
DIGIPARTY – A DECENTRALIZED MULTI-PARTY
VIDEO CONFERENCING SYSTEM

Ling Chen, Chong Luo, Jiang Li, and Shipeng Li

Microsoft Research Asia

ABSTRACT

Increased speeds of PCs and networks have made media

communication possible on the Internet. However, nearly ten
years after the first release of Microsoft NetMeeting, Internet
video telephony is still limited to the point-to-point
communication mode. Today, people have a need for an easy-to-
use multi-party video conferencing tool that will connect families
and friends around the world over the Internet. In this paper,
DigiParty, a fully distributed multi-party video conferencing
system, is presented. DigiParty employs full mesh conferencing
architecture and adopts a loosely coupled conferencing mode. A
novel conference control protocol is designed with the system.
DigiParty can be integrated with any existing instant messaging
services and is applicable to all types of Internet connections.

1. INTRODUCTION

When Microsoft NetMeeting [1] was first released in 1996, it
was the first commercial real-time communication client that
enables more than two users to share data over the Internet. A
few months later, the video communication service was
integrated into NetMeeting. Although people then expected a
multi-party video conferencing system that enables families and
friends around the world to keep in touch over the Internet,
almost ten years have passed and Internet video telephony is still
limited to the antiquated point-to-point mode. Multi-party video
conferencing systems are only available on LAN (e.g.
MERMAID [2]), ATM (e.g. GCSVA [3]) or MBone (e.g. VIC
[4]). In recent years, with the evolution of broadband technology,
there have emerged several multi-party video conferencing
systems running on WAN ([5], [6]). However, none is ready to
be used by the general public for everyday communications.

iVisit [5] is a server-based communication tool. Central
servers are used to provide membership registration and
verification. A user can set up an A/V session with any buddy on
his friend list. Other than Netmeeting, iVisit allows a user to
make multiple connections as well as view multiple videos at the
same time. However, if we want to hold a multi-party conference,
connections have to be manually made one by one. On the other
hand, iVisit maintains an Internet video community, which is
partitioned into different categories and separate rooms. Each
room is a rendezvous point, where each user is aware of any
other presences in the same room. In this mode, although instant
messages can be made to be seen publicly, video

communications are based on independent one-to-one
connections only. Conference control mechanisms are not
supported in both modes of iVisit. Strictly speaking, iVisit is not
a conferencing application; rather, it is just a multiple one-to-one
communications tool.

WebEx [6] is another famous system that provides online
meeting services for global business. A powerful
communications tool, it supports a full range of online meeting
services, such as application sharing, white board, and video
conferencing. However, a general purpose system can never
excel in every specific feature. The video conferencing service,
therefore, is just an assistant tool in WebEx, and is mutually
exclusive with participants label and polling label. WebEx
leverages the MediaTone technology to deliver media data. The
idea is to build up a number of switching centers worldwide,
which are responsible for routing communications among end
users. This strategy is efficient for a large number of
simultaneously video conferences. However, they are technically
over-engineered for small-scale personal communications. Even
in the case where two members are in the same domain, data is
still transmitted from switching centers, which incurs an
intolerable delay for video communications.

It has been noticed that most video conferencing approaches
so far employ central servers either for conference management
or for data distribution. Obviously, such an approach may create
performance bottlenecks for a large number of participants.
Furthermore, the cost of maintaining central servers makes the
service too expensive to be used by individuals. As an alternative,
distributed architectures can resolve the problems mentioned
above. There are two kinds of distributed architectures which are
slightly different from each other. One is peer-to-peer
conferencing, where each end system has a direct connection
with only a subset of its peers and talks with other members
through a sequence of intermediate hops.

The other distributed architecture is full mesh conferencing,
where each conference member has direct communication
channel with each other. While peer-to-peer conferencing is
suitable for large scale video conferencing systems, full mesh
conferencing is more suitable for small scale systems because of
its simplicity in control. In this paper, DigiParty, a multi-party
video conferencing system is presented. It is a fully distributed
system built on full mesh conferencing architecture. A specific
conference control protocol is designed for it. The rest of this
paper is organized as follows. Section 2 describes the system
architecture of DigiParty. In Section 3, a new conference control
protocol is illustrated. Section 4 presents extensive experimental
results on protocol verification. We conclude and indicate future
research directions in Section 5.

2. DIGIPARTY – A MULTI-PARTY VIDEO
CONFERENCING SYSTEM

DigiParty is not only a protocol but also a real system that is
ready to be used for everyday communications. It supports all
types of Internet connections, including LAN, broadband, and
even dial-up. It can be integrated with all kinds of instant
messaging services, and a version for MSN messenger has been
developed. Figure 1 depicts the system architecture of DigiParty.

Media Stream Engine

Transmission Module

Conference Control

Interfa
ce w

ith
m

essaging service

TCP / UDP

User Interface

Figure 1: The system architecture of DigiParty

DigiParty is composed of five modules. The core modules

are the media stream engine and the full mesh conferencing
protocol. The media stream engine is responsible for audio/video
capture and playback. The conferencing control defines a set of
conventions governing the structure and behavior of
communication messages. The details of the protocol will be
introduced in the next section.

The full mesh conferencing structure is first introduced in
[7], where Lennox et al. also point out that the full mesh
conferencing architecture is not suitable for bandwidth-limited
end systems, such as wireless devices and users with 56 kbps
modems. To break this limitation, in our system, we entirely
separate the transmission module from the media stream engine
and define a whole set of APIs that are open for both Unicast and
application-level multicast (ALM). When there are multiple data
receivers, multicast allows data replication to be performed
outside of the data source. Application-level multicast is different
from traditional IP multicast in that data replication is conducted
at end systems instead of multicast-enabled routers. With a
proper ALM algorithm, we are able to alleviate the scalability
problem of full mesh conferencing architecture.

The interface with messaging services is one of the most
important features of DigiParty. It is designed out of usability
considerations: People today are overburdened by dozens of
accounts and passwords in multifarious Internet tools or
communities. This can even cause hesitation in signing up for
new services. Most Internet users are just using instant
messaging services (MSN, Yahoo, etc.) to communicate with
their families, friends and co-workers. Based on this observation,
we arranged a few pins attached to our main modules so that
DigiParty can be plugged into any existing instant messaging
services, as long as an open programming interface is provided.
Presently, the version that works with MSN Messenger has been
implemented. DigiParty is able to extract a local user’s MSN
buddy list, from which the conference initiator can choose the

desired attendees. Then, invitations are sent via MSN instant
messages, which also include the inviter’s IP address and a
unique conference ID. Upon receiving such an invitation, the
user can join the conference by simply clicking on the link
provided in the instant message.

3. CONFERENCE CONTROL PROTOCOL

Much research has been done on conference control protocols,
such as the conference control channel protocol (CCCP) [8], the
simple conference control protocol (SCCP) [9], and a protocol
for reliable decentralized conferencing [7]. Among all these
protocols, [7] is architecturally closest to ours. However, our
protocol is designed along with the application scenarios and it
should provide the quality of service (QoS) needed by a multi-
party video conferencing system. As we all know, video
conferencing is highly bandwidth demanding and has very
stringent requirements on transmission delay. No matter which
media transmission structure we use, Unicast or application-level
multicast, more members in a conference leads to a lower level of
QoS. Therefore, in our protocol, we provide a mechanism to
control the number of conference members, so that we can
provide better service to those members who joined the meeting
earlier than others. While we use the limit of 5 in our
implemented system, this number is flexible and can be adjusted
to the user’s satisfaction.

In the next subsections, we will first give an overview of the
protocol, after which the design challenges and our solutions will
be stated.

3.1. Full mesh control protocol

Our protocol is designed based on the full mesh architecture,
where conference members are united by a fully connected
communication mesh. And all the members are equivalent in
terms of position in topology or rights in the conference.
Different from [7], our protocol is so concise that it uses only
four communication messages:

♦ JOIN: This message is sent from a new user (e.g. N) to an
existing conference member (e.g. M). It contains the member
information of the new user, such as the display name in MSN
messenger.

♦ ACCEPT: This message is in reply to the JOIN message, if the
conference member M wants to accept the newcomer N. It
consists of M’s member information, as well as the member list
in M’s view.

♦ REJECT: This message is also in reply to the JOIN message, if
for any possible reason, member M rejects N’s join request.

♦ LEAVE: This message is sent from a leaving member to all the
other conferencing members to politely inform them of his
leaving.

A typical scenario is when a new user N is invited to an

existing conference. N is required to build communication
channels with all the other conference members in order to keep
the full mesh complete. Figure 2 illustrates the process of making
connections between N and M (an existing member). Supposing
there are three attendees (A, B and C) in this conference before N
joins, this process will be executed three times.

Figure 2: The process of building communication channel

In this figure, the two vertical lines are the time line. M is an
existing conference member and N is a new joiner. The actions
above the bold dotted line make a TCP connection, while the
actions below build a communication dialog. When N accepts an
invitation, it sends a Connection Request to its inviter. If the
request is acknowledged, N will send a JOIN message to M. A
respond with an ACCEPT message that lists the IP address of all
the conference members (i.e. A, B and C) in the conference. N
receives the ACCEPT message and connects with members who
are not in its connection list yet. In this way, a full connection
mesh of four members is built.

Please note that there are four check points listed in this
figure. They are designed to deal with concurrency problems. If
any of these check points fails, the process will terminate and the
new member N will not be able to join the conference.

3.2 Concurrency problems

The most challenging task in a loosely coupled full mesh
protocol is to keep the connection mesh complete, since it allows
any member in a conference to introduce new users at any time.
In our protocol, we ensure that each member has communication
channels with all the others, and at the same time keep the
number of conference members below a given limit. This is
difficult for a decentralized system, especially when there are
concurrent operations by different users or even the same user.
Here, concurrency does not mean exactly coincident. Instead, we
define:
Concurrent actions: if action B occurs when the conference is
in an unstable state which is caused by action A. Then we say
that action A and B are concurrent actions.

3.2.1 Concurrent joining:

If two members E and F join a conference concurrently, chances
are: 1) E and F have double connections with each other; 2)
Number of conference members exceeds the limit. The first
problem happens in such a scenario: member A and B are in a
conference, and A invites E while B invites F. In the ACCEPT
message from A to E and B to F, E and F are simultaneously

informed of the existence of each other. So both of them send
connection request to the other, and the request is accepted on
both sides. Although double connections do not harm the full
mesh structure, it involves additional resource usage and thus is
undesirable. We solve this problem by introducing a pending list.
When a member (e.g. E) sends a Connection Request (CR in
short) to another (e.g. F), it will keep F’s unique identification in
its pending list. It moves F to the member list only after the CR
is accepted. If E receives a CR from F while F is in its pending
list, it will compare F’s identification with its own and make
accept or reject decision according to the result (Check point 2).
In our system, we use the dotted IP address as member
identification and accept a CR from a member in pending list
only if its ID is larger than the local ID.

The second problem happens in a quite similar scenario.
Suppose there are two other members C and D in this conference
and the conference number limit is five. If both E and F join this
conference, the limit will be violated. Thus, we require each
member to check the length of its member list before accepting a
new user (Check point 4). Moreover, we restrict the number of
new users to be invited in conformity to the regulation. In the
given example, A is not allowed to invite two guests since there
are already four attendants in the conference.

3.2.2 Concurrent joining and leaving

Concurrent joining and leaving may refer to different users or the
same user. In the former case, let us consider the following
situation: originally A, B and C are in a conference. Then, A
wants to leave and is sending LEAVE messages to the others
while D is invited to the conference by member B. It is possible
that A receives D’s connection request while it is trying to exit
the application. If A just follows the process as we described
above, it will re-join the conference and is not able to leave. This
problem can be resolved by adding a presence flag. If A decides
to leave, it will turn the flag to FALSE so that it will check this
flag before accepting any connection request (Check point 3).

Another situation that may cause problems is when a user
leaves a conference shortly before it decides to re-join. In this
case, if the JOIN message outraces the LEAVE message, other
members will ignore the first arrived JOIN message and close the
connection when the LEAVE message arrives. This is an
undesirable result. Since DigiParty ensures that there is only one
application instance running on a single machine (Check point
1), we can solve this problem by the following strategy: if a
member receives the JOIN message from a member that is
already on its member list, it will close the previous connection
and accept the current request. The reason is very straightforward.

3.3 Security issues

Without security protection, DigiParty is open to intruders on the
Internet and is vulnerable to malicious attacks. In this section, we
offer a simple mechanism to avoid such attacks. Each conference
has a unique 128-bit conference ID, which is similar to the GUID
(Global Unique Identifier). This ID is generated by the
conference initiator before he is able to invite any buddies to
attend the conference. In all the invitations regarding the same
conference, the conference ID will be carried in the instant
message. Although the invitation message may be overheard
during its transmission over the Internet, we believe that this

level of protection is adequate for a conferencing system that
mainly serves for personal communications. Since computer
security in the real world is not only the matter of locks, but also
related to the comparison of value and costs.

4. EXPERIMENTS ON PROTOCOL VERIFICATION

The verification of a conferencing protocol, especially a multi-
party conferencing protocol, is difficult. The reason is that a
protocol’s behavior strongly depends on the order in which
events occur, and the number of possible orders is, in fact,
exponential in the size of the group and the number of actions.
Thus, it is not always possible to use a custom program to
explore every possibility, as the potential conference size is
unlimited.

Our verification work is done by validating the conference
control protocol in all possible concurrent scenarios. As we have
mentioned in the previous section, the concurrency of joining
and leaving events tends to create instability in a conference.
While concurrent joining can certainly happen on distinct ends,
concurrent joining and leaving may happen on the same machine,
as well as on different machines. Therefore, we define four types
of events: JOIN, LEAVE, BRIEF JOIN (join and then leave
immediately) and BRIEF LEAVE (leave and then re-join
immediately). Thus, all the concurrency situations are the
combinations of these four events, which are summarized in
Table 1.

Table 1: Concurrency tests

Test Initial State Action Final State

1 (A,B,C,D) J(E, F)
(A,B,C,D,E)
(A,B,C,D,F)
(A,B,C,D)

2 (A,B,C,D) L(C,D) (A,B)
3 (A,B,C,D) BJ (E) (A,B,C,D)
4 (A,B,C,D) BL(D) (A,B,C)
5 (A,B,C) J(D), L(C) (A,B,D)
6 (A,B,C) J(D), BJ(E) (A,B,C,D)
7 (A,B,C) J(D), BL(C) (A,B,C,D)
8 (A,B,C,D) L(D), BJ(E) (A,B,C)
9 (A,B,C,D) L(D), BL(C) (A,B,C)

10 (A,B,C,D) BJ(E), BL(D) (A,B,C,D)
11 (A,B,C) J(D), L(C), BJ(E) (A,B,D)
12 (A,B,C,D) J(E), L(D), BL(C) (A,B,C,E)
13 (A,B,C) J(D), BJ(E), L(C) (A,B,D)
14 (A,B,C,D) L(D), BJ(E), BL(C) (A,B,C)

15 (A,B,C) J(D), L(C), BJ(E),
BL(B) (A,B,D)

In this table, each row represents a test run. In the initial

state, some members are already in the conference. Then, actions
listed in the 3rd column are taken place concurrently. Here, J, L,
BJ and BL represent JOIN, LEAVE, BRIEF JOIN and BRIEF
LEAVE respectively. A valid protocol should lead the
conference to the final state described in the last column. All
these tests have a definite final state except for the first one. As
mentioned earlier, we have a mechanism to control the number
of conference members and the current limit is 5. Thus, in the
first test run, only one of the two joiners is allowed to attend the
conference. There is an extreme case when the two joiners are

invited by different members and each inviter tries to “protect”
his own invitee, our protocol rejects both joining attempts and
allows the inviters to negotiate before they send another
invitation.

We did experiments for all the 15 situations. After each run,
we carefully check the connection status at every live site. With
no surprise, our protocol passed all the 15 tests and every
conference member stabilizes with exactly a single active
connection with every other member.

5. CONCLUSION

In this paper, we presented a multi-party video conferencing
system named DigiParty. It is a powerful extension to existing
messenger services and can be used by most Internet users
including dial-up users. The accompanying conferencing
protocol is elaborately designed to handle all the possible
concurrent situations. The chief advantages of DigiParty arises
from its reliability, flexibility and low cost. We believe that
DigiParty will bring Internet video telephony to a new level of
quality and will lead to a new trend in everyday communications.

Future works may be conducted in the following directions:
1) Increasing the security level so that DigiParty can be used in
the field of business; 2) Transplant DigiParty to mobile devices
and enable mobile conferencing.

6. ACKNOWLEDGEMENT
The authors would like to acknowledge Keman Yu for helpful
discussions and Steve Lin for proofreading the paper.

7. REFERENCES

[1] NetMeeting, http://www.microsoft.com/netmeeting/
[2] J. S. Park, S. H. Lee, S. C. Kim, J. Y. Lee, S. B. Lee, “A
conferencing system for real-time, multiparty, multimedia
services”, IEEE Transactions on Consumer Electronics, pp. 857-
865, Vol. 44, No. 3, 1998.
[3] I. Beier, H. Koenig, “GCSVA - a multiparty
videoconferencing system with distributed group and QoS
management”, In Proc of 7th International Conference on
Computer Communications and Networks, pp. 594-598, 1998.
[4] Networked Multimedia Research Group at University
College London, Video Conferencing Tool, http://www-
mice.cs.ucl.ac.uk/multimedia/software/vic/
[5] iVisit, http://www.ivisit.info/
[6] WebEx, http://www.webex.com/
[7] J. Lennox, H. Schulzrinne, “A protocol for reliable
decentralized conferencing”, In Proc of 13th international
workshop on network and operating systems support for digital
audio and video, pp. 72-81, 2003.
[8] M. Handley, I. Wakeman, J. Crowcroft, “The conference
control channel protocol (CCCP): a scalable base for building
conference control applications”, In Proc of ACM SIGCOMM,
pp. 275-287, 1995.
[9] C. Bormann, J. Ott, C. Reichert, “SCCP: simple conference
control protocol”, Internet Draft. Draft-ietf-mmusic-sccp-00.txt,
Work in Progress, June 1996.

