
 386

TapGlance: Designing a Unified Smartphone Interface
Daniel C. Robbins Bongshin Lee Roland Fernandez

Microsoft Research

One Microsoft Way

Redmond, WA 98052

dcr@microsoft.com bongshin@microsoft.com rfernand@microsoft.com
ABSTRACT
The difference between using one mobile phone and another
can feel like learning a new language based on our extensive
experience designing mobile applications for spatial data
navigation, faceted search, and glanceable information, we have
developed design principles for unifying the various aspects of
the internet connected mobile phone (“smartphone”) user
experience.

This paper presents TapGlance, a design proposal for a novel
mobile phone user interface. TapGlance adapts its presentation
to different levels of user attention, provides ubiquitous faceted
search, and uses a zooming metaphor to unite inter- and intra-
application navigation. Because our interface relies on a spatial
metaphor it can also be adapted to non-textual representations
and thus useful to broader populations. This paper describes our
design goals, design process, and the resulting TapGlance
design.

General Terms
Design, Human Factors

Author Keywords
Mobile devices, smartphones, faceted metadata, search
interfaces, visual interaction, zoomable user interfaces,
peripheral displays

ACM Classification Keywords
H5.m Information interfaces and presentation (e.g., HCI):
Miscellaneous.

1. INTRODUCTION
Mobile phones are practically ubiquitous. Today there are 2.5
billion mobile phones and already 80% of the world’s
population has network coverage. It is estimated that by 2015
there will be 5 billion active mobile phones [5]. Short-message-
systems (SMS) are used to keep track of crop prices in India,
friends send each other photos, people retrieve movie times
from web services, people watch current television shows while
on the move, and yes, people do still call each other with their
phones.

Given phone adoption rates in the developing world, it is very
possible that many of these emerging markets will embrace
internet connectivity via a mobile phone faster than they do via
a desktop PC, similar to how voice enabled mobile phones
leaped-frogged land-lines in many parts of the world. Whether
this happens in a low-bandwidth fashion via chained SMS or a

direct connection, it is happening. For many people in the
world, a smartphone may become their only means of
connecting to the internet. Because of this and other market
pressures, both the commercial and research communities are
working hard to imbue internet connected mobile devices with
the rich capabilities of desktop computers, otherwise known as
“smartphones.” As to be expected, many current smartphone
applications have adopted user interface elements from the
desktop experience such as scrollbars, longs lists, arrays of
check-boxes, and tiny fonts. On a traditional mobile phone the
mobile operator (carrier) has near complete control over the
entire user experience. On most smartphones, just as with the
desktop PC, users and other third parties can install many
different applications. The advantage is a plurality of
capabilities; the tradeoff is that we are left with a jumble of
different interaction styles and visual presentations. While users
can take the time to manage this variety on the desktop, the
demands of the mobile environment make this very aggravating

User interaction challenges caused by these rapidly proliferating
mobile interfaces motivated us to develop a unifying
visualization and interaction paradigm called TapGlance
(Figure 1). We are motivated by previous research in three main
areas: spatial data navigation, faceted search and, most recently,
glanceable information displays. In this paper we present a
glanceable, searchable, and navigable interface that can unify
the most common smartphone interactions. Our contributions
are a set of guidelines for unifying the smartphone user
experience, a candidate design that meets our criteria, and
observations about the tradeoffs in this kind of holistic design.
This work is primarily based on the zoomable mobile interfaces
from the ZoneZoom and FaThumb projects which we will
discuss along with other related work. We also present a
detailed walkthrough of our candidate interface in the context
of a common mobile scenario.

2. RELATED WORK
Previous work that served as the building blocks for this
project comes from the following high-level areas: Mobile
phone search interfaces, mobile phone information navigation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DIS 2008, February 25-27, 2008, Cape Town, South Africa.
Copyright 2008 ACM 978-1-60558-002-9/08/0002…$5.00.

(a) (b) (c)

Figure 1: Overview of the TapGlance UI: (a) 9 top level
“Glance” tiles show salient information from most useful
feeds, (b) Interacting with the music application, and (c)

showing songs that are shared amongst friends.

 387

interfaces, generalized faceted search interfaces, and peripheral
awareness displays.

Faceted search involves the use of top level categories to filter
large sets of structured information. Marti Hearst has many
useful recommendations for the design of faceted search
interfaces [8], [21]. She suggests that, when possible, only
provide those facets which apply to the most number of items in
the dataset. Users have shown themselves to be adept at
understanding the context of a sub-facet, so the entire hierarchy
need not be displayed at all times. Her work also suggests that
keyword searching be applied first across the facets themselves,
then the metadata, and lastly the content itself. The Phlat project
[4] used categories common to a user’s own data as a front-end
to a desktop search system. mSpace Mobile [22] is an extension
of the desktop mSpace faceted search interface, geared
especially for mobile devices. Users are presented with “fish-
eyed” tiled panes, each pane returning information from a
particular facet or view. mSpace Mobile currently relies on
touch screen devices with fairly high resolution displays.

The FaThumb project [12] applied used faceted search interface
to search across one particular database. FaThumb used a
taxonomy of facets that was directly tied to the typical number
keypad of a mobile phone. Zooming and animation imparted
valuable perceptual feedback for navigation through the facet
hierarchy. The current Live Search Mobile application [14]
presents hierarchical facets although only in successively
arranged lists which do not take advantage of spatial memory.

Rather than using facets, the K-Menu system [13] uses a free-
text based interface as a general front-end to the entirety of a
mobile phone’s menu system. As users type free-text into a
search box, all matching phone functions are presented in a
linear list. While very general, this kind of interface takes a
user’s full attention – possibly not well suited to mobile
environments.

AppLens and LaunchTile [11], along with FaThumb, used
variations of the segmented navigation techniques developed in
the ZoneZoom project [17]. ZoneZoom divided the mobile
phone display into 9 tiles, each recursively zoomable via the
number keys on a mobile phone. ZoneZoom only addressed
navigation within a spatial dataset and did not investigate search
or dynamic information displays. AppLens and LaunchTile use
larger sets of tiles that are accessed either by gesture on a touch
enabled device or by taps of the phone’s directional keys and
have now been incorporated into the commercial Zumobi UI
framework [23]. Because Zumobi has more tiles than hardware
keys, a user can build an association between a particular
number key and a particular tile. Several systems have used
various visual techniques to enable navigation amongst large
and/or dense spatial datasets on a mobile device. Halo [1] uses
sections of circles, centered on data-points, as indications of
off-screen data locations. “Jump and Refine” [7], TouchGrid
[9], Rosenbaum et al [18] and “Hopping” from Irani et al [10]
use variations of the segmented navigation system to
successively refine selection. Both Burigat et al [2] suggests a
good framework for evaluating these systems.

In terms of glanceable interfaces – displays that can be
apprehended with a minimum of attention, Pousman and Stasko
[16] provide a good overview of desktop systems. Matthews et
al has gone into depth on the tradeoffs between high-fidelity
and abstraction in the design of peripheral displays [15]. The
Scope project [20] used a very abstract set of cues to represent
dynamic information sources (“feeds”) on the desktop but its
compete reliance on iconography limited its usability. Sideshow
was a precursor to the many gadget or widget based desktop
notification systems. Sideshow placed a user selected collection

of highly salient information feeds into the display periphery
[3]. Most of the existing research has focused on glanceable
displays that lie in the user’s periphery on a desktop PC. These
interfaces need to get a user’s attention with “just enough”
prominence, while at the same time not distracting the user
from highly focused tasks. Our focus, though, is on the mobile
phone where the device (and display) are for short periods,
front-and-center.

3. DESIGN GOALS
Upfront, we decided that TapGlance had to support the most
common mobile scenarios. In our conception of this scenario,
users have a standard 12-key device and the phone is only one
of many stimuli clamoring for their limited attention.
Additionally, users have only a limited time to devote to
learning any given application. Because of this we wanted to
provide an interface paradigm where users can easily navigate
from application to application and within each application via
a small set of shared interactions. In order to best work in a
mobile setting, these interactions should take advantage of
spatial memory and accommodate themselves to the amount of
attention a user has to devote at any one time.

3.1 Design for Emerging Markets
There is a sweet-spot where a certain level of hardware
capability (processor, memory, display, and network
connectivity) becomes widely attainable by a significant portion
of the population. Our first design goal is to design for this
sweet-spot. When the mobile phone can couple data access with
non-voice communication (text or pictographic) and when that
phone can also manage a user’s personal information we call
that device a “smartphone.” It is less the network speed that is
important and more what the mobile phone can do with data,
once that data hits the phone. Because of this, it is very
important to us that we design an interface that while optimized
for medium resolution (320x240) color displays can also
gracefully scale to low resolution (128x96) gray-scale devices.
This “scalability” should extend not only to hardware capability
but also to user ability: the interface should still be usable the
user is not fully literate. Our interface should still work if icons
are substituted for text, speech input should be an alternate
method for selecting options, and voice output should reinforce
on-screen information.

3.2 Respect Attention
Most smartphone applications assume that a user is giving the
device and the current application her full attention. The
problem with this assumption is that mobile users, surprisingly
enough, often use phones in mobile situations! Whether actually
physically moving through the environment or engaging in a
conversation with another person in the same room, mobile
phone users have many attentional demands placed on them.
We cannot assume that users can tune out the rest of the world
in order to scroll through long lists, visually compare subtle
icon differences, and keep previous application states in their
short-term memory. Instead many people are using mobile
phones in the context of “continuous partial attention [19].”

The takeaway is that a mobile interface should only require a
“loose feedback loop.” A user should be able to initiate a
command, give limited attention to the device or even look
away from the device, and still easily understand how the
display has changed. Scrolling tends to violate this principle
because it requires a tight interaction feedback loop. A user
must continuously look at the display until the desired
navigation goal has been reached. We also need to be careful in
how we apply other technologies. If done badly, speech
interfaces for mobile phones can require continuous attention on

 388

the part of the user and this contradicts our focus on supporting
short bursts of user attention. Likewise, the lack of tactile
affordances and feedback on touch-screens make it difficult for
the user to acquire and reliably use on-screen buttons.

3.3 Be Glanceable
As with any other user interface, a smartphone presents lists of
choices to users. But a user’s fleeting attention may be
compromised if she is required to serially interrogate multiple
items in order to confidently make a choice. It is very common
for desktop applications to encourage users to serially hover
over individual items, one after another, in order to ascertain
indentifying information. This kind of serial interrogation –
even when hover is replaced with tab-based selection – is
cumbersome in a mobile setting and forces the user to rely on
her short-term memory for making informed comparisons.

The goal of glanceability can be overshot in an attempt to
simplify visual presentation [15]. In the peripheral notifications
display of the Scope project items were only shown as a
composite icon representing their most salient metadata [20].
The Scope display was glanceable in that users could easily
determine if there were new items of interest and get an
overview of how many items needed to be attended to. The
problem, though, is that the lack of text identifiers meant that
users still had to serially interrogate items in order to gain a
sense of what an item actually was. It was not enough to know
about an item, users wanted to see the unique identifiers for
each item.

3.4 Use a Consistent Interface Metaphor
As called out previously the proliferation of mobile
applications, each with their own interaction metaphor, presents
learning challenges to the typical user. We can’t (and shouldn’t)
force application authors to adhere in lock-step to a strict set of
UI guidelines. But there are a base set of operations that users
engage in across multiple application types. Users need to find,
view, browse, edit, tag, create, and send sets of items. If we can
figure out how to map each of these general operations back to
application specific data and then provide a consistent means of
accessing these features, we are much closer to the goal of
interface unification.

3.5 Use Facets to Reunite Search and
Browse
Web-based search interfaces (and their desktop descendents)
have become so popular that we have almost forgotten that
“browsing” is just as important a piece of sense-making as is
search [8]. Faceted Hierarchical Search interfaces seek to
reunite search and browse capabilities. Facets are different
dimensions or property types for items in a dataset and they can
be used to filter the dataset. In the previously described Phlat
system, as well as in other faceted search systems, a user can
interactively build a query, not just from free-text terms, but
also by selecting parameter values from a set of canonical
property types [4]. To see a list of files modified in the last
week that were related to a particular person, a user of a faceted
search system would choose the “Last Week” parameter from
the date facet and the appropriate person’s name from the list in
the People facet. Based on the user studies in the FaThumb
project [12], facets appear to be well suited for retrieving
information on a mobile phone because they allow the user to
avoid the cumbersome process of typing free-text on the phone
to construct queries.

4. THE DESIGN PROCESS
The TapGlance project did not begin as an interface for mobile
devices. Instead it developed out of various desktop information

retrieval systems that combined faceted metadata browsing with
full-text search [4]. Our interest in faceted search led to a series
of thought and design exercises where we tried to adapt these
faceted interfaces to more general configurations. We hoped
that facets could be used not only for information retrieval but
also as a means of issuing commands in the UI. While we
quickly realized the challenges in trying to make a universal
interface for all tasks on a typical desktop computer, we found
that the more constrained application on a mobile device to be
well suited for using facets as a central interface metaphor.

Once we moved the TapGlance project to the mobile phone, it
became much easier to derive several narrative scenarios. Not
only did these scenarios help us generate initial concepts but
they also served as test cases once we had a detailed design.
Summaries of a few scenarios are:

1. Mike wants to see a list of all emails related to
Project Beta that include Brad

2. Doug needs to quickly get a list of nearby supply
stores that are open late in the day

3. Pat takes pictures of a bunch of products at a supply
showroom and quickly later tags her favorites

4. Joe is at the park and wants to know if any of his
friends are nearby so he can invite them over to play
Frisbee

5. Linda is waiting for the bus and wants to hear music
that she shares in common with Felicia

6. Tim wants to get a list of highly rated restaurants that
are nearby

7. Jack shows a friend digital images of the two of them

8. Susan glances at her phone to see if there is anything
urgent to attend to. She notices that an appointment
later in the day is about Project Alpha. Wanting to
gain some context, Susan retrieves a list of people
who are involved with Project Alpha. Susan changes
the view to show these people on a map so that she
can see whose office is closest to hers. Finally she
calls one of those people to arrange an informal get-
together before the important meeting.

This last complex scenario generated many interface ideas
including a method to pivot from a list view of meeting
attendees to a map view with the attendees plotted on the map.
While this is certainly a powerful feature, it relies on deep
infrastructure changes. Because of this we eventually scaled
back the key scenario to center on showing an appointment
location on a map. This is highlighted in the “Detailed UI walk-
through” section.

Before we jumped into sketching an interface we first used
these types of scenarios to derive several conceptual sub-tasks:
1) the user is presented with an overview of her most urgent
information, 2) within this view she views a ranked display of
calendar events, 3) then she dives into a particular appointment,
4) she extracts a piece of metadata (project name) from the
appointment, 5) she filters another dataset (corporate address
book) based on the project name, 6) “casts” these results into a
geographic projection, and then 7) issues a command using the
data (phone number) from one of the contacts.

As we began the visual design stage we examined various
metaphors: tabbed interfaces, speed dependent zooming, purely
graphical, and purely spatial. Our initial idea was to use a high
level faceted search interface as the top-level interface. We
explored how the generalized facets of people, place, time, file
type, and source could be used to access all of the smartphone’s

 389

functionality. A user would retrieve different sets of
information by navigating through the facet hierarchy. The
problem was precisely that: a user had to navigate through a
facet hierarchy just see when their next appointment was. This
complex interaction contradicted one of our primary design
goals, that of glanceability. Our extremely general facets were
effective for creating queries, but not so effective for the
primary phone tasks: making phone calls and seeing overviews
of urgent information with no interaction. The need to resolve
this key conflict, the conflict between generality and phone
specific tasks, was at the heart of our design process. We
eventually resolved this conflict by designing a way in which a
general faceted search interface could exist within a targeted
phone interface – all of this using a spatial zooming metaphor.

5. THE TAPGLANCE INTERFACE
5.1 User Interface Overview
The TapGlance interface is made up of a collection of panes. By
default, the topmost pane, the TopBar, has keypad focus
because this is where phone numbers are entered. At the very
bottom of the display, as with many phone interfaces, labels
indicate the functioning of the left and right soft-buttons. The
user shifts focus amongst the panes by repeatedly tapping the
right soft-button. Below the TopBar is a pane that contains the
default set of 9 Feed Tiles (Figure 2). Each of these tiles
displays a glanceable representation of the most urgent
information from sources most relevant to mobile phone users.
Our initial set of proposed Feed Tiles is: Search, Applications,
RSS, Inbox, Calendar, Media, Scratchpad, and two tiles
reserved for various dynamic alerts. For the most part, each
Feed Tile’s contents are populated by standing queries. For
example, the Calendar Feed Tile might display the time and
subject of the user’s next meeting. Every tile is associated with
the spatially related number key on the keypad. The two “alert”
tiles are dynamically populated with information that is most
relevant and urgent to the user. Typically this would be people-
centric updates such as new messages or profile changes related
to people that are important to the user. These two tiles would
display information akin to the “Newsfeeds” feature in social
networking sites such as Facebook. The dynamic nature of the
alert tiles acknowledges that the idea of what is “important” is
very context dependent. While the content in the two alert tiles
changes over time, their spatial location is stable, thus
encouraging muscle memory.

If the user needs to quickly learn more about the particular
information displayed in a Feed Tile, she need merely press-
and-hold the corresponding hardware key to temporarily zoom
and “peek” into that tile. The “peek” view of the calendar tile
would show detailed information about the next appointment
along with a summary of the subsequent appointment. Upon
releasing the key, the view animates back to the default set of
Feed Tiles. When there is more time to devote to the phone, the
user can activate any application associated with a Feed Tile by

tapping the appropriate number key. Opening the Calendar
application shows an overview of the day’s appointments with
each appointment individually selectable for more interaction.

If the user wants to filter these items she can activate the
Faceted Search interface from a Central Menu. When opened,
the Faceted Search interface fills the lower portion of the
display with 9 tiles, each an access point to a canonical category
of metadata (Figure 1(c)). As different filters are applied to the
current collection of items the view style within the Feed Tile
changes accordingly. If the user filtered the list of meetings by
location, the timeline view of the meetings would automatically
transition into a map view.

Commands such as open, edit, and share are accessed via a
Central Menu. This menu can be activated at any time by
pressing the key at the center of the d-pad. As much as possible,
the items on the menu remain constant across the UI.

Because TapGlance is targeted at a 12-key smartphone, every
displayed item can be selected or activated via a series of
numerical key presses. These selections are scoped to the
currently focused pane.

5.2 Addressing Our Design Goals
In this section we discuss how the TapGlance UI addresses the
design goals stated in section 3.To reiterate, we want our
interface to: 1) take advantage of the most common hardware
platform, 2) respect the user’s attention by throttling the amount
of information to match a user’s degree of attention, 3) design
the information displays to be glanceable, and 4) provide a
consistent user interface paradigm across and within the base
set of applications.

Our common hardware platform has nine number keys arranged
in a 3x3 grid. Likewise, the primary components of our
interface, the Feed Tiles, the search facets, and menu options
are arranged in a 3x3 grid. This serves two purposes. The
spatially stabile location of sub-region content within the grid
leverages spatial memory, enhances glanceability, and ensures
keyboard accessibility. And as in the ZoneZoom project,
spatially arranged views, such as maps and photo-grids, can be
recursively navigated via subdivision into 9 sub-regions [17].
Tapping a number key animates a zoom into the desired sub-
region. Pressing-and-holding that same key previews the zoom
and releasing the view zooms back to the initial view.

There are cases where the user may have the time and attention
to interact with larger lists of choices. In these cases we do
provide a few special case views that contain larger numbers of
items. Even in these cases, our TapGlance design proposal
overlays numerical access to the most commonly desired
choices. Other systems are also using a zoomable tile metaphor
[11]. These systems, though, have more tiles at a given zoom
level than there are hardware keys on the mobile device.
Because of that, we fear that users will be hampered in building
up a mental model of the data space.

5.3 Abstraction in the User Interface
As stated in our goals, respecting and accommodating the user’s
degree of attention is primary to our design. Our first goal is to
support the most ephemeral interaction – pulling a phone out of
one’s pocket to see if there is anything important to attend to.
For this “glance” level of interaction each Feed Tile shows only
one or two items in a very stylized manner (Figure 3(a)). This
representation is optimized for the particular type of
information. For communications (the “Inbox” tile) we show
just the name of the person who sent the most recent urgent
email and a numeric count of unread communications. The
calendar tile shows just the name of the next appointment and
the media “glance” tile shows the name of the currently playing

Figure 2: Home screen TapGlance UI elements

 390

song. The design of these tiles borrows from the rich set of
work already underway in glanceable peripheral displays
including the Scope [20], and Sideshow [3].

When a user wants to see details about the information
presented in a particular feed, the user presses-and-holds a
spatially associated key to temporarily “peek” in on a particular
facet. When “peeking” into the media tile, the user is shown the
artist’s name, song length, genre, album art, and what the next
song to play will be (Figure 3(b)). When the user releases her
finger, the screen zooms back out to the Feeds home page. This
spring-loaded interaction supports users who have a limited
amount of attention to devote to the phone but want a little more
detail about the most urgent items.

When the user has the time to devote more attention to the
smartphone she taps the number key associated with a particular
feed. This causes the interface to switch and zoom into that
feed’s related application. For instance, zooming into the media
tile activates the media application where the user can inspect
and interact with the current playlist (Figure 3(c)). Both peeking
and inspecting are carried out with quick and fluid zooming
animations which shift user comprehension of the transition to
the perceptual level. This differentiation between pressing-and-
holding and tapping was successfully used in the ZoneZoom
mobile interface [17].

5.4 Supporting Emerging Markets
We can also use abstraction to adapt TapGlance to hardware
and users of varying abilities. If we replace the text in our UI
with icons or pictograms, we can both support lower capability
displays and users who may have limited literacy (Figure 4(b)).

The density of information displayed in each Feed Tile
decreases but our overall metaphor of segmented zooming is
still intact. Speech interfaces can also help to empower

currently underserved users. Speech input actually has a chance
of being useful for selecting Feed Tiles, facets, results items,
and menu options because TapGlance only presents nine direct
choices at any time.

5.5 Faceted Search
Throughout the user experience, TapGlance presents users with
collections of items. At the glance and peeking level of the
interface we show only a very small set of items. But at the
application level, when the smartphone has more of the user’s
attention, the number of items can be arbitrarily large. A
calendar stretches infinitely, a media playlist can contain many
songs, and a map can have a large number of points-of-interest
markers on it. Users need easy ways to filter these sets of items
and to find items amongst these large sets.

As stated before, TapGlance borrows from the methods used in
the FaThumb system to provide filtering [12]. As a stand-alone
application on the smartphone, the FaThumb system was
restricted to browsing and searching the Yellow Pages. The
TapGlance faceted search design goes beyond FaThumb in
several ways. TapGlance simplifies the interactions required to
add and subtract filters. The filtering mechanism is accessible
from all places in the phone interface via the common Central
Menu. The facets we chose are meant to encompass all of the
structured data generally accessible via a typical smartphone.
Just as with FaThumb, TapGlance uses a 3x3 grid of facet tiles
that are tied to the spatial layout of the hardware number keys.
A summary of our top-level facets and their usage can be seen
in Table 1 and an image of them in context of the UI can be
seen in Figure 1(c) and Figure 5(3). In general, we reserve the
ninth tile as means of accessing less commonly used sub-facets.

We did consider other layouts for the facet hierarchy. Existing
mobile search interfaces (and even the IPod) typically present
users with separate cascading screens of hierarchically linked
lists. This scheme does maximize the amount of hierarchy seen
at one time. But, because the results set is not seen at the same
time, users do not get real-time feedback as to how changing
query terms affects the results set. In TapGlance we consistently
devote a portion of the screen real-estate to search results. As
seen in Figure 1 (c) when a user zooms into a sub-facet in the
lower Facet pane, the middle Feed pane updates its contents
appropriately thus informing the user as to whether or not her
search is yielding useful results. In addition visual tokens
(“breadcrumbs”) appear in the TopBar to reinforce the current
query.

Supporting a multi-path filtering process is central to our
design. We cannot know a priori how every user is going to
approach a given information retrieval task. Some may think of
appointments more in terms of time, some by location, and
some by people. Because of this rich variability, it is very
important to allow a user to apply any filters in any order. Of
course, with the right visual cues, we hope to guide users such
that they never end up with the dreaded “zero results” view. It is
not even that we want multiple paths to lead every user to the
same end collection of filters. For some users, as suggested
above, a map may be a meaningful visualization. For others, a
list, with appropriate metadata in an attached column might be
more easily parsed. In any case, our TapGlance design supports
many ways of slicing, dicing, and viewing data.

In the previous FaThumb application, applying filters required
two steps. First a user would have to navigate into a desired
filter (Top level facets � Location sub-facets � “10 Blocks”).
At this point, the user would then “pin” the “10 Blocks” filter
by explicitly tapping on the left-soft key. In practice, we found
this two step process cumbersome. Our original intent in relying
on this multi-stage interaction was so that users could explore

(a) (b) (c)

Figure 3: Three levels of abstraction for the media tile:
(a) “Glance” view just shows basic information for the

current song, (b) “Peek” view shows much more
information about the current song, and (c) the
“Application” view shows the current playlist.

(a) (b)

Figure 4: TapGlance scales to different audiences:
(a) full color with text at 320x240 and (b) black and

white with icons at 128x96

 391

the facet hierarchy without applying facets. We decided,
though, that if it is easy enough to remove a filter, then it is
better to support immediate filter application. This is in fact
what occurs in other existing (and successful) faceted search
systems such as Flamenco [8] and Ebay Express [5]. In
TapGlance the parent facet of the current set of sub-facets is
always automatically applied as a filter.

The filtering interface also uses the notion of peeking. If instead
of tapping on a filter, the user presses-and-holds the associated
key, the adjacent list of results is only temporarily filtered. The
user can essentially preview the effect that filtering the current
result list would have – without having to fully commit to the
filter. This spring-loaded filtering, akin to the spring-loaded
navigation of ZoneZoom, is a nod toward tentativeness and
exploration in the UI.

5.6 Taxonomy Design
An expert in hierarchical faceted search, Marti Hearst, says that
even with the state of the art in clustering algorithms, faceted
search UIs remain “boutique search interfaces [8].” This is
because faceted search is best suited to datasets that are
structured and have rich metadata on them. Luckily, data
accessible via a smartphone tends to be well structured. Users
quickly need to find contacts, appointments, recent
communications, and map locations. In the TapGlance design
we choose to abstract the specific parameters on each data type
into higher level (and more useful) sub-facets. If we were to
strictly categorize each item based on its base level of metadata,
we would end up with a very deep hierarchy. For example, the
date field for a photo taken by the camera might be slightly
different than the received date for an email message. Using the
same kind of abstraction strategy as in the Phlat system, we
decided to roll-up such parameters as “Date” and “People” [4].

Our faceted search interface is meant to be accessed from a
mobile device. Because of this, it was very important that every
aspect of the UI take the best advantage of spatial memory.
Thus, we chose to not follow Hearst’s suggestions to only show
the most salient sub-facets. If our interface followed such a
dynamic presentation, every use of the faceted search UI could
possibly present user’s with wildly varying sub-facets. This
would require a high-cognitive load on the part of the user – not
a desirable thing for a mobile UI. Instead, we tend to err on the
side of generality. An ad-hoc (at this point) analysis of the kinds
of data we need to access and the commands with which to
transform the data suggested a few top level categories. This
means that in TapGlance there are cases where a user will see

sub-facet tiles that have a result count of zero. In our defense,
aside from the benefit to spatial stability, even the presence of a
“zero count” can help to teach a user about the distribution of
data. For example, when a user constructs a query such that the
“African” sub-category of the “Restaurant” facet shows a “zero
count” in a given neighborhood, they have just learned that they
should probably look elsewhere for Injera bread. In addition,
the stable presentation of the facet hierarchy can help a user
learn the overall taxonomy.

There are many ways, though, in which we gladly follow
Hearst’s recommendations as these worked well in the
FaThumb project. In brief, when there is enough space, our
TapGlance design incorporates predictive counts “cuddled”
next to the facet. We also fully integrate free-text search: if a
user moves the focus to the TopBar, typing on the number key-
pad enters free-text query terms via typical mobile phone text-
entry method such as T9 or multi-tap. These free text terms will
first search across the names of facets and sub-facets. These
“facet hits” are shown as visual cues superimposed over
appropriate facet tiles. In our design, the search is also extended
across the metadata for all data items accessible via the phone
and across the full-text content of these items. The division of
labor between the client (the phone itself) and a server is gated
by network latency, size of the local phone cache, and local
processor speed in executing queries.

In general, when we have a choice, we have opted for a looser,
rather than tighter, construction of the facet hierarchy. We
firmly believe that the benefit of returning too many results
outweighs the cost of returning too few or even no results. Our
taxonomy, especially the “Tag” facet, explicitly allows for sub-
facets living in multiple places in the hierarchy.

5.7 Animation in the UI
The aforementioned interactions results in many state changes
in the user interface. Because of this TapGlance relies on
animated transitions. An example state change serves to
illustrate this. Let us assume that the user is currently viewing a
list of people and that she wants to see where these people are
located on a map. The list of people could have been generated
in multiple ways: favorite contacts, recent phone calls, or
attendees at a meeting. To do this, the user opens a Central
Menu (via the “Action” key). From this menu they invoke the
“View Style” sub-menu and choose “Map.” The animation
between these states happens as follows: The people list shrinks
to sit at the location of the “People” facet, a location meant to
reinforce the association tile in Figure 5(1-4). The animation
continues with the Facet tiles zooming up so that the “Location”
tile fills the screen tile in Figure 5(5-6). As this zoom happens,
an actual map display fades in over on top of the map tile and
gains focus tile in Figure 5(6-7). Lastly, the individual people
items animate to their appropriate locations on the underlying
map tile in Figure 5(7-8).

6. DETAILED UI WALK-THROUGH
We now walk through a detailed interaction sequence in the
TapGlance UI, again using the previously stated scenario. The
key presses indicated assume 1) two “soft-keys”, 2) a
directional pad of four keys (d-pad), 3) a center “action” key, 4)
a dedicated “home” key, 5) a dedicated “back” key, and 6) of
course the twelve standard number keys (including “#” and
“*”). In this description, we will refer to cells on a 3x3 grid by
the corresponding number on the phone keypad. While this
walkthrough may seem overly exhaustive, this is the vital to the
design process. It is only by looping back through the initial
scenario that we can make sure our candidate design is still
valid.

Facet Name Finds: Example sub-facets

Commands Common commands across
integrated applications

Create, Edit, View

People Content authors, contacts, IM
buddies, and etc.

Friends, Co-workers

Date Creation, modification, and
viewed dates

Today, Last week

Type Files on device or in cloud
based stores

Document, Photo

Tag Hierarchical tag sets Travel, Shopping

Location Items with geo-coded metadata
and location based web
searches

Neighborhood, City

Property General meta-data across all
items

Size, Status, Rating

Favorites Previously “pinned” items Recent, Frequent

More… Head-room for facets that aren’t used as frequently

Table 1: Default filter facets and their general uses

 392

Immediately after parking her car at a client’s business, Susan
pulls the TapGlance enabled smartphone out of her pocket (or
handbag) and glances over the home screen. She wants to know
what her morning has in store so Susan presses-and-holds
down the 6 key which spatially corresponds to the calendar tile
(Figure 6 (2)). While she holds down the 6 key, the calendar tile
temporarily zooms to fill the screen. The temporary display
shows the location and attendees for her first appointment and a
synopsis of the subsequent appointment.

During this ephemeral interaction, Susan realizes that her
second appointment is in another building. To get a better idea
of how to get to the next meeting Susan, she taps on the 6 key
to enter the full calendar application (Figure 6 (4)). The content
portion of the display now shows her daily calendar. Susan
scrolls down to the second appointment by using the d-pad and
taps the left soft key which is currently labeled “Open.” The
display then zooms so that only the selected appointment fills
the screen (Figure 6 (5)).

Susan then opens the Central Menu by tapping the “action” key
(Figure 6 (6)). Susan taps the 8 key to call up the sub-menu for
“View” and then taps the 8 key again to select the “Map” style
option (Figure 6 (7)). Once Susan learns the Central Menu, she
can quickly double-tap the 8 key to change to a map view at any
time. The map animates in to show both Susan’s current
location and the location of the selected appointment (Figure 6
(8)).

This scenario highlights the user’s needs and how TapGlance
meets them. TapGlance supports ephemeral interactions by
tying spring-loaded navigation to the press-and-hold action.
TapGlance provides graphical cues to aid in context
reacquisition. TapGlance supplies a filtering interface that
works across every application and in every view. And

throughout the entire user experience, TapGlance uses a
common navigation mechanism: zooming into sub-regions of
the display.

7. OBSERVATIONS AND FUTURE
WORK
We have presented TapGlance, a unified smartphone user
interface where users can accomplish many mobile information
tasks, at various levels of detail, via a common interface. We
were surprised that, so far, the design of the navigation system
has proven to be the trickiest aspect of the TapGlance project.
There are a limited number of hardware keys and many of them,
either by convention or by OS constraint, are already reserved.
This means that we often had to overload many meanings onto
one key.

Our next step with the TapGlance project is to integrate an
existing faceted search application with an existing glanceable
home screen application. We will also extend our existing
faceted search application to handle the broader set of
structured data accessible from a smartphone. We also intend to
improve the navigation and searching of the facet hierarchy
itself. Incorporation of a “similarity engine” would allow users
to use synonyms for terms in our own hierarchy.

In a powerful sense TapGlance enables mash-ups of the
smartphone user experience. Existing smartphones present
disparate silos of information: contacts, calendar, and
communications. Our TapGlance design proposes a way in
which users can combine and visualize data from across
multiple silos. As an example, the user can easily find a set of
people associated with an appointment, display these people on
a map, and then filter that initial set based on another set of
criteria. A hierarchical faceted search interface can be used
throughout the TapGlance experience to filter any of the
structured information available from the smartphone.

Figure 5: An animation sequence for the transition from a list view to a map view: (1-3) The user chooses the “Map” view style
from the Central Menu, (3-4) the people list shrinks to nest inside the people tile of the underlying Facet view, (5-6) the Facet tiles

expand to fill the display, and in (7-8) each person animates from its list position to its map position.

 393

Figure 6: (1-2) press-and-hold the 3 key to temporarily zoom into the calendar tile, (3-4) tap the 3 key zoom into the calendar

application and use the D-pad to select the second appointment, (5) open an appointment by tapping the left soft-key, (6)
open the Central Menu by tapping the “Action” key, (7) from the View sub-menu, select the “Map” style, and (8) the view

changes to show a map the encompasses both the user’s current location and the location of the selected appointment.

Commonly used commands can be invoked from a spatially
arranged menu system. All of this is consistently accomplished
by tapping phone number keys to zoom into and amongst
spatially stable sub-regions of the display. Distinguishing press-
and-hold interactions allows a user to preview the result of
actions such as selection, navigation, and filter application. Our
organization of the most salient information into 9 high-level
feeds ensures that users need only glance at the TapGlance
home-screen to learn what items most need attention. We have
applied, in a novel way, segmented spatial zooming to both
faceted search and application navigation.

We have presented TapGlance, a unified smartphone user
interface where users can accomplish many mobile information
tasks, at various levels of detail, via a common interface.
TapGlance combines segmented zooming navigation and
ubiquitous faceted search. By leveraging spatial memory and
adapting to a user’s attention, TapGlance is usable by a broad
population.

8. ACKNOWLEDGMENTS
This design rests on very fruitful collaborations with Amy
Karlson, Ben Bederson, John SanGiovanni, Susan Dumais, Ed
Cutrell and the VIBE group. Bringing actual code to life on real
smartphones relied almost entirely on the contributions of Eric
Rudolph and Raman Sarin. Lastly, thanks family for letting me
focus on this paper while life continued around me, and
greeting me with open arms when I emerged.

9. REFERENCES
[1] Baudisch, P. and Rosenholtz, R. 2003. Halo: a technique

for visualizing off-screen objects. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (Ft. Lauderdale, Florida, USA, April 05 - 10,
2003). CHI '03. ACM Press, New York, NY, 481-488.

[2] Burigat, S., Chittaro, L., and Gabrielli, S. 2006.
Visualizing locations of off-screen objects on mobile
devices: a comparative evaluation of three approaches. In
Proceedings of the 8th Conference on Human-Computer
interaction with Mobile Devices and Services (Helsinki,
Finland, September 12 - 15, 2006). MobileHCI '06, vol.
159. ACM Press, New York, NY, 239-246.

[3] Cadiz, J. J., Venolia, G., Jancke, G., and Gupta, A. 2002.
Designing and deploying an information awareness
interface. In Proceedings of the 2002 ACM Conference on
Computer Supported Cooperative Work (New Orleans,
Louisiana, USA, November 16 - 20, 2002). CSCW '02.
ACM Press, New York, NY, 314-323.

[4] Cutrell, E., Robbins, D., Dumais, S., and Sarin, R. 2006.
Fast, flexible filtering with phlat. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (Montréal, Québec, Canada, April 22 - 27, 2006).
R. Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries, and
G. Olson, Eds. CHI '06. ACM Press, New York, NY, 261-
270.

[5] Ebay Express, Ebay Express web site, http://
http://www.ebayexpress.com.

 394

[6] GSM Association, Universal Access: How Mobile can
Bring Communications to All, GSM Association Universal
Access Report, London, UK, 2007.

[7] Hachet, M., Pouderoux, J., Tyndiuk, F., and Guitton, P.,
"Jump and refine" for rapid pointing on mobile phones. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (San Jose, California, USA, April
28 - May 03, 2007). CHI '07. ACM Press, New York, NY,
167-170.

[8] Hearst, M., Design Recommendations for Hierarchical
Faceted Search Interfaces, in the ACM SIGIR Workshop on
Faceted Search, August, 2006.

[9] Hertzum, M., and Hornbæk, K. (2005). TouchGrid:
Touchpad Pointing by Recursively Mapping Taps to
Smaller Display Regions. Behaviour & Information
Technology, 24(5), 337-346.

[10] Irani, P., Gutwin, C., and Yang, X. D. 2006. Improving
selection of off-screen targets with hopping. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Montréal, Québec, Canada, April
22 - 27, 2006). R. Grinter, T. Rodden, P. Aoki, E. Cutrell,
R. Jeffries, and G. Olson, Eds. CHI '06. ACM Press, New
York, NY, 299-308.

[11] Karlson, A. K., Bederson, B. B., and SanGiovanni, J.
2005. AppLens and launchTile: two designs for one-
handed thumb use on small devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (Portland, Oregon, USA, April 02 - 07, 2005).
CHI '05. ACM Press, New York, NY, 201-210.

[12] Karlson, A. K., Robertson, G. G., Robbins, D. C.,
Czerwinski, M. P., and Smith, G. R. 2006. FaThumb: a
facet-based interface for mobile search. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (Montréal, Québec, Canada, April 22 - 27, 2006).
R. Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries, and
G. Olson, Eds. CHI '06. ACM Press, New York, NY, 711-
720.

[13] Lee, S. E. and Lee, G. 2007. K-menu: a keyword-based
dynamic menu interface for small computers. In CHI '07
Extended Abstracts on Human Factors in Computing
Systems (San Jose, CA, USA, April 28 - May 03, 2007).
CHI '07. ACM Press, New York, NY, 2543-2548.

[14] Live Search Mobile smartphone application,
http://mobile.search.live.com/about/download/default.aspx
, © 2007, Microsoft Corp.

[15] Matthews, T., Blais, D., Shick, A., Mankoff, J., Forlizzi, J.,
Rohrbach, S., Klatzky, S., Evaluating glanceable visuals
for multitasking. EECS Department, University of
California, Berkeley, Technical Report No. EECS-2006-
173, 2006.

[16] Pousman, Z. and Stasko, J. 2006. A taxonomy of ambient
information systems: four patterns of design. In
Proceedings of the Working Conference on Advanced
Visual interfaces (Venezia, Italy, May 23 - 26, 2006). AVI
'06. ACM Press, New York, NY, 67-74.

[17] Robbins, D. C., Cutrell, E., Sarin, R., and Horvitz, E. 2004.
ZoneZoom: map navigation for smartphones with
recursive view segmentation. In Proceedings of the
Working Conference on Advanced Visual interfaces
(Gallipoli, Italy, May 25 - 28, 2004). AVI '04. ACM Press,
New York, NY, 231-234.

[18] Rosenbaum, R. U., and Schumann, H. Grid-based
interaction for effective image browsing on mobile
devices. Proc. SPIE Int. Soc. Opt. Eng. 5684, 2005, 170--
180.

[19] Stone, L., Linda Stone's Thoughts on Attention, Blog
entry.

[20] Van Dantzich, M., Robbins, D., Horvitz, E., and
Czerwinski, M., Scope: Providing Awareness of Multiple
Notifications at a Glance. Proceedings of AVI 2002. pp.
157--166.

[21] White, R. W., Drucker, S. M., Marchionini, G., Hearst, M.,
and schraefel, m. c. 2007. Exploratory search and HCI:
designing and evaluating interfaces to support exploratory
search interaction. In CHI '07 Extended Abstracts on
Human Factors in Computing Systems (San Jose, CA,
USA, April 28 - May 03, 2007). CHI '07. ACM Press,
New York, NY, 2877-2880.

[22] Wilson, M., Russell, A., schraefel, m. c., and Smith, D. A.
2006. mSpace mobile: a UI gestalt to support on-the-go
info-interaction. In CHI '06 Extended Abstracts on Human
Factors in Computing Systems (Montréal, Québec,
Canada, April 22 - 27, 2006). CHI '06. ACM Press, New
York, NY, 247-250.

[23] Zumobi, Zumobi web site, http://www.zumobi.com.

