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Abstract

Elasticity of cloud computing environments provides an
economic incentive for automatic resource allocation of
stateful systems running in the cloud. However, these
systems have to meet strict performance Service-Level
Objectives (SLOs) expressed using upper percentiles of
request latency, such as the 99th. Such latency measure-
ments are very noisy, which complicates the design of
the dynamic resource allocation. We design and evaluate
the SCADS Director, a control framework that reconfig-
ures the storage system on-the-fly in response to work-
load changes using a performance model of the system.
We demonstrate that such a framework can respond to
both unexpected data hotspots and diurnal workload pat-
terns without violating strict performance SLOs.

1 Introduction

Cloud computing has emerged as a preferred technology
for delivering large-scale internet applications, in part be-
cause its elasticity provides the ability to dynamically
provision and reclaim resources in response to fluctua-
tions in workload. As cloud environments and their ap-
plications expand in scale and complexity, it becomes in-
creasingly important to automate such dynamic resource
allocation.

Techniques for automatically scaling stateless systems
such as web servers or application servers are fairly well
understood. However, many applications that can most
benefit from elasticity, such as social networking, e-
commerce and auction sites, are both data-intensive and
interactive. Such applications present three major chal-
lenges for automatic scaling.

First, in most data-intensive services, a request for a
specific data item can only be satisfied by a copy of that
particular data item, so not every server can handle every
request, which complicates load balancing. Second, in-
teractivity means that a successful application must pro-
vide highly-responsive, low-latency service to the vast
majority of users: a typical Service Level Objective
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(SLO) might be expressed as “99% of all requests must
be answered within 100ms” [20, 17]. Third, the work-
loads presented by large-scale applications can be highly
volatile, with quickly-occurring unexpected spikes (due
to flash crowds) and diurnal fluctuations.

This “perfect storm” of statefulness, workload volatil-
ity and stringent performance requirements complicates
the development of automatic scaling mechanisms. To
scale a data-intensive system, data items must be moved
(i.e., partitioned or coalesced) or copied (i.e., replicated)
among the nodes of the system. Such data movement
takes time and can place additional load on an already
overloaded system. Provisioning of new nodes incurs
significant start-up delay, so decisions must be made
early to react effectively to workload changes. But most
importantly, the SLOs on upper percentile latency sig-
nificantly complicate the problem compared to require-
ments based on average latency, as statistical estimates
based on observations in the upper percentiles of the la-
tency distribution have higher variance than estimates
obtained from the center of the distribution. This vari-
ance is exacerbated by “environmental” application noise
uncorrelated to particular queries or data items [19]. The
resulting noisy latency signal can cause oscillations in
classical closed-loop control [7].

In this paper we describe the design of a control frame-
work for dynamically scaling distributed storage systems
that addresses these challenges. Our approach leverages
key features of modern distributed storage systems and
uses a performance model coupled with workload statis-
tics to predict whether each server is likely to continue to
meet its SLO. Based on this model, the framework moves
and replicates data as necessary. In particular, we make
the following contributions:

e We identify the challenges and opportunities that
arise in designing dynamic resource allocation
frameworks for stateful systems that maintain perfor-
mance SLOs on upper quantiles of request latency.



e We describe the design and implementation of
a modular control framework based on Model-
Predictive Control [30] that addresses these chal-
lenges.

e We evaluate the effectiveness of the control frame-
work through experiments using a storage system
running on Amazon’s Elastic Compute Cloud (EC2),
using workloads that exhibit both periodic and erratic
fluctuations comparable to those observed in produc-
tion systems.

The rest of the paper proceeds as follows. Section 2
describes background and challenges, and Section 3 dis-
cusses the design considerations that address those chal-
lenges. Related work is in Section 4. Section 5 details
the implementation of our control framework, and Sec-
tion 6 demonstrates experimental results of the control
framework using Amazon’s EC2. Further discussion is
in Section 7, and we remark on future work and conclude
in Sections 8 and 9.

2 Scaling Challenges
2.1 Background

We address dynamic resource allocation for distributed
storage systems for which the performance SLO is spec-
ified using an upper percentile of latency. The goal is to
design a control framework that tries to avoid SLO vio-
lations, while keeping the cost of leased resources low.

Our solution is targeted for storage systems designed
for horizontal scalability, such as key-value stores, that
back interactive web applications. Examples of such
systems are PNUTS [17], BigTable [14], Cassandra [3],
SCADS [6], and HBase [4]. Requests in these systems
have a simple communication pattern; each system at
minimum provides get and put functionality on keys,
and each request is single unit of work. We take advan-
tage of this simplicity in our approach.

This simplified model also lends itself to easy parti-
tioning of the key space across multiple servers, typi-
cally using a hash or range partitioning scheme. Each
server node stores a subset of the data and serves re-
quests for that subset. The control framework has two
knobs: it can partition or replicate data to prevent servers
from being overloaded when workload increases (e.g.
due to diurnal variation or hotspots), or it can coalesce
data and remove unnecessary replicas when the work-
load decreases. To make these configuration changes,
the underlying storage system must be easy to recon-
figure on-the-fly. Specifically, we require that it al-
lows data to be copied from one server to another or
deleted from a server, and that it provides methods like
AddServer and RemoveServer to alter the num-
ber of leased servers. We previously designed and built
SCADS [6] to both support this functionality and pro-
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Figure 1: Standard deviation for the mean and 99th
percentile of latency for increasing smoothing window
sizes. The left-most points represent the raw measure-
ments over 20-second periods. The average of the mean
and 99th percentile latencies are 11 ms and 82 ms, re-
spectively.

vide the simple communication pattern described above.
As we further discuss in Section 7, running our own
key-value store in the cloud has advantages over using
a cloud-provided data service such as Amazon’s S3.

SCADS was designed to keep data memory-resident
so that applications aren’t required to use ad-hoc caching
techniques to reach performance goals. This design pro-
vides similar performance benefits as Memcached; how-
ever, SCADS also supports real-time replication and load
balancing. An example target application would be the
highly interactive social networking site Facebook.com;
most of their data remains memory-resident in order to
hit performance targets [31].

In this section, we identify two challenges in scaling a
storage system while maintaining a high-percentile SLO:
noise and data movement. Benchmarks are presented to
show the effects of each of these challenges.

2.2 Controlling a Noisy Signal

Figure 1 shows request latencies achieved by several key-
value storage servers under a steady workload.! As ex-
pected, the standard deviation of both the mean latency
and 99th percentile latency decreases as we increase the
smoothing window, or time period over which the mea-
surements are aggregated. However, as can be seen in
the figure, the 99th percentile of latency would have
be to smoothed over a four-minute window to achieve
the same standard deviation as that achieved by the
mean smoothed over a 20-second window (an 11x longer
smoothing window). Similar effects are illustrated in ex-
periments with Dynamo [20].

This observation has serious consequences if we are

IThe workload consists of get and put requests against the
SCADS [6] storage system, running on ten Amazon Elastic Compute
Cloud (EC2) “Small” instances. Details of our experimental setup are
in Section 6.1.

2See Figure 4 in [20]
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Figure 2: Impact on read performance during data copy-
ing on the write target. The x-axis represents the copy
rate (in log scale) and the y-axis represents the fraction
of requests slower than 100 ms (in log scale).

contemplating using classical closed-loop control. A
long smoothing window means a longer delay before
the control loop can make its next decision, resulting in
more SLO violations. Furthermore, too much smoothing
could mask a real spike in workload, and the controller
would not respond at all. A short smoothing window
mitigates both problems but can lead to oscillatory be-
havior [7]. Due to the high variance associated with a
shorter smoothing window, the controller cannot tell if a
server with high latency is actually overloaded or if it is
simply exhibiting normally-occurring higher latency. A
classical closed-loop controller might add servers in one
iteration just to remove them in the next or may move
data back and forth unnecessarily in response to such
“false alarms.” We show in Section 3 that a more ef-
fective approach is a model-based control in which the
controller uses a different input signal than the quantity
it is trying to control.

2.3 Data Movement Hurts Performance

Scaling a storage system requires data movement. Be-
cause each server is responsible for its own state, i.e.,
the data it stores, it is not generally true that any server
can service any request. Simply adding and removing
servers is not sufficient to respond to changes in work-
load, we additionally need to copy and move data be-
tween servers. However, data movement impacts perfor-
mance and this impact is especially noticeable in the tail
of the latency distribution. Impacting the tail of the distri-
bution is of particular interest since we target upper per-
centile SLOs. As demonstrated in Figure 2, copying data
increases the fraction of slow requests. In Dynamo [20],
the data copy operations are run in low priority mode to
minimize their impact on performance of interactive op-
erations. Since one of our operational goals is to respond
to spikes while minimizing SLO violations, our approach
instead identifies and copies the smallest amount of data
needed to relieve SLO pressure.
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3 Design Techniques and Approach

Having outlined our goals and identified key challenges
in Section 2, we now describe the design techniques in
our solution. In particular, we use a model-predictive
control, fine-grained workload statistics, and replication
for performance predictability.

3.1 Model-Predictive Control

Model-predictive control (MPC) can yield improvements
over classical closed-loop control systems in the pres-
ence of noisy signals because the controller takes as in-
put a different signal than the one it is trying to control.
In MPC, the controller uses a model of the system and
its current state to compute the (near) optimal sequence
of actions that maintain desired constraints. To simplify
the computation of these actions, MPC considers a short
receding time horizon. The controller executes only the
first action in the sequence and then uses the new cur-
rent state to compute a new sequence of actions. In each
iteration, the controller reevaluates the system state and
computes a new target state to adjust to changing condi-
tions.

Realizing the improvements of MPC requires con-
structing an accurate model of the controlled system,
which can be difficult in general. However, a distributed
system with simple requests (see Section 2.1) is simpler
to control: by avoiding per-server SLO violations, the
controller avoids global violations.

We use a model of the system that predicts SLO viola-
tions based on the workload from individual servers. An
overloaded server is in danger of a violation and needs to
have data moved away. Similarly, the control framework
uses the model to estimate how much spare capacity is
left on an underloaded server, helpful for deciding which
data should be moved there. Details of our model are in
Section 5.4.

3.2 Reduce Data Movement

Figure 2 demonstrates that data movement negatively im-
pacts performance. To reduce the amount of data copied
between servers, we organize data as small units (bins),
monitor workload to these bins, and move individual bins
of data. This approach is commonly used to ease load-
balancing [14, 17].

Monitoring workload statistics at a granularity finer
than per-server is essential for the control framework to
decide which data should be moved or copied. With-
out this information, it would be impossible to deter-
mine the minimal amount of data that could be moved
from an overloaded server to bring it back to an SLO-
compliant state. The performance model can predict how
much “extra room” underloaded servers have, allowing
the control framework to choose where to move the data.
A “best-fit” policy that keeps the servers as fully utilized
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Figure 3: 99th percentile of latency over time measured
during two experiments with steady workload. We kept
the workload volume and number of servers the same,
but changed the replication level from one data copy
(top) to two (bottom). Horizontal lines representing the
latencies 50 ms and 100 ms are provided for reference.

as possible is also important for scaling down leased re-
sources, as unused servers can be released. Monitoring
workload on small ranges of data give the control frame-
work fine-grained information to move as little data as
necessary to alleviate performance issues and to safely
coalesce servers so they can be released.

3.3 Replication for Predictability

Distributed systems, particularly those operating in a
cloud environment, typically experience environmental
noise uncorrelated to a particular query or data [19]. In
our benchmarks, we saw fluctuations in 99th percentile
of latency over time and between different servers.

However, distributed systems also present the oppor-
tunity to use replication as a means of improving per-
formance. In Dynamo, setting the read/write quorum
parameters to be less than the total number of replicas
achieves better request latency [20]. Another example
is in the Google File System [21], which writes logs to
different servers.

We handle performance perturbations caused by envi-
ronmental noise by exploiting data replication; replica-
tion in the cloud environment is useful for performance
predictability. Each request is sent to multiple replicas of
the requested item and the first response is sent back to
the client; this is the technique described in [20].

Figure 3 compares using one replica versus two on the
same number of total servers (ten); shown is the 99th
percentile of latency over time measured with steady
workload. Note that the latency using replication is
both smaller and more stable, even though each of these
servers is doing more work than a server in the single
replica scenario. It may seem that using single replicas
with higher utilization would yield higher overall good-
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Figure 4: CDFs of 99th percentile latency measured ev-
ery 20 seconds in three experiments. Each experiment
yields the same goodput, however using more replicas
results in lower and less variable latency.

put (i.e., the amount of useful work accomplished per
unit time). However, the extra work done by increasing
the utilization will be in vain if those requests violate the
SLO. In other words, the stringent SLO lowers the useful
utilization of a single server.

Using more replicas yields lower variance in the 99th
percentile. Figure 4 shows three Cumulative Distribu-
tion Functions (CDFs) of the 99th percentile of latency
during three experiments using up to three replicas; each
experiment yields the same goodput (workload to fully
load five single replicas). Note the shorter tails on the
distributions as the replication factor increases.

An advantage of using replication for performance is
that it helps mask the effects of data movement during
dynamic scaling. Thus replication is beneficial for alle-
viating both naturally-occurring and introduced noise.

Note that this data replication technique improves the
99th percentile latency from the perspective of the client,
but does not reduce variance of the upper percentiles of
latency of requests from an individual server. Therefore,
the need for model-based control due to the difficulty in
controlling a noisy signal remains present.

4 Related Work

Previous projects have addressed various subsets of our
problem space, but to our knowledge none tackle the en-
tire problem of the online control of the upper percentiles
of latency in stateful, distributed systems.

Some work [2, 33] aims to optimize the static provi-
sioning of a storage system before deploying to produc-
tion. They search the configuration space for a cluster
configuration that optimizes a specified utility function,
but this optimization is done offline and performance is
not considered during the re-configuration.

Other work tackles online configuration changes in
storage systems, but only considers mean request latency
rather than the upper percentile SLOs we consider. In



[16, 32], the authors propose a database replication pol-
icy for automatic scale up and down. In [32], they use
a reactive, feed-back controller which monitors request
latency and adds additional full replicas of the database.
An enhancement in [16] uses a performance model to
add replicas via a proactive controller. These papers ad-
ditionally differ from our work in their assumption that
the full dataset fits on a single server, thus they only con-
sider adding a full replica when scaling up (instead of
also partitioning).

In [25], the controller adds and removes nodes from a
distributed file system, rebalancing data as servers come
and go. However this work focuses more on controlling
the rebalance speed rather than choosing which data to
move to which servers; the work additionally does not
focus on upper-percentile SLOs.

Some systems target large-scale storage servers with
terabytes of data on each machine and thus cannot han-
dle a sustained workload spike or data hotspot because
the data layout cannot change on-the-fly. For example:
in Everest [28], the authors propose a write off-loading
technique that allows them to absorb short burst of writes
to a large-scale storage system. Performance improve-
ment is measured as 99th percentile of latency during the
30 minute experiments, however they do not attempt to
maintain a stringent SLO over short time intervals. Sierra
[35] and Rabbit [1] are power-proportional systems that
alter power consumption based on workload. The ap-
proach that both papers take is to first provision the sys-
tem for the peak load with multiple replicas of all data
and then turn off servers when the workload decreases.
Both papers evaluate the performance of the system un-
der the power-proportional controller (Sierra uses the
99th percentile of latency), but these systems could not
respond to workload spikes taller than the provisioned
capacity or to unexpected hotspots that affect individual
servers. SMART [38] is evaluated on a large file system
that prevents it from quickly responding to unexpected
spikes and does not consider upper percentiles of latency.

Most DHTs [8] are designed to withstand churn in
the server population without affecting the availability
and durability of the data. However, quickly adapting
to changes in user workload and maintaining a stringent
performance SLO during such changes are not design
goals. Amazon’s Dynamo [20] is an example of a DHT
that provides an SLO on the 99.9th percentile of latency,
but the authors mention that during a busy holiday sea-
son it took almost a day to copy data to a new server due
to running the copy action slow enough to avoid perfor-
mance issues; this low-priority copying would be slow to
respond to unexpected spikes.

Much has been published on dynamic resource allo-
cation for stateless systems such as Web servers or ap-
plication servers [15, 36, 26, 23, 22, 34], even consider-
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ing stringent performance SLOs. However, most of that
work does not directly apply to stateful storage systems:
the control polices for stateless systems need only vary
the number of active servers because any server can han-
dle any request. These policies do not have to consider
the complexities of data movement.

Aqueduct [27] is a migration engine that moves data in
a storage system while guaranteeing a performance SLO
on mean request latency. It does not directly respond to
workload, but could be used instead of the action sched-
uler in our control framework (see Section 5.6).

5 The Control Framework

This section describes the design and implementation of
the control framework, incorporating the strategies out-
lined in Section 3. The framework uses per-server work-
load and the performance model to determine when a
server is overloaded and thus when to copy data. It
chooses what to copy based on workload statistics on
small units of data (bins). Finer statistics together with
the models inform where to copy data.

5.1 The control loop

The control framework consists of a controller, workload
forecaster, and action scheduler which, together with the
storage system and performance models, form a control
loop (see Figure 5). These components are described in
more detail in subsequent sections.

We focus on the controller, which is responsible for
altering the configuration of the cluster by prescribing
actions that add/remove servers and move/copy data be-
tween servers. Its decisions are based on a view of the
current state given by the workload forecaster and the
current data layout, in consultation with models that pre-
dict how servers will perform under particular loads. Af-
ter the controller compiles a list of actions to run on the
cluster, the action scheduler executes them.

Workload statistics are maintained for small ranges of

performance
models
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histogram controller actions
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workload current action
smoothing + data scheduler
forecasting layout
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workload actions

| |
1
1

e s e s s s s s SR = | === A
| storage servers hot standbys :
Figure 5: The control framework modules—workload
forecasting, controller, performance model, and action
execution—form a control loop that interacts with the
storage system.



data called bins; each bin is about 10-100 MB of data.
These bins also represent the unit of data movement. We
assume a bin cannot be further partitioned and will need
to be replicated if its workload exceeds the capacity of
a single server. The total number of bins is a parame-
ter of the control framework. Setting the value too low
or too high has its drawbacks. With too few data bins,
the controller does not have enough flexibility in terms
of moving data from overloaded servers and might have
to copy more data than necessary. Having too many data
bins increases the load on the monitoring system and run-
ning the controller might take longer since it would have
to consider more options. In practice, having on average
five to ten bins per server is a good compromise.

5.2 A manipulable storage system

The SCADS [6] storage system provides an interface for
dynamic scaling: it is easy to control which servers have
which data, and data can be manipulated as small bins.
SCADS is an eventually consistent key-value store with
range partitioning. Each node can serve multiple small
ranges; e.g., keys A-C, G-1. We use the get and put
operators; read requests are satisfied from one or more
servers, and writes are asynchronously propagated and
flushed to all replicas.

SCADS provides an interface for copying and mov-
ing data between pairs of servers; replication is ac-
complished by copying the target data range to another
server, and partitioning is the result of moving data from
one server to another. The SCADS design makes low la-
tency a top priority, thus all data is kept in memory. This
characteristic has little impact on the control framework,
besides simplifying the performance modeling described
in Section 5.4.

5.3 Controller

Given the workload statistics in each bin, the minimal
number of servers would be achieved by solving a bin-
packing problem—packing the data bins into servers—
an NP-complete problem. While approximate algorithms
exist [37], they typically do not consider the current loca-
tions of the bins and thus could completely reshuffle the
data on the servers, a costly operation. Instead, our con-
troller uses a greedy heuristic that moves data from the
overloaded servers and coalesces underloaded servers.
While there are many possible controller implementa-
tions, we describe our design that leverages the solutions
outlined above.

The controller executes periodically to decide how to
alter the configuration of the cluster; the frequency is an
implementation parameter. In each iteration, the con-
troller prescribes actions for overloaded and underloaded
servers as well as changing the number of servers. By the
end of an iteration, the controller has compiled a list of
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Algorithm 1 Controller iteration

1: estimate workload on each server
2 identify servers that are overloaded or underloaded

4+ for all overloaded server S do
5: while S is overloaded do

6 determine hottest bin H on S

7 if workload on H is too high for a single server then
8: move and replicate H to empty servers

o else

10: move H to the most-loaded underloaded server

that can accept H without SLO violation
11:
12 for all underloaded server S do
13 if S contains only a single bin replica then

14: remove the bin if no longer necessary

15 else

16: for all bin B on S do

17: move B to most-loaded underloaded server that
can accept B

18: if cannot move B then

19: leave it on S

20:
21 add/remove servers as necessary, as per previous actions

actions to be run on the cluster, which are then executed
by the action scheduler (see Section 5.6).

Pseudocode for the controller is shown in Algorithm 1.
Using a performance model (described in the next sub-
section), the controller predicts which servers are under-
loaded or overloaded. Lines 4-10 describe the steps for
fixing an overloaded server: moving bins that have too
much workload for one server to dedicated servers, or
moving bins to the most loaded servers that have enough
capacity, a “best-fit” approach. Next, in lines 12-19, in an
attempt to deallocate servers for scaling down, the con-
troller moves bins from the least loaded loaded servers
to other underloaded servers. Finally, servers are added
and removed from the cluster. To simplify its reason-
ing about the current state of the system, the controller
waits until previously scheduled copy actions complete.
Long-running actions could block the controller from ex-
ecuting, preventing it from responding to sudden changes
in workload. An action that needs to move many bins
from one server to another. To avoid scheduling such ac-
tions, the controller uses a copy-duration model to esti-
mate action duration and splits potentially long-running
actions into shorter ones. For example, an action that
needs to move many bins from one server to another can
be split into several actions that move fewer bins between
the two servers. If some of the actions do not complete
within a time threshold, the controller can cancel them
to reassess the current state and continue to respond to
workload changes.

The controller can also maintain a user-specified num-



ber of standby servers, a form of extra capacity in addi-
tion to overprovisioning in the workload smoothing com-
ponent (see Section 5.5). These standbys help the con-
troller avoid waiting for new servers to boot up during a
sudden workload spike, as they are already running the
storage system software but not serving any data. Stand-
bys are particularly useful for handling hotspots when
replicas of a bin require an empty server.

The presence of a centralized component such as the
controller does not necessarily mean the system isn’t
scalable[19]. Nevertheless, there is likely a limit to the
number of decisions the controller can make per unit
time for a given number of servers and/or bins. In our
results, the controller inspects forty servers in a few
seconds; experimenting with a larger cluster is future
work. If a decision-making limit is approached, the con-
troller may need to make decisions less frequently; this
could impact the attainable SLO if the workload changes
rapidly. However, with more servers, the controller has
more flexibility in placing data, meaning it doesn’t have
to consider many servers when relocating a particular
bin.

5.4 Benchmarking and modeling

The controller uses models of system performance to de-
termine which servers are overloaded/underloaded and
to guide its decisions as to which data to move where,
as well as how many servers to add or remove. Re-
call that Model-Predictive Control requires an accurate
model of the system. Instead of responding to changes
in 99th percentile of request latency, our controller re-
sponds directly to changes in system workload. There-
fore, the controller needs a model that accurately predicts
whether a server can handle a particular workload with-
out violating the performance SLO. Our controller also
uses a model of duration of the data copy operations to
create short copy actions.

One of the standard approaches to performance mod-
eling is using analytical models based on network of
queues. These models require detailed understanding
of the system and often make strong assumptions about
the request arrival and service time distributions. Conse-
quently, analytical models are difficult to construct and
their predictions might not match the performance of the
system in production environments.

Instead, we use statistical machine learning (SML)
models. As noted in the solutions above, a model-based
approach allows us to use a signal other than latency in
the control loop. Consequently, the controller needs an
accurate model of the system on which to base its de-
cisions. Building a model typically involves gathering
training data by introducing a range of inputs into the
system and observing the outcomes. In a large-scale sys-
tem it becomes more difficult to construct the appropri-
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Figure 6: The training data and steady-state model for
two replicas. The x- and y-axes represent the request
rates of get and put operations, and the small dots and
large squares represent workloads that the server can and
cannot handle, respectively. The solid line crossing the
four others is the boundary of the performance model.
SCADS can handle workload rates to the left of this line.

ate set of inputs [7]. Furthermore, it is more likely in a
larger system to only be able to observe a subset of the
component interactions that actually take place. Not hav-
ing knowledge of all interactions (unmodeled dynamics)
leads to a less accurate model.

Fortunately, we can leverage the simple communica-
tion pattern of SCADS requests to simplify the model-
ing process. Other key-value stores with similar sim-
ple requests would also be amenable to modeling. Be-
low we describe the development and use of two mod-
els, the steady-state model and the copy-duration model.
All benchmarks were run on tens of SCADS servers and
workload-generating clients on Amazon’s Elastic Com-
pute Cloud (EC2) on m1.small instances.

Simple changes in workload, such as a shift in pop-
ularity of individual objects [11, 5, 9], will not affect
the accuracy of these offline models as all SCADS re-
quests are served from memory. The performance of
these offline models (and thus the system) may degrade
over time if new, unmodeled features are added to the
application. For example, an individual request may be-
come more expensive if it returns more data or if new
types of requests are supported. The model’s degrada-
tion speed would be application-specific, however these
feature-change events are known to the developer and the
offline models can be periodically rebuilt via benchmark-
ing and fine-tuned in production [12].

Steady-state model: The steady-state performance
model is used to predict whether a server can handle
a particular workload without violating a given latency
threshold. The controller uses this model to detect which
servers are overloaded and to decide where data should
be moved. To build this model, we benchmark SCADS
under steady workload for a variety of workload mixes:
read/write ratios 50/50, 80/20, 90/10 and 95/5 (these



mixes are also used in [18]). We then create a linear clas-
sification model using logistic regression, based on train-
ing data from the benchmarks. The model has two co-
variates (features): the workload rate of get and put re-
quests. For each workload mix, we determine the work-
load volume at which the latency threshold specified by
the SLO would be surpassed. This workload volume sep-
arates two classes: SLO violation or no violation. Thus,
for a particular workload, the model can predict whether
a server with that workload would violate the SLO. Fig-
ure 6 illustrates the steady-state linear model and the
training data used to generate it.

Copy-duration model: To allow the controller to es-
timate how long it will take to copy data between two
servers, we build a model that predicts the rate of data
transfer during a copy action. While the copy opera-
tion in SCADS has a parameter for specifying the num-
ber of bytes/second at which to transfer data, the actual
rate is often lower because of activity on both servers in-
volved. Our model thus predicts the copy-rate factor—
the ratio of observed to specified copy-rate. A factor of
0.8 means that the actual copy operation is only 80%
the specified rate. We use this estimate of the actual rate
to compute the duration of the copy action.

To build the model, we benchmark duration of copy
actions between pairs of servers operating at various
workload rates. We then model the copy rate factor using
linear regression; covariates are linear and quadratic in
the specified rate and get and put request rates.

While our controller does not directly consider the
effects of data copy on system performance during
real-time decisions, we considered these effects when
designing the controller and the action execution
modules. Recall that Figure 2 summarizes the results
of benchmarking SCADS during copy operations;
performance is affected mostly on the target servers for
the copy action. Also note that in both performance
models network utilization and activity of other VMs
are ignored. These effects are part of environmental
noise described earlier, and are compensated for with
replication.

5.5 Workload Monitoring and Smoothing

In addition to performance models, the controller needs
to know how workload is distributed amongst the data.
Workload is represented by a histogram that contains re-
quest rates for individual request types (get and put)
for each bin. To minimize the impact of monitoring on
performance, we sample 2% of get requests for use in
our statistics (put requests are sampled at 40% because
there are fewer put requests in our workload mixes). We
found that using higher sampling rates did not greatly im-
prove accuracy.
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Every twenty seconds, a summary of the workload
volume is generated for each bin. This creates the raw
workload histogram: for each bin we have counts of the
number of get and put requests to keys in that bin. To
prevent the controller from reacting to small variance in
workload, the raw workload is smoothed via hysteresis.
As scaling up is more important than scaling down with
respect to performance, we want to respond quickly to
workload spikes while coalescing servers more slowly.
We apply smoothing with two parameters: o, and
agown- 1f the workload in a bin increases relative to
the last time step’s smoothed workload, we smooth that
bin’s workload with «,,,; otherwise we use the agown
smoothing parameter. For example, in the case of in-
creasing workload at time ¢ we have: smoothed; =
smoothed;_1 + aup * (rawy — smoothed;_1).

The smoothed workload can also be amplified using
an overprovisioning factor. Overprovisioning causes the
controller to think the workload on a server is higher than
it actually is. For instance, an overprovisioning factor
of 0.1 would make an actual workload of w appear to
the controller as 1.1w. Thus overprovisioning creates
a “safety buffer” that buys the controller more time to
move data. For more discussion of tradeoffs, see Sec-
tion 7.

The controller bases its decisions on an estimate of
the workload at each server, determined by sampling the
requests. Calculating per-bin workload in a centralized
controller may prove unscalable as the number of re-
quests to sample grows large. While we used a single
server to process the requests and compute the per-bin
workloads, the Chukwa monitoring system [29] could
be distributed over a cluster of servers. The monitoring
system could then prioritize the delivery of the monitor-
ing data to the controller, sending updates only for bins
with significant changes in workload. Another approach
would have each server maintain workload information
over a specified time interval. The controller could then
query for the workload information when it begins its
decision-making process.

5.6 Action Scheduler

On most storage systems, copying data between servers
has a negative impact on performance of the interactive
workload. In SCADS, the copy operation significantly
affects the target server (see Figure 2), while the source
server is mostly unaffected. Therefore, executing all
data copy actions concurrently might overwhelm the sys-
tem and reduce performance. Executing the actions se-
quentially would minimize the performance impact, but
would be very slow.

In addition to improving steady-state performance of
storage systems, replication helps smooth performance
during data copy. We specify a constraint that each bin



have at least one replica on a server that is not affected
by data copy. The action scheduler iterates through its
list of actions and schedules concurrently all actions that
do not violate the constraint. When an action completes,
the scheduler repeats this process with the remaining un-
scheduled actions.

5.7 Controller Parameters

A summary of the parameters used by the controller ap-
pear in Table 5.7, along with the values used in our ex-
periments (in Section 6). The hysteresis parameters o,
and ooy affect how abruptly the controller will scale
up and down. Reasonable values for these parameters
can be chosen via simulation [13].

Controller Parameter | Value
execution period 20 seconds
Qups Cdown 0.9,0.1
number standbys 2
overprovisioning 0.10r0.3
copyrate 4 MB/s

6 Experimental Results

We evaluate our control framework implementation by
stress testing it with two workload profiles that represent
the main scenarios where our proposed control frame-
work could be applied. The first workload contains a
spike on a single data item; as shown in [11], web ap-
plications typically experience hotspots on a small frac-
tion of the data. Unexpected workload spikes with data
hotspots are difficult to handle in stateful systems be-
cause the location of the hotspot is unknown before the
spike. Therefore, statically overprovisioning for such
spikes would be expensive. Managing and monitor-
ing small data ranges is especially important for dealing
with these hotspots, particularly when quick replication
is needed. The second workload exhibits a diurnal work-
load pattern: workload volume increases during the day
and decreases at night; this profile demonstrates the ef-
fectiveness of both scale-up and scale-down.

For the hotspot workload, we observe how well the
control framework is able to react to a sudden increase in
workload volume, as well as how quickly performance
stabilizes. We also look at the performance impact dur-
ing this transition period. Note, however, that any sys-
tem will likely have some visible impact for sufficiently
strict characteristics of the spike (i.e., how rapidly it ar-
rives and how much extra workload there is). The di-
urnal workload additionally exercises the control frame-
work’s ability to both scale up and down. Finally, we dis-
cuss some of the tradeoffs of SLO parameters and cost of
leased resources, as well as potential savings to be gained
by scaling up and down.
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6.1 Experiment setup

Experiments were run using Amazon’s Elastic Compute
Cloud (EC2). We ran SCADS servers on m1.small in-
stances using 800 MB of the available RAM as each
storage server’s in-memory cache. We gained an un-
derstanding of the variance present in this environment
by benchmarking SCADS’ performance both in the ab-
sence and presence of data movement, see Section 5.4.
As described in Section 2, latency variance occurs in
the upper quantiles even in the absence of data move-
ment. Therefore we maintain at least two copies of each
data item, using the replication strategy described earlier:
each get request is sent to both replicas and we count
the faster response as its latency. We do not consider the
latency of put requests, as the work described in this
paper is targeted towards OLTP-type applications similar
to those described by [18], in which read requests domi-
nate writes. Furthermore, evaluating latency for write re-
quests isn’t applicable in an eventually consistent system,
such as SCADS. More appropriate would be an SLO on
data staleness, a subject for future work.

Workload is generated by a separate set of machines,
also m1.small instances on EC2. These experiments use
sixty workload-generating instances and twenty server
instances. The control framework runs on one m1.xlarge
instance. The controller uses a 100 ms SLO threshold on
latency for get requests, and in the description of each
experiment we discuss the other two parameters of the
SLO: the percentile at which to evaluate the threshold,
and the interval over which to assess violations. Table 1
summarizes the parameter values used in the two experi-
ments. To avoid running an experiment for an entire day,
we execute it in a shorter time. We control the length of
the boot-up time in the experiment by leasing all the vir-
tual machines needed before the experiment begins and
simply adding a delay before a “new” server can be used.
This technique allows us to replay the Ebates.com work-

Parameter Hotspot Diurnal
server boot-up time 3 minutes 15 seconds
server charge interval | 60 minutes | 5 minutes
server capacity 800 MB 66.7 MB
size of 1 key-value 256 B 256 B
total number of keys 4.8 million | 400,000
minimum # of replicas | 2 2

total data size 2.2GB 196 MB
read/write ratio 95/5 95/5

Table 1: Various experiment parameters for the hotspot
and diurnal workload experiments. We replay the diurnal
workload with a speed-up factor of 12 and thus also re-
duce the server boot-up and charge intervals and the data
size by a factor of 12.
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Figure 7: Workload over time in the Hotspot experiment.
Top row: aggregate request rate during the spike dou-
bled between 5:12 and 5:17. Bottom row: request rate
for each of the 200 data bins; the rate for the hot bin in-
creased to approximately 30,000 reqs/sec.

load trace [10] 12x faster: replaying twenty-four hours
of the trace in two hours. To retain the proportionality
of the other time-related parameters, we scale down by
12x the data size, server cost interval, boot up time, and
server release time. The data size is scaled down because
we can’t speed up the copy rate higher than the network
bandwidth on m1.small instances allows. Additionally,
the total data size is limited by the maximum storage on
the number of servers when the cluster is scaled down.
As SCADS keeps its data in memory, server capacity is
limited by available memory on the m1.small instance.

6.2 Hotspot

We create a synthetic spike workload based on the
statistics of a spike experienced by CNN.com after the
September 11 attacks [24]. The workload increased by
an order of magnitude in 15 minutes, which corresponds
to about 100% increase in 5 minutes. We simulate this
workload by using a flat, one-hour long period of the
Ebates.com trace [10] to which we add a workload spike
with a single hotspot. During a five minute period, the
aggregate workload volume increases linearly by a fac-
tor of two, but all the additional workload is directed at a
single key in the system. Figure 7 depicts the aggregate
workload and the per-bin workload over time. Notice
that when the spike occurs, the workload in the hot bin
greatly exceeds that in all other bins.

Our controller dynamically creates eight additional
replicas of this hot data bin to handle the spike. Figure 8
shows the performance (99th percentile latency) and the
number of servers over time. The workload spike im-
pacts performance for a brief period. However, the con-
troller quickly begins replicating the hot data bin. It first
uses the two standbys, then requests additional servers.
Performance stabilizes in less than three minutes.

It is relatively easy for our control framework to re-
act to spikes like this because only a very small fraction
of the data has to be replicated. We can thus handle a
spike with data hotspots with resources proportional to
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Figure 8: Performance and resources in the Hotspot ex-
periment. Top row: 99 percentile of latency along with
the 100 ms threshold (dashed line). Bottom row: num-
ber of servers over time. The controller keeps up with
the spike for the first few minutes, then latency increases
above the threshold, but the system quickly recovers.

Interval  Max percentile
5 minutes 98

1 minute 95
20 seconds 80

Table 2: The maximum percentile without SLO viola-
tions for each interval in the Hotspot experiment. No-
tice that we can support higher latency percentiles for
longer time intervals.

the magnitude of the spike, not proportional to the size
of the full dataset or the number of servers.

The performance impact when the spike first arrives
is brief, but may result in an SLO violation, depending
how the SLO is specified. The SLO is parameterized by
the latency threshold, latency percentile, and duration of
the SLO interval. Fixing the latency threshold at 100 ms,
in Table 6.2 we show how varying the interval affects the
maximum percentile under which no violations occurred.

In general, SLOs specified over a longer time interval
are easier to maintain despite drastic workload changes;
this experiment has one five-minute violation. Similarly,
an SLO with a lower percentile will have fewer violations
than a higher one. In this experiment, there are zero vi-
olations over a twenty-second window when looking at
the 80" percentile of latency, but extending the interval
to five minutes can yield the 98th percentile.

The cost tradeoff between SLO violations and leased
resources depends in part on the cost of a violation.
Whether a violation costs more than leasing enough
servers to overprovision the system to satisfy a hotspot
on any data item will be application-specific. Dynamic
scaling, however, has the advantage of not having to es-
timate the magnitude of unexpected spikes.
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Figure 9: Top: Diurnal workload pattern. Middle: num-
ber of servers assuming the ideal server allocation and
two fixed allocations during the diurnal workload exper-
iment. Bottom: ideal server allocation and two elastic
allocations using our control framework.

6.3 Ebates.com diurnal workload trace

The diurnal workload profile is derived from a trace from
Ebates.com [10]; we use the trace’s aggregate workload
pattern; data accesses follow a constant zipfian distribu-
tion. This profile shows the control framework’s effec-
tiveness in scaling both up and down as the workload
volume on all data items fluctuates. We replay twenty-
four hours of the trace in two hours, a 12x speedup.

We experiment using two overprovisioning parameters
(see Section 5.5 on workload smoothing). With 0.3 over-
provisioning, the smoothed workload is multiplied by a
factor of 1.3. With more headroom, the system can better
absorb small spikes in the workload. Using 0.1 overpro-
visioning has less headroom, thus higher savings at the
cost of worse performance.

We compare the results of our experiments with the
ideal resource allocation and two fixed allocation calcu-
lations. In the ideal allocation, we assume that we know
the workload at each time step throughout the experiment
and compute the minimum number of servers we would
need to support this workload for each 5-minute interval
(the scaled-down server cost interval). The ideal alloca-
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tion assumes that moving data is instantaneous and has
no effect on performance, and provides the lower bound
on the number of compute resources required to handle
this workload without SLO violations.

The fixed-100% and fixed-70% allocations use a con-
stant number of servers throughout the experiment.
Fixed-100% assumes the workload’s peak value is
known a priori, and computes the number of servers
based on that value and the maximum throughput of
each server (7000 requests per second, see Section 5.4).
The number of servers used in the fixed-100% alloca-
tion equals the maximum number of servers used by the
ideal allocation. Fixed-70% is calculated similarly to the
fixed-100%, but restricts the servers’ utilization to 70%
of their potential throughput (i.e., 7,000 % 0.7 = 4,900
requests per second). Fixed-100% is the ideal fixed al-
location, but in practice datacenter operators often add
more headroom to absorb unexpected spikes.

Figure 9 shows the workload profile and the number
of server units used by the different allocation policies:
ideal, fixed-100%, fixed-70%, and our elastic policy with
overprovisioning of 0.3 and 0.1. A server unit corre-
sponds to one server being used for one charge interval,
thus fewer server units used translates to monetary cost
savings. The policy with 0.1 overprovisioning achieves
savings of 16% and 41% compared to the fixed-100%
and fixed-70% allocations, respectively.

The ideal resource allocation uses 175 servers units,
while using overprovisioning of 0.1 uses 241 server
units. However, recall that our controller maintains
two empty standby servers to quickly respond to data
hotspots that require replication. The actual number of
server units used for serving data is thus 191 which is
within 10% of the ideal allocation®.

Performance and SLO violations are summarized in
Figure 10. Note that it is more difficult to maintain SLOs
with shorter time intervals and higher percentiles.

7 Discussion

The experiments demonstrate the control framework’s
effectiveness in scaling both up and down for typical
workload profiles that exhibit fluctuating workload pat-
terns. Having the same mechanism work well in sce-
narios with rapidly appearing hotspots as well as more
gradual variations is advantageous because application
developers won’t need to decide a priori what type of
growth to prepare for: the same control framework can
dynamically scale as needed in either case. For operators
who still prefer to maintain a fixed allocation for non-
spike, peak traffic, say on their own hardware, there is
still potential to utilize the control framework for surge
computing in the cloud. A temporary spike could be sat-

3The experiment has a total of 25 5-minute server-charging intervals
which yields 50 server units used by the standbys.
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Figure 10: Top: Number of SLO violations during the
0.1 overprovisioning diurnal experiment, for different
values of the SLO percentile. The three lines in the graph
correspond to the three intervals over which to evaluate
the SLO: 5 minutes, 1 minute, and 20 seconds. Bottom:
summary of SLO violations and maximum latency per-
centile supported with no SLO violations during the di-
urnal workload with two different overprovisioning pa-
rameters.

isfied with leased resources from the cloud, which would
be relinquished once the spike subsides.

There are cost implications in setting some of the con-
trol framework’s parameters to manage ‘“‘extra capacity,’
namely the number of standbys and the overprovision-
ing factor. Both these techniques result in higher server
costs, either due to maintaining booted empty servers for
standbys or underutilization of active servers in the case
of overprovisioning. Standby servers are particularly
helpful for dealing with workload spikes which neces-
sitate replication, as empty servers are waiting and ready
to receive data. Overprovisioning is better for workload
profiles like a diurnal pattern in which all data items more
slowly experience increased access rates; this headroom
allows the control framework more time to shuffle data
around without overloading the servers. Reducing the
number of standbys and/or the overprovisioning factor
can yield cost savings, with the associated risk of SLO
violations if scaling up is not performed rapidly enough.

We presented results of our controller using replica-
tion to both smooth variance and lessen the effects of data
movement. To see that the controller remains robust to
the variance in the environment without replication, we
performed the same two experiments using only a single
copy of each data item. While SCADS still scales effec-
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tively, the variance limits the attainable SLO percentile.
For example, in the hotspot workload, the 5-minute, 1-
minute, and 20-second attainable percentiles were 95,
80, and 80, respectively, compared to 98, 95, and 80
when using replication. The replication factor thus of-
fers a tradeoff between performance/robustness and the
cost of running the system. Note, however, that a differ-
ent environment than EC2, like dedicated hardware, may
have less variance and thus may achieve the desired SLO
without replication.

The ability to control these performance tradeoffs is an
advantage of running the SCADS key-value store on EC2
rather than simply using S3 for data storage. In general,
S3 is optimized for larger files and has nontrivial over-
head per HTTP request. S3 also does not offer a SLO
on latency, while SCADS offers a developer-specified
SLO. Data replication factor and data location are not
tunable with S3, which would make maintaining a par-
ticular SLO difficult. More fundamentally, S3 does not
provide the API that SCADS on EC2 does. SCADS sup-
ports features like TestAndSet () and various meth-
ods on ranges of keys; this enables a higher level query
language on top. Additionally, the SCADS client library
supports read/write quorums for trading off performance
and consistency, this would also be meaningless without
being able to control the replication factor.

8 Future Work

Future work includes incorporating resource heterogene-
ity in the control framework, as well as designing a
framework simulator for performing what-if analysis.
Cloud providers typically offer a variety of resources at
different cost, e.g., paying more per hour for a server
with more CPU or disk capacity. By modeling perfor-
mance of different server types, we could include in the
control framework decisions about which type of server
to use. Additionally, we hope to use the performance
models in a control framework simulator that emulates
the behavior of real servers. The simulator could be used
for assessing the performance-cost tradeoff for unseen
workloads; developers could create synthetic workloads
using the features described in [11].

9 Conclusion

The elasticity of the cloud provides an opportunity for
dynamic resource allocation, scaling up when workload
increases and scaling down to save money. To date,
this opportunity has been exploited primarily by stateless
services, in which simply adding and removing servers
is sufficient to track workload variation. Our goal was
to design a control framework that could automatically
scale a stateful key-value store in the cloud while com-
plying with a stringent performance SLO in which a very
high percentile of requests (typically 99%) must meet a



specific latency bound. As described in Section 2, meet-
ing such a stringent SLO is challenging both because of
high variance in the tail of the request latency distribu-
tion and because of the need to copy data in addition to
adding and removing servers. Our solution avoids trying
to control for such a noisy latency signal, instead using
a model-based approach that maps workload to latency.
This model, combined with fine-grained workload statis-
tics, allows the framework to move only necessary data
to alleviate performance issues while keeping the amount
of leased resources needed to satisfy the current work-
load. In the event of an unexpected hotspot, replicas are
added proportional to the magnitude of the spike, not the
total number of servers. For workload that exhibits a di-
urnal pattern, the framework easily scales both up and
down as the workload fluctuates. In the midst of this dy-
namic scaling, we use replication to mask both inherent
environmental noise and the performance perturbations
introduced by data movement. We anticipate that this
work provides a useful starting point for allowing large-
scale storage systems to take advantage of the elasticity
of cloud computing.
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