Yinyang K-Means: A Drop-In Replacement of the Classic K-Means
with Consistent Speedup

Yufei Ding*

Yue Zhao*

Xipeng Shen*
Madanlal Musuvathi®
Todd Mytkowicz®

YDING8 @NCSU.EDU
YZHAO30@NCSU.EDU
XSHENS5 @NCSU.EDU
MADANM @MICROSOFT.COM
TODDM @ MICROSOFT.COM

Department of Computer Science, North Carolina State University *

Microsoft Research ©

Abstract

This paper presents Yinyang K-means, a new
algorithm for K-means clustering. By cluster-
ing the centers in the initial stage, and lever-
aging efficiently maintained lower and upper
bounds between a point and centers, it more
effectively avoids unnecessary distance calcula-
tions than prior algorithms. It significantly out-
performs prior K-means algorithms consistently
across all experimented data sets, cluster num-
bers, and machine configurations. The consis-
tent, superior performance—plus its simplicity,
user-control of overheads, and guarantee in pro-
ducing the same clustering results as the stan-
dard K-means—makes Yinyang K-means a drop-
in replacement of the classic K-means with an
order of magnitude higher performance.

1. Introduction

The classic K-means algorithm (Lloyd’s algorithm) con-
sists of two steps. For an input of n data points of d di-
mensions and k initial cluster centers, the assignment step
assigns each point to its closest cluster, and the update step
updates each of the k cluster centers with the centroid of the
points assigned to that cluster. The algorithm repeats until
all the cluster centers remain unchanged in an iteration.

Because of its simplicity and general applicability, the al-
gorithm is one of the most widely used clustering algo-
rithms in practice, and is identified as one of the top 10
data mining algorithms (Wu et al., 2008). However, when
n, k,or d is large, the algorithm runs slow due to its linear

Proceedings of the 32™% International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

dependence on n, k,and d.

There have been a number of efforts trying to improve its
speed. Some try to come up with better initial centers (e.g.,
K-means++ (Arthur & Vassilvitskii, 2007; Bahmani et al.,
2012)) or parallel implementations (Zhao et al., 2009). A
complementary approach is to speed up the algorithm it-
self, which is the focus of this paper.

Prior efforts in this direction include approximation (Czu-
maj & Sohler, 2007; Sculley, 2010; Philbin et al., 2007;
Gubha et al., 1998; Wang et al., 2012), structural optimiza-
tion (Pelleg & Moore, 1999; Kanungo et al., 2002), and
incremental optimization (Elkan, 2003; Drake & Hamerly,
2012; Hamerly, 2010). They each have made signifi-
cant contributions. However, the classic Lloyd’s algo-
rithm still remains the dominant choice in practice, exem-
plified by the implementations in popular libraries, such
as GraphLab (Low et al., 2010), OpenCV (OpenCV), ml-
pack (Curtin et al., 2013), and so on. They offer some seed-
ing options, but are primarily based on Lloyd’s algorithm.

For an alternative algorithm to get widely accepted, we be-
lieve that it needs to meet several requirements: (1) It must
inherit the level of trust that Lloyd’s algorithm has attained
through the many decades of practical use; (2) it must pro-
duce significant speedups consistently; (3) it must be sim-
ple to develop and deploy.

The previous proposals unfortunately fall short in at least
one of the three requirements. The approximation meth-
ods (Czumaj & Sohler, 2007; Sculley, 2010; Philbin et al.,
2007; Guha et al., 1998; Wang et al., 2012), for instance,
produce clustering results different from the results of the
standard K-means. It is possible that their outputs could be
good enough (or even better) for some usage, but in general
such a confidence is yet to be established, in both theory
and practice: Users still face the uncertainty on whether
the output from these algorithms is good enough on an ar-

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

bitrary dataset for a real usage, for which, Lloyd’s algo-
rithm has been practically proven to work. Some other
prior efforts try to speed up K-means while maintaining
the same semantics as Lloyd’s algorithm. As such, they in-
herit the level of trust that the standard K-means has gained
through decades of use. They however have failed to show
consistent speedups. The KD-tree—based methods (Pelleg
& Moore, 1999; Kanungo et al., 2002) for instance does
not work well when the number of dimensions is greater
than 20 (Kanungo et al., 2002), while the prior triangular
inequality—based methods (Elkan, 2003; Drake & Hamerly,
2012; Hamerly, 2010) either does not scale with the num-
ber of clusters or performs poorly in some scenarios (de-
tailed in Section 5).

This paper introduces Yinyang K-means, an enhanced K-
means that meets all of our aforementioned requirements.
The key is in its careful but efficient maintenance of the
upper bound of the distance from one point to its assigned
cluster center, and the lower bound of the distance from
the point to other cluster centers. The interplay between
these two bounds forms a two-level filter, through which,
Yinyang K-means avoids unnecessary distance calculations
effectively. Yinyang K-means features a space-conscious
elastic design that adaptively uses the upper and lower
bound based filters while maintaining various space con-
straints. The name of the method is inspired by the ancient
Chinese philosophy, in which, yin and yang are concepts
used to describe how apparently contrary forces work com-
plementarily to form a harmony. The carefully maintained
lower bound and upper bound in Yinyang K-means are re-
spectively the yin and yang of a distance filter. Their con-
tinuous, efficient evolvement and interplay form the key for
Yinyang K-means to work effectively.

Experiments on a spectrum of problem settings and ma-
chines show that Yinyang K-means excels in all the cases,
consistently outperforming the classic K-means by an order
of magnitude and the fastest prior known K-means algo-
rithms by more than three times on average. Its simplicity,
elasticity (ability for a user to control space overheads), se-
mantics preservation, and consistent superior performance
make it a drop-in replacement of the standard K-means.

2. Yinyang K-means

This section presents the Yinyang K-means algorithm and
describes the optimizations to both the assignment and the
update steps.

2.1. Optimizing the Assignment Step

In the standard K-means, the assignment step computes the
distances between every point and every cluster center in
order to find out the closest center to each point. The key

idea behind our optimized assignment step is the use of two
filters to detect which distance calculations are unnecessary
and avoid doing them for speedup. These optimizations are
based on the triangle inequality.

Triangle Inequality: Let d(a,b) represent the distance
between a and b in some metric, such as the Euclidean
metric. The triangular inequality states that d(a,c) <
d(a,b) 4+ d(b,c). In the context of K-means, given a point
x and two cluster centers b and ¢, the triangular inequality
gives a way to bound the (unknown) distance between z
and c given the distance between x and b and the distance
between b and c:

|d(.’£, b) - d(bv C)| < d(l'v C) < d(.’E, b) + d(bv C)

In particular, if b and c represent centers of the same cluster
in two consecutive iterations, the bounds above can be used
to approximate d(x, ¢) as shown below.

Triangle inequality has been used for optimizing K-means
before (Elkan, 2003; Hamerly, 2010; Drake & Hamerly,
2012). Our design features an innovative way of applying
it to the carefully maintained lower and upper bounds of
distances, which is key to the consistent speedups that prior
solutions fail to provide.

We first introduce some notations for the following detailed
discussion. Let C be the set of cluster centers and ¢ be one
cluster in the set. For a given point z, let b(x) (for “best
of 27) be the cluster to which the point is assigned to. Let
C’, ¢, and I/ (z) represent the corresponding entities in the
next iteration respectively. Let §(c) represent d(c, ¢)—that
is, the shift of cluster center due to the center update.

We next describe global filter, a special case of the two fil-
ters that we have designed for Yinyang K-means. Its sim-
plicity helps ease our later explanation of the two filters.

2.1.1. GLOBAL FILTERING

Global filtering identifies whether a point x changes its
cluster in an assignment step with a single comparison.
For each point z, the algorithm maintains an upper bound
ub(x) > d(x,b(x)) and a global lower bound Ib(z) <
d(x,c), Ve € C —b(x). One way to initialize these bounds
is to use the distance to the best cluster center as the upper
bound and the distance to the second-closest cluster center
as the lower bound.

Lemma 1 (Global-Filtering Condition). A point x in the
cluster b = b(x) does not change its cluster after a center
update if

Ib(z) — max 0(c) > ub(x) + 4(b)

Proof. Consider a cluster ¢ € C — b. Let ¢ be its new
cluster center after a center update. Let b’ be the new cluster

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

\-point ocenter [Jcandidate set C)group\

Group filter Local filter
C
.
,7 . 1629 o
Go

Figure 1. Two filters for optimizing the assignment step in
Yinyang K-means. A rectangle associates with each point to be
clustered, representing the set of centers that are possible to re-
place the current cluster center of the point as its new cluster cen-
ter. The centers are put into groups and go through the group filter.
The local filter examines each center in the remaining groups to
further avoid unnecessary distance calculations.

center of the cluster b. The proof follows from the fact that
the r.h.s above is a new upper bound on d(x,b’) and the
Lh.s is a new lower bound on d(z, ¢') for all other clusters

c.

By triangle inequality, we have d(x,c) > d(z,c) —
d(c,c) = d(z,¢) — d(c) > d(z,¢) — max.cc d(c). Sim-
ilarly, d(z,b) < d(z,b) + d(b) < ub(z) + 6(b). Thus
d(z,b') <d(z,). O

Essentially, Lemma 1 states that it is unnecessary to change
the cluster assignment of a point unless the cluster centers
drift drastically; the distance calculations related with that
point can be hence avoided. Applying this lemma requires
computing the Js for each cluster at the end of each iter-
ation, which requires O(k * d) time and O(k) space. In
addition, maintaining an upper and lower bounds for each
point requires O(n) space.

One challenge in applying the lemma, of course, is to ef-
ficiently maintain the upper and lower bounds across iter-
ations. The proof of the lemma already suggests a way
to do so: IV (x) = Ib(x) — maxeec d(c) and ub'(z) =
ub(x) 4 0(b). This update requires no need to compute the
distances between any point and any center. It is employed
in the algorithm.

Although the global filtering can reduce many distance cal-
culations in some cases, its effectiveness gets largely throt-
tled in the presence of big-movers (i.e., cluster centers that
drift dramatically in a center update.) Because of its use
of the largest drift in the update of the lower-bound, even
a single big-mover reduces the lower-bound for all points
substantially, making the global-filtering ineffective.

2.1.2. GROUP FILTERING

Group filtering is a generalization of the global filtering that
addresses its shortcoming through an elastic design.

Group filtering first groups the k clusters into ¢ groups
G = {G1,Gs,...,G;}, where each G; € G is a set of the
clusters. This grouping is done once before the beginning
of the first iteration of K-means (elaborated in Section 3).
It then applies the global filtering condition to each group.
Specifically, for each group (e.g., G;) it keeps a group
lower bound b(z, G;) < d(zx,c), Yc € G; — b(z) for each
point x. Similar to global-filtering, [b(x, G;) is initialized
with the distance to the closest cluster in G; other than b(z)
and updated by IV (z, G;) = Ib(x, G;) — max.cg, 6(c). If
W (x,G;) > ub(x), where ub’(x) is the new upper bound
computed in the global-filtering optimization, then a vari-
ant of Lemma 1 shows that x is not assigned to any of the
clusters in G;. If G; has no big-movers in an iteration, then
all its clusters could be filtered in the assignment step. In
Figure 1, the first point (on top) has only one group left—no
need to compute the distances from that point to any center
in other groups. The second point has none left, showing
that its assignment won’t change in this iteration and hence
no need to calculate its distance to any center.

The parameter ¢ provides a design knob for controlling
the space overhead and redundant distance elimination.
Group filtering reduces to global filtering when ¢ is set to 1.
When ¢ increases, the filter uses more space for more lower
bounds, and spends more time on maintaining the lower
bounds, but meanwhile limits the effects of big movers
more and hence avoids more distance calculations. Our ex-
periments in Section 5 show that when ¢ is around k /10, the
method gives the best overall performance across datasets;
at a smaller value, the performance is lower but still sig-
nificantly higher than the standard K-means and its prior
alternatives. Our design further considers the amount of
available memory: ¢ is set to k/10 if space allows; 0.w., the
largest possible value is used. This space-conscious elas-
tic design helps tap into the benefits of Yinyang K-means
under various space pressure as Section 5 will show.

There are various ways to group the & clusters into ¢ groups.
Our investigation shows that clustering on the initial cen-
ters is a good choice. Compared to random grouping, it
benefits more from the locality of the centers and thus,
yields better performance. The grouping is a one-time job,
only needed at the beginning of the first iteration of K-
means. Regrouping, while feasible, did not help as ob-
served in our experiments.

The group filtering can be easily combined with the global
filtering. The algorithm first compares the smallest of all
lower bounds (i.e., global lower bound) with the upper
bound before examining the lower bound of each group.

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

If the global lower bound is greater than the upper bound,
no reassignment is needed for that point and all the group-
level comparisons can be avoided. Section 3 provides the
details.

2.1.3. LocAL FILTERING

If a group of cluster centers go through the group filter, one
of the centers could be the new best center for the data point
of interest. Rather than computing the distances from that
point to each of those centers, we design a local filter to
further avoid unnecessary distance calculations.

Lemma 2 (Local-Filtering Condition). A center ¢’ € G},
cannot be the closest center to a point x if there is a center
p' # ¢ (p' does not have to be part of G';) such that

d(z,p") < lb(z,G;) — (c).

Proof. This lemma follows from the triangle inequality.
d(z,d) > d(z,c)—d(c,c') > Ib(z, G;) —d(c) > d(z,p').
Thus, the point p’ is closer to = than ¢’ is. O

The lemma allows us to skip the distance calculations
for centers that meet the condition. When a center goes
through the local filter, our algorithm computes its distance
to the point . The smallest distance of all the centers
in G, will then be used to update the group lower bound
Ib(z, G}).

When applying the local filter, the selection of p’ has some
subtlety. It is tempting to use the so-far-found closest center
as p’ since it can help detect as many infeasible candidate
centers as possible. However, our experiments found that
using the so-far-found second closest center as p’ consis-
tently gives better overall speed of Yinyang K-means (up
to 1.6X speedup). The reason is that it allows the com-
putation of the exact lower bound (i.e., the distance to the
second closest center), which makes the group filter more
effective in the next iteration.

It is worth noting that the local filter requires no extra lower
bounds than what the group filter maintains, and hence adds
no extra space overhead.

2.2. Optimizing the Center Update Step

The update step computes the new center for each cluster.
With the assignment step gets optimized, this step starts to
weigh substantially, but no prior work has optimized it. We
enhance it also by leveraging the fact that only some points
change their clusters across iterations. Rather than averag-
ing across all points in a cluster, it avoids some points by

reusing the old centers as follows:

d=(exVI=(Y 9+ Y

yeEV -0V Yy EV/ —OV

y)/IV], ()

where, V' and V represent a cluster in this and the previous
iteration, OV is VNV’, c and ¢’ are the old and new centers
of the cluster. All variables on the righthand side of the for-
mula are just the side product of the optimized assignment
step.

This new update algorithm involves fewer computations
than the default update if and only if less than half of the
points have changed their clusters. An implementation can
easily check this condition in each iteration and use the new
algorithm when it holds. In our experiments on real data
sets, we have never seen such a violation.

3. Algorithm

Putting the group filter, local filter, and new center update
algorithm together, we get the complete Yinyang K-means
as follows.

Step 1: Set t to a value no greater than k/10 and meeting
the space constraint. Group the initial centers into ¢ groups,
{G;]i = 1,2,--- ,t} by running K-means on just those ini-
tial groups for five iterations to produce reasonable groups
while incurring little overhead.

Step 2: Run the standard K-means on the points for the first
iteration. For each point z, set the upper bound ub(x) =
d(x,b(x)) and the lower bounds Ib(x, G;) as the shortest
distance between « and all centers in G; excluding b(x).

Step 3: Repeat until convergence:

3.1: Update centers by Equation 1, compute drift of each
center 0(c), and record the maximum drift for each group
3(Gy).

3.2 Group filtering: For each point x, update the up-
per bound ub(z) and the group lower bounds lb(x, G;)
with ub(z) + 6(b(x)) and Ib(z, G;) — §(G;) respectively.
Assign the temporary global lower bound as [b(z) =
min}_, Ib(z,G;). If Ib(x) > wub(z), assign b'(z) with
b(x). Otherwise, tighten ub(x) = d(x,b(x)) and check
the condition again. If it fails, find groups for which
Ib(x,G;) < ub(x), and pass = and these groups to local
filtering.

3.3 Local filtering: For each remaining point z, filter its
remaining candidate centers with the so-far-found second
closest center, compute the distances from x to the cen-
ters that go through the filter to find out the new b(z),
and update the group lower bound [b(z, G;) with the dis-
tance to the second closest center. For groups blocked by

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

the group filter, update the lower bounds Ib(x,G;) with
Ib(z,G;) — §(G;). Update ub(x) with d(z, b(z)).

4. Comparison

The work closest to ours includes the K-means optimized
by Elkan (Elkan, 2003) and by Drake and Hamerly (Drake
& Hamerly, 2012). They also use the triangle inequality
to avoid distance calculations, but differ from our algo-
rithm in some critical aspects. Compared to Elkan, our
algorithm shows great advantages in the efficiency of the
non-local filter (group/global filter). Figure 2 shows that
intuitively. Figures 2 (a) and (b) depict the Voronoi dia-
grams' in two consecutive iterations of K-means. It is easy
to see that if a point (e.g., the “x”) is in the grey area in
Figure 2 (b), its cluster assignment needs no update in iter-
ation j+1. Elkan’s algorithm tries to approximate the over-
lapped Voronoi areas with spheres as the disk in Figure 2
(c) shows. The radius of the sphere is half of the short-
est distance from the center to all other centers. In con-
trast, the lower and upper bounds maintained at each point
make Yinyang K-means approximate the overlapped areas
much better, and hence more effective in avoiding unneces-
sary distance calculations. Our experiments show that the
group filter in Yinyang K-means helps avoid at least two
times (over 6X in most cases) more distance calculations
than the non-local filter in Elkan’s algorithm as shown in
Table 4.

A :center in iteration i+| @: 2 point to cluster

(a) iteration i (b) iteration i+1 (c) approx. of overlapped areas
: 1
' '
. C [C
. P N
P X i~ eX
------- . R s 8 A
N <
S " S
.~ L <.
A ~ A O ~

by ouralg. by Elkan’s alg.
Figure 2. The Voronoi diagrams in two consecutive iterations of
k-means, and the approximation of the overlapped areas by our
algorithm (¢ = 1) and Elkan’s algorithm.

Elkan’s algorithm mitigates this inefficiency through a lo-
cal filter, which however requires & lower bounds for each
point and a series of condition checks, entailing large space
and time costs. As Table 1 shows, Elkan’s algorithm takes
O(n * k) space and time to maintain lower bounds, while
Yinyang K-means takes only O(n * t). The non-local fil-
tering time cost is O(k? * d + n) for Elkan’s algorithm,
and O(n) ~ O(n * t) for Yinyang K-means, depending on
whether the global filter works. The two methods have a
similar local filtering time complexity, O(n * « * k), with
« for the fraction of points passing through the non-local

'A Voronoi diagram partitions a plane into regions based on
distance to cluster centers.

filter. However, as shown in Table 4, « is much smaller in
Yinyang K-means than in Elkan’s algorithm (0.2 vs. 0.86
on average), thanks to the more powerful non-local filter
of Yinyang K-means. The cost causes Elkan’s algorithm to
fail or perform poorly in some scenarios, as shown in the
next section.

Drake’s algorithm tries to lower the time and space cost
of the local filter of Elkan’s algorithm. For each point, it
maintains ¢ lower bounds, with the first (¢ — 1) for the dis-
tance from the point to each of its (¢ — 1) closest centers,
and the tth for all other centers. As Table 1 shows, its time
and space costs are lower than Elkan’s algorithm (but still
higher than Yinyang K-means). It is however still sensi-
tive to “big movers”, because the update of the ¢th lower
bound uses the maximal drift, and the impact propagates to
other lower bounds due to the order of lower bounds that
the algorithm needs to maintain.

In comparison, the grouping-based filter design of Yinyang
K-means mitigates the sensitivity to “big movers”. It, along
with the elasticity, helps Yinyang K-means excel over the
prior algorithms. In addition, Yinyang K-means is the only
algorithm that optimizes not only the assignment step but
also the center update step of K-means. We provide quan-
titative comparisons next.

5. Experiments

To demonstrate the efficacy of Yinyang K-means, we eval-
uate our approach on a variety of large, real world data
sets and compare it with three other methods: the fastest
prior known K-means algorithm (Elkan (Elkan, 2003)),
Drake (Drake & Hamerly, 2012) and standard K-means.
All three algorithms are implemented in Graphlab (Low
et al., 2010) and can run in parallel. We run all three al-
gorithms on the same data set with the same randomly se-
lected initial center seeds, and thus all algorithms converge
to the same clustering result after the same number of iter-
ations.

We use eight real world large data sets, four of which are
taken from the UCI machine learning repository (Bache &
Lichman, 2013), while the other four are commonly used
image data sets(Wang et al., 2012; 2013). Their size and
dimension are shown in the leftmost columns in Table 2
(n for number of points, d for dimensions, k for number
of clusters). We experiment with two machines, one with
16G B memory and the other with 4G B memory, detailed
in Tables 2 and 3.

Consistent Speedup on the Assignment Step The ex-
periments demonstrate that Yinyang K-means provides
consistent speedup over both standard K-means, Elkan’s
and Drake’s algorithm. By consistent, we mean that our

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

Table 1. Cost Comparison (n: # points; k: # clusters; ¢: # lower bounds per point; «: fraction of points passing through the non-local

filter; Drake’s algorithm has no local filter)

Algorithm | space cost time cost
& P ; lower bounds maintenance non-local filtering | local filtering
Yinyang K-means | O(nxt) | O(nxt) O(n) ~O(nx*t) | On*xaxk)
Elkan’s (Elkan, 2003) | O(nx k) | O(nx*k) O(k? x d+n) Onx*axk)
Drake’s (Drake & Hamerly, 2012) | O(nxt) | O(n*t) ~O(nxk+nxt=logt) | O(nx*t) —

Table 2. Time and speedup on an Ivybridge machine (16GB memory, 8-core i7-3770K processor)

@

(“-” indicates that the algorithm fails to run for out of memory)

No. Assignment Overall Speedup (X)
Data Set n d ") Stand;ird Speedup (X) over Standard of Yinyang
iter time/iter Yinyang K-means over

(ms) Elkan Drake t=1 [elastic Standard | Elkan [Drake
3 30 77 120 | 197 | 208 | 208 T4 0o | Lo7
L Kegg Net- | o spy | g 16 52 9.9 162 | 213 | 248 | 248 161 136 | L12
work - 64 68 28.0 178 | 221 255 | 337 261 198 | 1.6
256 | 59 89.6 189 | 163 | 223 | 498 486 360 | 398
3 6 31 360 | 434 | 468 | 468 113 107 | LIl
16 54 54 284 | 201 270 | 270 141 107 | 127
I Gassensor | 1.4B4 | 129 | ¢, 66 203 508 | 308 | 317 | 549 3.29 182 | 228
256 | 55 843 648 | 206 | 301 | 1028 5.40 185 | 47
3 2 T0.1 072 | 123 136 136 118 24 | L7
UL Road Net- | 4 s | 4 64 | 154 | 800 085 | 342 | 410 | 385 3.63 382 | 112
work . 1024 | 161 | 16473 | 125 | 214 | 408 | 845 1359 | 1271 | 521
10,000 | 74 | 16256.1 ; 188 | 280 | 9.63 12.57 ; 6.84
3 6 1820 | 188 | 194 | 208 | 208 110 04 | 104
IV. US Cen- | 5spe | o 64 s6 | 21764 | 357 | 456 | 485 | 847 5.40 243 | 214
sus Data : 1,024 | 154 | 376039 | 023 | 296 | 356 | 248 | 2345 | 8953 | 633
10,000 | 152 | 432976 .| -ass | 290 | 305 5.70 - -
3 35 | 1110 | 248 | 288 | 302 | 302 183 T4l T.04
64 | 314 | 14326 | 552 | 507 | 564 | 1021 8.65 179 | 126
V. Caltechl0L | 1E6 | 128 |y oh4 | 369 | 208168 | 556 | 362 | 338 | 2199 | 2233 | 641 | 571
10,000 | 129 | 316850 S| -32s) | 312 | 2024 | 2223 - | -674
3 45 | 4638 785 | 338 | 360 | 369 7.40 165 | 105
VL ms | s | 64 | 22| ssss | 527 | asT | 420 | 681 6.16 188 | 176
NotreDame 1,024 | 149 | 93341 | 566 | 28 | 228 | 1044 1069 | 325 | 419
10,000 | 47 | 126815) 235 | 232 | 1081 11,53 - 507
3 103 | 2770 | 667 | 738 | 820 | 820 324 90 | 121
: 64 | 837 | 41134 | 1423 | 739 | 632 | 1526 1380 | 193 | 193
VIL Tiny TE6 | 384 1 1 004 | 488 | 640788 | 1602 | 437 | 294 | 2364 | 2321 | 278 | s.14
10,000 | 146 | 781537 - | -4 | 235 | 1551 16.13 - | -596)
3 & | 1137 | 263 | 286 | 317 | 317 104 146 | LI0
VIL Uk | e | g | 64 | 506 | 14311 | 575 | 736 | 66l | 1321 1085 | 312 | 172
bench 1024 | 517 | 227874 | 595 | 428 | 342 | 2341 2426 | 685 | 5.8
10,000 | 208 | 316299 S -39 | 300 | 2850 | 3218 - | -632

[average | 433 | 339 | 351 | 987 | 936 [612 | 308 |

approach scales well with the size of the data (n), dimen-
sion of the data (d), and the number of clusters (k), and
performs well under different levels of space pressure. This
is because of the more effective filter design, and its space-
conscious elasticity for trading off compute (by eliminating
redundant distance computations) with space (the number
of lower bounds maintained per point) so that Yinyang K-
means is able to effectively adapt to space constraint.

The middle several columns of Table 2 show the speedups
of the assignment step by the Elkan’s, Drake’s algorithm
and Yinyang K-means. In order to investigate how each
algorithm scales, we test various number of clusters (k)
from 4 to 10,000. To keep a cluster having a meaning-
ful size, we limit k to no greater than 256 for the first two
data sets for their small sizes. The “elastic”” columns in Ta-

bles 2 and 3 report the speedup of Yinyang K-means over
the standard K-means, where, on the 16GB machine, the
algorithm selects t = k/10 for all cases except that it uses
800 for the largest dataset (IV) when k£ = 10, 000; while on
the 4GB machine, as a reaction to the smaller space, when
k = 10,000, it automatically reduces the value of ¢ except
for the two small ones (100 for data set IV and 500 for oth-
ers) so that all its executions fit in memory. Table 3 does
not show data set VII because it cannot fit in memory even
in the case of the standard K-means on that machine.

Elkan’s algorithm, which directly keeps k local lower
bounds for each point, is still one of the fastest known exact
K-means. In comparison, our results show that Yinyang K-
means gives consistent and significant speedup. The con-
sistency manifest in three aspects. First, unlike Elkan’s al-

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

Table 3. Overall speedup over standard K-means on a Core2 machine (4GB mem, 4-core Core2 CPU)

(*: not a meaningful setting for the small data size; -: out of memory)

Data Set I I il v v VI VIII

k=4 Yinyang 1.35 1.10 1.09 1.13 1.97 2.60 2.05

Elkan 1.09 1.08 0.90 1.06 1.30 1.44 1.32

Drake 1.26 1.05 1.05 1.08 1.79 2.44 1.82

k=64 Yinyang | 2.34 | 291 2.79 5.23 8.12 5.75 10.39

Elkan 1.33 [2.29 0.97 2.25 3.52 3.23 3.43

Drake 2.04 1.67 231 4.42 3.17 2.96 328

k=1024 Yinyang * * 8.98 20.41 22.64 10.64 27.34
Elkan * * 1.20 - - 352 -

Drake * * 2.18 - (3.18) 3.26 2.48 3779

k=10,000 | Yinyang * * 14.74 6.39 17.87 8.20 28.11
Elkan * * - - - - —

Drake * * —-(2.01) | —(1.68) | —(2.58) | —(1.73) | —(3.02)

Table 4. Unnecessary distance calculations detected by the non-local filters of Yinyang K-means and two prior algorithms (k = 64)

Data Set I II 11 I\% \Y% VI Vil VIII average
Yinyang | 69.3% | 71.0% | 88.5% | 85.1% 81.7% 77.9% 82.0% 86.2% 80.2%
Elkan 31.1% | 32.5% | 32.6% 9.2% 0.5 % 2.0E-6 1.6E-6 1.4% 13.4%
Drake 642% | 58.6% | 69.3% | T71.7% | 73.6 % 68.1% 62.9% 77.7% 68.3%

gorithm which often fails (marked with “-””) for running out
of memory when £ is large due to its n * k space overhead,
Yinyang K-means scales with k£ and shows even greater
speedup for larger k values. Second, when the amount
of available memory becomes smaller as Table 3 shows,
Yinyang K-means still produces substantial speedups on all
data sets and £ values thanks to its elastic control of ¢, while
Elkan’s algorithm fails to run in even more cases. Finally,
when d is small as in the third data set, Elkan’s algorithm
runs slower than the standard K-means. It is because to
detect an unnecessary distance calculation, in most cases,
Elkan’s algorithm requires 6 * k condition checks per point,
the time overhead incurred by which is even comparable to
the distance calculations on that point. The more effec-
tive group filter in Yinyang K-means ensures that for most
points, only ¢ condition checks are sufficient per point, and
hence gives up to 15X speedups for that data set.

Drake’s algorithm maintains one upper bound and ¢ lower
bounds: ¢ —1 lower bounds for the first ¢ — 1 closest centers,
and one for all other centers. As they mentioned in the pa-
per (Drake & Hamerly, 2012), this design can beat Elkan’s
algorithm in the intermediate dimension 20 < d < 120
for intermediate k£ (e.g., K = 50). Our technique, on the
other hand, shows good speedup in all the cases. Our
speedup over Drake’s algorithm stems from three sources.
Its grouping-based filter makes it less sensitive to “big
movers”, its local filter helps further avoid distance cal-

culations, and its elasticity makes it better adapt to space
constraints. Drake’s algorithm sets ¢ to k/4 and gradually
reduces it to k/8. It fails to run on the large data sets when
k is large as the “-” shows in Tables 2 and 3. We managed
to extend the algorithm with our elastic scheme (reducing ¢
to fit memory constraint) to make the algorithm work. The
results are shown in parentheses in Tables 2 and 3. Even
with the extension, Yinyang K-means is still over 3X faster
than Drake’s algorithm on average.

The carefully designed group filtering of Yinyang K-means
contributes substantially to the speedup. As Table 4 shows,
the filter consistently outperforms the filters in both Elkan’s
and Drake’s algorithms. It avoids 80% of distance calcula-
tions on average; in comparison, Elkan’s and Drake’s algo-
rithms avoid 13% and 68% respectively. Its local filtering
gives it a further edge over Drake’s algorithm.

Another algorithm based on the triangle inequality is by
Hamerly and others (Hamerly, 2010). It only maintains one
lower bound and one upper bound across iterations. It has
no group filtering, local filtering, or optimization of center
update. Its performance is similar to our global filtering,
and more than 3 times lower than our algorithm.

We also investigate works in the area of approximation al-
gorithm (Czumaj & Sohler, 2007; Sculley, 2010). We
compared our method with mini-batch K-means (Scul-
ley, 2010) in terms of performance and clustering quality

Table 5. Yinyang K-means accelerates the center update step by many times
(*: not a meaningful setting for the small data size)

Data Set I 1T 1T v \ VI VII VIII
k=4 2.4 32 2.1 1.8 4.1 4.3 9.0 4.0
k=64 9.6 | 20.1 8.4 8.0 11.0 9.8 15.4 11.9
k=1024 * * 107.0 | 599 | 97.0 | 43.1 106.6 114.3
k=10,000 * * 62.5 79.7 | 66.2 | 275 50.8 100.4

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

(within-cluster sum of squares or WCSS). Mini-batch K-
means takes around 10X or more iterations than Yinyang
K-means takes to reach a similar level of clustering quality
on the datasets used in our experiments. Because mini-
batch K-means uses 4 * k samples in each iteration, when
k is large (> n/4000 in our experiments), mini-batch
K-means takes significantly more time than Yinyang K-
means does to produce clusters of a similar level of qual-
ity. At a high level, Yinyang K-means and approximation-
based K-means algorithms are orthogonal and could be
used in a complementary manner. For instance, the fil-
ters in Yinyang K-means could potentially also help reduce
distance calculations in approximation-based algorithms.
Approximation-based algorithms could be used in cases
where the clustering quality is not critical, while Yinyang
K-means can be used in all scenarios where the standard
K-means applies. Being able to give the same results as the
standard K-means gives but in only a small fraction of its
time is powerful: The great number of practical uses of the
standard algorithm can directly adopt our algorithm with-
out worrying about any changes in the output. It naturally
inherits the trust that the Lloyd’s algorithm has established
among users through decades of use.

Optimization of Center Update K-means is a two-step
iterative algorithm. As time complexity of the center up-
date step is less than that of the assignment step, prior work
focuses only on improving the assignment step. But with
that step optimized, the update step starts to appear promi-
nent in time. Table 5 reports the speedup obtained by the
optimization described in Section 2.2. The speedup ranges
from 1.8X to over 100X substantial speedup show up when
k is large because the time cost of center update calculation,
instead of the launching process itself, becomes prominent.

Overall Speedup The rightmost three columns in Ta-
ble 2 report the overall speedup of Yinyang K-means over
the standard K-means, Elkan’s algorithm and Drake’s al-
gorithm, in terms of end-to-end execution time. Yinyang
K-means is the fastest in all cases. It is an order of mag-
nitude faster than the standard K-means in most cases, and
several times faster than Elkan’s and Drake’s algorithms.

Sensitivity Study on ¢ The parameter ¢ determines the
number of lower bounds maintained per point in Yinyang
K-means. This parameter allows automatically balancing
redundant computation and the memory and time costs of
maintaining such bounds.

Figure 3 shows the averaged assignment times for Yinyang
K-means as a function of ¢. For legibility, it includes the
results on the four image data sets only; similar results
show on other data sets. As ¢ increases, the performance of
Yinyang K-means first improves and then reaches optimal

12000 k=1,024
= Caltech 101
--NotreDame
Tiny
5 -+ Ukbench
= 8000
12}
£
12}
o}
£
E 4000 4
(@]
0
1 4 16 64 256 1024

Figure 3. Averaged CPU times of assignment step for Yinyang K-
means as a function of ¢.

around ¢ = k/10 after which performance decreases. This
is because although increasing ¢ produces tighter lower
bounds which help eliminate redundant distance calcula-
tions, it incurs more comparison operations and more lower
bound updates, which at some point adversely impact per-
formance. The observation led to the design of the afore-
mentioned policy on selecting the value for ¢ in Yinyang K-
means. It is worth mentioning that even when ¢ is 1 (when
the group filter reduces to global filter), Yinyang K-means
still consistently outperforms the standard K-means on all
data sets in all settings, as shown by the “t=1" column in
Table 2, which demonstrates the benefits of the new way to
approximate the overlapped Voronoi areas.

6. Conclusion

Overall, this study shows that Yinyang K-means is consis-
tently faster than prior algorithms, regardless of the dimen-
sion and size of the data sets, the number of clusters, and
the machine configurations. It accelerates both the assign-
ment and center update steps in K-means, and automati-
cally strikes a good tradeoff between space cost and perfor-
mance enhancement. Its elastic design makes it automat-
ically maximize its performance under a given space con-
straint. It preserves the semantic of the original K-means.
These appealing properties, plus its simplicity, make it a
practical replacement of the standard K-means as long as
triangle inequality holds.

The source code of this work is available at
http://research.csc.ncsu.edu/nc-caps/yykmeans.tar.bz2

Acknowledgement We thank the ICML’15 reviewers for
their suggestions. This material is based upon work sup-
ported by DOE Early Career Award and the National
Science Foundation (NSF) under Grant No. 1464216,
1320796 and Career Award. Any opinions, findings, and

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of DOE or NSF.

References

Arthur, David and Vassilvitskii, Sergei. k-means++: The
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1027-1035. Society for Industrial and
Applied Mathematics, 2007.

Bache, K. and Lichman, M. UCI machine learning repos-
itory, 2013. URL http://archive.ics.uci.
edu/ml.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and Vas-
silvitskii, S. Scalable k-means++. In Proceedings of the
VLDB Endow., 2012.

Curtin, Ryan R., Cline, James R., Slagle, Neil P., March,
William B., Ram, P, Mehta, Nishant A., and Gray,
Alexander G. MLPACK: A scalable C++ machine learn-
ing library. Journal of Machine Learning Research, 14:
801-805, 2013.

Czumaj, Artur and Sohler, Christian. Sublinear-time ap-
proximation algorithms for clustering via random sam-
pling. Random Structures & Algorithms, 30(1-2):226—
256, 2007.

Drake, Jonathan and Hamerly, Greg. Accelerated k-means
with adaptive distance bounds. In 5th NIPS Workshop on
Optimization for Machine Learning, 2012.

Elkan, Charles. Using the triangle inequality to accelerate
k-means. In ICML, volume 3, pp. 147-153, 2003.

Guha, Sudipto, Rastogi, Rajeev, and Shim, Kyuseok. Cure:
an efficient clustering algorithm for large databases.
ACM SIGMOD Record, 27(2):73-84, 1998.

Hamerly, Greg. Making k-means even faster. In SDM, pp.
130-140. SIAM, 2010.

Kanungo, Tapas, Mount, David M, Netanyahu, Nathan S,
Piatko, Christine D, Silverman, Ruth, and Wu, Angela Y.
An efficient k-means clustering algorithm: Analysis and
implementation. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 24(7):881-892, 2002.

Low, Yucheng, Gonzalez, Joseph, Kyrola, Aapo, Bick-
son, Danny, Guestrin, Carlos, and Hellerstein, Joseph M.
Graphlab: A new framework for parallel machine learn-
ing. arXiv preprint arXiv:1006.4990, 2010.

OpenCV. URL http://opencv.org/.

Pelleg, Dan and Moore, Andrew. Accelerating exact k-
means algorithms with geometric reasoning. In Proceed-
ings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 277-281.
ACM, 1999.

Philbin, James, Chum, Ondrej, Isard, Michael, Sivic, Josef,
and Zisserman, Andrew. Object retrieval with large vo-
cabularies and fast spatial matching. In Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Confer-
ence on, pp. 1-8. IEEE, 2007.

Sculley, D. Web-scale k-means clustering. In Proceedings
of the 19th international conference on World wide web,
pp.- 1177-1178. ACM, 2010.

Wang, Jing, Wang, Jingdong, Ke, Qifa, Zeng, Gang, and Li,
Shipeng. Fast approximate k-means via cluster closures.
In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pp. 3037-3044. IEEE, 2012.

Wang, Jingdong, Wang, Naiyan, Jia, You, Li, Jian, Zeng,
Gang, Zha, Hongbin, and Hua, X. Trinary-projection
trees for approximate nearest neighbor search. Trans.
Pattern Anal. Mach. Intell, 2013.

Wu, Xindong, Kumar, Vipin, Quinlan, J Ross, Ghosh, Joy-
deep, Yang, Qiang, Motoda, Hiroshi, McLachlan, Geof-
frey J, Ng, Angus, Liu, Bing, Philip, S Yu, et al. Top 10
algorithms in data mining. Knowledge and Information
Systems, 14(1):1-37, 2008.

Zhao, W., Ma, H., and He, Q. Parallel k-means clustering
based on mapreduce. LNCS, 5931:674—679, 2009.

