, observe
that evaluating P(t,Z) at t=τ yields P(τ,Z), a polynomial in Z with the form:

P(τ,Z) = (⟨qa,Z⟩ + La) ⋅ (⟨qb,Z⟩ + Lb) − (⟨qc,Z⟩ + Lc) ,

where {qa, qb, qc} ∈ F∣Z∣ depend on τ , and {La,Lb,Lc} ∈ F depend on τ, x, and y. Finally we
can say how V obtains P(τ, z): it asks P for πz(qa), πz(qb), and πz(qc).

V ’s check is then the following. V computes D(τ) and {La,Lb,Lc}, and checks

D(τ) ⋅ πh(qh)
?= (πz(qa) + La) ⋅ (πz(qb) + Lb) − (πz(qc) + Lc) .

Note that the set of V ’s protocol that we just described is not complete. In particular, for sim-
plicity, it does not include self-correction (the purpose of self-correction is described in [,
§] and [, §..]). However, the full protocol and its analysis are in Appendix C.

. Implementation

Zaatar’s implementation consists of two components: () a library that implements an en-
hanced version of the argument protocol of IKO [] (§.–.), and () a compiler that
transforms a program in a high-level language into a set of constraints.

Zaatar’s argument protocol is implemented in C++ (about  lines, per []). Za-
atar’s compiler consists of two stages.e front-end compiles a subset of Fairplay’s SFDL []
to constraints. is transformation is detailed elsewhere [], but broadly speaking, it works
as follows. e front-end turns a program (even if it has conditionals and loops) into a list of
assignment statements; then it produces a constraint or pseudoconstraint for each statement
(pseudoconstraints abstract certain operations; for instance, order comparisons expand to
O(logF) actual constraints). It is derived from Fairplay and is implemented in  lines
of Java, starting from Fairplay’s  lines (per []). e back-end transforms constraints
into C++ code, which invokes the library code that implements Zaatar’s argument protocol;
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the back-end then invokes gcc to generate executables for the prover and the verifier. e
back-end is  lines of Python code.

When executed, the verifier and the prover run as separate processes and exchange
data using Open MPI []. Both the verifier and the prover can offload their cryptographic
operations to GPUs using CUDA []; in addition, the prover can be distributed overmultiple
machines, with each machine computing a subset of a batch (as we describe below). For
encryption (see Figure .), we use ElGamal [] with -bit keys; for a pseudorandom
generator, we use the amd64-xmm6 variant of the ChaCha/ stream cipher [].

Parallelization. Many of Zaatar’s remaining costs are in the cryptographic operations in
the commitment protocol (Figures . and C.). To mitigate these costs, we distribute the
prover over multiple machines, leveraging Zaatar’s inherent parallelism (from batching, de-
scribed in §.). We also implement the prover and verifier on GPUs, which raises two ques-
tions. () Isn’t this just moving the problem? Yes, and this is good: GPUs are optimized for
the types of operations that bottleneck Zaatar. () Why do we assume that the verifier has a
GPU? Desktops are more likely than servers to have GPUs, and the prevalence of GPUs is
increasing. Also, this setup models a future in which specialized hardware for cryptographic
operations is common.

To distribute Zaatar’s prover, we run multiple copies of it (one per host), each copy
receiving a fraction of the batch (Section .). In this configuration, the provers use theOpen
MPI [] message-passing library to synchronize and exchange data.

To further reduce latency, each prover offloads work to a GPU (see also [] for
an independent study of GPU hardware in the context of []). We exploit three levels of
parallelism here. First, the prover performs a ciphertext operation for each component in
the commitment vector (§.); each operation is (to first approximation) separate. Second,
each operation computes two independent modular exponentiations (the ciphertext of an
ElGamal encryption has two elements). ird, modular exponentiation itself admits a par-
allel implementation (each input is a multiprecision number encoded in multiple machine
words). us, in our GPU implementation, a group of CUDA [] threads computes each
exponentiation.

We also parallelize the verifier’s encryptionworkduring the commitment phase (§.),
using the approach above plus an optimization: the verifier’s exponentiations are fixed base [,
Chapter .], letting Zaatar memoize intermediate squares. As another optimization, we
implement simultaneous multiple exponentiation [, Chapter .], which accelerates the
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prover.

We implement exponentiations for the prover and verifier with the libgpucrypto
library of SSLShader [], modified to support the memoization.

An optimization. We optimize the prover in Zaatar by constructing the proof vector u
(§.) using the fast Fourier transform (FFT), a suggestion of GGPR []. As a result, P ’s
per-instance running time drops fromO(∣Z∣+∣C∣⋅log ∣C∣) (Figure C.) toO(∣Z∣+∣C∣⋅log ∣C∣).

. Evaluation

In this section, our goal is to assess the effect of Zaatar’s algorithmic refinements and systems
engineering techniques (§.–.) on end-to-end performance. We do that by answering
the following questions: () What is the effect of Zaatar’s refinements on the costs of the
prover and the verifier? () What are the costs of the prover and the verifier compared to
simply executing a computation? and () What is the effect of parallelizing the prover? In
addition, this section discusses the expressiveness of constraints and the limitations of Zaatar
itself (§..).

Benchmark computations. To answer the questions above, we use a set of benchmark com-
putations: (a) matrix multiplication, (b) polynomial evaluation, (c) root finding via bisec-
tion [, Figure ], (d) Partitioning Around Medoids (PAM) clustering [], (e) Floyd-
Warshall all-pairs shortest paths [], and (f) the longest common subsequence (LCS) prob-
lem. Computations (a), (d), and (f) use -bit signed integers as inputs. Computation (c)
uses rational number inputs with -bit numerators, -bit denominators. Computations (b)
and (e) also have rational inputs, with -bit numerators, -bit denominators. We use a
finite field with a prime modulus of size  bits for the integer computations and size 
bits for the rational number computations. e details of rational number handling and rep-
resentation are given in Appendix B..

Metrics and setup. We measure latency and computing cycles used by Zaatar’s prover and
verifier.We report the prover’s costs, including the CPU time to execute the computation and
to participate in the verification protocol. For the verifier, we report the cross-over point, β∗:

Although the last optimization is well-known, we were inspired by other works that implement it [, ,
].
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the number of instances of a computation at which the verifier’s total costs equals the cost of
executing a batch locally. Note that this quantity captures only the point at which the verifier
is better off verifying a batch versus executing the batch; this quantity does not take into
account the prover’s CPU costs or the network costs (we evaluate Zaatar’s cross-over points
for network costs in Section .).Wemeasure local computation using implementations built
on the GMP library.

For each result that we report, we run at least three experiments and take averages
(the standard deviations are always within  of the means). We measure CPU time us-
ing getrusage and latency using PAPI’s real time counter []. Our experiments use the
Longhorn cluster at the Texas Advanced Computing Center (TACC). Each machine is con-
figured identically and runs Linux on an Intel Xeon processor E . GHz with GB of
RAM. Experiments with GPUs use machines with an NVIDIA Quadro FX . Each GPU
has  CUDA cores and GB of memory.

.. Effect of Zaatar’s refinements on end-to-end costs

To understand the effect of Zaatar’s algorithmic refinements on the end-to-end performance
of the verifier and the prover, we consider a series of baseline systems that contain a subset of
Zaatar’s refinements. We cannot experiment with those baselines as they are too expensive
to run on real hardware.erefore, we predict their performance using our cost models (Fig-
ures . and C.), which we now validate. We run microbenchmarks to quantify the model’s
parameters. We run a program that executes each operation in the cost model  times
and report the average CPU time, for two field sizes (standard deviations are within  of
the means). e results are immediately below:

field size e d h flazy f fdiv c

128 bits  µs  µs  µs  ns  ns  µs  ns
220 bits  µs  µs  µs  ns  ns  µs  ns

We use our cost model to validate our experimental results for Zaatar; we find that
the empirical CPU costs are - larger than themodel’s predictions. us, we use our cost

is is an optimistic baseline as the use of GMP’s big number arithmetic increases the cost of local com-
putation. However, without such a baseline, Zaatar’s V will not beat local computation (at input sizes, for our
benchmarks, that we can currently experiment with), and hence we will not be able to report β∗. Nonetheless,
Pantry (Chapter ) reduces the costs of V further to a point where V can beat an optimized native computation
baseline at an input size that we can experiment with; Section .. provides additional details.

e flazy parameter is not explicitly in Figure C., but some of the instances of f in the figure should be read
as flazy, which is the cost of a field multiplication that does not require applying “mod p”.
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model as a reasonable proxy for actual experimental results; we predict cross-over points,
and the costs to the prover and the verifier at those cross-over points, under the baseline
systems and Zaatar.

Figure . depicts the estimated cross-over points, and the costs of the prover and the
verifier (under the aforementioned baseline systems and Zaatar) for matrix multiplication at
various input sizes. Observe that Zaatar’s refinements dramatically reduce the costs of the
protocol entities and the cross-over points.

.. Cost of verifiable execution and the need for batching

We compare the prover’s costs and the verifier’s under Zaatar to the cost of running the com-
putation locally. To do so, we experiment with the above benchmark computations at the
following input sizes: (a) matrix multiplication with m = 128, (b) polynomial evaluation
with m = 512, (c) root finding for degree- polynomials with m=256 variables and L=8 it-
erations, (d) PAM clustering with 2560 data points (m=20 samples with d=128 dimensions
clustered into two groups), (e) Floyd-Warshall with m=25 nodes, and (f) LCS between two
strings of length m=300.

Figure . summarizes the results. e prover in Zaatar is substantially slower than
local computation, and the verifier incurs a large setup cost. However, the verifier’s per-
instance costs (the cost to verify an instance of a computation) is less than the cost to execute
the computation locally, so as described in §. and quantified in Figure ., the verifier can
gain from outsourcing a batch of instances of the same computation with potentially differ-
ent inputs.

.. Effect of parallelization on the latency of the prover

e previous subsection established that the computational burden is still heavy for Zaatar’s
prover. However, the latency can be tamed. Specifically, we expect that (a) hardware accelera-
tion (e.g., GPUs) reduces latency per-instance, and (b) distributing the prover over morema-
chinesmakes the latency of a batch notmuch greater than the latency of a single instance.We
experiment by running Zaatar under various hardware configurations (multiple machines,
GPUs, etc.), measuring the latency at the verifier. Figure . depicts the results. GPU ac-
celeration improves per-instance latency by roughly , and distribution indeed achieves
near-linear speedup.
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Figure .: Speedups from parallelizing and distributing the prover. We run with m=100 for
matrix multiplication, m = 256 for polynomial evaluation, m = 25,L = 8 for root finding by
bisection, m=10,d=128 for PAM clustering, m=100 for longest common subsequence, and
m=15 for all-pairs shortest paths.We use β = 60 in all cases. Configurations are denoted with
bar labels; for example, C means  CPU cores, and C+G means  CPU cores with 
GPUs. GPU acceleration improves per-instance latency by about , and Zaatar’s prover
achieves near-linear speedup as it gets more hardware resources.

.. Applicability of constraints and limitations of Zaatar

is section has established that (a) Zaatar produces vast performance improvements over a
naive implementation of the protocol of Ishai et al. [], (b) Zaatar’s verifier wins only aer
batching many computations, and (c) Zaatar’s prover is substantially more expensive than
simply executing the computation. Points (b) and (c) are consequences of the underlying
machinery, specifically that (i) the computation must be encoded as constraints and (ii) the
verification machinery brings intrinsic costs. Below, we delve into (i) followed by (ii).

Concerning the constraints formalism, it is, on the one hand, expressive. Indeed,
degree- constraints can represent any computation that terminates in polynomial time (this
is implied by Pippenger and Fischer’s result []). at is, in principle any program for
which an upper-bound on running time can be established at compile time can be repre-
sented. On the other hand, the constraints formalism imposes undesirable costs. ese costs
vary depending on the program construct and computation. Straight-line operations (e.g.,
integer additions andmultiplications) translate directly and efficiently into constraints. Com-
parisons, by contrast, require O(log ∣F∣) constraints (see Section .). Worse, under natural
translations of computations, indirect memory accesses (for instance, array indices that are
not known at compile time) produce an excessive number of constraints.

Concerning the verification machinery (that is, even given a program already ex-
pressed in constraints), there are several limitations and overheads. First, verification re-
quires touching each input and output, so the client saves CPU cycles only when outsourcing
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computations that take time superlinear in the input size. Second, the sheer size of the queries
introduces a substantial setup cost for the verifier; the batched model (§.) addresses this
cost but the verifier “breaks even” only when it has enough instances to batch. ird, the
proof encoding introduces overhead for the prover. Finally, the cryptographic operations
are a burden on the verifier and prover, particularly the prover.

. Summary

Zaatar considerably expands the applicability of probabilistically checkable proofs (PCPs)
and efficient arguments for verifiable computation. To do so, it incorporates new theoretical
refinements and systems engineering techniques, which improve the performance of a strand
of theory by over  orders of magnitude.

Despite these dramatic speedups, Zaatar has several limitations. First, verifiable exe-
cution is still expensive by multiple orders of magnitude compared to an unverifiable native
execution, because the computation must be encoded as constraints and because of intrinsic
costs of the protocol. Second, the verifier incurs a setup cost that needs to be amortized by
outsourcing multiple identical computations.

Nevertheless, we expect assurance to have price, and indeed, there are regimes in
whichZaatar’s costsmaynot be ridiculous.As an example, consider outsourcing data-parallel
computations in the cloud. is setup has (a) an abundance of cheap computing power (i.e.,
the prover’s overheads might be tolerable), and (b) a computation structure that precisely
matches the amortization requirement of Zaatar’s verifier.

However, realizing the above application requires addressing a technical problem:
Zaatar supports only stateless computations, owing to the constraints formalism, but data-
parallel computations in the cloud oen presume remote inputs (e.g., MapReduce jobs com-
pute over vast data sets that live in the cloud). Chapter  describes how Pantry addresses this
problem.
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Chapter 

Pantry: Verifying stateful computations

e theoretical underpinnings of Zaatar (Chapter ) were thought to be wildly impractical
several years ago, even for simple applications. But, Zaatar dramatically changes the land-
scape of verifiable computation: it reduces the resource costs of verifiable execution by over
 orders of magnitude, and it significantly broadens the space of computations to which the
theory applies. Additionally, as mentioned in Chapters  and , Zaatar has many contempo-
raries: () CMT [, ], Allspice [], aler [], () GGPR, Pinocchio [, ], and
() TinyRAM [, ]. Like Zaatar, these systems appear to approach practicality: () several
of them include compilers that allow programmers to express computations in a high-level
language [, , ], and () the best of them achieve reasonable client performance, pro-
vided that there are many identical computations (with potentially different inputs) over
which to amortize overhead—a requirement met by typical data-parallel cloud computing
applications.

However, almost none of these systems admit a notion of state or storage: their com-
pilation target is constraints (§., §.). Given this “assembly language”, the computation
cannot feasibly use memory, and the client must handle all of the input and output. Besides
hindering programmability, these limitations are inconsistent with remotely stored inputs
(as in MapReduce jobs, queries on remote databases, etc.); for example, verifying a large
MapReduce job would require the client to materialize the entire dataset.

is chapter describes Pantry, the first verifiable computation system to support
a notion of state. To do so, Pantry composes the machinery for verifying stateless com-
putations, Zaatar (Chapter ) and Pinocchio [], with techniques from untrusted stor-
age [, , , ]. While this picture is folklore among theorists [, , , ], the con-

e exception is the work of Ben-Sasson et al. [], which supports a notion of volatile state; see Chapter .
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tributions of Pantry are to work out the details and build a system. In more detail, Pantry
makes the following contributions.

() Pantry enhances its predecessor systems for verifiable computation, Zaatar (Chap-
ter ) and Pinocchio [], with a storage abstraction (§.). e programmer expresses a
computation using a subset of C plus two new primitives—PutBlock and GetBlock—and the
Pantry compiler produces appropriate constraints. ese primitives name data blocks by a
cryptographic digest, or hash, of their contents. Such blocks are used extensively in systems
for untrusted storage [, ]; however, in Pantry, the verifier will not be fetching the blocks
to check them. e key insight here is that there exist hash functions that are amenable to
the constraint formalism.

()UsingPutBlock andGetBlock,we build a verifiableMapReduce framework (§.).
e programmer writes Map and Reduce functions, much as in standard MapReduce frame-
works. Here, however, input and output files are named by the digests of their contents.

() We also use PutBlock and GetBlock (together with well-known techniques [,
]) to build higher-level storage abstractions: a RAMand a searchable tree (§.).Weuse the
tree to build a database application that supports verifiable queries in a (small) subset of SQL.
e notable aspects here are the placement of functionality and the result: the abstractions
are exposed to the C programmer, they need not be built into the compiler, and operations
on these abstractions happen verifiably even though the client does not have the state.

() We compose PutBlock and GetBlock with a zero-knowledge variant of Pinoc-
chio [, ], to build applications in which the prover’s state is private: face matching, toll
collection, etc. (§.).

e components just described have awkward usage restrictions (the database is
single-writer, iteration constructs need static upper bounds, etc.), due in part to the clumsi-
ness of the constraint formalism.Worse, themeasured cost (§.) of the implementation (§.)
is very high: the prover’s overhead is tremendous, and the verifier incurs a similarly high per-
computation setup cost, requiring many invocations to justify this expense.

However, compared to the aforementioned prior systems for verifiable computation,
Pantry improves performance: by not handling inputs, the verifier saves CPU and network
costs.is effect, together with Pantry’s enhanced expressiveness, expands the universe of ap-
plications for which verification makes sense (Chapter ). MapReduce, for example, works
over remote state, and is well-suited to amortizing the setup costs, since it entails many iden-
tical computations. And the private state applications provide functionality that does not
exist otherwise or previously required intricate custom protocols. In summary, Pantry ex-
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tends verifiable computation to real applications of cloud computing (albeit at much smaller
scales for now).

. Pantry’s base: Zaatar and Pinocchio

Pantry extends Zaatar (Chapter ) and Pinocchio [] (as mentioned earlier). We now
present these baseline systems and their underlying theory in a unified framework, to em-
phasize similarities.

.. Overview of Zaatar and Pinocchio

A client, or verifier V , sends a program Ψ, expressed in a high-level language, to a server,
or prover P . V sends input x and receives output y, which is supposed to be Ψ(x). V then
engages P in a protocol that allows V to use randomness to check whether P executed cor-
rectly. is protocol assumes a computational bound on P (e.g., that P cannot break a cryp-
tographic primitive). However, the protocol makes no other assumptions about P : its guar-
antees hold regardless of how or why P malfunctions. ese guarantees are probabilistic
(over V ’s random choices):

• Completeness. If y = Ψ(x), then if P follows the protocol, Pr{V accepts} = 1.

• Soundness. If y ≠ Ψ(x), then Pr{V rejects} > 1 − ϵ, where ϵ can be made small.

Given a specific computation Ψ, we call each invocation of it an instance. e per-
instance costs for V are very low. However, in order to participate in the protocol, V incurs
a setup cost for each Ψ, which amortizes over multiple instances, either over a batch (in Za-
atar) or indefinitely (in Pinocchio []). Section .. provides details of this amortization
behavior.

.. Zaatar and Pinocchio in more detail

As in Section ., verifiably outsourcing a computation happens in three steps, depicted in
Figure .. First, a compiler transforms the computation Ψ to an algebraic system of con-
straints. Next, P produces a solution to these constraints that implies y = Ψ(x). Finally, P
convincesV that it has produced such a solution, thereby establishing that y = Ψ(x).We now
describe each step in detail; for the time being, we assume only one instance (§.. revisits).
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Figure .: Verifiable outsourcing in Zaatar and Pinocchio, assuming a single instance of a
computationΨ on input x (amortization is depicted in Figure .). Step À: V andP compile
Ψ from a high-level language to constraints C. Step Á: P produces a satisfying assignment,
z, to C(X=x,Y=y). Step Â: P uses complexity-theoretic and cryptographic machinery to
convince V that P holds a satisfying assignment.

()Ψ is represented as constraints. e programmer begins by expressing a computation,
Ψ, in a subset of C or an equivalent high-level language (described in §..) and invoking a
compiler. Here, we focus on the compilation target: a set of constraints (Section .).

In our context, a set of constraints C is a system of equations in variables (X,Y,Z),
over a large finite field, F; we choose F=Fp (the integers mod a prime p), where p is large
(e.g.,  bits). Each constraint has total degree , so each summand in a constraint is either
a variable or a product of two variables. Variables X and Y represent the input and output
variables, respectively; for now, we assume one of each. Upper-case letters (X,Y,Z, . . .) repre-
sent constraint variables; their lower-case counterparts (x, y, z, . . .) represent concrete values
taken by (or assigned to, or bound to) those variables.

As described in Section ., recall that we use C(X=x) to mean C with X bound to x
(V ’s requested input); C(X=x,Y=y) indicates that in addition Y is bound to y (the purported
output). Notice that C(X=x,Y=y) is a set of constraints over the variables Z. If for some z,
setting Z=z makes all constraints in C(X=x,Y=y) hold simultaneously, then C(X=x,Y=y) is
said to be satisfiable, and z is a satisfying assignment.

Furthermore, recall that for a given computation Ψ, a set of constraints C is said to
be equivalent to Ψ if: for all x, y, we have y = Ψ(x) if and only if C(X=x,Y=y) is satisfiable.
As a simple example, the constraints C={Z − X = 0, Z + 1 − Y = 0} are equivalent to add-
 []. Indeed, consider a pair (x, y). If y = x + 1, then there is a satisfying assignment to
C(X=x,Y=y), namely Z=x. However, if y ≠ x + 1, then C(X=x,Y=y) is not satisfiable.
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() P computes and identifies a satisfying assignment. P “executes” Ψ(x) by identifying
a satisfying assignment to the equivalent constraints C(X=x), and obtaining the output y in
the process. To do so, P runs a constraint-solving routine that takes as input a compiler-
produced list of annotated constraints. is routine goes constraint-by-constraint. A com-
mon case is that a constraint introduces a variable and can be written as an assignment to
that new variable (e.g., {. . . , Z4 = Z3 ⋅(Z2+Z1), Z5 = Z4 ⋅Z2, . . .}); the routine “solves” such
constraints by evaluating their right-hand sides.

Some constraints require additional work of P . An example is the != test (this will
give some intuition for the techniques in Section .). Consider the following snippet:

if (Z1 != Z2)
Z3 = 1;

else
Z3 = 0;

is compiles to the following constraints []:

C!= =
⎧⎪⎪⎨⎪⎪⎩

M ⋅ (Z1 − Z2) − Z3 = 0
(1 − Z3) ⋅ (Z1 − Z2) = 0

⎫⎪⎪⎬⎪⎪⎭
.

Notice that the first constraint introduces two new variables (M,Z3), and thus there are mul-
tiple ways to satisfy this constraint. To choose values for these variables that also satisfy the
second constraint, P ’s constraint-solving routine consults the constraints’ annotations. e
relevant annotation tells P that if Z1 ≠Z2, then P should set M equal to the multiplicative
inverse of Z1−Z2, whichP computes outside of the constraint formalism. We call this “com-
puting exogenously” (in theoretical terms, M and Z3 are “non-deterministic input”), and
there is an analogy between the exogenous computation of M and supplying values from
storage in Section ..

() P argues that it has a satisfying assignment. P wants to prove to V that it knows a
satisfying assignment to C(X=x,Y=y); this would convince V that the output y is correct
(and moreover that the computation, expressed in constraints, was executed correctly). Of
course, there is a simple proof that a satisfying assignment exists: the satisfying assignment
itself. However,V could check this proof only by examining all of it, which would be asmuch
work as executing the computation.





Instead, Zaatar and Pinocchio apply PCPs [, ], which, as described in Sec-
tion .., implies that a classical proof—a satisfying assignment z, in this case—can be
encoded into a long string π in a way that allows V to detect the proof ’s validity by (a) in-
specting a small number of randomly-chosen locations in π, and (b) applying efficient tests
to the contents found at those locations.

Furthermore, as described in Section ., PCPs alone are not sufficient: the encoded
proof π is far larger than the number of steps in Ψ, so making V receive π would again
defeat our purpose. To get around this issue, Zaatar and Pinocchio—and their theoretical
progenitors—compose PCPs with cryptography, based on assumptions that P cannot break
certain primitives.ere are two types of protocols; our compiler produces V andP binaries
for both (by extending the compiler described in §.).

First, as described in Chapter , Zaatar instantiates an efficient argument [, , ]:
V extracts from P a cryptographic commitment to π, and then V queries P , meaning that V
asks P what values π contains at particular locations. V uses PCPs to choose the locations
and test the replies, and cryptography to ensure thatP ’s replies passV ’s tests only ifP ’s replies
are consistent with a proof π that a satisfying assignment exists.

e second variant is instantiated by Pinocchio [] and known as a non-interactive
argument [, ]: V preencrypts queries and sends them to P . As in the first variant, the
queries are chosen by PCP machinery and describe locations where V wants to inspect an
eventual π. Here, however, P replies to the queries without knowing which locations V is
querying. is process (hiding the queries, replying to them, testing the answers) relies on
sophisticated cryptography layered atop the PCP machinery. e details are described else-
where [, , ].

.. Amortization, guarantees, and costs

V incurs a setup cost (to express which locations in π to query) for each computationΨ and
each input size. is cost amortizes differently in Zaatar and Pinocchio.

In Zaatar, amortization happens over a batch: a set of β instances of the identical
computation Ψ, on different inputs (Figure .(a), §.). us, Zaatar presumes parallelism:
for j ∈ {1, . . . , β}, V sends parallel inputs x(j), P returns parallel outputs y(j), and P formu-
lates parallel proofs π(j) establishing that y(j)=Ψ(x(j)). e synchronization requirement
is that V extract commitments to all π(j) before issuing the queries (because queries are

Our description takes some expositional license: Pinocchio’s explicit base is GGPR [], which does not
invoke PCPs. However, one can regard the key in their work as PCP queries, in encoded form [].
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Figure .: Amortization in Zaatar and Pinocchio. Superscripts denote different instances.
In Zaatar, V ’s work to formulate queries amortizes over a batch of β instances; in Pinocchio,
analogous work amortizes over all future instances of the same computation (this is better).
In both protocols, the Ψ→ C step happens only once for each Ψ (not depicted).

reused across the batch). Note that P is an abstraction and could represent multiple ma-
chines (as in our MapReduce application in Section .). Zaatar meets the completeness
and soundness properties given earlier (§..), with ϵ < 1/106 (see Appendix C.), and in
addition provides soundness for the batch: if for any j ∈ {1, . . . , β}, y(j) ≠ Ψ(x(j)), then
Pr{V rejects the batch} > 1 − ϵ.

In Pinocchio, query formulation by V and installation on P happen once per Ψ,
thereby amortizing over all future instances of the identical computation (Figure .(b)).
Pinocchio meets the completeness and soundness properties, with ϵ < 1/2128. Pinocchio
also has versions that provide zero-knowledge (the prover can keep private the contents of
the satisfying assignment z) and public verifiability []; the former provides a crucial foun-
dation for Pantry’s privacy-preserving applications (§.).

Figure . depicts the protocols’ CPU costs for step (). A key performance goal is
that V should incur lower (amortized) CPU costs than the naive alternative: reexecuting the
computation []. Performance is thus evaluated as follows (Chapter , [, ]). () Are
the per-instance costs for V less than the running time of Ψ, when Ψ is expressed in C and
compiled to machine code? (Otherwise, the performance goal cannot be met.) () What is

One might think to compare to replicated execution (§), but a goal of verifiable computation is to provide
very strong guarantees (§..); replication stops working when faults are correlated.
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naive Zaatar [], Pinocchio []

V , setup  c2 ⋅ (∣Z∣ + ∣C∣)
V , runtime β ⋅ (T(∣x∣) + c1∣y∣) β ⋅ (c3 + c4 ⋅ (∣x∣ + ∣y∣))
P , runtime  β ⋅ (c5 ⋅ (∣Z∣ + ∣C∣) + c6 ⋅ ∣C∣ ⋅ log ∣C∣)
T: running time of computation as a function of input length.
x, y: input and output of computation.
β: number of instances over which V ’s setup cost amortizes
c1, c2, . . .: model costs of processing input/output, cryptographic primitives, PCP queries, etc.

Figure .: CPU costs of step () under Zaatar and Pinocchio, and under the naive approach:
reexecute and compare. e amortization behavior is different for Zaatar and Pinocchio (see
text). Also, the constants (c2, c3, . . .) differ: Pinocchio’s c4 is lower while for the other con-
stants, Zaatar’s values are lower. Section .. discusses these constants, the magnitudes of
∣Z∣ and ∣C∣, and the costs of step ().e last column in this table simplifies the Zaatar column
in Figure C..

the cross-over point, meaning the number of instances past which V expends less total CPU
than the naive verifier? () What are the overheads of P , relative to normal execution?

Rough answers are as follows (see also Sections . and .). For question (), the
answer is “sometimes; it depends on the computation”. For (), the cross-over points are tens
of thousands or millions [, §.], depending on the computation. For (), the overheads
are very high: factors of 104 or 105 are not uncommon.

To briefly compare the performance of Zaatar and Pinocchio, Pinocchio has superior
amortization behavior (see above) but higher proving and setup costs (and hence higher
cross-over points), by constant factors.

.. Expressiveness

As context for Pantry, we now describe the language features and limitations of its baseline
systems.

Pre-Pantry, compilers accepted programs in a high-level language (a C subset []
or SFDL []) that includes functions, structs, typedefs, preprocessor definitions, if-else state-
ments, explicit type conversion, and standard integer and bitwise operations. ese compil-
ers partially support pointers and loops: pointers and array indexes must be compile-time
constants (ruling out a RAM abstraction), and likewise with the maximum number of loop
iterations.

When compiled, most operations introduce only a few new variables or constraints.
ere are four exceptions. e first two are inequalities and bitwise operations; these con-





structs separate numbers into their bits and glue them back together (Section ., [, ]),
requiring ≈ log2 ∣F∣ constraints and variables per operation. e other two are looping and
if-else statements: loops are unrolled at compile time, and the costs of an if-else statement
combine the costs of the then-block and the else-block.

Apart from the specifics of language constructs and costs, the pre-Pantry model of
computation is severely limited, even hermetic: computations can interact with state neither
as auxiliary input, nor during execution, nor as auxiliary output. erefore, using Zaatar or
Pinocchio requiresV to supply all inputs, receive all outputs, and eschew any notion of RAM,
disk, or storage. ese are the limitations addressed by Pantry.

. Storage model and primitives in Pantry

ecore of Pantry is two primitives, verifiable PutBlock andGetBlock, that extend themodel
above. is section describes the primitives; Sections .–. describe their use.

To explain Pantry’s approach, we note that the interface to step () in Section .. is
a set of constraints and a purported satisfying assignment.us, a first cut attempt at incorpo-
rating state into verifiable computation would be to represent load and store operations with
constraints explicitly. However, doing so naively would incur horrific expense: if memory is
an array of variables, then load(addr) would require a separate constraint for each possible
value of addr (assuming addr is not resolvable at compile-time). is approach would also
require the input state to be available to the verifier V .

To overcome these problems, wewant amodel inwhich computations do not execute
storage but can efficiently verify it. Given such amodel, we could use constraints to represent
computation (as we do now) as well as efficient checks of storage. But such amodel is actually
well-studied, in the context of untrusted storage: the state is represented by hash trees [, ],
oen accompanied by a naming scheme in which data blocks are referenced by hashes of
their contents [, ].

If we could efficiently represent the computation of the hash function as constraints,
then we could extend the computational model in Section . with the semantics of un-
trusted storage. At that point, a satisfying assignment to the constraints would imply correct
computation and correct interactionwith state—andwe could use step () fromSection ..
to prove to V that P holds such an assignment. We now describe this approach.
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GetBlock(name n)
block← read block with name n in block store S
assert n == H(block)
return block

PutBlock(block)
n← H(block)
store (n, block) in block store S
return n

Figure .: “Pseudocode” for verifiable storage primitives; we use quotation marks because
these primitives compile directly to constraints that enforce the required relation between n
and block.

.. Verifiable blocks: overview

e lowest level of storage is a block store; it consists of variable-length blocks of data, in
which the blocks are named by collision-resistant hash functions (CRHFs) of those blocks.
Letting H denote a CRHF, a correct block store is a map

S∶name→ block ∪ �,

where if block = S(name), then H(block) = name. In other words, S implements the rela-
tion H−1. is naming scheme allows clients to use untrusted storage servers [, ]. e
technique’s power is that given a name for data, the client can check that the returned block
is correct, in the sense of being consistent with its name. Likewise, a client that creates new
blocks can compute their names and use those names as references later in the computation.

But unlike the scenario in prior work, our V cannot actually check the contents of
the blocks that it “retrieves” or impose the correct names of the blocks that it “stores”, as the
entire computation is remote. Instead, V represents its computations with constraints thatP
can satisfy only if P uses the right blocks. Another way to understand this approach is that
V uses the verification machinery to outsource the storage checks toP ; in fact,P itself could
be using an untrusted block store!

We will show in later sections how to write general-purpose computations; for now,
we illustrate the model with a simple example. Imagine that the computation takes as input
the name of a block and returns the associated contents as output. e constraints are set up
to be satisfiable if and only if the return value hashes to the requested name. In effect, P is
being asked to identify a preimage of H, which (by the collision-resistance of H) P can do
only if it returns the actual block previously stored under the requested name.

.. Verifiable blocks: details and costs

Pantry provides two primitives to the programmer:
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block = GetBlock(name);
name = PutBlock(block);

ese primitives are detailed in Figure ..Notice that in a correct execution,H(block)=name.
Given this relation, and given the collision-resistance of H, the programmer receives from
GetBlock and PutBlock a particular storagemodel: S functions as write-oncememory, where
the addresses are in practice unique, and where an address certifies the data that it holds.

Of course, how S is implemented is unspecified here; the choice can be different for
different kinds of storage (MapReduce, RAM, etc.). And, per the definition of S, block length
can vary; for example, in the MapReduce application (§.), an entire file will be one block.

To bootstrap, the client supplies one or more names as input, and it may receive
one or more names as output, for use in further computations. ese names are related to
capabilities [, ]: with capabilities, a reference certifies to the system, by its existence, that
the programmer is entitled to refer to a particular object; here, the reference itself certifies to
the programmer that the system is providing the programmer with the correct object.

Wenowdescribe the constraints that enforce themodel.e code b = GetBlock(n)
compiles to constraints CH−1 , where: the input variable, X, represents the name; the output
variable, Y, represents the block contents; and CH−1(X=n,Y=b) is satisfiable if and only if
b ∈ H−1(n) (i.e., H(b) = n). e code n = PutBlock(b) compiles to the same constraints,
except that the inputs and outputs are switched. Specifically, this line compiles to constraints
CH, where: X represents the block contents, Y represents the name, and CH(X=b,Y=n) is
satisfiable if and only if n = H(b).

Of course, CH and CH−1 will usually appear inside a larger set of constraints, in which
case the compiler relabels the inputs and outputs of CH and CH−1 to correspond to interme-
diate program variables. As an example, consider the following computation:

add(int x1, name x2) {
block b = GetBlock(x2);
/* assume that b is a field element */
return b + x1;

}

e corresponding constraints are:

C = {Y − B − X1 = 0} ∪ CH−1(X=X2,Y=B),
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where the notation X=X2 and Y=B means that, in CH−1 above, the appearances of X are re-
labeled X2 and the appearances of Y are relabeled B. Notice that variable B is unbound in
C(X1=x1,X2=x2,Y=y). To assign B=b in a way that satisfies the constraints, P must identify
a concrete b, presumably from storage, such that H(b)=x2.

Costs. e main cost of GetBlock and PutBlock is the set of constraints required to repre-
sent the hash function H in CH and CH−1 . Unfortunately, widely-used functions (e.g., SHA-)
make heavy use of bitwise operations, which do not have compact representations as con-
straints (§..). Instead, we use an algebraic hash function, due to Ajtai [, ] and based
on the hardness of approximation problems in lattices.eAjtai functionmultiplies its input,
represented as a bit vector, by a large matrix modulo an integer. is matrix-vector multipli-
cation can be expressed concisely in constraints because constraints naturally encode sums
of products (§..). Indeed, Ajtai requires approximately ten times fewer constraints than
SHA-would. Nevertheless, Ajtai uses some bitwise operations (formodular arithmetic) and
hence requires a substantial number of constraints (§..).

.. Guarantees and non-guarantees

Appendices D. and D. describe the formal guarantees of Pantry; here we give an informal
and heuristic explanation.

Notice that the constraints do not capture the actual interaction with the block store
S; the prover P is separately responsible for maintaining the map S. What ensures that P
does so honestly? e high-level answer is the checks in the constraints plus the collision-
resistance of H.

As an illustration, consider this code snippet:

n = PutBlock(b);
b' = GetBlock(n);

In a reasonable (sequential) computational model, a read of a memory location should re-
turn the value written at that location; since our names act as “locations”, a correct execution
of the code above should have variables b and b′ equal. But the program is compiled to con-
straints that include CH (for PutBlock) and CH−1 (for GetBlock), and these constraints could
in principle be satisfied with b′ ≠ b, if H(b′) = H(b). However, P is prevented from sup-
plying a spurious satisfying assignment because collision-resistance implies that identifying
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such a b and b′ is computationally infeasible. at is, practically speaking, P can satisfy the
constraints only if it stores the actual block and then returns it.

However, Pantry does not formally enforce durability: a malicious P could discard
blocks inside PutBlock yet still exhibit a satisfying assignment. Such a P might be caught
onlywhen executing a subsequent computation (whenV issues a correspondingGetBlock,P
would be unable to satisfy the constraints), and at that point, itmight be too late to get the data
back. For a formal guarantee of durability, one can in principle use other machinery [].
Also, Pantry (like its predecessors) does not enforce availability:P could refuse to engage, or
fail to supply a satisfying assignment, even if it knows one.

What Pantry enforces is integrity,meaning that purportedmemory values (the blocks
that are used in the computation) are consistent with their names, or else the computation
does not verify.

For this reason, if V ’s computation executes GetBlock(foo), and foo is an erroneous
name in the sense that it does not represent the hash of any block previously stored, then P
has noway of providing a satisfying assignment.is is as it should be: the computation itself
is erroneous (in this model, correct programs pass the assert in GetBlock; see Figure .).

A limitation of this model is that P cannot prove to V that V made such an error; to
the argument step (step () in §..), this case looks like the one in which P refuses to pro-
vide a satisfying assignment. While that might be disconcerting, Pantry’s goal is to establish
that a remote execution is consistent with an expressed computation; program verification
is a complementary concern (Chapter ).

. Verifiable MapReduce

is section describes how Pantry provides verifiability for MapReduce jobs. We begin with
a brief review of the standard MapReduce model [].

AMapReduce job consists ofMap andReduce functions, and input data structured as
a list of key-value pairs; the output is a transformed list of key-value pairs. e programmer
supplies the implementations of Map and Reduce; Map takes as input a list of key-value
pairs and outputs another list of key-value pairs, and Reduce takes as input a list of values
associated with a single key and outputs another list of values. e framework runs multiple
instances of Map and Reduce as stand-alone processes, called mappers and reducers. e
framework gives each mapper a chunk of the input data, shuffles the mappers’ output, and
supplies it to the reducers; each reducer’s output contributes a chunk to the overall output of
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DigestArray mapper(Digest X) {

Block list_in = GetBlock(X);
Block list_out[NUM_REDUCERS];
Digest Y[NUM_REDUCERS];

// invoke programmer-supplied map()
map(list_in, &list_out);

for (i = 0; i < NUM_REDUCERS; i++)
Y[i] = PutBlock(list_out[i]);

return Y;
}

Digest reducer(DigestArray X) {

Block list_in[NUM_MAPPERS];
Block list_out;

for (i = 0; i < NUM_MAPPERS; i++)
list_in[i] = GetBlock(X[i]);

// invoke programmer-supplied reduce()
reduce(list_in, &list_out);

Y = PutBlock(list_out);

return Y;
}

Figure .: For verifiable MapReduce, Pantry applies the verification machinery to the de-
picted functions, mapper() and reducer(), which use the storage primitives from § .; their
execution is verified in two batches.

the job. A centralized module, which is part of the framework, drives the job (by assigning
processes to machines, etc.).

Overview ofMapReduce in Pantry. e verifier V is a machine that invokes a MapReduce
job (for instance, the desktopmachine of a cloud customer).e goal of Pantry’sMapReduce
is to assure V that its job starts from the correct input data and executes correctly from there.

e model here will be similar to the standard one outlined above, except that the
input and output files will be verifiable blocks (§.): a file will be referenced by a collision-
resistant hash, or digest, of its contents (from now on, we use “digest” and “name” inter-
changeably). In this model, invoking a MapReduce job requires V to supply a list of digests,
one for each input file; call this list x. Likewise,V receives as output a list of digests, y.V learns
of the digests in x either from a bootstrapping step (creating the data and keeping track of its
digest, say) or as the output of a job; likewise, V can use the digests in y either to download
(and verify the integrity of) the actual data or to feed another job. at is, these digests are
self-certifying references to the data [, ].

Given this model, V will be guaranteed that the output digests y are correct, meaning
that the actual input data (the key-value pairs whose digests are x), when transformed by V ’s
desired Map and Reduce functions, results in output data with digests y. But providing this
guarantee requires an application of the verification machinery (§.–§.), which raises a
design question: what exactly is the computation to be verified, and which machine(s) im-
plement P?
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Pantry’s approach is as follows (we discuss the rationale later). e verifier regards
the MapReduce job as two separate batch computations (§..), one for the map phase and
one for the reduce phase. In these computations, each mapper and reducer is an instance,
with a prover. In our design, V handles an intermediate digest for every (mapper, reducer)
pair.

Mechanics. Pantry’s MapReduce framework wraps Map and Reduce into functions Map-
per andReducer, which are depicted in Figure .; the job is executed bymultiple instances of
each. For verification, Pantry’s C-to-constraint compiler transforms these functions into con-
straints, and then each instance—playing the role of the prover—convinces V that it knows
a satisfying assignment to the corresponding constraints (§.., step ()). Execution and
verification can be decoupled, but under Zaatar, the complete execution of a phase (map or
reduce) must happen before verification of that phase.

We now givemore detail, beginning with some notation. Let M and R be the number
of mappers and reducers, and CMapper and CReducer the constraint representations of Mapper
and Reducer. Also, recall that superscripts denote instances in a batch (§..).

When the mappers execute, each instance j ∈ {1, . . . ,M} gets as its input, x(j), the
digest of some data. e output of an instance, map_out(j), is a vector of R digests, one
for each reducer that this mapper is “feeding”; the framework receives this output and for-
wards it to V . Verification convinces V that each mapper j knows a satisfying assignment
to CMapper(X=x(j),Y=map_out(j)), which establishes for V that the mapper worked over the
correct data, applied Map correctly, partitioned the transformed data over the reducers cor-
rectly, and—in outputting map_out(j)—named the transformed data correctly. Note that
{map_out(j)}j={1,...,M} are the M ⋅ R intermediate digests mentioned above.

e framework then supplies the inputs to the second phase, by shuffling the digests
{map_out(j)}j={1,...,M} and regrouping themas {reduce_in(j)}j={1,...,R}, where each reduce_in(j)

is a vector of M digests, one for each mapper. (V does this regrouping too, in order to know
the reducers’ inputs.)

e framework then invokes the reducers, and the output of each reducer j ∈ {1, . . . ,R}
is a single digest y(j). Verification convinces V that each reducer j knows a satisfying assign-
ment to CReducer(X=reduce_in(j),Y=y(j)). is establishes for V that each reducer worked
over the correct M blocks, applied Reduce to them correctly, and produced the correct out-
put digests.
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naive (local) Pantry

CPU costs
V , setup  c2 ⋅ (∣Zmapper∣ + ∣CMapper∣)
V , runtime M ⋅ Tmapper(∣ch∣) M ⋅ (c3 + c4 ⋅ ∣d∣ ⋅ (R + 1))

network costs
setup  c7 ⋅ (∣Zmapper∣ + ∣CMapper∣)
runtime M ⋅ ∣ch∣ M ⋅ (c8 + ∣d∣ ⋅ (R + 1))
Tmapper: running time of a map instance M:  of mappers
∣ch∣: length of a mapper’s input ∣d∣: length of a digest

Figure .: Verification costs in Pantry’s MapReduce and naive (local) verification, for the
map phase; the reduce phase is similar. e CPU costs largely follow Figure .; the main
difference is that V now handles only a digest of the inputs. P ’s costs are omitted, but the
substitutions are similar.

Analysis. Figure . compares the costs of the map phase under Pantry’s MapReduce and
the naive approach of verifying a job by downloading the inputs (perhaps checking them
against digests) and locally executing the computation. A similar analysis applies to the re-
duce phase.

Both pre-Pantry and under Pantry, the verifier can save CPU cycles compared to the
naive verifier provided that the per-instance verification cost is less than the cost to execute
the instance. Pre-Pantry, this condition holds only if c3+c4 ⋅(∣x∣+∣y∣) < T(∣x∣)+c1∣y∣, implying
that using the verification machinery makes sense only if the computation is superlinear in
its input size (see Figure .). Under Pantry, however, the analogous condition holds when
c3 + c4 ⋅ ∣d∣ ⋅ (R + 1) < Tmapper(∣ch∣), which can hold even when the computation is linear
in its input. If this condition holds, then the CPU cross-over point (§..) occurs when
M ≥ c2⋅(∣Zmapper∣+∣CMapper∣)

Tmapper(∣ch∣)−c3−c4⋅∣d∣⋅(R+1) , per Figure ..

Pantry also saves the verifier network costs.is happenswhenM ≥ c7⋅(∣Zmapper∣+∣CMapper∣)
∣ch∣−c8−R⋅∣d∣ .

Notice that the floor on M is proportional to the setup costs: the higher the setup costs, the
more instances are needed to beat naive verification. Also, the floor moves inversely with
∣ch∣: the larger the chunk size, the greater the expense incurred by the naive verifier in down-
loading the inputs.

We emphasize that this analysis is predicated on a baseline that is favorable to Pantry.
If the baseline were instead local execution and local storage (no remote party at all), then
Pantry would never save network costs. However, the analyzed baseline corresponds to com-
mon uses of the cloud today: MapReduce jobs execute remotely because their inputs are re-
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mote, so downloading and uploading ought to be recognized as a cost. Another basis for
comparison is Zaatar and Pinocchio: their verifiers handle all inputs and outputs, and thus
cannot ever save network costs.

Summarizing the analysis, aMapReduce application calls for Pantry if (a) verifiability
is needed and (b) the computational cost of the job is high (so there is a CPU cross-over
point), there is a lot of data (so there is a network cross-over point), or both.

Rationale and limitations. Our design reflects awkward aspects of the framework. For ex-
ample, because of the existence of setup costs (§..), we chose to have V handle intermedi-
ate digests. In more detail, V could avoid handling intermediate digests—it could verify the
job’s output digests {y(j)} directly from the input digests {x(j)}—by verifying a single batch.
But each instance would have to encompass constraints for one reducer and M mappers,
causing setup costs to be, undesirably, proportional to the aggregate mappers’ (instead of a
single mapper’s) work. To further explain our choice, we note that quadratic intermediate
state is not inherently disastrous: in standard MapReduce, the framework keeps O(M ⋅ R)
state [].

Other limitations stem from the constraintmodel. For example, we eschew a general-
purpose partitioning module in the mapper, as it would compile to a large number of con-
straints, increasing costs. Instead, the programmer must partition the output of Map into R
chunks, andmust similarly read fromM inputs in Reduce—tasks that are hidden in standard
MapReduce. Moreover, Map and Reduce face the expressiveness restrictions described ear-
lier (§..); one consequence is that each mapper’s chunk size must be identical and fixed
at compile time, and likewise with the reducers.

. Verifiable data structures

is section describes Pantry’s higher-level storage abstractions: RAM, a searchable tree, and
a simple database. As with MapReduce, we want to implement the abstractions as data struc-
tures in a subset of C, augmented with PutBlock and GetBlock (§.). To do so, we apply the
technique of embedding in data blocks the names (or references or hashes—these concepts
are equivalent here) of other blocks [, , , , ]. In the resulting structure, the hashes
are links—or pointers that authenticate what they point to.e starting hash (for instance, of
the root of a tree) can authenticate any value in the structure; we review how this is done be-
low.We can then incorporate the resulting abstractions into some larger C program, compile
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Load(address a, digest d)
ℓ← ⌈logN⌉
h← d
for i = 0 to ℓ − 2:

node← GetBlock(h)
x← ith bit of a
if x = 0:

h← node.left
else:

h← node.right
node← GetBlock(h)
return node.value

Store(address a, value v, digest d)
path← LoadPath(a,d)
ℓ← ⌈logN⌉
node← path[ℓ − 1]
node.value← v
d′ ← PutBlock(node)
for i = ℓ − 2 to 0:

node← path[i]
x← ith bit of a
if x = 0:

node.left← d′
else:

node.right← d′

d′ ← PutBlock(node)
return d′

Figure .: RAM operations implemented with GetBlock and PutBlock, using a Merkle
tree []. N is the number of addresses in memory.

that program to constraints, and apply the argument step (§..) to those constraints.

.. Verifiable RAM

Pantry’s verifiableRAMabstraction enables randomaccess to contiguously-addressable, fixed-
size memory cells. It exposes the following interface:

value = Load(address, digest);
new_digest = Store(address, value, digest);

Pseudocode for the implementation is in Figure ..
e high-level idea behind this pseudocode is that the digest commits to the full state

of memory [, ], in a way that we explain shortly. en, a Load guarantees that the claim
“address contains value” is consistent with digest. For Store, the guarantee is that new_digest
captures the same memory state that digest does with the exception that address now holds
value.

To explain how a digest d can commit to memory, we briefly review Merkle trees [,
]. Every node is named by a collision-resistant hash (denotedH) of its contents. An interior
node’s contents are the names (or hashes) of the node’s le and right children. Each leaf
node corresponds to amemory address, and contains the value currently held at thememory
address. en, the digest d is the hash of the root node’s contents. Indeed, if entity A holds a
digest d, and entity B claims “the value at address a is v”, then B could argue that claim to A
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by exhibiting a witness-path: the purported name of a’s sibling, the purported name of their
parent, and so on, to the root. A could then check that the hash relationships hold andmatch
d. For B to succeed in a spurious claim, it would have to identify a collision in H.

e pseudocode in Figure . is simply applying this idea: the verifiable blocks in
Section . provide the required names-are-hashes referencing scheme, and the GetBlock
invocations compile to constraints that force P to exhibit a witness-path. us, using CLoad
to denote the constraints to which Load compiles, CLoad(X=(a,d),Y=v) can be satisfied only
if the digest d is consistent with address a holding value v, which is the guarantee that Load
is supposed to be providing.

How does P identify a path through the tree? In principle, it could recompute the
internal nodes on demand from the leaves. But for efficiency, our implementation caches the
internal nodes to avoid recomputation.

To invoke Load or Store, the program must begin with a digest; in Pantry, V supplies
this digest as part of the input to the computation. One way to bootstrap this is for V to first
create a small amount of state locally, then compute the digest directly, then send the data to
P , and then use the verification machinery to track the changes in the digest. Of course, this
requires that a computation’s output include the new digest.

is brings us to the implementation of Store, which takes as input one digest and
returns a digest of the new state. Store begins by placing in local variables the contents of
the nodes along the required path (LoadPath in Figure . is similar to Load and involves
calls to GetBlock); this ensures continuity between the old state and the new digest. Store
then updates this path by creating new verifiable blocks, starting with the block for address
a (which is a new verifiable block that contains a new value), to that block’s parent, and
so on, up to the root. Let CStore denote the constraints that Store compiles to. To satisfy
CStore(X=(a, v,d),Y=d′), P must () exhibit a path through the tree, to a, that is consistent
with d, and () compute a newdigest that is consistent with the old path andwith thememory
update. us, the constraints enforce the guarantee that Store promises.

Costs. We briefly describe the blowup from the constraint representation; Sections ..
and . show how this blowup feeds into the costs of V and P . Letting N denote the number
of memory addresses, a Load or Store compiles to O(logN) constraints and variables, with
the constant mostly determined by the constraint representation of H inside GetBlock and
PutBlock (§..).
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.. Search tree

We now consider a searchable tree; we wish to support efficient range searches over any keys
for which the less-than comparison is defined. Specifically, we wish to support the following
API:

values = FindEquals(key, digest)
values = FindRange(key_start, key_end, digest)
new_digest = Insert(key, value, digest)
new_digest = Remove(key, digest)

To implement this interface, a first cut approachwould be to use the general-purpose
RAMabstraction (§..) to build a binary tree or B-tree out of pointers (memory addresses).
Unfortunately, this approach ismore expensive thanwewould like: since every pointer access
in RAM costs O(logN), a search in a balanced tree of m elements would cost O((logN) ⋅
(logm)). Instead, we use an alternative construction, which illustrates a strategy applicable
to a wide class of data structures.

To get the per-operation cost down to O(logm), we build a searchable Merkle tree
(this is different from the tree in §..). Each node in the tree contains a key, one or more
values corresponding to that key, and pointers to (that is, hashes of) its children. e nodes
are in sorted order, and the tree is a balanced (AVL) tree, so operations take time that is
logarithmic in the number of keys stored.

A search operation (FindEquals, FindRange) descends the tree, via a series ofGetBlock
calls. An update operation (Insert, Remove) first descends the tree to identify the nodewhere
the operation will be performed; then modifies that node (via PutBlock, thereby giving it a
new name); and then updates the nodes along the path to the root (again via PutBlock), re-
sulting in a new digest. As with RAM, these operations are expressed in C and compile to
constraints; if P satisfies the resulting constraints then, unless it has identified a collision in
H, it is returning the correct state (in the case of searches) and the correct digests (in the case
of updates).

.. Verifiable database queries

e data structures described above enable us to implement a simple database that supports
verifiable queries.

V specifies queries in a primitive SQL-like language, which supports the following
non-transactional queries on single tables:  (the  predicates must refer to a
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single column), , , , , and . V and P convert each query
into C code that invokes the APIs from Sections .. and .., and is then compiled into
constraints.

e database itself has a simple design. Each row of every table is stored as a verifi-
able block, accessed through GetBlock/PutBlock (§.). ese blocks are pointed to by one
or more indexes, and there is a separate index for each column that the author of the com-
putation wants to be searchable. Indexes are implemented as verifiable search trees (§..),
and database queries are converted into a series of calls to the trees’ FindEquals, FindRange,
Insert, and Remove operations.

Because this database uses verifiable data structures and the code is compiled into
constraints, we get strong integrity guarantees—with little programmer effort beyond imple-
menting the data structures and queries.

.. Compromises and limitations

A key compromise is that efficiency sometimes requires not using RAM and instead con-
structing data structures directly from verifiable pointers (§.., §..). One consequence
is that the implementer of these data structures is directly exposed to the clumsiness of the
constraint model (§..); for example, if the data structure implementation indexes into a
small array at a variable offset, the code must loop through the set of possible indexes.

e constraintmodel imposes several other limitations. First, because traversal loops
have fixed bounds, data structures have a static size (a fixed depth for trees, etc.), regardless
of the number of elements that they logically contain. (However, empty cells and nodes need
not consume memory or disk.) For similar reasons, the number of results returned by the
search API must be fixed at compile time. ird, as every operation on a data structure is
compiled into a fixed number of constraints, P ’s running time to perform the operation is
largely determined by the data structure’s static size.

. Private prover state

Pantry enables applications where the prover’s state is private. For example, the prover holds
photographs (e.g., of suspects), the verifier (e.g., a surveillance camera) submits a photo-
graph, and the prover indicates if there is a match. Using Pantry, the client is assured that the
response is correct, but no information about the prover’s database leaks (beyond what the
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output implies).
Pinocchio’s zero-knowledge (ZK) variant [, ] provides most of the solution.

Here, step () of Section .. persuades V that P has a satisfying assignment to a set of
constraints (as usual), but P cryptographically hides the actual satisfying assignment. Since
the contents ofP ’s state appear in the satisfying assignment (§.), the ZK variant effectively
hides P ’s state—almost. e wrinkle is that, under Pantry as so far described, V would be-
gin with a cryptographic digest of P ’s state (§.), and this digest itself leaks information (V
could conceivably guess P ’s state and use a digest to check the guess).

us, we assume that V begins with a cryptographic commitment [, §..] to the
prover’s state. A commitment binds the prover to its state in a way that permits verifiable
queries against that state (as with the previously described digests) but also hides the state.
en, the computation to be verified takes as input a commitment (not a digest), begins
by querying for values and checking that they are consistent with the commitment (as with
digests), and then uses those values in the rest of the computation. To summarize, the com-
mitment hides the prover’s beginning state from V , and the ZK machinery hides the prover’s
execution.

To instantiate this approach, we want a commitment primitive that has a reasonably
efficient representation in constraints. As a compromise, we instantiate a simple scheme
using HMAC-SHA (see Appendix D. for details). Relative to the protocol of Peder-
sen [], our schememakes a stronger cryptographic assumption but saves an order ofmag-
nitude in constraint size. Of course, this scheme uses SHA-, so it is more expensive for
us than Ajtai’s function (§..), but the expense is incurred only once per execution (§..).

Applications. We build (§.) and evaluate (§.) several applications of the machinery
described above. e first is face matching, which implements the example at the start of this
section. is example is inspired by previous work [], but that work provides privacy to
both parties and verifiability to neither. e second is tolling; the prover is a car, the verifier
is a toll collector, and the verifier checks the prover’s claim about what it owes for the billing
period.is example is inspired by [], which requires a customprotocol, while we require
only a simple C program (§.). e third application is regression analysis (again inspired
by prior work that requires a custom protocol []); the prover holds a set of patient files,
the verifier is an analyst seeking to fit a model to this data, and the computation returns the

Ajtai is unsuitable because it is not a pseudorandom function (PRF) and thereforewould not hide the prover’s
beginning state.
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best-fit parameters. e details of our applications are in Appendix D..

. Implementation details

e Pantry implementation modifies the Zaatar compiler. e base compiler first trans-
forms programs written in a high-level language (§..) into a list of assignment statements,
producing a constraint or pseudoconstraint for each statement. e pseudoconstraints ab-
stract operations that require multiple constraints (inequality comparisons, bitwise opera-
tions, etc.).Next, the compiler expands the pseudoconstraints and annotates the results (§..).
e verifier and prover each consist of computation-independent routines that take a list of
annotated constraints as input. P ’s routines solve the constraints and use the resulting satis-
fying assignment to respond to queries;V ’s routine selects queries according to the argument
protocol and tests the replies (§..).

Pantry adds several conveniences to the base compiler. Following Pinocchio [],
the Pantry compiler accepts a subset of C (§..). More significantly, the compiler targets
the Pinocchio and the Zaatar encodings, with a unified code base. e main work here was
implementing Pinocchio’s pairing-based cryptography, for which we use a public library [,
].

To implementGetBlock andPutBlock (§.), Pantry includes newpseudoconstraints,
which expand to CH−1 and CH, respectively. e associated annotations tellP how to interact
with storage S (see Figure .); we implement S using the LevelDB key-value store [].

e CH−1 and CH constraints implement H as (a variable-length version of) the Aj-
tai [, ] hash function. Using the notation in [], this function hashes m bits into n ⋅ log q
bits. Based on the analysis in [], we set these parameters as m=7296, n=64, and q=219—
resulting in a digest of  bits—to achieve at least  bits of security. To support variable-
length input, we use a prefix-free variant of the Merkle-Damgård transform [, Ch. ..]
that prepends the input with its length [].

To implement GetBlock and PutBlock, we added to the compiler pipeline  lines
of Java (for parsing Pantry’s subset-of-C),  lines of Go and  lines of Python (for
expanding pseudoconstraints into constraints), and  lines of C++ (in the prover’s con-
straint solving module). e MapReduce framework (§.) requires  lines of C++. e
verifiable data structures (§..–§..) require  lines in Pantry’s subset-of-C. e main
component in the database application (§..) is a query-to-C translator, which we imple-
ment with  lines of Java, on top of Cassandra’s CQL parser []. Our private state appli-
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computation (Ψ) type O(⋅)

dot product of two length-m vectors MapReduce (Z) m
search m nucleotides for length-d substring MapReduce (Z) m ⋅ d
nearest neighbor search of m length-d vectors MapReduce (Z) m ⋅ d
covariance matrix for m samples of dimension d MapReduce (Z) m ⋅ d2

 rows from a table with m rows Database (P) logm
 a row into a table with m rows Database (P) logm
 a row in a table with m rows Database (P) logm

match against m -bit face fingerprints Private state (P) m
compute toll bill for a maximum of m tolls Private state (P) m
fit a linear model to m-many d-dimensional records Private state (P) m ⋅ d2 + d3

Figure .: Sample applications in our experiments. e MapReduce applications use Zaatar
(Z); the other two categories use Pinocchio (P). In the MapReduce applications (§.), Map
and Reduce are roughly  lines, combined. e DB queries are expressed in Pantry’s query
framework (§.., §.). e private state applications (details and code size) are described
in §. and §..

cations (§.) are  lines for face matching,  lines for tolling, and  lines for regression
analysis.

. Evaluation

Our evaluation answers twoquestions: ()What are the overheads for the prover and verifier?
and ()What does the verifier gain fromPantry, versus alternatives?GivenPantry’s goals (§–
§.), these alternatives must be general-purpose and not make restrictive hypotheses about
failure classes. is oenmeans comparing to naive verifiers (§..). However, we would be
the first to admit that tailored protocols (of the kind cited in Chapter ; an example is [])
or replication are likely to far outperform Pantry.

Applications and setup. We experiment with a set of sample applications, listed in Fig-
ure .. Additional parameters (for the cryptographic primitives in Zaatar and Pinocchio,
etc.) are described in Appendix D..

Our experiments use a cluster of machines in the Stampede cluster at the Texas Ad-
vanced Computing Center (TACC). Eachmachine runs Linux on an Intel Xeon processor E
 . GHz with GB of RAM and a GB .K RPM SATA disk; they are connected by
a  Gb/s InfiniBand network. Additionally, each machine has access to a PB Lustre ..
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operation number of constraints (∣C∣)

GetBlock or PutBlock; KB blocks ,
GetBlock or PutBlock; KB blocks ,
GetBlock or PutBlock; KB blocks ,
Load (Store); 220 memory cells , (,)
Load (Store); 230 memory cells , (,)

Figure .: Cost of Pantry’s storage primitives, in constraints (to the nearest ), for varying
block size or memory size; the number of variables (∣Z∣) is similar (not shown). PutBlock
is the same as GetBlock (§..). Store is shown in the same row as Load, and is twice as
expensive (§..); the memory cell size here is  bits, and the intermediate Merkle nodes
are 2432 bits. e costs scale linearly (in the block size) for GetBlock and logarithmically (in
the memory size) for Load and Store.

parallel file system.

.. Overhead and its sources

Pantry’s costs boil down to three sources of overhead:

 e techniques of untrusted storage;
 e constraint representation of computations; and
 e argument step.

Below, we investigate each of these overheads.
We assess the cost of  in terms of the number of constraints and variables to which

Pantry’s primitives compile. (We will focus on the number of constraints, ∣C∣, as the number
of variables, ∣Z∣, scales linearly in ∣C∣.) We use this metric because constraints are the compu-
tational model (and later, we will express actual running times in terms of constraint set size).
Each constraint corresponds to a “register operation” (arithmetic, assignment, etc.), which
provides an interpretation of our metric.

Figure . shows the number of constraints to which GetBlock and PutBlock (§.)
compile, varying the size of the block. e cost is ≈ constraints per byte, or  constraints
per -bit word; thus, in this model, reading a number is  times more expensive than
adding—a ratio superior to the analogous comparison between hard disks and a CPU’s reg-
ister operations. On the other hand, disks benefit from sequential access whereas the costs
of GetBlock and PutBlock scale linearly. Moreover, constraints will translate into active CPU

Of course, P (not V) also has to pay for actual execution (in step ()).
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costs (as we will cover below), whereas real disks leverage DMA.
e preceding discussion presumes that each data item has its own name, or hash. If

instead we want to give the programmer contiguously addressable random access memory
(e.g., for a program’s heap), we must use the RAM abstraction (§..). Unfortunately, as
shown in Figure ., a verifiable Load costs , constraints to read  bits of memory; the
ratio here is not close to the analogous memory-vs-register comparison. us, GetBlock and
PutBlock are best used to implement data structures built directly fromverifiable blocks (§..–
§..); as indicated above, the costs are manageable if the programmer interacts with them
as if they lived on disk.

Even so, storage constraints contribute heavily to the total constraint set size in our
applications; the weight is clear from the two columns labeled ∣C∣ in Figure ., which dis-
plays many of Pantry’s costs for our sample experiments.

is brings us to the next source of overhead: the fact that there are constraints ().
Indeed, the costs of step () are due to the constraint representation. e final source of
overhead is the argument step (), which—together with —determines the cost of step
(). We consider steps () and () in turn.

Constraint solving (step (), §..) is a cost for P . We compute the ratio of solving
time (Figure ., the “solve” column) to ∣C∣ for each of our sample applications. is ratio
ranges from  to  µs per constraint, where tolling has the smallest ratio and 
query has the largest.e computations with the largest ratios are those with the highest pro-
portion of GetBlock and PutBlock calls: “solving” these requires computing the Ajtai func-
tion (§..), which invokes many large integer arithmetic operations. (Another source of
overhead here is that GetBlock / PutBlock operations incur I/O costs associated with access-
ing the block store.)

Arguing (step (), §..) induces costs for P and V , which are depicted for our mea-
sured applications in Figure  (the columns labeled Â). ese costs are largely determined
by ∣C∣ and ∣Z∣, as indicated by the models given earlier (Figures . and .). In these models,
the largest constants are c2, c3, c5 (representing cryptographic operations), and are on the or-
der of µs. Note that these models are chosen for simplicity; their predictions are within
a factor of two of empirical results. e primary sources of variation are the structure of the
constraints and the relative number of bitwise constraints (small values reduce the costs of
some of the cryptographic steps). We quantify the constants {ci} in Appendix D..

ese costs are higher than necessary. Our implementation of P ’s constraint-solving routine is decidedly
unoptimized.


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Figure .: e verifier’s CPU and network costs (extrapolated) as a function of job size
for the nucleotide substring application in Figures . and . (each mapper gets a chunk
of k nucleotides; one reducer is allocated per ten mappers). All y-intercepts (fixed costs)
and slopes (per-instance costs) are empirically determined, based on experiments that ex-
hibit the depicted scaling with hundreds of machines. In the CPU (resp., network) graph,
Pantry’s y-intercept is roughly ten minutes (resp., . GB); meanwhile, the baseline’s slope
is tens of milliseconds per chunk (resp., . KB per chunk). us, ,–, chunks
are required for V to break even, corresponding to – billion nucleotides.

e aforementioned costs can be understood by comparing to the cost of simply
executing the computation (Figure ., the “baseline” column). BothV ’s setupwork andP ’s
runtime work are orders of magnitude more than this baseline, in our sample applications.
On top of these costs, the largest experiments (e.g., nucleotide substring search withm=600k,
d=4) use roughly  of the available RAM in our machines (in the setup phase for V and
per-instance for P).

.. All is not lost

Amidst the many appalling overheads in Figure ., there is actually some encouraging
news: the per-instance CPU costs for V are sometimes less than local execution (compare
the “per-instance” and “baseline” columns). And though it is not depicted, an analogous
thing happens for network costs. Given enough instances, then, the Pantry verifier could
save resources relative to the naive verifier (§..). We investigate these and other benefits
by taking a closer look at some of our sample applications.

MapReduce. For theMapReduce examples, wewant to determine the cross-over points (§..,
§.) for CPU and network.Wewill focus on the nucleotide substring search example; results
for the other applications are similar.

We experiment within the limits of our testbed, and use the resulting data to extrap-
olate. A work unit will be  mappers (each with a chunk size of k nucleotides, per Fig-
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ure .) and one reducer; let N denote the total job size, in number of input nucleotides. We
experiment with N=6 million (one work unit,  machines), N=60 million (ten work units,
 machines), and N=1.2 billion ( work units,  machines, each machine executing
multiple workers sequentially). Across these (and smaller-scale) experiments, we observe
little variation (std. deviations are within  of means, scaling is linear, etc.).

Figure . reports the extrapolated resource costs for V ; the CPU (resp., network)
cross-over point is  billion nucleotides, or 48,340mappers (resp.,  billion nucleotides, or
40,000mappers).While the chunk size is tiny—reflecting overheads (§..)—the results are
nevertheless encouraging. First, the baseline is stiff competition: it is linear-time, it runs as
optimized machine code, and it uses SHA- (not Ajtai) for data integrity. Second, Pantry’s
V beats this baseline at a job size that is plausible: the human genome is roughly  billion
nucleotides, so the cross-over point is ≈ such genomes.

DB queries. is class of applications has an additional overhead: storage at the prover,
for the hash trees (§..). Below, we assess that cost, and ask about Pantry’s ability to save
resources for V . What should the baseline be? In Figure ., we present the running time
of MySQL, which helps us gauge the prover’s overhead. However, for a naive verifier to ben-
efit from MySQL’s optimized query execution while achieving verifiability, it would have to
download the entire database and execute the query itself.

Instead, our baseline will be reasonably network-efficient and avoid two sources of
overhead in Pantry: constraints and the argument step. We assume a server that implements
a hash-based block store [, ] (akin to the map S in §..) and a verifier that runs the
computation natively; where the program calls GetBlock and PutBlock, the verifier issues an
RPC to the server. Since the computation is run natively rather than in constraints, H is SHA-
 (§..). We have not built this alternative, so we estimate its network costs; we can do
this since queries are highly constrained (§.., §..).

Figure . depicts the comparison, for a  query. is table indicates, first, for
the data set that we use, the metadata is far larger than the data (for both Pantry and the
alternative) due in part to unoptimized parameter choices (number of indexes, branching
factor, etc.). Second, the effect of the size of Ajtai digests (versus SHA-) is apparent in the
metadata row. Nevertheless, despite these limitations, the Pantry verifier can amortize its
network costs in the setup phase (because it does not incur the network cost of handling the
verifiable blocks themselves); for this computation, the network cross-over point is 55,000
instances.





Pantry
block store
(estimated)

network costs
setup, kept as storage (argue step)  MB  MB
per-instance (argue step)  bytes . KB
per-instance (input, output)  bytes  bytes

storage costs
data . GB . GB
metadata (for hash tree)  GB ≥. GB

Figure .: Resource costs of a  query, under Pantry and estimates for an alterna-
tive based on an untrusted block store. e table has 227 rows, each holding  bytes in 
columns; the query allows  matching rows (§.., §..).

Private state. For these applications, we do not ask about cross-over points because V can-
not naively re-execute the computation. Instead, we just report the costs, for our sample
application of tolling; costs for the others are similar. e CPU costs are in Figure .; the
storage and network resources are given below:

private state  KB
network (setup) and storage (ongoing) 170 MB
network (per-instance), for inputs/outputs  KB
network (per-instance), for argument step  bytes

e storage overhead here is proportional to the size of the private state; the reason is
as follows. e storage overhead reflects setup costs (see above), setup costs are proportional
to ∣C∣ and ∣Z∣ (see Figures . and .), ∣C∣ and ∣Z∣ include terms for GetBlock’s input (§..),
andGetBlock’s input is all of the state because there is no hash tree structure (§.). Although
the constant of proportionality is high (due to the argument step), the absolute quantities
are not necessarily alarming: the tolling application does not involve much state, and an
overhead of several hundred megabytes could fit comfortably on a mobile phone. Moreover,
the per-instance network costs are very low, owing to Pinocchio’s machinery (§..–§..).

. Summary of Pantry

To summarize Pantry, it eliminates a major limitation of prior state-of-the-art systems by
extending the machinery of its baseline systems (Zaatar and Pinocchio) with a notion of
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state. Furthermore, it mitigates the issue with the client’s setup costs by enabling new applica-
tions (e.g., data-parallel computations over remotely stored inputs or programs that compute
over the server’s private state) for which the client’s setup costs might be tolerable. However,
Pantry retains a major limitation of its baseline systems: the prover is still too expensive
(compared to simply executing a computation) to consider it practical for real. Nonetheless,
Pantry expands verifiability to realistic applications of third party computing. e next chap-
ter summarizes Pantry further along with a summary of the rest of the dissertation.
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Chapter 

Summary, limitations, and discussion

is dissertation began as an attempt to build a practical system in which a client can verifi-
ably outsource its computations (and associated state) to an untrusted server (e.g., the cloud).
A chief goal was to design a system that does not require any assumptions about the failure
modes of the server, except, perhaps, cryptographic hardness assumptions. is led us to
consider solutions based on theoretical constructs such as probabilistically checkable proofs
(PCPs) and efficient arguments (it is worth noting that an early work on PCPs [] posed
the exact problem, in a theoretical context). While these solutions are applicable in princi-
ple, their costs were too large to be considered practical. us, a key challenge was to reduce
the costs of the theory and build a usable system.

is dissertation does not completely achieve the above goal, but it reports significant
progress. We describe two built systems, Zaatar and Pantry, that dramatically reduce costs
and improve applicability of a strand of the aforementioned theoretical constructs (in the
context of verifiable computation).

First, Zaatar slashes the costs of a PCP-based efficient argument protocol, using a
combination of algorithmic improvements and systems engineering techniques (§.–.).
Second, Zaatar includes a compiler to make this technology usable: it automatically trans-
forms programs in a subset of C into executables that run verifiably (§.).ird, Pantry com-
poses machinery for verifying stateless computations with techniques from untrusted stor-
age to verifiably offload both computations and state. Fourth, using its techniques for han-
dling remote state, Pantry extends verifiability to realistic applications of third party comput-
ing such as MapReduce jobs with remotely stored inputs, queries against remote databases,
programs that compute over private state, etc. (§.–.). Fih, Pantry drastically expands
the scenarios in which the client can gain from outsourcing: (a) Since the client can supply
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digests of inputs, the per-instance CPU cost of verification can drop below the time cost to
handle the actual inputs, thereby allowing the client to beat naive verification even when out-
sourcing linear-time computations (§., §..), (b) Since the client can save network costs
compared to the naive alternative (§., §..), Pantry may be beneficial even if verification
costs more CPU cycles than local execution—a case that defeats the goals (§..) of prior
work [, , ], and (c) Pantry (with a major assistance from Pinocchio) extends verifia-
bility to a class of computations that the verifier cannot execute on its own, even in principle,
as they involve private remote state (§.).

Limitations and next steps. Despite all of this progress, Zaatar and Pantry have many lim-
itations. First, the client in Zaatar and Pantry incurs a setup cost (proportional to executing
the computation once) that needs to be amortized by outsourcing multiple identical com-
putations (§.). Pantry mitigates this limitation by identifying applications for which the
client’s setup costs may be tolerable (§., §.), but eliminating the setup costs would be
ideal. ere is recent work to make this setup work independent of the computation [],
and also independent of the length of the computation []. However, a downside of these
approaches is that the overheads for the server in these systems is several orders of magni-
tude more than the costs under Zaatar and Pantry. us, avoiding the client’s setup costs
without introducing undesirable overheads for the server remains an open problem in the
area.

Second, the server’s cost to verifiably execute a computation is still multiple orders
of magnitudemore than the cost of simply executing the computation (Figures . and .).
ere are two factors that contribute to the high overheads of the server: (a) the requirement
of the underlying theoretical constructs to represent a computation as a set of constraints
(§.), and (b) the requirement of the argument protocol to execute several cryptographic
operations for every step of the computation. Each of these factors impose up to  orders of
magnitude overhead (in our benchmarks), which results in up to  orders of magnitude slow
down compared to simply executing a computation. ese high overheads limit our experi-
ments (§..) to scales smaller than those of real applications (to put itmildly). Furthermore,
in addition to costs it imposes, the constraints model is clumsy (§., §..), which leads to
various compromises described earlier (§., §.., §.).

e aforementioned cost issues afflict the entire research area (§.). Key challenges
are to reduce the overhead of the argument protocol (which seems possible, as the costs
stem from high constants, not unfavorable asymptotics), perhaps by doing fewer crypto-
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graphic operations per step in the computation (a recent work does this for a class of com-
putations []); use hardware acceleration to make the resource costs of verifiable execution
comparable to those of naive replication; and go beyond, or around, the constraint model.

Discussion. Looking back to when we started a few years ago, none of the available theo-
retical constructs were implemented; indeed the estimated costs were too large to run even
simple computations on real hardware. An immediate goal of ours was to transform this the-
oretical machinery to a point where we could run experiments, at least for a simple compu-
tation such as matrix multiplication. Following our early work in this area [, ], which
articulated a research agenda to put strands of this theory to practice, several groups have
produced different systems with similar motivations [–, , , , , , , , ,
, , ].

e good news is that these systems make tremendous progress in some aspects:
whereas the first systems in the area (Pepper [], CMT []) supported only computations
that are naturally represented as concise arithmetic circuits (e.g., matrix multiplication, poly-
nomial evaluation), Pantry supports realistic applications of cloud computing (e.g., MapRe-
duce jobs, database queries, etc.), and TinyRAM [–] even exposes a general machine
abstraction. However, there is some bad news. Except for the work of aler [], none of
the works cited in the prior paragraph achieves better qualitative performance than Pepper
and CMT do on matrix multiplication. at is, much of the work in this research area can
be seen as broadening expressiveness, rather than improving performance.

us, as we look ahead, there is still a great deal of work remaining to bring argu-
ment systems and verifiable computation to practice—a point that has been emphasized
throughout this dissertation. Nonetheless, the massive progress in the area suggests that a
low overhead variant of these systems could be achievable down the road, and that such a
variant could be a key tool in building secure systems.
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Appendix A

Reducing linear PCPs to arguments, batching, and
optimizations

A. A linear PCP

We state the queries, then the tests, then the statement of correctness of the PCP in [, §–
]. We use ∈R to mean a uniformly random selection. e purpose of q10, q12, q14 below is
self-correction; see [, §] or [, §..] for details.

• Generate linearity queries: Select q1, q2 ∈R Fs and q4, q5 ∈R Fs2 . Take q3 ← q1 + q2 and
q6 ← q4 + q5.

• Generate quadratic correction queries: Select q7, q8 ∈R Fs and q10 ∈R Fs2 . Take q9 ←
(q7 ⊗ q8 + q10).

• Generate circuit queries: Select q12 ∈R Fs and q14 ∈R Fs2 . Take q11 ← γ1 + q12 and q13 ←
γ2 + q14.

• Issue queries. Send queries q1, . . . , q14 to oracle π, getting back π(q1), . . . , π(q14).
• Linearity tests: Check that π(q1)+π(q2)

?= π(q3) and that π(q4)+π(q5)
?= π(q6). If not,

reject.

• Quadratic correction test: Check that π(q7) ⋅ π(q8)
?= π(q9) − π(q10). If not, reject.

• Circuit test: Check that (π(q11) − π(q12)) + (π(q13) − π(q14))
?= −γ0. If so, accept.

e γ0, γ1, γ2 above are described in §...e following lemmas rephrase Lemmas . and
. from []:

Lemma A.. (Completeness []). Assume V is given a satisfiable circuit C. If π is con-
structed as in Section .., and if V proceeds as above, then Pr{V accepts C} = 1. e prob-
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ability is over V ’s random choices.

LemmaA.. (Soundness []). ere exists a constant κ < 1 such that if some proof oracle
π passes all of the tests above on C with probability > κ, then C is satisfiable.

Applying the analysis in [], we can take κ > max{7/9, 4δ + 2/∣F∣, 4δ + 1/∣F∣} for some δ
such that 3δ−6δ2 > 2/9. is ensures soundness for all three tests. Here, δ relates to linearity
testing []; to justify the constraint on δ and its connection to the 7/9 floor on κ, see []
and citations therein. Taking δ = 1

10 , we can take κ = 7/9 + neg, where neg can be ignored;
thus, for convenience, we assume κ = 7/9. Applying the lemma, we have that if the protocol
is run ρ = 70 times and C is not satisfiable, V wrongly accepts with probability ϵ < κρ < ϵG.

A. Reducing linear PCPs to arguments

is section first reduces PCPs to arguments directly, using Commit+Multidecommit (Fig-
ure .); thiswill formalize Figure ..e soundness of the reduction relies onCommit+Multidecommit
actually binding the prover aer the commit phase. us, the second (bulkier) part of the
section defines a new and strengthened commitment protocol (Defn. A..), proves that
Commit+Multidecommit implements this protocol (Lemma A..), and proves that any such
protocol binds the prover in the way required by the reduction (Lemma A..).

e reduction composes a PCP (such as the one inAppendixA.)withCommit+Multidecommit.
e protocol, theorem, and proof immediately below are almost entirely a syntactic substi-
tution in [, §], replacing “MIP” with “PCP”.

Given a linear PCP with soundness ϵ, the following is an argument system (P ′,V ′).
Assume that (P ′,V ′) get a Boolean circuit C and that P ′ has a satisfying assignment.

. P ′ and V ′ run Commit+Multidecommit’s commit phase, causing P ′ to commit to a func-
tion, π.

. V ′ runs the PCP verifier V on C to obtain µ = ℓ ⋅ ρ queries q1, . . . , qµ.
. P ′ and V ′ run the decommit phase of Commit+Multidecommit. V ′ uses q1, . . . , qµ as the

queries.V ′ either rejects the decommitted output, or it treats the output asπ(q1), . . . , π(qµ).
To these outputs,V ′ applies the PCP verifierV .V ′ outputs accept or reject depending
on what V would do.

eorem A... Suppose (P,V) is a linear PCP with soundness ϵ. en (P ′,V ′) described
above is an argument protocol with soundness ϵ′ ≤ ϵ+ 7.4 ⋅ 10−12. (7.4 ⋅ 10−12 represents the
error from the commitment protocol and will be filled in by Lemma A...)
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Proof. Completeness follows from the PCP and the definition of Commit+Multidecommit.
For soundness, LemmaA.. below states that at the end of step  above, there is an extractor
function that defines a single (possibly incorrect) oracle function π̃ such that, if V ′ didn’t
reject during decommit, then with all but probability 7.4 ⋅ 10−12, the answers that V ′ gets in
step  are π̃(q1), . . . , π̃(qµ). But (P,V) has soundness ϵ, so the probability that V ′ accepts
a non-satisfiable C is bounded by ϵ + 7.4 ⋅ 10−12.

We now strengthen the commitment primitive in Ishai et al. [], borrowing their
framework. We define a protocol: commitment to a function with multiple decommitments
(CFMD). e sender is assumed to have a linear function, π, given by a vector, w ∈ Fn;
that is, π(q) = ⟨w, q⟩. In our context, w is normally (z, z ⊗ z). e receiver has µ queries,
q1, q2, . . . , qµ ∈ Fn. For each query qi, the receiver expects π(qi) = ⟨w, qi⟩ ∈ F.

Definition A.. (Commitment to a function with multiple decommitments (CFMD)).
Define a two-phase experiment between two probabilistic polynomial time actors (S,R) (a
sender and receiver, which correspond to our prover and verifier) in an environment E that
generates F, w and Q = (q1, . . . , qµ). In the first phase, the commit phase, S has w, and S and
R interact, based on their random inputs. In the decommit phase, E gives Q to R, and S and
R interact again, based on further random inputs. At the end of this second phase, R outputs
A = (a1, . . . , aµ) ∈ Fµ or �. A CFMD meets the following properties:

• Correctness. At the end of the decommit phase, R outputs π(qi) = ⟨w, qi⟩ (for all i), if S
is honest.

• ϵB-Binding. Consider the following experiment. e environment E produces two (pos-
sibly distinct)µ-tuples of queries:Q = (q1, . . . , qµ) and Q̂ = (q̂1, . . . , q̂µ).R and a cheating
S∗ run the commit phase once and two independent instances of the decommit phase. In
the two instances R presents the queries as Q and Q̂, respectively. We say that S∗ wins
if R’s outputs at the end of the respective decommit phases are A = (a1, . . . , aµ) and
Â = (â1, . . . , âµ), and for some i, j, we have qi = q̂j but ai ≠ âj. We say that the protocol
meets the ϵB-Binding property if for all E and for all efficient S∗, the probability of S∗ win-
ning is less than ϵB. e probability is taken over three sets of independent randomness:
the commit phase and the two runnings of the decommit phase.

Informally, bindingmeans that aer the sender commits, it is very likely bound to a function
from queries to answers.
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Lemma A... Commit+Multidecommit (Figure ., Section .) is a CFMD protocol with
ϵB = 1/∣F∣ + ϵS, where ϵS comes from the semantic security of the homomorphic encryption
scheme.

Proof. Correctness: for an honest sender, b = π(t) = π(r) +∑µ
i=1 π(αi ⋅ qi) = s +∑µ

i=1 αi ⋅
π(qi) = s+∑µ

i=1 αi ⋅ ai, which implies that b = s+∑µ
i=1 αi ⋅ ai, and so verification passes, with

the receiver outputting π(q1), . . . , π(qµ).
To show ϵB-binding, we will show that if S∗ can systematically cheat, then an adver-

sary A could use S∗ to break the semantic security of the encryption scheme. Assume that
Commit+Multidecommit does not meet ϵB-binding. en there exists an efficient cheating
sender S∗ and an environment E producing Q, Q̂, i, j such that q ≜ qi = q̂j and S∗ can make
R output ai ≠ âj with probability > ϵB.

We will construct an algorithmA that differentiates between α,α′ ∈R F with proba-
bility more than 1/∣F∣+ϵS when given as input the following: a public key, pk; the encryption,
Enc(pk, r), of r for a random vector r ∈ Fn; r + αq; and r + α′q. is will contradict the se-
mantic security of the encryption scheme.A has Q, q, i, j hard-wired (becauseA is working
under environment E) and works as follows:

(a) A gives S∗ the input (pk,Enc(pk, r));A gets back e from S∗ and ignores it.
(b) A randomly choosesα1, . . . , αi−1, αi+1, . . . , αµ. It also randomly chooses α̂1, . . . , α̂j−1, α̂j+1, . . . , α̂µ.
(c) A now leverages Q, q, i, j.Awas given r+αq, so it can construct r+αq+∑k∈[µ]∖i αkqk =

r+Q ⋅α, whereα = (α1, . . . , αi−1, α,αi+1, . . . , αµ).A gives S∗ the input (Q, r+Q ⋅α);
that is,A invokes S∗ in the decommit phase.A gets back (A, b).

(d) Likewise,A constructs r+α′q+∑k∈[µ]∖j α̂kq̂k = r+ Q̂ ⋅ α̂, where α̂ = (α̂1, . . . , α̂j−1, α
′,

α̂j+1, . . . , α̂µ). A gives S∗ (Q̂, r + Q̂ ⋅ α̂), invoking S∗ in the decommit phase again. A
gets back (Â, b̂).

When S∗ wins (which it does with probability greater than ϵB = 1/∣F∣ + ϵS), b =
s + α ⋅ A and b̂ = s + α̂ ⋅ Â, but ai ≠ âj (here, ⋅ represents the dot product). Now we will
get two linear equations in two unknowns. e first is b̂ − b = α̂ ⋅ Â − α ⋅ A, which can
be rewritten as: K1 = α′âj − αai , where A can derive K1 = b̂ − b − ∑k≠j α̂kâk +∑k≠i αkak.
Now, let t = r + Q ⋅ α and let t̂ = r + Q̂ ⋅ α̂. To get the second equation, we start with t̂ −
t = ∑k∈[µ]∖j α̂kq̂k − ∑k∈[µ]∖i αkqk + α′q − αq. is equation concerns a vector. We choose
an index ℓ in the vector where q is not zero (if q is zero everywhere, then r is revealed).
At that index, we have the following equation in scalars: K2 = α′ − α , where A can derive
K2 = (̂t(ℓ)− t(ℓ)−∑k≠j α̂kq̂

(ℓ)
k +∑k≠i αkq

(ℓ)
k )/q

(ℓ). NowA can solve for α (since the contrary
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hypothesis gave ai ≠ âj).

We now prove that aer the commit phase, the prover is effectively bound to a single
function. Our articulation again follows [], specifically their Lemmas . and ..

Lemma A.. (Existence of an extractor function). Let (S,R) be a CFMD protocol with
binding error ϵB. Let 7.4 ⋅ 10−12 = µ ⋅ 2 ⋅ (2 3

√
9/2 + 1) ⋅ 3

√
ϵB. Let v = (vS∗ , vR) represent the

views of S∗ and R aer the commit phase (v captures the randomness of the commit phase).
For every efficient S∗ and for every v, there exists a function f̃v ∶ Fn → F such that the
following holds. For any environment E , the output of R at the end of the decommit phase
is, except with probability 7.4 ⋅ 10−12, either ⊥ or satisfies ai = f̃v(qi) for all i ∈ [µ], where
(q1, . . . , qµ) are the decommitment queries generated by E , and the probability is over the
random inputs of S∗ and R in both phases.

Proof. Wewill reuse the ideas in the proof of Lemma . in [], but wemust also ensure that
q yields the same answer independent of its position and the other queries in the tuple. We
begin with a definition: let Ext(v, q, i, q⃗) ≜ argmaxa Av(q, i, q⃗, a), where Av(q, i, q⃗, a) equals,
in view v = (vS∗ , vR), the probability over the randomness of the decommit phase that R’s ith
output is a when the query tuple is q⃗; note that q is the ith component of q⃗ and is included
in Ext(⋅) and Av(⋅) for convenience. In other words, Ext(⋅) is the most likely ai value to be
output by R, if the full tuple of queries is q⃗ and if q appears in the ith position. Note that, aer
the commit phase, Ext(⋅) is given deterministically.

Claim A... Define ϵ2 = ( 3
√

9/2 + 1) ⋅ 3
√
ϵB. For all E producing (q, i, j, q⃗1, q⃗2), where q⃗1’s

ith component is q and q⃗2’s jth component is also q, we have the following with probability
> 1− ϵ2 over the commit phase: either Ext(v, q, i, q⃗1) = Ext(v, q, j, q⃗2), or else the probability
over the decommit phase of outputting � is greater than 1 − ϵ2.

Proof. Assume otherwise.en there is an environment E producing (q, i, j, q⃗1, q⃗2) such that
with probability > ϵ2 over the commit phase, Ext(v, q, i, q⃗1) ≠ Ext(v, q, j, q⃗2) and with prob-
ability > ϵ2 over the decommit phase,R outputs something other than �. Define ϵ1 = 3

√
ϵB9/2.

Wewill showbelow thatwith probability> 1−ϵ1 over the commit phase,∑a∈F∖Ext(v,q,i,q⃗1)Av(q, i, q⃗1, a)
is < ϵ1. us, with probability > ϵ2 − ϵ1 over the commit phase, we have () the probability
over the decommit phase is > ϵ2 − ϵ1 that R outputs Ext(v, q, i, q⃗1) in the ith position (since
R outputs something other than � with probability > ϵ2, yet the probability of outputting
anything other than Ext(v, q, i, q⃗1) is < ϵ1); and () likewise, the probability of outputting
Ext(v, q, j, q⃗2) in the jth position is > ϵ2 − ϵ1. If we now take Q = q⃗1 and Q̂ = q⃗2, we have a
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contradiction to the definition of CFMD because with probability > (ϵ2 − ϵ1)3 = ϵB over all
three phases, ai ≠ âj, which generates a contradiction because the definition of ϵB-Binding
says that this was supposed to happen with probability < ϵB.

Wemust now show that, with probability> 1−ϵ1 over the commit phase,∑a∈F∖Ext(v,q,i,q⃗1)Av(q, i, q⃗1, a)
is< ϵ1. If not, thenwith probability> ϵ1 over the commit phase,∑a∈F∖Ext(v,q,i,q⃗1)Av(q, i, q⃗1, a) ≥
ϵ1. Now, following Lemma . in [], we can partition F into two sets T1,T2 such that
∑a∈T1 Av(q, i, q⃗1, a) and∑a∈T2 Av(q, i, q⃗1, a) are each greater than ϵ1/3. (ere are two cases;
consider a∗ = Ext(v, q, i, q⃗1). EitherAv(q, i, q⃗1, a∗) is greater than ϵ1/3, or it is not. If so, then
the partition is (a∗,F∖a∗). If not, then there is still a partition because the sum of the Av(⋅)
is greater than ϵ1/3.) is implies that, in the binding experiment, R outputs values from the
two partitions with probability > (2/9) ⋅ (ϵ1)3 = ϵB over all three phases, which contradicts
the definition of a CFMD protocol.

Now define Ext(v, q) = Ext(v, q, i∗, q⃗∗), where i∗ and q⃗∗ are designated (any choice with q
in the i∗ position of q⃗∗ will do). e next claim says that the response to q is independent of
its position and the other queries.

Claim A... Let ϵ3 = ϵ2 + ϵ1. For all q⃗, i, where q is in the ith position of q⃗, we have that
with probability > 1 − ϵ3 over the commit phase, either R’s ith output is Ext(v, q), or else the
probability over the decommit phase of outputting � is > 1 − ϵ3.

Proof. Assume otherwise.en there are q⃗, i such that with probability > ϵ3 over the commit
phase, the probability of outputting something (non-�) besides Ext(v, q, i∗, q⃗∗) is > ϵ3. But
with probability > 1 − ϵ1 over the commit phase, ∑a∈F∖Ext(v,q,i,q⃗)Av(q, i, q⃗, a) < ϵ1 (by the
partitioning argument given in the proof of ClaimA..).us, with probability > ϵ3−ϵ1 over
the commit phase, the probability of outputting something (non-�) besides Ext(v, q, i∗, q⃗∗)
is > ϵ3 and ∑a∈F∖Ext(v,q,i,q⃗)Av(q, i, q⃗, a) < ϵ1. us, with probability > ϵ3 − ϵ1 = ϵ2 over the
commit phase, Ext(v, q, i∗, q⃗∗) ≠ Ext(v, q, i, q⃗) and R has > ϵ3 > ϵ2 probability of outputting
something other than �. is contradicts Claim A...

To complete the proof of the lemma, define f̃v(q) ≜ Ext(v, q). Consider the proba-
bility 7.4 ⋅ 10−12, over both phases, that the output A ≠ (̃fv(q1), . . . , f̃v(qµ)), i.e., that at least
one of ai ≠ f̃v(qi). By the union bound, 7.4 ⋅ 10−12 < ∑µ

i=1 Pr{ai ≠ f̃v(qi)}. By Claim A..,
Pr{ai ≠ f̃v(qi)} < ϵ3 + ϵ3, since this bounds the probability that either of the two phases goes
badly. us, 7.4 ⋅ 10−12 < µ ⋅ 2 ⋅ ϵ3, as was to be shown.
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To compute 7.4 ⋅ 10−12, we ignore ϵS (the homomorphic encryption error); i.e., we
set ϵB = 1/∣F∣. We then get 7.4 ⋅ 10−12 < 2000 ⋅ (7 3

√
ϵB) < 214 ⋅ 3

√
1/∣F∣. For ∣F∣ = 2128,

7.4 ⋅ 10−12 < 2−28.

A. Batching

Under batching, V submits the same queries to β different proofs. Below, we sketch the me-
chanics and then proofs of correctness. First, wemodify Commit+Multidecommit (Figure .)
to obtain a new protocol, called BatchedCommit+Multidecommit. e changes are as follows:

• P is regarded as holding a linear function π⃗∶Fn → Fβ , so π⃗(q)= (π1(q), . . . , πβ(q)). One
can visualize π⃗ as an β × n matrix, each of whose rows is an oracle, πi. us, P returns
vectors instead of scalars.

• Commit phase, steps  and : instead of receiving from P the scalar Enc(pk, π(r)), V
in fact receives a vector e⃗ = (Enc(pk, π1(r)), . . . ,Enc(pk, πβ(r))) and decrypts to get
s⃗ = (π1(r), . . . , πβ(r)).

• Decommit phase, steps  and : P returns a⃗1, . . . , a⃗µ, b⃗, where a⃗i is supposed to equal
(π1(qi), . . . , πβ(qi)) and b⃗ is supposed to equal (π1(t), . . . , πβ(t)); V checks that b⃗ =
s⃗ + α1a⃗1 +⋯ + αµa⃗µ.

Second, we modify the compilation in Appendix A. as follows. P ′ creates β linear
proof oracles, and V ′ and P ′ run BatchedCommit+Multidecommit, causing P ′ to commit
to a linear function π⃗∶Fn → Fβ . V ′ then submits the µ PCP queries and receives vectors
π⃗(q1), . . . , π⃗(qµ) in response. en V ′ runs the PCP verifier on each instance separately
(e.g., for the kth instance, V ′ looks at the kth component of each of π⃗(q1), . . . , π⃗(qµ)). V ′

thus returns a vector ofβ accept or reject outputs. To argue correctness, we use a theorem
analogous to eorem A..:

eorem A... Under (P ′,V ′) as described above, each of the β instances is an argument
protocol with soundness ϵ′ ≤ ϵ + 7.4 ⋅ 10−12. (7.4 ⋅ 10−12 is defined in Appendix A..)

Proof. (Sketch.) Nearly the same as for eorem A... We need an analog of Lemma A..,
described below.

is theorem says that if any of the β instances tries to encode a “proof ” for an incor-
rect output, the probability that V outputs accept for that instance is bounded by ϵ′. is
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makes intuitive sense because if we fix a given instance, the probabilities should be unaffected
by “extra” instances.

To formalize this intuition, we need BatchedCommit+Multidecommit to yield an ex-
tractor function for each of the β instances. To get there, we define a general protocol: batch-
CFMD. is protocol has a binding property modified from the one in Definition A... In
the new one, R gives stacked output A⃗ = (a⃗1, . . . , a⃗µ) and ⃗̂A = (⃗̂a1, . . . , ⃗̂aµ). e entries
of A⃗ are denoted ak

i ; that is, a⃗i = (a1
i , . . . , a

β
i ). We allow ak

i ∈ {F ∪ �} but require that
(ak

1, . . . , ak
µ) ∈ Fµ or ak

i = � for all i ∈ [µ]. We now say that S∗ wins if for some i, j, k, we
have qi = q̂j and ak

i , âk
j ∈ F but ak

i ≠ âk
j . We again say that the protocol meets ϵB-Binding if for

all E and efficient S∗, S∗ has less than ϵB probability of winning.
We can show that BatchedCommit+Multidecommit is a batch-CFMD protocol by re-

running Lemma A.., nearly unmodified. To complete the argument, we can establish an
analog of Lemma A... e analog replaces a single extractor function f̃v with β functions
f̃1v, . . . , f̃

β
v , one per instance. e analog says that, viewing each instance k separately, we have

with probability > 1−7.4 ⋅10−12 that either R’s output for that instance is ⊥ or else ak
i = f̃kv(qi)

for all i ∈ [µ]. e proof is nearly the same as for Lemma A..; the main difference is that
Ext(⋅) and Av(⋅) receive a per-instance parameter k.

A. Modifications for ElGamal

Since ElGamal encryption is multiplicatively homomorphic (rather than additively homo-
morphic), small modifications to Commit+Multidecommit (Figure .) and the soundness
arguments are necessary. Below, we describe these modifications and establish that the re-
sults of Appendix A. still hold.

Fix the ElGamal group G, choose a generator g (known to both parties), and assume
for now that ∣Fp∣ = ∣G∣ (we revisit this assumption below). Define the map ψ∶Fp → G by
x ↦ gx. e map ψ is a group homomorphism and in fact an isomorphism; furthermore,
ψ induces a ring structure on G. By composing ψ with ElGamal encryption, we get an ad-
ditive homomorphism: Enc(pk, gx)Enc(pk, gy) = Enc(pk, gx+y). Of course, the verifier can-
not recover x + y explicitly from gx+y, but this does not matter for Commit+Multidecommit.
Also, given Enc(pk, gx) and a ∈ Fp, the properties of the ElGamal protocol imply that one
can compute Enc(pk, gax). us, given (Enc(pk, gr1), . . . ,Enc(pk, grn)), one can compute
Enc(pk, gπ((r1,...,rn))), where π is a linear function.

erefore, we can modify Figure . as follows. First, during step , the verifier com-
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ponentwise sends Enc(pk, gr) rather than Enc(pk, r) to the prover. Next, in step , the prover
computes Enc(pk, gπ(r)) (without learning gr), as described above.en in step ,V decrypts
to get gs. Finally, in step , the verifier checks that gb = gs+α1a1+⋯+αµaµ .

We now need to check that Lemma A.. still holds. Correctness applies, by inspec-
tion. Binding applies because the semantic security of the encryption scheme can be formu-
lated in terms of A(pk,Enc(pk, gr), r + αq, r + α′q) and because gx = gy if and only if x = y
(since ψ is injective).

Note that when ∣G∣ > ∣Fp∣, the same approach works, via modular arithmetic. Specif-
ically, although ψ is no longer a group isomorphism, it is injective. Provided that the com-
putations never overflow, i.e., result in values in the exponent larger than ∣G∣, the protocol
remains correct.
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Appendix B

Broadening the space of computations

B. Signed integers, floating-point rationals

In this appendix and the two ahead, we describe how Zaatar applies to general-purpose com-
putations. is appendix describes Zaatar’s representation of signed integers and its repre-
sentation of primitive floating-point quantities (this treatment expands on Section ..).
e next appendix details the case study (from Section ..) of an inequality test and a con-
ditional branch. Appendix B. describes other program constructs.

Our goal in these appendices is to show how to map computations to equivalent con-
straints over finite fields (according to the definition of equivalent given in Section .). To
do so, we follow the framework from Section .. Recall that the three steps in that frame-
work are: (C) Bound the computation Ψ, which starts out over some domain D (such as Z
or Q), to ensure that Ψ stays within some set U ⊂ D; (C) Establish a map between U and a
finite field F such that computingΨ in F is equivalent to computingΨ in U. (C) Transform
the finite field version of the computation into constraints.

B.. Signed integers

To illustrate step C, consider m×m matrix multiplication over signed integers, with inputs
of N bits (where the top bit is the sign): the computation does not “leave” U = [−m ⋅22N−1,m ⋅
22N−1), where U ⊂ Z.
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For step C, we take F = Z/p and define θ between U and Z/p as follows:

θ∶U→ Z/p

u↦ u mod p.

Note that:
() If U is an interval [a, b] and ∣Z/p∣ > ∣U∣, then θ is -to-.
() If x1, x2 ∈ U and x1 + x2 ∈ U, then θ(x1) + θ(x2) = θ(x1 + x2).
() If x1, x2 ∈ U and x1x2 ∈ U, then θ(x1)θ(x2) = θ(x1x2).
To argue property (), take x mod p = y mod p, whichmeans x = y+p⋅k, for k ∈ Z. If x ≠ y (so
θ is not -to-), then ∣y− x∣ ≥ p, which implies that there must be at least p+1 elements in U,
sinceU is an interval that includes x and y. But ∣U∣ < ∣Z/p∣ = p, a contradiction. Properties ()
and () follow because θ is a restriction of the usual reduction map, so it preserves addition
and multiplication.

us, computation in Z/p is isomorphic to computation in U: the constraint repre-
sentation uses only field operations to represent computations (see Section .), and for the
purposes of field operations, Z/p acts like U.

B.. Floating-point rational numbers

Step C

To illustrate this step, we again consider m ×m matrix multiplication and this time require
the input entries to be in the set T = {a/b ∶ ∣a∣ ≤ 2Na , b ∈ {1, 2, 22, 23, . . . , 2Nb}}. To bound
the computation to a set U, we use the claim below.

Claim B... For the computation of matrix multiplication, with input entries restricted
to T, the computation of matrix multiplication is restricted to U = {a/b∶ ∣a∣ < 2N′a , b ∈
{1, 2, 22, 23, . . . , 22Nb}}, for N′a = 2Na + 2Nb + log2 m.

Proof. Consider an entry in the output; it is of the form ∑m
k=1 AikBkj, where each AikBkj is

contained in S = {a/b∶ ∣a∣ < 22Na , b ∈ {1, 2, 22, 23, . . . , 22Nb}}.us, we can write each output
entry as∑m

k=1 ak/bk, the sum of m numbers from the set S. Writing each bk as 2ek , and letting
e∗ = maxk ek, we can write the sum as

∑k ak2e∗−ek

2e∗ .
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e denominator of this sum is contained in {1, 2, 22, 23, . . . , 22Nb}. e absolute
value of each summand in the numerator, ak2e∗−ek , is no larger than 22Na+2Nb , and there
are m summands, so the absolute value of the numerator is no larger than m ⋅ 22Na+2Nb =
22Na+2Nb+log2 m. A fortiori, the intermediate sums are contained in U (they have fewer than
m terms).

Step C

We must identify a field F where the computation can be mapped; that is, we need a field
that behaves something like Q. For this purpose, we take F = Frac(Z/p), the quotient field
of Z/p, which we denote Q/p.

is paragraph reviews the definition and properties of Q/p because we will need
these details later. As a quotient field, Q/p is the set of equivalence classes on the set Z/p ×
(Z/p ∖ {0}), under the equivalence relation ∼, where (a, b) ∼ (c,d) if ad = bc mod p; the
field operations are (a, b)+ (c,d) = (ad+bc mod p, bd mod p) and (a, b) ⋅ (c,d) = (ac mod
p, bd mod p), where a pair (x, y) represents its equivalence class. Note that although ele-
ments of Q/p are represented as having two components, each of which seems able to take
p or p − 1 values, the cardinality of Q/p is only p. In fact, Q/p is isomorphic to Z/p, via the
map f((a, b)) = a ⋅ b−1.

We must now define a map from U to Q/p; in doing so, we will take U to be an
arbitrary subset of Q:

θ∶U→ Q/p
a
b
↦ (a mod p, b mod p).

Note that θ is well-defined. (is fact is standard, but for completeness, we briefly argue
it. Take q1 = a1

b1
, q2 = a1x

b1x . en θ(q1) = (a1 mod p, b1 mod p) and θ(q2) = (a1x mod
p, b1x mod p). But we have (a1 mod p)(b1x mod p) ≡ (b1 mod p)(a1x mod p) (mod p),
so θ(q1) ∼ θ(q2).)

As mentioned above, Q/p does not have as much “room” as one might guess. To
make θ -to-, we must choose p carefully. e lemma below says how to do so, but we need
a definition first. Define the s-value of a finite set U ⊂ Q as follows. Write the ith element qi of
U as ai/bi where ai, bi ∈ Z, bi > 0, and ai and bi are co-prime. en the s-value of U, written
s(U), is s(U) = maxi,j(∣ai∣ ⋅ bj).
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Lemma B... For any U ⊂ Q, if p > 2 ⋅ s(U), then θ is -to-.

Proof. Take q1, q2 ∈ U, where θ(q1) ∼ θ(q2). We need to show that q1 = q2. Write q1 = a1/b1

and q2 = a2/b2 in reduced form (that is, ai and bi are co-prime). Note that by definition
of s-value and choice of p, p is greater than each of a1, b1, a2, b2, so we can write θ(q1) as
(a1, b1) and θ(q2) as (a2, b2). Since θ(q1) ∼ θ(q2), we have a1b2 ≡ a2b1 (mod p). But then
if a1b2 ≠ a2b1 (as would be implied by q1 ≠ q2) we would have:

p ≤ ∣a1b2 − a2b1∣

≤ ∣a1b2∣ + ∣a2b1∣

≤ 2 ⋅ s(U),

making p ≤ 2 ⋅ s(U), a contradiction.

Representing computations over Q/p faithfully. Note that:
() If q1, q2 ∈ U and q1 + q2 ∈ U, then θ(q1) + θ(q2) ∼ θ(q1 + q2).
() If q1, q2 ∈ U and q1q2 ∈ U, then θ(q1)θ(q2) ∼ θ(q1q2).
ese properties can be verified by inspection. Since θ preserves addition andmultiplication,
and since θ is -to- by choice of p, the computation inQ/p is isomorphic to the computation
in Q.

Examples. If U is defined as in Claim B.., then the s-value is upper-bounded by

m ⋅ 22(Na+Nb) ⋅ 22Nb = m ⋅ 22Na+4Nb .

Applying LemmaB.., if we take p > 2m⋅22Na+4Nb , then computation overQ/p is isomorphic
to computation over U, as claimed in Section ... As another example, consider numbers
of the form a ⋅ 2−q, where ∣a∣ < 2Na and ∣q∣ ≤ Nq. en the smallest positive number is 1/2Nq

and the largest positive number is 2Na+Nq/1, giving an s-value of 2Na+Nq ⋅2Nq . e prime thus
requires at least log2(2 ⋅ 2

Na+Nq ⋅ 2Nq) = Na + 2Nq + 1 bits, as claimed in Section ...

Canonical forms and θ−1

Later, it will be convenient to have defined θ−1 explicitly—and to have expressed this def-
inition in terms of a particular representation of elements of Q/p. is may seem strange
because the whole concept of equivalence class is that, within a class, all representations

is bound on p improves the originally published work.
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are equivalent. However, our constraints for certain computations, such as less-than, will
require assumptions about the representation of an element (see Appendix B..). us,
we define a canonical representation below; we focus on the case when U is of the form
{a/b∶ ∣a∣ < 2Na , b ∈ {1, 2, 22, 23, . . . , 2Nb}}.

Definition B.. (Canonical form in Q/p). An element (a, b) ∈ θ(U) is a canonical form
or canonical representation of its equivalence class if a ∈ [0, 2Na] ∪ [p − 2Na , p) and b ∈
{1, 2, 4, . . . , 2Nb}. Every element in θ(U) has such a representation, by definition of U and
θ.

We now define θ−1; let (ea, eb) denote a canonical form of e:

θ−1∶θ(U)→ U

e↦
⎧⎪⎪⎨⎪⎪⎩

ea/eb, 0 ≤ ea ≤ 2Na

(ea − p)/eb, p − 2Na ≤ ea < p

Note that when ea is in the “upper” part of the range, θ−1 maps e to a negative number in Q.
Note also that the canonical form for an equivalence class may not be unique. However, the
following two claims establish that this non-uniqueness is not an issue in our context.

Claim B... θ−1 is well-defined.

Proof. For e ∈ θ(U), let e = (a, b) ∼ (c,d), where (a, b) and (c,d) are both canonical forms.
We wish to show that θ−1((a, b)) = θ−1((c,d)).

We have θ−1((a, b)) ∈ U and θ−1((c,d)) ∈ U, by definition of θ−1 and U. Also, we
have θ(θ−1((a, b))) ∼ (a, b), as follows. If a ∈ [0, 2Na], then θ−1((a, b)) = a/b and θ(a/b) =
(a, b). If a ∈ [p−2Na , p), then θ−1((a, b)) = (a−p)/b and θ((a−p)/b) = (a−p mod p, b) ∼
(a, b). Likewise, θ(θ−1((c,d))) ∼ (c,d). Now, let u1 = θ−1((a, b)) and u2 = θ−1((c,d)).
Assume toward a contradiction that u1 ≠ u2; then θ(u1) /∼ θ(u2), by Lemma B... us
(a, b) ∼ θ(θ−1((a, b)) /∼ θ(θ−1((c,d))) ∼ (c,d), a contradiction.

Claim B... An element in θ(U) cannot have two canonical representations (a, b) and
(c,d) with a ∈ [0, 2Na] and c ∈ [p − 2Na , p).

Proof. Take (a, b) ∼ (c,d)where a ∈ [0, 2Na] and c ∈ [p−2Na , p) (note that b,d > 0). Because
θ−1 is a function (Claim B..), θ−1((a, b)) = θ−1((c,d)). However, θ−1((a, b)) = a/b ≥ 0
and θ−1((c,d)) = (c − p)/d < 0, which is a contradiction.
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Discussion

Most of our work above presumed a restriction on U: that the denominators of its elements
are powers of . We defined U this way because, without this restriction, we would need a
much larger prime p, per LemmaB... However, this restriction is not fundamental, and our
framework does not require it. On the other hand, the restriction yields primitive floating-
point numbers with acceptable precision at acceptable cost (see Section ..).

Implementation detail

When working with computations over Q, we express them over the finite field Q/p. How-
ever, our implementation (source code, etc.) assumes that the finite field is represented as
Z/p. Fortunately, as noted above, Q/p is isomorphic to Z/p via the following map:

f∶Q/p→ Z/p

(a, b)↦ ab−1.

We take advantage of this isomorphism to reuse our implementation over Z/p. Specifically,
when computing over Q/p, V and P follow the protocol below.

Definition B.. (Zaatar- protocol). Let Ψ be a computation over Q/p, and let Ψ′ be the
same computation, expressed over Z/p. e Zaatar- protocol for verifying Ψ is defined as
follows:

. V→ P: a vector x, over the domain Q/p.
. P→ V: y = Ψ(x).
. P → V: x′ and y′. P obtains x′, y′ (which are vectors in Z/p) by applying f elementwise

to x and y.
. V checks that for all (a, b) ∈ {x∪ y} and the corresponding element c ∈ {x′ ∪ y′}, cb ≡ a

mod p. is confirms that P has applied f correctly. If the check fails, V rejects.
. V engages P using the existing Zaatar implementation, to verify that y′ = Ψ′(x′).

e implementation convenience carries a cost:Pmust compute b−1 for each element
a/b in the input and output of Ψ (as part of computing f), and V must check that P applied f
correctly. On the other hand, some cost seems unavoidable. In fact, it might cost even more
if the implementation worked inQ/p directly: arithmetic is roughly twice as expensive using
the Q/p representation versus the Z/p representation.
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B. Case study: branch and inequalities

Below, we will give constraints for a computation that branches based on a less-than test.
(is will instantiate step C for the case study in Section ...) Most of the work is in
representing the less-than test; we do so with range constraints that take apart a number and
interrogate its bits.

B.. Order comparisons over the integers

Preliminaries

We will assume that the programmer or compiler has applied steps C and C to bound
the inputs, x1 and x2, and to choose F; thus, their difference is bounded too. Specifically, we
assume x1 − x2 ∈ U ⊂ [−2N−1, 2N−1), F = Z/p for some p > 2N, and θ(x) = x mod p. (See
Appendix B...)

With these restrictions, x1 < x2 if and only if x1 − x2 ∈ [−2N−1, 0), which holds if and
only if θ(x1) − θ(x2) ∈ [p − 2N−1, p); the second equivalence follows because θ is -to- and
preserves addition and multiplication, as shown in the previous appendix.

Step C

To instantiate step C, we write a set of constraints, C<:

C< =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0(1 − B0) = 0,
B1(2 − B1) = 0,
⋮

BN−2(2N−2 − BN−2) = 0,

θ(X1) − θ(X2) − (p − 2N−1) −∑N−2
i=0 Bi = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Lemma B... C< is satisfiable if and only if θ(x1) − θ(x2) ∈ [p − 2N−1, p).

Proof. Assume θ(x1) − θ(x2) ∈ [p − 2N−1, p). Let X3 = θ(x1) − θ(x2) − (p − 2N−1). Observe
that X3 ∈ [0, 2N−1), so X3’s binary representation has bits z0, z1, . . . , zN−2. Now, set Bi = zi ⋅ 2i

for i ∈ {0, 1, . . . ,N − 2}. is will satisfy all but the last constraint because Bi is set equal to
StepC in the body text (§.) calls for “equivalent” constraints, but the definition of “equivalent” in the same

section presumes a designated output variable, which the constraints for logical tests do not have. However, one
can extend the definition of “equivalent” to logical tests.
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either  or 2i. And the last constraint is satisfied from the definition of X3 and because we set
the {Bi} so that∑N−2

i=0 Bi = X3. For the other direction, if the constraints are satisfiable, then
θ(x1) − θ(x2) = p − 2N−1 +∑N−2

i=0 Bi, where the {Bi} are powers of , or . is means that
θ(x1) − θ(x2) ∈ [p − 2N−1, p).

Corollary B... For x1, x2 as restricted above, C< is satisfiable if and only if x1 < x2.

In other words, assuming the input restrictions, C< is equivalent to the logical test of < over
Z.

B.. Order comparisons over the rationals

Whendealingwith the rationals, extra preliminarywork is required to apply stepC; the core
reason is that each element inQ/phasmultiple representations (recall thatQ/p is isomorphic
to Z/p).

Preliminaries

We assume that the programmer or compiler has applied steps C and C to restrict the
inputs, x1 and x2, so that x1 − x2 ∈ U, for U = {a/b∶ ∣a∣ < 2Na , b ∈ {1, 2, 22, . . . , 2Nb}}.
Similarly, we assume that F is Q/p, p is chosen according to Lemma B.., and θ(a/b) =
(a mod p, b mod p). (See Appendix B...)

At this point, we need the x1 < x2 test to be in a form suitable for representation in
Q/p. Observe that x1 < x2 if andonly if x1−x2 ∈ S = {a/b∶ −2Na ≤ a < 0, b ∈ {1, 2, 22, . . . , 2Nb}},
which holds if and only if θ(x1) − θ(x2) ∈ θ(S); as with the integers case, the second bicon-
ditional follows because θ is -to-, and preserves addition and multiplication. However,
we wish to represent this condition in a way that explicitly refers to the representation of
θ(x1) − θ(x2).

Claim B... θ(x1) − θ(x2) ∈ θ(S) if and only if the numerator in the canonical representa-
tion (see Definition B..) of θ(x1) − θ(x2) is contained in [p − 2Na , p).

Proof. We will use the definition of θ−1 in the previous appendix. Let e = θ(x1) − θ(x2). If
e ∈ θ(S), then θ−1(e) = a/b, where a ∈ [−2Na , 0) and b ∈ {1, 2, 22, . . . , 2Nb}. us, θ(a/b) =
(p + a, b), where p + a ∈ [p − 2Na , p), and θ(a/b) = θ(θ−1(e)) ∼ e, so e has a canonical
representation of the required form. On the other hand, if e ∼ (a, b), where a ∈ [p − 2Na , p),
then θ−1(e) = (a − p)/b ∈ S, so e ∼ θ(θ−1(e)) ∈ θ(S).
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Step C

We instantiate step C with the following constraints C<:

C< =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0((1, 1) −A0) = (0, 1),
A1((2, 1) −A1) = (0, 1),
⋮ ⋮
ANa−1((2Na−1, 1) −ANa−1) = (0, 1),

A − (p − 2Na , 1) −∑Na−1
i=0 Ai = (0, 1),

B0((1, 1) − B0) = (0, 1),
B1((1, 1) − B1) = (0, 1),
⋮ ⋮
BNb((1, 1) − BNb) = (0, 1),

∑Nb
i=0 Bi − (1, 1) = (0, 1),

B −∑Nb
i=0 Bi ⋅ (1, 2i) = (0, 1),

θ(X1) − θ(X2) −A ⋅ B = (0, 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Lemma B... C< is satisfiable if and only if the numerator in the canonical representation
(see Definition B..) of θ(x1) − θ(x2) is contained in [p − 2Na , p).

Proof. Assume that X3 = θ(x1) − θ(x2) has the required form (a, b). We have k = log2 b ∈
{0, 1, 2, . . . ,Nb} and a ∈ [p − 2Na , p). Now, take Bk = (1, 1) and all other Bj = (0, 1); this
satisfies all of theBi constraints, including∑Nb

i=0 Bi−(1, 1) = (0, 1), which requires that exactly
one Bi be equal to (1, 1). For B, take B = (1, b) = (1, 2k), to satisfy B−∑Nb

i=0 Bi ⋅(1, 2i) = (0, 1).
Now, let a′ = a−(p−2Na).ebinary representation of a′ has bits z0, z1, . . . , zNa−1. Set

Ai = (zi, 1)(2i, 1) for i ∈ {0, 1, . . . ,Na−1}.is will satisfy all of the individualAi constraints.
And, since∑Na−1

i=0 Ai = (a′, 1), we can take A = (a, 1) to satisfy A− (p− 2Na , 1)−∑Na−1
i=0 Ai =

(0, 1). e remaining constraint is the last one in the list. It is satisfiable because we took
B = (1, b) and A = (a, 1), giving X3 − (a, 1) ⋅ (1, b) = (0, 1).

For the other direction, if the constraints are satisfiable, then X3 = θ(x1)− θ(x2) can
be written as (a, 1)(1, b), where b ∈ {1, 2, . . . , 2Nb} and where a = p − 2Na +∑Na−1

i=0 zi2i, for
zi ∈ {0, 1}. is implies that a ∈ [p − 2Na , p).
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In analogy with the integers case, notice that the lemma, together with the reasoning
in “Preliminaries”, implies the following corollary.

Corollary B... If the input restrictions are met, then C< is satisfiable if and only if x1 < x2.

at is, C< is equivalent to < over Q.

B.. Branching

We now return to the case study in Section ... We will abstract the domain (Z/p or Q/p):
when we write  in constraints below, it denotes the additive identity, which is (0, 1) inQ/p,
and when we write , it denotes the multiplicative identity, which is (1, 1) inQ/p. Recall the
computation Ψ and the constraints CΨ (Figure .):

if (X1 < X2)
Y = 3

else
Y = 4

CΨ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M{C<},
M(Y − 3) = 0,
(1 −M){C>=},
(1 −M)(Y − 4) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
We now argue that CΨ is equivalent to Ψ. (e definition of “equivalent” is given in Sec-
tion ..)

Lemma B... e constraints CΨ(X1 = x1,X2 = x2,Y = y) are satisfiable if and only if
y = Ψ(x1, x2).

Proof. Assume C = CΨ(X1 = x1,X2 = x2,Y = y) is satisfiable. Since C< and C>= cannot be
simultaneously satisfiable (that would imply opposing logical conditions), then M = 0 or
1 − M = 0. If 1 − M = 0, then y = 3, since we are given that the constraint M(Y − 3) =
0 is satisfiable when Y = y. Moreover, C< must be satisfiable, implying that x1 < x2 (see
Corollaries B.. and B..). On the other hand, by analogous reasoning, if M = 0, then y = 4,
C>= is satisfiable, and x1 ≥ x2. us, we have two cases: () x1 < x2 and y = 3 or () x1 ≥ x2

and y = 4. But this means that y = Ψ(x1, x2) for all x1, x2 in the permitted input.
Now assume that y = Ψ(x1, x2). If x1 < x2, then y = 3. Take M = 1 to satisfy the

constraints (1−M){C>=} = 0 and (1−M)(Y−4) = 0. Also, M(Y−3) = 0 is satisfied, because
y = 3. Last, C< can be satisfied, because x1 < x2. us, the constraints are satisfiable if x1 < x2.
Similar reasoning establishes that the constraints are satisfiable if x1 ≥ x2.
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We can generalize the computationΨ. For instance, letΨ1,Ψ2 be sub-computations,
which we abbreviate in code as comp1 and comp2. Let CΨ1 and CΨ2 denote the constraints
that are equivalent to Ψ1 and Ψ2, and rename the distinguished output variables in CΨ1 and
CΨ2 to be Y1 and Y2, respectively. Below, Ψ and CΨ are equivalent:

Ψ ∶

if (X1 < X2)
Y = comp1

else
Y = comp2

CΨ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M{C<},
M{CΨ1},
M(Y − Y1) = 0,
(1 −M){C>=},
(1 −M){CΨ2},
(1 −M)(Y − Y2) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ereasoning that establishes the equivalence is very similar to the proof of LemmaB...

(e differences are as follows. In the forward direction, take M = 1. en, since Y = y and
M(Y − Y1) is satisfied, Y1 = y; meanwhile, CΨ1(Y1 = y,X1 = x1,X2 = x2) must be satisfied,
which implies y = Ψ1(x1, x2) and hence y = Ψ(x1, x2). In the reverse direction, take x1 < x2.
en we have y = Ψ1(x1, x2). But this implies that when Y1 = y, we can satisfy CΨ1 , so set
Y1 = y. Furthermore, set Y = y, and we thus satisfy M(Y − Y1) and hence all constraints.)

We can generalize further. First, the logical test in the “if ” can be an arbitrary test
constructed from ==, !=, &&, ||, >, >=, <, <=; in this case, wemust also construct the negation
of the test (just as we need constraints that represent both C< and C>=). Second, we need not
capture the result of the conditional in Y; we can assign the result to an intermediate variable
Z. In that case, we would replace the constraints M(Y−Y1) = 0 and (1−M)(Y−Y2) = 0 with
M(Z−Y1) and (1−M)(Z−Y2), respectively, and of course we would need other constraints
that capture the flow from Z to the ultimate output, Y.

B. Program constructs and costs

is appendix describes further program constructs; as with the case study, the work here
corresponds to step C in our framework. However, in this appendix, we will not delve into
as much detail as in the previous appendices; a more precise syntax and semantics is future
work. Below, we describe how we map program constructs to constraints and then briefly
consider the costs of doing so.
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B.. Program constructs

Aside from order comparisons, the computations and constraints below are independent
of the domain of the computation; as in Appendix B..,  and  denote the additive and
multiplicative identities in the field in question.

Tests

==. Consider the fragment (comp1) == (comp2), where comp1 and comp2 are computa-
tions Ψ1 and Ψ2. Renaming the output variables in Ψ1 and Ψ2 to be Y1 and Y2, respectively,
we can represent the fragment with the constraint Y1 − Y2 = 0.

!=. Consider the program fragment Z1 != Z2. An equivalent constraint is M ⋅(Z1−
Z2) − 1 = 0, where M is a new auxiliary variable. is constraint is satisfiable if and only
if Z1 − Z2 has a multiplicative inverse; that is, it is satisfiable if and only if Z1 − Z2 ≠ 0,
or Z1 ≠ Z2. As above, we can represent (comp1) != (comp2); the constraint would be
M ⋅ (Y1 − Y2) − 1 = 0.

<, <=, >, >=. Appendix B. described in detail the constraints that represent <. A
similar approach applies for the other three order comparisons. For example, for X1 <= X2
over the rationals, we want to enforce that the canonical numerator (see Definition B..) of
X1 − X2 ∈ [p − 2Na , p) ∪ {0}. To do so, we modify C< in Appendix B.. as follows. First, we
add a constraint A′0(A′0 − (1, 1)) = (0, 1). Second, we change the A constraint from

A − (p − 2Na , 1) −
Na−1
∑
i=0

Ai = (0, 1)

to

A − (p − 2Na , 1) −
Na−1
∑
i=0

Ai −A′0 = (0, 1).

Composing tests into expressions

To compose logical expressions, we provide && and ||. We do not provide logical negation
explicitly, but our computational model includes inverses for all tests (for example, == and
!=), so the programmer or compiler can use DeMorgan’s laws to write the negation of any
logical expression in terms of && and ||.

||. Consider the expression (cond1) || (cond2), and let C1 and C2 be the con-
straints that are equivalent to cond1 and cond2 respectively. e expression is equivalent to
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the following constraints, where M1,M2 are new variables:

C|| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(M1 − 1)(M2 − 1) = 0,
M1{C1},
M2{C2}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

We now argue that C|| is equivalent to the original expression. If cond1 holds, then C1 is
satisfiable; choose M1 = 1 and M2 = 0 to satisfy all constraints. Note that if cond2 also
holds, then setting M2 = 1 also works, but the prover might wish to avoid “executing” (i.e.,
finding a satisfying assignment for) C2. On the other hand, if C|| is satisfiable, then M1 = 1 or
M2 = 1, or both. If M1 = 1, then C1 is satisfied, which implies that cond1 holds. e identical
reasoning applies if M2 = 1.

&&. To express (cond1) && (cond2), the programmer simply includes C1 and C2.

Conditionals

We covered conditional branching in detail in Appendix B... Below we describe two other
conditional constructs, - and --, that are useful as “type casts”
from integers to - values.

--. e computation Ψ is Y = (X != 0) ? 1 : 0, and it can be
represented with the following constraints:

C-- =
⎧⎪⎪⎨⎪⎪⎩

X ⋅M − Y = 0,
(1 − Y) ⋅ X = 0

⎫⎪⎪⎬⎪⎪⎭
.

One can verify by inspection that C--(Y = y,X = x) is satisfiable if and only if
y = Ψ(x). Note that we could implement -- by using a conditional branch
(see Appendix B..) together with a != test (see above). However, relative to that option, the
constraints above are more concise (fewer constraints, fewer variables). ey are also more
concise than the representation given by Cormode et al. []. Roughly speaking, Cormode
et al. represent -- with a constraint like Xp−1−Y = 0, where p is themodulus
of Z/p (the approach works because Fermat’s Little eorem says that for any non-zero X,
Xp−1 ≡ 1 (mod p)); this approach requires log p intermediate variables.

-. is computation is the inverse of the previous; the constraint repre-
sentation of C- is the same as C-- but with Y replaced by 1 − Y.
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B.. Costs

As mentioned in Section .., there are two main costs of the constructs above. First, the
order comparisons require a variable and a constraint for each bit position, Second, the con-
straints for conditional branching and || appear to be degree- or higher—notice the M{C}
notation in these constructs—butmust be reduced to be degree-, as required by the protocol
(see §.., §.) Below, we describe this reduction and its costs.

We will start with the degree- case and then generalize. Let C be a constraint set
over variables {Z1, . . . ,Zn,M}, and let C have a degree- constraint, Q(Z1, . . . ,Zn,M). Q
has the form R(M) ⋅S(Z1, . . . ,Zn), where R(M) is M or (1−M); this follows because higher-
degree constraints only ever emerge from multiplication by an auxiliary variable. We reduce
Q by constructing a C′ that is the same as C except that Q is replaced with the following two
constraints, using a new variable M′:

M′ − S(Z1, . . . ,Zn) = 0,
R(M) ⋅M′ = 0.

Claim B... C is satisfiable if and only if C′ is satisfiable.

Proof. Abbreviate Z = Z1, . . . ,Zn. Assume C is satisfied by assignment Z = z,M = m. Use
this same setting for C′. So far, all constraints other than the two new ones are satisfied in
C′. To satisfy the two new ones, set M′ = S(z). is satisfies the first new constraint. It also
satisfies the second new constraint because either M′ = 0 or M′ ≠ 0, in which case S(z) ≠ 0,
which implies (because C is satisfied and hence Q is too) that R(m) = 0.

Now assume that C′ is satisfiable with assignment Z = z,M = m,M′ = m′. In C,
set Z = z,M = m. Now, in this assignment, in C′, R(m) = 0 or m′ = 0. If R(m) = 0, then
Q(z,m) = 0. If m′ = 0, then S(z) = 0, so Q(z,m) = 0 again.

Since applying a single transformation of the kind above does not change the satis-
fiability of the resulting set, we can transform all of the constraints this way, to make M{C}
degree-. e costs of doing so are as follows. Each of the ∣C∣ constraints in C causes us to
add another constraint and a new variable. us, if C has s variables and ∣C∣ constraints, then
our representation of M{C} has s + ∣C∣ variables and 2 ⋅ ∣C∣ constraints.

e approach above generalizes to higher degrees. Higher-degree constraints emerge
from nesting of branches or || operations. If there are k levels of nesting somewhere in the
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computation, then the computation’s constraints have a subset of the form

Cnested =Mk{Mk−1{⋯M1{C}⋯}}.

(Each of the Mi could also be 1 −Mi.) en there is a set of equivalent degree- constraints
that uses in total s + k ⋅ ∣C∣ variables and (k + 1) ⋅ ∣C∣ constraints.

e details are as follows. Consider a single constraint in Cnested; it has the form
R(Mk)⋯R(M2)R(M1)S(Z) = 0, where S(Z) is degree-. Replace this constraint with the
following ones, to form C′nested:

M′0 − S(Z) = 0,
M′1 − R(M1) ⋅M′0 = 0,
M′2 − R(M2) ⋅M′1 = 0,
⋮

M′k−1 − R(Mk−1) ⋅M′k−2 = 0,
R(Mk) ⋅M′k−1 = 0.

e proof that C′nested and Cnested are equivalent is similar to the proof of Claim B.. and is
omitted for the sake of brevity. Observe that this construction introduces, per constraint in
C, k new variables and k new constraints, leading to the costs stated above.
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Appendix C

A linear PCP protocol based on QAPs

is section describes a new linear PCP [] protocol, which is used by Zaatar. is proto-
col is based on Quadratic Arithmetic Programs (QAPs), which is a formalism due to Gen-
naro et al. [].

Our description will be tailored to our context. In particular, the PCP protocol will
check the satisfiability of constraints that are assumed to represent a computation (§.).
However, this generalizes to checking the satisfiability of any degree- constraint set. Since
degree- constraint satisfaction is an NP-complete problem [], the PCP that we present
here generalizes to checking NP relations. e core idea is to transform a set of constraints
to a set of polynomials in such a way that the constraints are satisfiable if and only if the
polynomials have a particular algebraic relation.

C. e construction

Notation. We are given a constraint set C over the variables W = (X,Y,Z), where X is the set
of distinguished input variables, Y is the set of distinguished output variables, and Z is the
set of remaining variables. Let ∣C∣ denote the number of constraints in C. Also, let n = ∣W∣
and n′ = ∣Z∣. e following indexing will be convenient: the variables in Z are labeled as
W1, . . . ,Wn′ , and the variables in X and Y are labeled as Wn′+1, . . . ,Wn. We will be working
over a finite field, F.

Building blocks. ebuilding blocks described in the next several paragraphs are bor-
rowed from QAPs [], though our notation and phrasing is different, and we work with
constraints explicitly.

We require that each constraint is in quadratic form (Section C.). at is, constraint
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j has the form pj,A(W)⋅pj,B(W) = pj,C(W), where pj,A, pj,B, and pj,C are degree- polynomials
over W. Now, for variable Wi (which will be a member of X, Y, or Z), let ai,j be the coefficient
of Wi in pj,A. Similarly, let bi,j be the coefficient of Wi in pj,B, and let ci,j be the coefficient of
Wi in pj,C. Finally, for constraint j, let a0,j, b0,j, and c0,j be the constant terms in pj,A, pj,B, and
pj,C.

We will construct polynomials that encode these constraints. On the way there, it
will be helpful to visualize three (n + 1) × ∣C∣ variable-constraint matrices: A, B, C. In each
of these matrices, each row represents a variable in W (as a special case, row i = 0 represents
the constant terms), and each column represents a constraint in C. In the A (resp., B and C)
matrix, the (i, j) cell contains ai,j (resp., bi,j and ci,j); thus, this cell is non-zero if variable i
appears in constraint j in the pj,A (resp., pj,B and pj,C) component. Observe that the matrices
A,B,C encode the constraints; we will now turn these matrices into polynomials.

We construct degree-∣C∣ polynomials {Ai(t)},{Bi(t)},{Ci(t)}, for i ∈ [0..n], by in-
terpolation. Take distinguished non-zero points σ1, σ2, . . . , σ∣C∣ ∈ F, and for each i require
that Ai(σj) = ai,j, Bi(σj) = bi,j, and Ci(σj) = ci,j; at this point, there are ∣C∣ point-value pairs
constraining each of the Ai(t), Bi(t), and Ci(t). Finally, require Ai(0) = Bi(0) = Ci(0) = 0;
this gets us to ∣C∣+1 points and evaluations, which fully defines the polynomials Ai(t), Bi(t),
and Ci(t), by interpolation. Moreover, we can represent each Ai(t), Bi(t), and Ci(t) in terms
of their evaluations at the values {σj}. at is, we can write:

A0(t) = (a0,1, a0,2, . . . , a0,∣C∣) B0(t) = (b0,1, b0,2, . . . , b0,∣C∣) C0(t) = (c0,1, c0,2, . . . , c0,∣C∣)

A1(t) = (a1,1, a1,2, . . . , a1,∣C∣) B1(t) = (b1,1, b1,2, . . . , b1,∣C∣) C1(t) = (c1,1, c1,2, . . . , c1,∣C∣)

⋮ ⋮ ⋮

An(t) = (an,1, an,2, . . . , an,∣C∣) Bn(t) = (bn,1, bn,2, . . . , bn,∣C∣) Cn(t) = (cn,1, cn,2, . . . , cn,∣C∣)

Now, construct the divisor polynomial, D(t):

D(t) = ∏
j∈[1..∣C∣]

(t − σj).

Finally, encode all of the constraints in a single polynomial P(t,W) over t and the
constraint variables W:

P(t,W) = (
n
∑
i=0

Wi ⋅Ai(t)) ⋅ (
n
∑
i=0

Wi ⋅ Bi(t)) − (
n
∑
i=0

Wi ⋅ Ci(t)) .
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Wenowgive somenotation and conventions.Wewill writePx,y(t,Z) tomeanP(t,W)
with X=x and Y=y. We will take w = (x, y, z) ∈ Fn to mean an assignment to the variables
(X,Y,Z); by convention, w0 = 1. us, Px,y(t, z) means P(t,W=w), for some w; we oen
write P(t,W=w) as Pw(t). Observe that Px,y(t,Z) has the following form, as claimed in Sec-
tion .: Px,y(t,Z) = (∑n′

i=1 Zi ⋅Ai(t)+A′(t)) ⋅(∑n′
i=1 Zi ⋅Bi(t)+B′(t))−(∑n′

i=1 Zi ⋅Ci(t)+C′(t)),
where A′(t) is a linear combination of A0(t),An′+1(t), . . . ,An(t), the coefficients given by
1, x, y, and analogously for B′(t) and C′(t).

ClaimC... Let w = (x, y, z) be an assignment to the variables (X,Y,Z).en D(t) divides
Pw(t) if and only if z satisfies C(X=x,Y=y).

Proof. Assume D(t) divides Pw(t). Fix a constraint j ∈ [1..∣C∣]. By definition of D(t), the
polynomial t−σj is a factor ofPw(t), soσj is a root ofPw(t).us, 0 = Pw(σj) = (∑n

i=0 wi ⋅Ai(σj))⋅
(∑n

i=0 wi ⋅ Bi(σj)) − (∑n
i=0 wi ⋅ Ci(σj)) . By construction of {Ai(t), Bi(t), Ci(t)}, we have

(∑n
i=1 wi ⋅ ai,j + a0,j) ⋅ (∑n

i=1 wi ⋅ bi,j + b0,j) = ∑n
i=1 wi ⋅ ci,j + c0,j. at is, constraint j is satis-

fied at w=(x, y, z), by definition of ai,j, bi,j, ci,j. But we chose j arbitrarily, so z satisfies all
constraints in C(X=x,Y=y).

For the other direction, if the z “piece” of w satisfies C(X=x,Y=y), then every con-
straint is satisfied, which implies Pw(σj) = 0 for all {σj}, so all {σj} are roots of Pw(t), so
Pw(t) can be factored into (t − σ1)⋯(t − σ∣C∣) ⋅Hw(t)= D(t) ⋅Hw(t), for some Hw(t).

eQAP-based proof oracle. Let z be the prover’s purported assignment to C(X=x,Y=y).
A correct proof oracle is π = (πz, πh), where πz(⋅) = ⟨⋅, z⟩ and πh(⋅) = ⟨⋅,h⟩. Here, h =
(h0, . . . ,h∣C∣) ∈ F∣C∣+1 represents the coefficients of a polynomialH(t); that is,H(t) = ∑∣C∣j=0 hj ⋅
tj. In a correct proof oracle for a correct computation, H(t) satisfies D(t) ⋅H(t) = Pw(t).

ePCPprotocol. eprotocol is depicted in FigureC..Adetail is that queries qa, qb, qc, qd

are self-corrected (see [, §] or [, §..]). e soundness of the protocol is at least
1 − κρ; Section C. establishes this bound and quantifies κ. We state the high-order verifier
costs immediately below and give details in Section C..

e verifier’s running time is proportional to ∣Z∣+ ∣C∣ and so is the randomness that it
must generate; the constant of proportionality depends on the cost of field operations. ese
costs are almost linear in the number of steps in the computation; there is actually an extra
logarithmic term (since the field size, which must be larger than the number of steps in the
computation, affects the costs). However, to reflect the practical reality, we mostly disregard





A linear PCP based on QAPs []

everifierV interactswith a proof oracleπ as follows. A correct proof oracle encodes z and h, where z
satisfiesC(X=x,Y=y), and h is the coefficients of a polynomialHw(t) that satisfiesD(t)⋅Hw(t) = Pw(t),
for w = (x, y, z).

Loop ρ times:
• Generate linearity queries: Select q5, q6 ∈R Fn′ and q8, q9 ∈R F∣C∣+1. Take q7 ← q5 + q6 and q10 ←

q8 + q9. Perform ρlin − 1 more iterations of this step.
• Generate divisibility correction queries:

–– Select τ ∈R F.
–– Take qa ← (A1(τ),A2(τ), . . . ,An′(τ)), and q1 ← (qa + q5).
–– Take qb ← (B1(τ),B2(τ), . . . ,Bn′(τ)), and q2 ← (qb + q5).
–– Take qc ← (C1(τ),C2(τ), . . . ,Cn′(τ)), and q3 ← (qc + q5).
–– Take qd ← (1, τ, τ 2, . . . , τ ∣C∣), and q4 ← (qd + q8).

• Issue queries: Send q1, . . . , q4+6ρlin to oracle π, getting back π(q1), . . . , π(q4+6ρlin).

• Linearity tests: Check that π(q5) + π(q6)
?= π(q7) and that π(q8) + π(q9)

?= π(q10), and likewise
for the other ρlin − 1 iterations. If not, reject.

• Divisibility correction test: Return reject unless

D(τ) ⋅ (π(q4) − π(q8))
?= (π(q1) − π(q5) +

n
∑

i=n′+1
wi ⋅Ai(τ) +A0(τ)) ⋅ (π(q2) − π(q5) +

n
∑

i=n′+1
wi ⋅ Bi(τ) + B0(τ))

− (π(q3) − π(q5) +
n
∑

i=n′+1
wi ⋅ Ci(τ) + C0(τ)) .

If V makes it here, accept.

Figure C.: See the text for the definition of D(t) and Pw(t), and the construction of {Ai(t)},
{Bi(t)}, {Ci(t)}, and recall that x and y are labeled as {wn′+1, . . . ,wn}.

this term by referring to “the size of the computation”, which captures the field size. Of course,
costs that are proportional to the computation itself do not save the verifier work; thus, we
amortize these costs over multiple instances of the computation (§.), in the context of the
efficient argument system described below.

e efficient argument system. Zaatar is an efficient argument system [, ] that com-
poses the PCP in Figure C. with an improved version of IKO’s cryptographic machinery
(§.). e soundness error of the argument system is upper-bounded by κρ + 9 ⋅ µ ⋅ ∣F∣−1/3,
where µ is the number of PCP queries; see the analysis in [, Apdx A.]. e verifier in-
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curs additional costs from the linear commitment primitive; these costs are proportional to
the computation size. e prover’s costs stem from constructing the proof vector (treated in
Section C.) plus responding to queries (the costs are proportional to the size of the compu-
tation). e network costs are (a) a full query sent from V toP , and (b) a random seed from
which V and P derive the PCP queries pseudorandomly (see [, Apdx A.]).

C. Cost-benefit analysis

Given our goal of removing prover overhead, Zaatar’s PCP is very promising. However, we
need to consider its benefits against the cost of its additional requirements. is section per-
forms an analysis, summarized in Figure C.. Our chosen baseline for this analysis is Zaatar
without the new PCP encoding (this is a predecessor of Zaatar, called Ginger []).

Summary of the analysis. Zaatar requires more constraints over a larger set of variables
than Ginger does for the same computation; all other things being equal, this slight blowup
would increase the prover’s and the verifier’s costs. Also, Zaatar requires additional book-
keeping from the prover (when constructing the proof encoding) and the verifier (when
constructing queries). However, these two effects are dwarfed by a vast reduction in the size
of the proof encoding under Zaatar. e consequence is a correspondingly vast improve-
ment in both the prover’s work and the verifier’s query setup work (and hence the cross-over
points, as defined in Section .). Finally, while there are cases when Zaatar is worse than
Ginger, they are contrived computations with a particular structure (e.g., evaluation of dense
degree- polynomials).

Below, we present the analysis. e comparison depends heavily on the number of
constraints and variables in Zaatar versus the alternative, so we begin with these quantities.

Constraints in Zaatar versus Ginger. Whereas Ginger requires only that constraints are
degree- (§..), Zaatar imposes an additional requirement. Under Zaatar, each constraint
Qj must be in the form pA ⋅ pB = pC, where pA, pB, and pC are degree- polynomials over the
variables in the constraint set. We call this quadratic form; the requirement stems from the
way that Zaatar, via QAPs, encodes constraints in polynomials (Appendix C. gives detail).

Also, the degenerate cases are detectable, so the compiler could simply choose to use Ginger (or [, ])
over Zaatar; see [].
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We can obtain constraints Czaatar in quadratic form, given a set of Ginger constraints
Cginger; indeed, our compiler first compiles to Ginger constraints and then performs the fol-
lowing transformation. For every constraint in Cginger, we retain all of the degree- terms
and replace all degree- terms with a new variable. For example, if a constraint in Cginger is
{3 ⋅Z1Z2+2 ⋅Z3Z4+Z5−Z6 = 0}, then Czaatar would replace that constraint with the following
constraints, which are all in quadratic form: {(3⋅Z′1+2⋅Z′2+Z5)⋅(1) = Z6, Z1Z2 = Z′1, Z3Z4 =
Z′2}.

Webound the number of variables and constraints inCzaatar as follows. Letting ∣Zzaatar∣
(resp., ∣Zginger∣) equal the number of variables in Czaatar(X=x,Y=y) (resp., Cginger(X=x,Y=y)),
by construction of Czaatar we have ∣Zzaatar∣ = ∣Zginger∣+K2, where K2 is the number of distinct
degree- terms that appear in all of Cginger. Similarly, ∣Czaatar∣ = ∣Cginger∣ + K2.

We analyze the drop in proof vector size at the end of this section; see also the first
two lines of Figure C..

eprover’s work. Because of the shorter proof vector length, the prover’s work to reply to
queries drops, usually dramatically (see the “Issue responses” row in Figure C.). However,
the prover has an additional cost under Zaatar.

e prover must compute the coefficients of the polynomial Hx,y,z(t) = P(t, z)/D(t)
(see Section .). As a starting point in this computation, the prover knows values taken
by the polynomials {Ai(t),Bi(t),Ci(t)} and {A′(t),B′(t),C′(t)} at well-known values of t.
Using operations based on the FFT (interpolation [], polynomial multiplication [], and
polynomial division), the prover obtains the coefficients of Hx,y,z(t) in time ≈ 3 ⋅ f ⋅ (∣Czaatar∣ ⋅
log2 ∣Czaatar∣), as depicted in Figure C.. e process is detailed in Appendix C..

e verifier’s work. Like the prover, the verifier in Zaatar also gains from the shorter proof
vector; see the “Computation-oblivious queries” line in Figure C.. However, the Zaatar ver-
ifier incurs two additional costs, which we summarize immediately below and detail in Ap-
pendix C..

e first is the cost to construct the query, which is depicted in the “Computation-
specific queries” line in the figure. UnderGinger, the verifiermust compute γ1 and γ2 in order
to issue a circuit query (§..); this requires generating a pseudorandom number for each
constraint and thenmultiplying it with each term in the given constraint, yielding amortized
costs of ρ ⋅ (c ⋅ ∣Cginger∣ + f ⋅K)/β for a batch of size β. e analog under Zaatar is computing
queries to z and to h, which costs for the batch ρ ⋅ (c + (fdiv + 5f) ⋅ ∣Czaatar∣ + f ⋅ K + 3f ⋅ K2).
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e second cost is that Zaatar’s verifier requires two more operations per input and output,
owing to the details of query construction (see Appendices C. and C.).

Detailed analysis of ∣u∣. For a given computation,Ginger’s proof vector has length ∣uginger∣ =
∣Zginger∣+ ∣Zginger∣2 (per Section ..). By contrast, Zaatar’s proof vector has length ∣uzaatar∣ =
∣Zzaatar∣+∣Czaatar∣ (per Section .); recalling that ∣Zzaatar∣ = ∣Zginger∣+K2 and ∣Czaatar∣ = ∣Cginger∣+
K2, we can write ∣uzaatar∣ = ∣Zginger∣ + ∣Cginger∣ + 2K2. However, ∣Cginger∣ ≈ ∣Zginger∣, and we
will in fact take ∣Cginger∣ = ∣Zginger∣: our compiler, when configured to output Ginger con-
straints, creates roughly one new variable for each constraint that it introduces. us, we
get ∣uzaatar∣ = 2 ⋅ (∣Zginger∣ + K2).

To compare ∣uzaatar∣ to ∣uginger∣, wemake three points. First, ∣uzaatar∣ is less than ∣uginger∣
as long as K2 < K∗2

def= (∣Zginger∣2 − ∣Zginger∣)/2. Indeed, we expect that for most computa-
tions, K2 will be far smaller than K∗2 . Roughly speaking, this fails to occur only when the
computation involves adding the product of many multiplications; the reason is that (a) K∗2
corresponds to a computation in which the average number of distinct degree- terms per
Ginger constraint is (∣Zginger∣−1)/2, and (b) our compiler produces a Ginger constraint with
more than (∣Zginger∣− 1)/2 terms only when compiling a program excerpt that involves sum-
ming many terms that are degree- (or higher). If most of the constraints have this form,
it means that most of the computation involves such sums, which is a degenerate case. An
example is degree- polynomial evaluation, for which the Ginger encoding is actually very
concise [].

Second, even in the degenerate cases, ∣uzaatar∣ is very close to ∣uginger∣. e worst case
is when K2 is maximal, which happens when every pair of variables in Zginger appears as a
degree- term in Cginger; that is, the maximum value of K2 is K2 = ∣Zginger∣ ⋅ (∣Zginger∣ + 1)/2.
Recalling that ∣uzaatar∣ = 2⋅(∣Zginger∣+K2), we get ∣uzaatar∣ ≤ 2⋅∣Zginger∣+∣Zginger∣⋅(∣Zginger∣+1) =
3 ⋅ ∣Zginger∣+ ∣Zginger∣2. But ∣uginger∣ = ∣Zginger∣+ ∣Zginger∣2, so ∣uzaatar∣ ≤ ∣uginger∣ ⋅(1+2/(∣Zginger∣+
1)), which is indeed close to ∣uginger∣.

ird, for all of the computations that we investigate and evaluate, K2 is far smaller
than K∗2 (i.e., we are nowhere close to the degenerate cases), leading to vast improvements in
the length of the proof vector, and hence breakeven batch sizes.

A careful analysis of the compiler indicates that the actual bound is ∣Cginger∣ ≤ (1 + α) ⋅ ∣Zginger∣, for α =
4/(log2 ∣F∣ + 3). However, our fields are large (§..), which is why the text treats α as equal to .

e other constructs that produce constraints with degree- terms (< and ==) produce only an average of
one or two distinct degree- terms per constraint and add at least twice as many new variables.
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C. Correctness

A verifierV is given access to a proof oracle π, which is supposed to establish the satisfiability
of C(X=x,Y=y).

Lemma C.. (Completeness). If C(X=x,Y=y) is satisfiable, if π = (πz, πh) is constructed
as above, and if V proceeds according to Figure C., then Pr{V accepts} = 1.

Proof. If π is constructed properly, then it is a linear function, so it passes the linearity tests.
Next we consider the divisibility test. Let w = (x, y, z). If C(X=x,Y=y) is satisfiable by z, then
by Claim C.., there exists Hw(t) such that D(t) ⋅Hw(t) = Pw(t). Also, if π is constructed
properly, then V obtains πz(qa) as πz(q1)−πz(q5), where πz(qa) = ∑n′

i=1 wi ⋅Ai(τ). Similarly,
V obtains πz(qb) as πz(q2) − πz(q5), where πz(qb) = ∑n′

i=1 wi ⋅ Bi(τ). Likewise πz(q3) −
πz(q5) = πz(qc) = ∑n′

i=1 wi⋅Ci(τ). Finally,V obtainsπh(qd) similarly, whereπh(qd) = ∑
∣C∣
j=0 hj⋅

τ j = Hw(τ). us, the divisibility test is checking the following:

D(τ) ⋅Hw(τ)
?= (

n
∑
i=0

wi ⋅Ai(τ)) ⋅ (
n
∑
i=0

wi ⋅ Bi(τ)) − (
n
∑
i=0

wi ⋅ Ci(τ)) = Pw(τ), (C.)

which holds, since D(t) ⋅Hw(t) = Pw(t). us, both tests pass, so V accepts.

Lemma C.. (Soundness). ere exists a constant κ < 1 such that if C(X=x,Y=y) is not sat-
isfiable and if V proceeds according to Figure C., then Pr{V accepts} < κ for all purported
proof oracles π̃.

Proof. Assume for now that π̃ is a linear function (this restricts the proof oracle’s power to
cheat, and we will revisit this in a moment). Consider π̃(qa), π̃(qb), and π̃(qc); these equal
⟨qa, z̃⟩, ⟨qb, z̃⟩, and ⟨qc, z̃⟩, for some z̃ chosen by the prover. Likewise, π̃(qd) equals H̃(τ), for
some polynomial H̃(t), chosen by the prover. us, the divisibility test is checking whether
D(τ) ⋅ H̃(τ) = Pw̃(τ), for w̃ = (x, y, z̃).

However, C(X=x,Y=y) is not satisfiable, so there is no H̃(t) for which D(t) ⋅ H̃(t) =
Pw̃(t) (by Claim C..). us, Equation (C.) holds only if τ is a root of the polynomial
Q(t) = Pw̃(t) −D(t) ⋅ H̃(t). But by the Schwartz-Zippel lemma, Prτ{Q(τ) = 0} ≤ 2 ⋅ ∣C∣/∣F∣,
since the degree of Q(t) is bounded by 2 ⋅ ∣C∣ and τ is randomly chosen from F.

We now address the possibility that π̃ is not a linear function. Take κ > max{(1 −
3δ + 6δ2)ρlin , 6δ + 2 ⋅ ∣C∣/∣F∣}, for 0 < δ < δ∗, where δ∗ is the lesser root of 6δ2 − 3δ + 2/9 = 0.
e following claim implies the lemma: if, for some π, the tests pass with probability greater
than κ, then C(X=x,Y=y) is satisfiable. We will now argue this claim.
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If the linearity tests pass with probability greater than (1 − 3δ + 6δ2)ρlin , then π is δ-
close to linear; this follows from results of Bellare et al. [, ]; see the analysis in [, Apdx.
A.]. Next, consider the divisibility correction test (DCT). Assuming the proof oracle is δ-
close to linear, the probability of passing the DCT is > κ ≥ 6δ + 2 ⋅ ∣C∣/∣F∣. But the probability
that any of the six queries in this test (q1, q2, q3, q4, q5, q8) “hit” π where it is not linear is
upper-bounded by 6δ, by the union bound. So with probability > 2 ⋅ ∣C∣/∣F∣, the tests pass
if querying the closest linear function to π. But then C(X=x,Y=y) is satisfiable because, as
argued above, if C(X=x,Y=y) is not satisfiable andV queries a linear function, the probability
of passing the tests ≤ 2 ⋅ ∣C∣/∣F∣.

As in [, Apdx A.] we choose δ to minimize cross-over points. We neglect the
ratio 2 ⋅ ∣C∣/∣F∣, since ∣C∣ roughly captures the size of the computation and ∣F∣ is astronomical
(e.g., ∣F∣ = 2192). We choose δ = 0.0294 and ρlin = 20, and hence κ = 0.177 suffices. We then
take ρ = 8 for an upper-bound on soundness error of κρ < 9.6 × 10−7.

C. Costs in more detail

Earlier in the paper (Figure C. and Section C.), we stated the costs of Zaatar. is section
fleshes out some of those claims.

We repeat the observation ofGennaro et al. [] that the polynomials {Ai(t)}, {Bi(t)},
and {Ci(t)} can be represented efficiently, in terms of their evaluations at the {σj}. at is,
Ai(t) can be written as a list {(j, ai,j) ∣ ai,j ≠ 0, j ∈ {1, . . . , ∣C∣}}, and similarly for Bi(t) and
Ci(t). For convenience, we let σ0 = 0 and ai,0 = bi,0 = ci,0 = 0.

e prover. To construct the πh component of its proof vector (§C.), the prover must
compute the coefficients of Hw(t), where D(t) ⋅ Hw(t) = Pw(t). Section C. states that the
cost to do so is 3 ⋅ f ⋅ ∣C∣ ⋅ log2 ∣C∣. We now detail the process. It is three steps (well-explained
in [, Chapter .]).

Step  is writing Pw(t) in the form A(t) ⋅ B(t) − C(t), for degree-∣C∣ polynomials
{A(t),B(t),C(t)}, to obtain the coefficients of {A(t),B(t),C(t)}. e prover constructs
the set {(σj,∑i wi ⋅ ai,j) ∣ j ∈ {0, . . . , ∣C∣}, which is the evaluations of A(t). e prover then
uses multipoint interpolation [, Chapter ..] to compute the coefficients of A(t), in time
≈ f ⋅ ∣C∣ ⋅ log2 ∣C∣. e prover does likewise for B(t) and C(t). Step  is computing the coeffi-
cients ofPw(t) in time ≈ f⋅∣C∣⋅log ∣C∣, usingmultiplication based on the fast Fourier transform
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(FFT) []. Step  is computing the coefficients of Pw(t)/D(t) = Hw(t) in time ≈ f ⋅ ∣C∣ ⋅ log ∣C∣,
using FFT-based polynomial division.

e verifier. We will be focused on Figure C.. We stated V ’s query setup costs as (§C.):

c + (fdiv + 5f) ⋅ ∣C∣ + f ⋅ K + f ⋅ 3K2.

We now explain these costs. Selecting τ costs c. Generating qd = (1, τ, . . . , τ ∣C∣) costs f ⋅ ∣C∣.
Most of the remaining costs are generating (A0(τ),A1(τ), . . . ,An(τ)), (B1(τ), . . . ,Bn(τ)),
and (C1(τ), . . . ,Cn(τ)).

Gennaro et al. [] observe that a Lagrange basis is useful for this purpose; we give the
details here.We canwrite each polynomialAi(t) as follows (and analogously forBi(t),Ci(t)):

Ai(t) =
∣C∣
∑
j=0

ai,j ⋅ ℓj(t), where ℓj(t) = ∏
0≤k≤∣C∣

k≠j

t − σk
σj − σk

.

We can use Barycentric Lagrange interpolation [] to write:

Ai(t) = ℓ(t) ⋅
∣C∣
∑
j=0

ai,j ⋅
vj

t − σj
, where

ℓ(t) = (t − σ0)(t − σ1)⋯(t − σ∣C∣), and

vj = 1/ ∏
0≤k≤∣C∣

k≠j

(σj − σk).

We now explain the remaining costs. Computing ℓ(τ) takes ∣C∣ multiplications; then, com-
puting D(τ) takes one division and one multiplication, as D(τ) = (1/τ) ⋅ ℓ(τ). Computing
{vj} can be done efficiently via a careful choice of the {σj} (the protocol permits any distinct,
non-zero values here): if we arrange for σ1, . . . , σ∣C∣ to follow an arithmetic progression (a
convenient choice is 1, 2, . . . , ∣C∣), then computing 1/vj+1 from 1/vj requires only two oper-
ations. Since one can compute 1/v0 using ∣C∣ multiplications, the total time to compute the
{vj} is (fdiv + 3f) ⋅ ∣C∣ operations.

Finally, given {vj} and ℓ(τ) and using the representation above, one can compute
{Ai(τ)}, {Bi(τ)}, and {Ci(τ)} with a number of multiplications equal to the total number
of non-zero {ai,j, bi,j, ci,j}. is number is computation-dependent (see §C.), but we can
bound it in our framework. Recall that our compiler obtains Zaatar constraints by trans-
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forming Ginger constraints (§C.). e Zaatar constraints, when written in quadratic form,
induce no more than K + 3K2 non-zero {ai,j, bi,j, ci,j}, where K and K2 are as defined in Sec-
tion C..

In Section C., we stated that the verifier requires three operations per input and
output.is cost comes from computing the following quantities in the divisibility correction
test:∑n

n′+1 wi ⋅Ai(τ),∑n
n′+1 wi ⋅ Bi(τ), and∑n

n′+1 wi ⋅ Ci(τ).
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Appendix D

Pantry’s correctness, primitives, and applications

D. Pantry’s correctness

is appendix and the next will establish Pantry’s correctness. ese arguments mainly draw
on existing techniques and folklore; we write them down here for completeness.

We wish to establish that Pantry’s verifier V accepts correct outputs y and rejects
incorrect ones with probability similar to that of Zaatar’s soundness (§.., §..). By the
Completeness property of Zaatar (Appendix C) and an equivalent property in Pinocchio [,
], and the implementation of the prover P (specifically, the use of the map S), V can
be made to accept correct outputs with certainty. e more involved step is showing that V
rejects incorrect answers. Onemight think to apply the soundness property (§..), but this
property is not enough: its technical guarantee is that if no satisfying assignment exists, then
V is likely to reject (Appendix C, [, ]). Meanwhile, C(X=x,Y=y) could be satisfiable,
even if y is incorrect in the context of steps  and  (§..). As a simple example, imagine
that the computation Ψ is:

name = PutBlock(x);
B = GetBlock(name);
if (B == x)

y = 1;
else

y = 0;
return y;

ecorrect answer here is y=1. But y=0 also results inmany satisfying assignments toCΨ(X=x,Y=0);
in particular, any setting of the B variables for which H(B)=H(x)=name, where B≠x, will
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satisfy CΨ(X=x,Y=0). Since soundness says nothing about what V does when there are sat-
isfying assignments, soundness cannot be used to argue that V will reject y = 0.

We need another property, called proof of knowledge (PoK). A formal definition is
below; less formally, this property states that ifP can make V accept a claimed output y with
non-negligible probability, then there is an efficient algorithm that can run P to produce a
satisfying assignment to C(X=x,Y=y). Even more informally, one can think of this property
as stating that if V accepts the interaction, then P must have “known” an assignment.

e power of the PoK property in our context is the following. If y is an incorrect out-
put and C(X=x,Y=y) is satisfiable, the only satisfying assignments containmemory consistency
violations; meanwhile, memory consistency violations imply hash collisions, and manufac-
turing such collisions is presumed to be hard. erefore, no efficient algorithm can produce
satisfying assignments of this adverse form, and hence (by the italicized assertion) no effi-
cient algorithm can produce any satisfying assignments, and hence—here is where we use
the PoK property—the prover cannot systematicallymake the verifier accept the correspond-
ing output. Very informally, the prover must not “know” any adverse satisfying assignments,
which, by the PoK property, implies that it cannot make the verifier accept them.

In the rest of this appendix, we formally define a PoK property and use it to establish
Pantry’s correctness; Appendix D. proves that Pantry meets this property. We will restrict
attention to the case that Pantry uses Zaatar; a similar analysis applies when Pantry uses
Pinocchio.

D.. Setup and definition of proof-of-knowledge

Recall the Zaatar setup. V and P are given a set of constraints C (over variables X,Y,Z),
input x, and output y. C(X=x,Y=y) is a set of constraints over variables Z = (Z1, . . . ,Zn′);
each Zi ∈ F. V and (a possibly incorrect P) interact. If, aer getting the purported output y,
V accepts, we notate that as (V,P)(C, x, y) = 1.

Definition D.. (Proof of knowledge (PoK).). ere exists a PPT extractor algorithm E
(which is presumed to have oracle access to the prover: it can run the prover by supplying
arbitrary patterns) for which the following holds. For all P and all polynomially-bounded

Pinocchio has been shown to have a PoK property [, §]. is PoK property is stronger than the one
that we prove for Zaatar (though Pinocchio’s relies on non-falsifiable “knowledge assumptions” whereas Zaatar’s
relies on standard assumptions). As a consequence, the analysis in this appendix also applies to Pantry’s use of
Pinocchio.
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(C, x, y), if
Pr{(V,P)(C, x, y) = 1} > ϵK

then

Pr
s
{EPs (C, x, y)→ z = z1, . . . , zn′ , such that z satisfies C(X=x,Y=y)} > ϵ′K,

where ϵ′K is non-negligible. e first probability is taken over the random choices of the Za-
atar protocol (specifically, the coin flips of the commit phase, the decommit phase, and the
choice of PCP queries). e second probability is taken over s, the random choices of the
extractor algorithm E.

e next appendix proves that Zaatar has this property; for now, we take it as a given.
As we will see below, the quantity ϵK will wind up being Pantry’s actual error: it will upper-
bound the probability that V accepts an incorrect output. Sometimes this parameter is re-
ferred to as “knowledge error”, and we will be motivated to ensure that it is not much larger
than the soundness error. Notice that we cannot make this parameter lower than the sound-
ness error, since a protocol that has knowledge error of at most ϵK has soundness error of at
most ϵK (that is, PoK implies soundness). is is because if no satisfying assignment exists at
all, then of course the probability of producing one is zero (for all algorithms), which implies
(by PoK) that V rejects with probability at least 1 − ϵK, which yields the soundness property.

D.. V rejects incorrect outputs

is section considers only single executions; the next section generalizes to the case of state
carried across program executions.

We will use the PoK property (Defn. D..) to establish that V rejects semantically
incorrect outputs y′ with high probability. In the context of a computation Ψ, the (unique)
semantically correct output y on input x is the value or vector that results from following
the logic ofΨ on input x. is logic includes program logic and storage consistency. Program
logic means, for example, that the result of an “add” operation should actually be the sum of
the two numbers.

Storage consistency is a typical definition: “reads should see writes”. In our context,
this means that if the program “reads address n” (that is, executes GetBlock with input n),
then the return value b should be the “most recently written value to address n” (that is, the
program should have executed n = PutBlock(b), and between that call and the GetBlock,
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there should be no intervening invocations n = PutBlock(b′), where b′ ≠ b). If an input
x would cause Ψ to issue a call GetBlock(n) for which there was no preceding call n =
PutBlock(b), then there is no semantically correct output; in this situation, we sometimes
say that the correct output is � and that x itself as a semantically incorrect input.

Of course, the preceding notions require an ordering on operations; this order fol-
lows from program order, and induces an ordering on the constraints that the Pantry com-
piler produces. In more detail, recall that for a high-level program Ψ, the Pantry compiler
produces constraints C that correspond to Ψ’s program logic: the program variables in Ψ

appear in C, and the equations in C enforce program logic through the relations among the
program variables. (e constraints C are said to be equivalent to the computation Ψ.) An
assignment w = (x, y, z) to C thus corresponds to a transcript for Ψ: a string consisting of
the program Ψ with loops unrolled and with all variables (X,Y,Z1,Z2, . . .) replaced with
values (x, y, z1, z2, . . .). In what follows, we will move back and forth between the notion of
transcript τ and its corresponding assignment wτ = (x, y, z).

A valid transcript is one that obeys program semantics. Specifically, in a valid tran-
script τ :

P All operations respect program logic. By the transcript-assignment equivalence, this prop-
erty is equivalent to saying that the assignment wτ = (x, y, z) satisfies the constraints
C.

P Storage operations respect consistency. Specifically, if b = GetBlock(n) appears in τ ,
then an operation n = PutBlock(b) appears earlier in τ (with no intervening n =
PutBlock(b′), where b′ ≠ b).

Claim D... For a computation Ψ, if y ≠ � is semantically correct on input x, then there
exists a valid transcript in which the input variables are set to x and the output variables are
set to y. (Also, this transcript is unique in our present context.)

Proof. e transcript is an unrolled program execution. So if the programΨwould correctly
produce y from x, then we can write down all of the operations that lead from x to y. is list
will respect validity (properties P and P), since validity admits those transcripts (and only
those transcripts) that obey the semantics.

e transcript is unique since each operation, when executed correctly, is determin-
istic. Note in particular that storage operations are deterministic: PutBlock operations are
deterministic by construction (given an input block, PutBlock returns a digest of it), and the
semantics given above specify the unique return value of a GetBlock invocation.
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Claim D... Let V be Pantry’s verifier, operating on constraints C and input x. If y ≠ � is
the semantically correct output, then for all provers P and all y′ ≠ y, Pr{(V,P)(C, x, y′) =
1} ≤ ϵK.

Proof. Assume otherwise.en there exists a proverP ′ and an incorrect answer y′ for which
Pr{(V,P ′)(C, x, y′) = 1} > ϵK. By the PoK property (Defn D.., LemmaD..), there exists
an extractor algorithm EP ′ that, with probability greater than ϵ′K, produces some assignment
z′ such that (x, y′, z′) satisfies C; let τ ′ be the transcript corresponding to the assignment
w′τ ′ = (x, y′, z′). Also, since y ≠ � is semantically correct, Claim D.. implies that there
exists a valid transcript τ (while τ is unique, we will not explicitly rely on that uniqueness
below). By the validity of τ , there is an assignment wτ = (x, y, z) that satisfies C.

Compare τ and τ ′. Consider the first position in these strings where they disagree
(they must disagree somewhere, for their outputs are different). We now make two claims
about this point of divergence: () it must be a GetBlock(n) operation, and () the input to
this operation must be the same in both τ and τ ′.

e reason for () is that if τ and τ ′ first disagreed on a different operation (either
its inputs or outputs), they would agree up until that operation, and then disagree on a deter-
ministic operation (all operations besides GetBlock are deterministic); hence, at least one of
the two transcripts would be in violation of program logic, which would mean that at least
one of wτ and w′τ ′ would not satisfy C, which would contradict statements above. Similarly,
to establish (), observe that the constraints are constructed so that the input to GetBlock
is deterministically produced from the computation’s input (x) and the computation up to
that point (and τ and τ ′ agree up to that point).

From claims () and (), the output of the GetBlock in τ (call it b) and in τ ′ (call
it b′) are different; that is, b ≠ b′. However, w and w′ are both satisfying, so τ and τ ′ obey
property P. From the compilation of GetBlock into CH−1 , and the construction of CH−1 , per
Section ., we have n = H(b) and n = H(b′), where H is a collision-resistant hash function
(CRHF). Also, because τ is valid, it obeys P, whichmeans that τ contains an earlier instance
of n = PutBlock(b), where (by P) H(b) = n. But τ and τ ′ match through that earlier point
in the transcript, which means that τ ′ also contains n = PutBlock(b). us, τ ′ contains b
and b′, with b′ ≠ b and H(b) = H(b′).

erefore, an adversarial algorithmA can produce a collision inH as follows.A runs
EP ′ to get z′ (which succeeds with > ϵ′K probability), forms w = (x, y′, z′), sorts w by output
digests, scans to find b and b′, and outputs them. is succeeds in producing a collision with
probability > ϵ′K, which contradicts the assumed collision-resistance of H.
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D.. Remote state

Arguing the correctness of Pantry’sMapReduce (§.), among other applications, requires al-
lowing state to be carried across executions. To this end, we generalize the definitions above.

We consider a model in which V and P interact sequentially: V supplies input x0

and specifies Ψ0 to P , receiving output y0; next, V supplies input x1 and specifies Ψ1 to P ,
receiving output y1, etc. Suppose that there are t + 1 pairs in all: (x0, y0), . . . , (xt, yt).

We define the semantic correctness of yi inductively. Specifically, we say that y0 is se-
mantically correct if it meets the earlier description (i.e., if the correct operation ofΨ0 on in-
put x0 produces y0). For yi, where i > 0, we say that yi is semantically correct if (a) all previous
{(xj, yj)}i−1j=0 are semantically correct; (b) yi respects program logic on xi; and (c) ifΨi issues
GetBlock(n), then the return value should be the b in the most recent n = PutBlock(b)
call, as above; here, however, we are looking not only at the current execution but at the con-
catenated (valid) transcripts τ0, . . . , τi−1 together (these transcripts exist by the correctness
of y0, . . . , yi−1).

Label with Ci the constraints that correspond to computation Ψi. We now make a
claim that is analogous to Claim D..:

Claim D... Consider a sequence of interactions between V and P that produces pairs
(x0, ŷ0), . . . , (xt, ŷt), where for i ∈ {0, . . . , t}, the semantically correct output yi is not �. For
all provers P , and all i, if ŷi ≠ yi, then for some j ≤ i, we have Pr{(V,P)(Cj, xj, ŷj) = 1} ≤ ϵK.

Proof. (Sketch.) e proof is similar to that of Claim D... Let ŷi be the first semantically in-
correct output in the sequence. Assume to the contrary that Pr{(V,P)(Cj, xj, ŷj) = 1} > ϵK,
for all j ∈ {0, . . . , i}; by the PoK property, E can produce, with probability greater than
(ϵ′K)i+1, a list of assignments ẑ0, . . . , ẑi (which satisfy the respective constraint sets, given
the respective inputs and outputs). Let τ̂0, . . . , τ̂i be the corresponding transcripts, and con-
catenate these together to form one large aggregate transcript, τ̂∗. ere is a valid aggregate
transcript τ∗ that differs from τ̂∗ in at least one location (because yi ≠ ŷi).

As in Claim D.., the two transcripts must again diverge in a GetBlock operation
(all other operations are deterministic; furthermore, the inputs {x0, . . . , xi}match in the two
transcripts, and so do the outputs {ŷ0, . . . , ŷi−1}, since ŷi is the first semantically incorrect
output in the sequence). is implies that τ̂∗ contains a collision. An adversarial PPT algo-
rithm can thus produce a collision with probability at least (ϵ′K)i+1/t (by guessing i, running
i instances of the extractor E, and sorting the resulting witnesses), in contradiction to the
presumed collision-resistance of H.





e preceding analysis can be extended to cover the data structures that we build
using the GetBlock and PutBlock abstractions (§.). In the case of the verifiable RAM, this
analysis is a mild variant of the arguments for online memory-checking given by Blum et
al. []. at paper specifies a simple memory semantics (roughly, reads and writes are to-
tally ordered and each read is matched by a preceding write), describes a Merkle tree-based
on-line checking algorithm, and argues that in order to violate the memory semantics an
adversary must fake some of the hash checks that validate a path through the Merkle tree.
Inspection of our verifiable RAM design (Section .., Figure .) indicates that violation
of the memory semantics would result in a violation of Claim A..

Discussion. Notice that the preceding claims are conditional onV supplying correct inputs
(i.e., a condition for the claims is that there are correct outputs). In particular, if the verifier
supplies a made-up digest as a reference to storage, the protocol provides no guarantees. In
practice, this means that the onus is on the verifier to supply correct digests as input.

Of course, if the verifier makes up a digest, then heuristically speaking, the prover
will not be able to manufacture a satisfying assignment, since that would require inverting H.
In fact, if the verifier chooses a digest d by random selection of b and then setting d← H(b),
then we can show that the prover cannot convince the verifier to accept with greater than
the knowledge error ϵK (this relies on the preimage-resistance, or one-wayness, of H, which
is Ajtai’s function []). By contrast, if the verifier chooses an input digest arbitrarily (per-
haps in collusion with the prover!), then we cannot apply the preceding guarantees; however,
cases where the verifier chooses a “wrong” digest for which it knows that the prover knows
a preimage are elaborate exercises in shooting oneself in the foot.

Finally, note that the security proof for remote state presumes that either the same
verifier is participating across the sequence, or that there is a chain of trust linking them.
is issue is handled somewhat better in the non-interactive “proof-carrying data” (PCD)
framework [], where an extractor can produce a complete transcript, given a certificate.
On the other hand, existing PCD protocols rely on non-falsifiable hypotheses.

D. Zaatar and proof-of-knowledge

is appendix will establish that Zaatar meets a proof-of-knowledge (PoK) property. Recall
from the prior appendix that we are motivated to ensure that the knowledge error, ϵK, is
not much larger than Zaatar’s soundness error, ϵzaat; as established elsewhere (Appendix C),
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ϵzaat = ϵpcp + ϵc, where ϵpcp is the soundness error of the Zaatar PCP (approximately 5 ⋅10−7),
and ϵc is the error from the commitment protocol (for Zaatar, ϵc ≈ 6000 ⋅ 3

√
1/∣F∣).

Lemma D... e Zaatar argument protocol has the PoK property with ϵK = 2 ⋅ ϵpcp + ϵc,
and ϵ′K = (ϵpcp/2) ⋅ (1 − n′ ⋅ e−100) .

Proof. e proof combines techniques from Barak and Goldreich (BG) [] and from the
soundness proof of Zaatar (Appendices A. and C) and IKO [] (which is Zaatar’s base).
We will assume familiarity with the technical details of Zaatar and IKO, but not of BG. At
a very high level, all of these protocols consist of a commit phase (in which the verifiermakes
the prover commit to an oracle, which is supposed to be the PCP) and a decommit phase; in
the latter phase, the verifier submits the PCP queries.

e above works prove, loosely speaking, that at the end of the commit phase of
the protocol, the prover is effectively bound to a particular (possibly inefficient) function f,
from queries to responses. We face several technical difficulties in the present context. One
of them is that just because f exists does not mean that it is easy to make the prover respond
to queries. We will get around this issue by first showing that if there is a > ϵK probability
of V accepting, then it must be true that for almost all of the possible queries, the prover
responds with non-negligible probability. en, loosely speaking, the extraction procedure
will amplify the non-negligible probability to be near-certain. is is done by pumping the
prover: feeding it many different interactions. Another difficulty is that when the extractor
performs this pumping, we have to be sure that values other than the correct one will be
sufficiently infrequent that the pumping process won’t get confused; we get around this by
reformulating the claims that the prover is bound to a function f.

e proof proceeds according to the following outline:

. Wewill describe an extraction procedure, leaving a number of parameters unspecified.

. We will analyze the extraction procedure and in so doing fill in the parameters. e
analysis is in several parts:

• We will reformulate some of the analysis of the binding properties of Zaatar (Ap-
pendix A.).

• We will define notions [] of queries being “strong” (or weak) and “clear” (or con-
founding); these notions are relative to a given commit phase. We hope that in a
useful commit phase, the vast majority of queries are both strong and clear; fur-
thermore, we hope that a non-negligible fraction of commit phases are useful.
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• We will show that in useful commit phases, the function that the prover is bound
to is a valid PCP oracle that encodes a satisfying assignment and has a soundness
error identical to our usual.

• We will show that in useful commit phases, the overwhelming majority of queries
are strong.

• We will show that in useful commit phases, the overwhelming majority of queries
are clear.

• e above results will be used to upper-bound ϵK and lower-bound ϵ′K.

D.. Preliminaries

ere are three sets of random coin flips in the Zaatar protocol: c represents the random coin
flips that determine the commit phase, d represents the random coin flips that determine the
decommit phase, and r represents the random coin flips that determine the PCP queries.
Oen, we will assume that the coins for the commit phase have been flipped, and we will be
working within a commit phase c.

Let Ai be the prover’s response to the ith query, independent of whether the decom-
mitment succeeds; when Ai depends on all three sources of randomness, we write Ai(c,d, r).
A common case is that we will be interested in Ai, within some commit phase (i.e., the com-
mit coin flips will have already been determined); in that case, Ai is a function of (d, r) and
can be written Ai(d, r).

WhetherV accepts is a randomvariable that is a function of (c,d, r). Likewise,whether
V decommits (that is, whether the decommitment succeeds) is a random variable.

LetQ1(r), . . . ,Qµ(r) represent theµ PCP queries generated by a particular choice of
the PCP verifier’s coin flips, r. e Qi are random variables, but of course they do not depend
on c or d.

Let Vpcp denote Zaatar’s PCP verifier. We will refer to Vpcp as generating queries and
accepting their replies. (is can be formalized/notated with a query generation procedure
Q((C, x, y), r, i), which, given the PCP coin flips, returns the ith query. Similarly, we can
write down a decision procedureD((C, x, y), r, a1, . . . , aµ) that returns  or . While the no-
tation is borrowed fromBG [], the formalization itself is standard in the PCP literature.)

A PCP admits reverse sampling (as defined in BG []) if, given a PCP query q and
a position i, it is possible to choose the other PCPqueries according to the randomcoins r, but
holding q in the ith position. BG formalize this by saying that, given q, i, there is an efficient
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algorithm that can randomly and uniformly sample from all r such thatQ((C, x, y), r, i) = q.
In our context, it will be more helpful to think of the reverse sampling property as saying
that for all q, i, it is possible to efficiently sample according to the conditional distribution
{Q1(r), . . . ,Qµ(r)}∣Qi(r)=q. Zaatar’s PCP has the reverse sampling property.

D.. e extraction procedure

See Figure D. for the extractor, E.

D.. Analysis of the extractor

e binding of Zaatar, revisited

Following IKO [], Zaatar’s soundness analysis contains a binding game (Defn. A..); a
commitment protocol is admissible if for all environments (loosely speaking, an environment
encapsulates the process of producing PCP queries), the probability of the prover winning
the binding game is negligible. e definition in IKO and Zaatar is quantified over all deter-
ministic environments.

In the present work, the binding game is now played inside an environment E that
(a) chooses a distinguished query q and the positions i and i′ deterministically (as previ-
ously), and (b) chooses the other queries q⃗ and q⃗′ randomly, according to a distribution of
E ’s choosing. e definition of “S∗ wins” is the same (outputting conflicting field values and
successfully decommitting), and a protocol is now admissible if for all environments E , the
probability of S∗ winning is less than ϵB = 1/∣F∣, where the probability now is taken over the
coins r, r′ that generate the two choices of queries as well as the three phases of the binding
game (commit phase, and two runs of the decommit phase).

e new definition of admissible protocol (which quantifies over probabilistic en-
vironments) is, by averaging, equivalent to the old one (which quantifies over deterministic
environments); IKO also observe this equivalence []. To see thatmeeting the old definition
implies meeting the new one, observe that if the protocol doesn’t meet the new property in
some environment E , then theremust (in E) be an adverse q⃗ and q⃗′ for which S∗’s probability
of winning the old binding game is larger than ϵB, contradicting the old definition.

Next, we rerun some of the analysis in Zaatar, under probabilistic environments.
Define Ac(q, i, a) = Prd,r{Ai(d, r) = a ∣ Qi(r) = q}; this quantity is with respect to a par-
ticular commit phase c, and answers the question, “given that q is in the ith position, if we
reverse sample to get the other queries and flip the decommit coins, what is the probability
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// Goal is to produce a witness z that satisfies C(X=x,Y=y)
extract(P, C, x, y):

flip the “commit coins”, and run the commit phase.
// for the remainder of the procedure, we will be in this commit phase.

for t = 1, . . . ,n′: // extract the tth witness element
for k = 1, . . . ,T1:

choose qr ∈R Fn′

qs ← qr + et
σ1 ← extract_response(qr, C, x, y)
σ2 ← extract_response(qs, C, x, y)
z(k)t ← σ2 − σ1

if a majority of {z(1)t , . . . , z(T1)
t } equal the same value v:

zt ← v
else:

abort()
output z1, . . . , zn

extract_response(q, C, x, y):
for i = 1, . . . , µ:

for j = 1, . . . ,T2:
● place q in position i, and reverse sample to get full set of queries: q1, . . . , qµ.

Here, qi = q.
● run P in the decommit phase, flipping decommit coins randomly.
● if decommit succeeds, save the ith response, labeling it σ(i, j)

if more than (δ/3) ⋅ T2 of the saved σ(i,⋅) are equal, store the value, calling it a can-
didate.

if there is exactly one candidate value, σ:
return σ

else:
abort()

Figure D.: Definition of knowledge extractor, E. It borrows techniques from the oracle re-
covery procedure of Barak and Goldreich []. For now, δ,T1,T2 are parameters. et is the
vector with a  in component t and s elsewhere.

that the ith output is a?”. Define Ext(c, q, i) = argmaxa∈F Ac(q, i, a). Also, define fc(q) to be
Ext(c, q, i∗), for some distinguished i∗ (for example, i∗ = 1).
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Claim D... For all q ∈ Fn′ , i ∈ [µ], we have:

Pr
c
{Pr

d,r
{{Ai(c,d, r) ≠ fc(q)} and decommit happens ∣ Qi(r) = q} < ϵ3} > 1 − ϵ3,

where ϵ3 < 6 ⋅ 3
√

1/∣F∣.

Proof. (Sketch.)is claim is similar to ClaimA... Essentially, wherever Zaatar’s proofs for
Claims B. and B. talk about “the probability over the decommit phase”, one should write
“…over the decommit phase and choice of Q(r)”. Also, the binding game that enforces the
probabilities is of course over five (not three) sets of random coin flips.

Claim D.. (Existence of fc(⋅) and commit error). Define ϵc = 2 ⋅ µ ⋅ ϵ3.

Pr
c,d,r
{decommit happens and ∪µi=1 {Ai(c,d, r) ≠ fc(Qi(r))}} < ϵc,

Proof. Fix i ∈ [µ]. Claim D.. implies that

∀q∶ Pr
c,d,r
{{Ai(c,d, r) ≠ fc(q)} and decommit happens ∣ Qi(r) = q} < 2ϵ3.

By an averaging argument, we get:

Pr
c,d,r
{{Ai(c,d, r) ≠ fc(Qi(r))} and decommit happens} < 2ϵ3.

A union bound over the µ query positions implies the result.

Notions of strong and clear

Definition D.. (strong and weak queries). Consider the event {Aj(d, r) = fc(Qj(r))};
notice that whether this event holds is a function of the random coin flips (c,d, r). In commit
view c, a query q ∈ Fn′ is:

• δ-strong if

∃i∶Pr
d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} ∣ Qi(r) = q} ≥ δ.
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• δ-weak if

∀i∶Pr
d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} ∣ Qi(r) = q} < δ.

is differs slightly from the Barak-Goldreich definition, which refers to strong and
weak answers.emotivation for this definition is that if we can showmost queries are strong
(which we will be able to), then extract_response (in Figure D.) will produce fc(q)with
non-negligible probability.

Definition D.. (clear and confounding queries). In commit view c, a query q ∈ Fn′ is:

• δ/10-clear if

∀i∶Pr
d,r
{V decommits and {Ai(d, r) ≠ fc(q)} ∣ Qi(r) = q} ≤ δ/10.

• δ/10-confounding if

∃i∶Pr
d,r
{V decommits and {Ai(d, r) ≠ fc(q)} ∣ Qi(r) = q} > δ/10.

is, too, is different from the analogous Barak-Goldreich definition, since they do not talk
about a specific function fc(⋅). e motivation for this definition is that if we can show most
queries are clear (which we will be able to), then extract_response (Figure D.) does not
have to worry that a field element other than fc(q) shows up oen enough to be confounding.

When a query is both strong and clear, observe that the extract_response sub-
routine is likely to deliver a clear “signal.”

Auspicious commit phases happen oen enough

Define a commit phase as auspicious if, in that phase, Prd,r{V accepts and ∩µj=1 {Aj(d, r) =
fc(Qj(r))}} > (1/2) ⋅ ϵ; an auspicious commit phase will not necessarily be useful, but aus-
piciousness is a precondition to usefulness (see Claim D.. and the analysis that follows
it).

Recall the premise of the PoK property: Prc,d,r{V accepts} > ϵK.e next claim guar-
antees that, when this premise holds, auspicious commit phases happen with non-negligible
probability.
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Claim D.. (Auspicious commit phases). If Prc,d,r{V accepts} > ϵK, then

Pr
c
{Pr

d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))}} > (1/2) ⋅ ϵ} > (1/2) ⋅ ϵ,

where ϵ def= ϵK − ϵc, and ϵc was defined in Claim D...

Proof. From Claim D..,

Pr
c,d,r
{V decommits and ∪µj=1 {Aj(c,d, r) ≠ fc(Qj(r))}} < ϵc.

But accepting implies decommitting and not the other way around, so

Pr
c,d,r
{V accepts and ∪µj=1 {Aj(c,d, r) ≠ fc(Qj(r))}} < ϵc.

Combining the given with the inequality immediately above, we get:

Pr
c,d,r
{V accepts and ∩µj=1 {Aj(c,d, r) = fc(Qj(r))}} > ϵK − ϵc = ϵ.

Standard counting or averaging implies the result.

Recall that Vpcp denotes the Zaatar PCP verifier. e next two claims state that with
probability that cannot be neglected (a) Vpcp accepts (which implies that fc(⋅) is of the right
form), and (b) all queries issued byVpcp are, in the context of the argument protocol, δ-strong.

Aer auspicious commit phases, fc(⋅) is a valid PCP oracle

Claim D.. (Vpcp accepts oen). Assuming we are in an auspicious commit phase,

Pr
r
{Vpcp accepts (fc(Q1(r)), . . . , fc(Qµ(r)))} > (1/2) ⋅ ϵ.

Proof. In an auspicious commit phase

(1/2) ⋅ ϵ <Pr
d,r
{V accepts and ∩µi=1 {Ai(d, r) = fc(Qi(r))}} .
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But if V accepts on a particular set of coin flips, then Vpcp must accept the same answers,
since the latter is a precondition for the former. So we can bound the expression above:

≤Pr
d,r
{Vpcp accepts (A1(d, r), . . . ,Aµ(d, r)) and ∩µi=1 {Ai(d, r) = fc(Qi(r))}}

≤Pr
d,r
{Vpcp accepts (fc(Q1(r)), . . . , fc(Qµ(r)))}

=Pr
r
{Vpcp accepts (fc(Q1(r)), . . . , fc(Qµ(r)))} .

e second inequality holds because the event in its LHS is a restricted case of the event in
its RHS. e equality holds because its LHS is independent of the d coins.

Take ϵ/2 = ϵpcp, where ϵpcp is Zaatar’s PCP soundness error.e claimabove, together
with the properties of Zaatar (soundness in Lemma C.., and one other: see below), implies
the following:

Corollary D.. (fc(⋅) is oen a valid PCP oracle). In auspicious commit phases, fc(⋅) is a
well-formed Zaatar PCP oracle: it is .-close to a linear function that encodes a witness
z that satisfies C(X=x,Y=y).

is corollary relies on a property of Zaatar’s PCP that is stronger than soundness:
“well-formedness”. As stated, this property is (a shade) stronger than PCP proof-of-knowledge
(PCP PoK). PCP PoK [] says that if Vpcp accepts with greater than the soundness error,
then not only is C satisfiable (which is what the soundness property gives) but also there is
an efficient algorithm that can extract a satisfying witness, given access to the PCP oracle.
As Barak and Goldreich [] observe, many PCPs have the PCP PoK property (Zaatar does
too), but there are few (if any) proofs in the literature. e reason that our well-formedness
property is slightly stronger than a PCP PoK property is that it actually specifies the form of
the PCP (and any PCP meeting this form can, through self-correction, yield a witness).

Aer auspicious commit phases, most queries are strong

Claim D... Assuming we are in an auspicious commit phase,

Pr
r
{Vpcp makes only δ-strong queries} > ϵ/4,

for δ = (1/4)ϵ/µ.
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Proof. Fix a query position i ∈ [µ]:

Pr
d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} and Qi(r) is δ-weak}

= ∑
q∶q is δ-weak

Pr
d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} ∣ Qi(r) = q} ⋅ Pr

r
{Qi(r) = q}

= ∑
q∶q is δ-weak

δ ⋅ Pr
r
{Qi(r) = q} < δ

By the union bound over positions 1, . . . , µ,

Pr
d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} and any Qj(r) is δ-weak} < µ ⋅ δ.

Combining this with the definition of auspicious, we get

(1/2)ϵ − µ ⋅ δ <Pr
d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} and all of Q1(r), . . . ,Qµ(r) are δ-strong}

≤Pr
d,r
{all of Q1(r), . . . ,Qµ(r) are δ-strong}

=Pr
r
{all of Q1(r), . . . ,Qµ(r) are δ-strong}

Substituting δ = (1/4)ϵ/µ in the lower bound gives the result.

Corollary D.. (Most queries are strong). Recalling thatVpcp makes µ PCP queries, if ρ′ of
these queries are independently and uniformly random, then (in auspicious commit phases)
the fraction of total queries that is δ-strong is greater than (ϵ/4)1/ρ′ .

At this point, we are ready to argue that the overwhelming majority of queries are
δ-strong. Looking at Zaatar’s PCP, it has ρ′ = 320 queries that hit πz randomly. Furthermore,
we took ϵ = 2ϵpcp ≈ 10−6 (since ϵpcp, the soundness error of Zaatar’s PCP, is ≈ 5 ⋅ 10−7 from
Appendix C). us, by Corollary D.., aer auspicious commit phases, the fraction of total
queries that is δ-strong is greater than (ϵ/4)1/320 > 0.95.

In most commit phases, most queries are not confounding

Recall that the notion of being δ-confounding is a function of the commit phase.Wewill now
show that in the vastmajority of commit phases, the vastmajority of q are not ϵ3-confounding
(ϵ3 is from Claim D..).
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Claim D.. (Most queries are clear). Letting Prq denote a uniformly random choice of q,

Pr
c
{Pr

q
{q is ϵ3-confounding} < 1/20} > 1 − 20µϵ3

Proof. Let Gq,i(c) denote the event in commit phase c that

Pr
d,r
{{Ai(d, r) ≠ fc(q)} and decommit happens ∣ Qi(r) = q} > ϵ3.

Once q and i have been fixed, this expression is either true or not in commit phase c, and
that is what the events G will capture. Claim D.. implies:

∀q, i∶Pr
c
{Gq,i(c)} < ϵ3.

Applying a union bound over query positions, we get

∀q∶Pr
c
{∪µi=1Gq,i(c)} < µϵ3.

By definition of ϵ3-confounding

∀q∶Pr
c
{q is ϵ3-confounding} < µϵ3.

Applying a standard averaging argument followed by a Markov bound

Pr
c
{Pr

q
{q is ϵ3-confounding} > 1/20} < 20µϵ3

e complementary probabilities and events to the ones immediately above imply the claim.

Completing the analysis

We require
ϵ3 < min{ ϵ

40µ
,
ϵ

80µ
}

because:

. e first component in the min ensures that ϵ3 < δ/10 (recall that δ = ϵ/(4µ)). is
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bound gives us a gap (between δ and δ/10) that helps us pump the prover in the “inner
extraction loop”.

. e second component will ensure that the fraction of useful commit phases is > ϵ/2−
20µϵ3 > ϵ/4,whichwewant, to ensure that ϵ′K (in the definition of PoK) is non-negligible.

Wemust verify that the upper boundon ϵ3 holds. Recall that ϵ3 < 6⋅ 3
√

1/∣F∣ (fromClaimD..)
and ϵ = 2ϵpcp ≈ 10−6 (see Corollaries D.. and D..); also, µ is almost exactly . Fortu-
nately, at the field size that Pantry works with ( bits), 6 ⋅ 3

√
1/∣F∣ < ϵ/(80µ), so the bound

holds.

Analyzing the steps of the extractor. By Claim D.., if the PoK premise (Pr{V accepts} >
ϵK) holds, the choice of commit phase in the extractor is useful with probability > ϵ/2 −
(20µϵ3) > ϵ/4; this is a commit phase that is both auspicious and bounds the fraction of
ϵ3-confounding queries, in the sense of Claim D... From now on, we assume such a useful
commit phase. By Corollary D.., fc(⋅) is δ′-close to a linear function that encodes a satis-
fying witness z⃗, for some δ′ that is < .03. Note that this δ′ is different from the δ in some of
the claims stated earlier.

Now fix t; consider iteration k. Look at query qr in this iteration. By definition of δ′-
close, we have Prqr{qr hits fc(⋅) where it is not linear} < .03, where the probability is taken
over the coins that generate qr. Also, by Corollary D.., Prqr{qr is δ-weak} < 1−(ϵ/4)1/ρ′ <
.05. And we have 1/20 > Prqr{qr is ϵ3-confounding} ≥ Prqr{qr is δ/10-confounding}. e
first inequality comes fromClaimD..; the second, from the bound on ϵ3 and the definition
of confounding. erefore, the probability (over the random choice of qr and qs) that qr and
qs both have the desirable properties (namely: hit fc(⋅) where linear; strong; clear) is at least
1 − 2(.03 + .05 + .05) = 0.74. Call an iteration k in which this event occurs “good”.

Next, consider the “inner loop” (the function extract_response), assuming the
iteration is good. We’ll speak of qr, but the same analysis applies to qs:

• Because qr is δ-strong, there is a query position i∗ for which the i∗ response is fc(qr),
with probability at least δ over the reverse sampling coins. us, the expected number of
times decommit succeeds when i = i∗ is ≥ δ ⋅ T2. Now we apply a Chernoff bound, using
this form [, m. .]: Pr{X ≤ (1 − a)E[X]} < e−a2⋅E[X]/2. We take E[X] ≥ δ ⋅ T2 and
a ≥ 2/3. is implies that for T2 > 21/δ, the probability in iteration k that position i∗ will
not label fc(qr) a candidate is < (1/100). e probability is over the coins used for reverse
sampling in the j loop of iteration i∗.
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• Now fix any position i ∈ [µ]. Call all field elements besides fc(qr) scrap. We wish to
upper bound the probability of the event (over the reverse sampling coins used in the j
loop) that all scrap, together, is decommitted more than (δ/3) ⋅ T2 times: this probability
is an upper bound on the probability that any field value is actually labeled a candidate
(since if the scrap together does not clear the threshold, then no element by itself does). qr

is (δ/10)-clear, so the expected number of times that all scrap, together, is decommitted
is < (δ/10) ⋅ T2. We use this form of the Chernoff bound [, m .]: Pr{X ≥ (1 +
a)E[X]} < e−a2E[X]/4. ForT2 ≥ 4.7/δ > (ln(100µ))/(2.5 ⋅δ), an upper bound on the event
in question is 10−5.

• Now we can union bound over all µ query positions: the probability (over the reverse
sampling coins in extract_response) that any position has a scrap candidate is < µ ⋅
10−5. Combining thiswith the event that fc(qr) is not labeled a candidate, we get that fc(qr)
is not returned from extract_responsewith probability upper-bounded by 2/100.e
same goes for fc(qs).

Now, if iteration k is good, and furthermore produces fc(qr) and fc(qs), thenσ2−σ1 =
fc(qr+et)−fc(qr) = z⃗⋅(qr+et)−z⃗⋅(qr) = z⃗⋅et = zt.us, in iteration k, the probability (over all of
the randomness that the algorithm used in the iteration: choice of qr, qs and reverse sampling
in extract_response) of outputting zt is greater than > 1− 2(.03+ .05+ .05+ .02) = 7/10.
Now we apply another Chernoff bound, this time over the iterations k. For T1 > 3500, the
probability that there are fewer than T1/2 instances of zt is < e−100.

Applying a union bound to all positions in the witness, the probability of not ex-
tracting the witness (if we’re in a useful commit phase) is < n′ ⋅ e−100. Also, the probability
of a useful commit phase is, as stated above, greater than ϵ/4; furthermore, ϵ = 2 ⋅ ϵpcp (see
page ).erefore, the probability (over all of the extractor’s many coin flips) of producing
a witness is at least (ϵpcp/2) ⋅ (1 − n′ ⋅ e−100) , which was what the lemma claimed.

Our analysis produced lower bounds for T1 and T2: T1 > 3500 and T2 > 80 billion.
e extractor thus has an appalling concrete cost: producing one component of a witness
requires running the verifier-prover decommit phase (including generating queries) 5 ⋅ 1017

times, and that’s only if the event of a useful commit phase happened, which has probability
≥ ϵ/4 ≈ 2.5 ⋅ 10−7! us, the expected time to generate a witness is 1024 times the effort
required to run the decommit phase.Nevertheless, the extractor runs in “polynomial time”, as
required. (e quotation marks are because our analysis is not asymptotic; in an asymptotic
analysis, n′ would grow, the error terms would depend on n′, etc.)
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Furthermore, the expected time to obtain a witness, though massive, is still far less
than the expected time to generate a hash collision, as Pantry uses a hash function with at
least  bits of security (§.). is gap is sufficient to generate the required contradictions
in the proofs in Appendix D..

D. An HMAC-based commitment

In Section ., we explain that in order to enable applications where the prover’s state is
private, we need a commitment to bind the prover to the state while hiding it from the ver-
ifier. Ordinarily, we would use a standard commitment scheme, such as Pedersen’s [],
which would guarantee binding with respect to a computationally-bound prover along with
information-theoretic hiding with respect to the verifier. Because Pedersen’s protocol cannot
be represented efficiently as constraints, we instead use a simple scheme based on HMAC-
SHA, which also provides computational binding, but hiding that is only computational.
We present our scheme and prove its security here.

. Setup(1n)→ CK
Setup takes a unary string of length n, a security parameter, and returns CK, a public
commitment key that is used to distinguish commitments based on this construction
from other MACs generated using HMAC-SHA.

. Commit(m, r)→ c, where c = HMAC-SHAr(CK ∣∣m) and r←R {0, 1}512

Commit takes the message m and a randomly-chosen value r as input and returns a
commitment c. r can later be revealed to decommit.

. Decommit(m′, r′, c)→ { true if c = HMAC-SHAr′(CK ∣∣m′)
false otherwise

Decommit takes the purported message m′ and decommitment key r′ as input and re-
computes the HMAC-SHA to check whether it equals the received commitment
c. If so, the commitment is considered validly decommitted, and it is considered in-
validly decommitted otherwise.

Lemma D... e construction above, which we denote Π = (Setup,Commit,Decommit),
is a correct, computationally hiding, computationally binding commitment if () HMAC-
SHA is a PRF and () SHA- is a CRHF.
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Proof. A commitment scheme is correct if Decommit(m, r,Commit(m, r)) = true for all m
and r. One can see thatΠ is correct becauseDecommit(m, r, c) = truewhen c = HMAC-SHAr(CK ∣∣m),
which is exactly what Commit(m, r) computes.e proofs of hiding and binding follow from
Claims D.. and D.. respectively.

ClaimD... If HMAC-SHA is a PRF, thenΠ is a computationally hiding commitment.

Proof. Computational hiding is defined with respect to the following game played by a prob-
abilistic polynomial time (PPT) adversaryA:

. e committer runs Setup(1n)→ CK
. A picks two messages m0 and m1.
. e committer chooses b ←R {0, 1} and r ←R {0, 1}k, computes c = Commit(mb, r),

and sends c toA.

. A outputs b′ and wins if b′ = b.
Denote the probability (over the random choices of A and the committer) that A wins this
game against commitment schemeΠ by Pr{BreakHidingA,Π(n) = 1}. We say thatΠ is com-
putationally hiding if ϵ(n) def= Pr{BreakHidingA,Π(n) = 1} − 1

2 is negligible.
To seewhy ϵ(n)must be negligible, we consider a variant of our scheme Π̃ = (S̃etup, C̃ommit, ̃Decommit)

where HMAC-SHAr(CK ∣∣m) is replaced by f(CK ∣∣m) and f is a truly random function.
In that case, Pr{BreakHidingA,Π̃(n) = 1} = 1

2 and therefore,

ϵ(n) = Pr{BreakHidingA,Π(n) = 1} − Pr{BreakHidingA,Π̃(n) = 1} .

Now, suppose that we construct a PPT algorithm D that attempts to distinguish be-
tween HMAC-SHA and f defined as follows.

. D is given 1n alongwith anoracleO that is eitherHMAC-SHAr, where r←R {0, 1}512,
or f.

. D runs Setup(1n) → CK and A(1n). When A provides two messages m0 and m1, D
picks b←R {0, 1}, and returns c = O(CK ∣∣mb) toA.

. WhenA outputs b′,D returns 1 if b′ = b and 0 otherwise.

IfO is HMAC-SHAr, thenA’s viewwhen run as a subroutine ofD is identical toA’s view
Bellare shows that HMAC is a PRF if the underlying compression function is a PRF []. We assume that

SHA- is a PRF when its initialization vector is chosen randomly and kept secret.
e value of k depends on the commitment scheme.
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when playing the computational hiding game. us,

Pr{DHMAC-SHAr(1n) = 1} = Pr{BreakHidingA,Π(n) = 1}

where Pr{DHMAC-SHAr(1n) = 1} is taken over r andD’s andA’s random choices, and sim-
ilarly,

Pr{Df(1n) = 1} = Pr{BreakHidingA,Π̃(n) = 1}

and so
ϵ(n) = Pr{DHMAC-SHAr(1n) = 1} − Pr{Df(1n) = 1} .

If ϵ(n) were not negligible, then D would be able to distinguish between HMAC-SHA
and f, violating our assumption that HMAC-SHA is a PRF.

Claim D... If SHA- is a CRHF, then Π is a computationally binding commitment.

Proof. Computational binding is defined with respect to the following game played by a PPT
adversaryA.

. A runs Setup(1n)→ CK
. A picks two messages m0 and m1 such that m0 ≠ m1 and two decommitment keys r0

and r1.A then computes Commit(m0, r0)→ c0 and Commit(m1, r1)→ c1
. A outputs CK, m0, m1, r0, r1, c0, and c1 and wins if c0 = c1.

Let the probability (over A’s random choices) that A wins this game against our
scheme Π be Pr{BreakBindingA,Π(n) = 1}. If this probability is negligible, then we can say
that Π is computationally binding.

To see why it must be negligible, we construct a PPT algorithm B that uses A in an
attempt to find a collision in SHA-. B is defined as follows.

. B is given 1n and runsA(1n).

. WhenA outputs CK, m0, m1, r0, r1, c0, and c1, B constructs four messages:

a0 = (r0 ⊕ ipad) ∣∣CK ∣∣m0

b0 = (r0 ⊕ opad) ∣∣ SHA-(a0)

a1 = (r1 ⊕ ipad) ∣∣CK ∣∣m1

b1 = (r1 ⊕ opad) ∣∣ SHA-(a1),
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where opad is a string of  0x5c bytes and ipad is a string of  0x36 bytes. If b0 ≠ b1,
B outputs m = b0 and m′ = b1. Otherwise, B outputs m = a0 and m′ = a1. B wins if
SHA-(m) = SHA-(m′) and m ≠ m′.

A’s view when run as a subroutine of B is identical to A’s view when playing the
computational binding game. Moreover, because HMAC-SHAr(x) = SHA-((r ⊕
opad) ∣∣ SHA-((r ⊕ ipad) ∣∣ x)), B wins exactly when A would have won the computa-
tional binding game (i.e., when Commit(m0, r0) = Commit(m1, r1) where m0 ≠ m1). us,

Pr{CollisionSHA-
B (1n) = 1} = Pr{BreakBindingA,Π(n) = 1}

where Pr{CollisionSHA-
B (1n) = 1} is taken over B’s (reallyA’s) random choices. As a result,

if the probability thatAwins the computational binding game were non-negligible, then the
probability that B finds a collision in SHA- would be as well, violating the assumption
that SHA- is a CRHF.

D. Applications, parameters, and modeling

is appendix describes the configuration of our experimental evaluation (§.) in more
detail.

D.. Details of sample applications

Dot product. Computes the dot product between two integer arrays, each of length m. Each
mapper gets a chunk of the input vectors and computes a partial dot product, outputting an
integer. Each reducer gets as input a list of numbers, and sums it. Another reducer phase
sums the sums.

Nucleotide substring search. Searchesm nucleotides for length-d substring. Eachmap-
per gets as input a chunk of DNA and the same length-d substring; if a mapper finds amatch,
it outputs the position of the match. Each reducer takes as input a list of locations and con-
catenates them.

Nearest neighbor search.e search takes as input a length-d target vector and a list of
m vectors, each of length d. Each mapper gets as input a subset of the search list of m vectors
and the target vector. A mapper computes the Euclidean distance between the target vector
and each vector in the subset, outputting a list of distances. Each reducer takes as input a list
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of Euclidean distances and computes the minimum. Another reducer phases computes the
minimum among these minimums.

Covariance matrix. Computes the covariance matrix for m samples, each of dimen-
sion d. Each mapper gets as input a subset of the samples and computes a d × d covariance
matrix, for its samples. Each reducer aggregates a set of these matrices, producing another
d × d matrix. en, a final reduce phase produces the final covariance matrix.

, , and . ese queries do as their names imply. Our database
has three indices, and parameters are given in Figures . and ..

Face matching. e prover stores a list of -bit fingerprints of faces and a threshold
for each fingerprint. e verifier supplies a fingerprint of  bits, and the prover indicates
that there is a match if and only if the Hamming distance between the input fingerprint and
one of the faces in the list is below the threshold for that fingerprint. is algorithm is based
on the approach of Osadchy et al. [].

Tolling. e verifier is a toll collector, and the prover is a driver. e prover uses toll
roads during a month and maintains a private database of its own toll road usage. Whenever
the prover passes a tolling location, it adds a tuple to its database of the form (time, tolling_-
location_id, toll_amount). e verifier can randomly and unpredictably “spot check” the
prover whenever it uses a tolling location by storing a tuple of the same form in a separate
database; the prover cannot tell whether it has been spot checked. At the end of the month,
the prover sends a commitment to its database to the verifier. e computation to be verified
takes as input the prover’s commitment to its database and the spot checks that the verifier
collected. e computation outputs  if one of the spot checks does not have a “close
matching tuple” in the database (two tuples are a close match when the tolling_location_id
and toll_amount match and when the difference in the times is less than a system parame-
ter). Otherwise, the computation returns the total cost of tolls incurred by the prover in that
month.

Regression analysis.everifier is a data analyst who, for example, would like to learn
a model for the effectiveness of a drug, based on a patient’s background and symptoms; the
prover is a clinic. e prover holds a list of patient records and sends a commitment to this
data to the verifier. e computation takes as input the prover’s commitment, a set of patient
features tomodel, and a parameter k > 0.e computation returns a linear function obtained

is computation would be better named “nearest neighbor distance search”, as it returns the distance rather
than the closest vector; with minor changes (and few performance effects), the computation could return the
distance and the nearest vector.
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by applying ridge regression [] with regularization parameter k to all patient records in
the prover’s database; in the regression, the independent variables are the features, and the
dependent variable is patient recovery time. at is, the linear function produced by the
computation predicts a patient’s recovery time, as a function of the patient’s features, but
does not reveal the details of any particular patient record.

D.. Parameters

For the experiments that use Zaatar, we configure the field F (recall that F = Fp) to have
a prime modulus of  bits. Zaatar uses ElGamal encryption (as part of step () in Sec-
tion ..), and our experiments presume -bit keys []. For the experiments that
use Pinocchio, we configure the field to have a prime modulus of  bits. For Pinocchio’s
pairing-based cryptography, we use a BN curve that provides  bits of security [].

D.. Modeling

Below, we quantify the constants in the cost model in Figure ..We run a set of microbench-
marks to measure the costs of the basic operations (e.g., encryption, decryption, multiplica-
tion, etc.) on our hardware platform (§.), and we use a detailed cost model from prior
work [] to estimate the constants. e values are as follows:

Zaatar Pinocchio

c1 9 ns 9 ns
c2 77 µs 230 µs
c3 205 µs  ms
c4 4.8 µs 0.35 µs
c5 170 µs 243 µs
c6 1.5 µs 0.6 log ∣C∣ µs

Accuracy and assumptions. For applications that we use in Pantry, our end-to-end empir-
ical results are generally within  of their predictions, but for the prover, the empirics are
smaller than predictions of the cost model by up to a factor of . e primary reason for this
deviation, as mentioned earlier, is that Pantry’s applications include a large number of stor-
age constraints (§.), and the values taken by the variables in those constraints are much
smaller than the prime modulus, p, which reduces the value of c5 for such applications.
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Extensions for amore faithfulmodel. Oneway to improve the accuracy of our simple cost
model is to make c5 depend on the relative number of bitwise operations and on the average
number of bits in the values taken by variables in the constraints of a computation.
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