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ABSTRACT

The earlier version of the hidden trajectory model (HTM) for speech
dynamics which predicts the "static" cepstra as the observed acoustic
feature is generalized to one which predicts joint static cepstra and
their temporal differentials (i.e., delta cepstra). The formulation
of this generalized HTM is presented in the generative-modeling
framework, enabling efficient computation ofthe joint likelihood for
both static and delta cepstral sequences as the acoustic features given
the model. The parameter estimation techniques for the new model
are developed and presented, giving closed-form estimation formu-
las after the use of vector Taylor series approximation. We show
principled generalization from the earlier static-cepstra HTM to the
new static/delta-cepstra HTM not only in terms of model formula-
tions but also in terms of their respective analytical forms in (mono-
phone) parameter estimation. Experimental results on the standard
TIMIT phonetic recognition task demonstrate recognition accuracy
improvement over the earlier best HTM system, both significantly
better than state-of-the-art triphone HMM systems.

Index Terms- phonetic recognition, hidden trajectory model-
ing, delta cepstra, joint static/dynamic feature, generative modeling

1. INTRODUCTION

In recent years, we have been pursuing a research direction in speech
modeling and recognition where the dynamic structure associated
with human speech generation mechanisms is exploited for the pur-
pose of providing a more accurate and parsimonious characteriza-
tion of the speech process than the traditional hidden Markov model
(HMM) [1, 4, 21]. One particular type of the statistical models that
we have been focusing on developing is the hidden trajectory model
(HTM) [4, 5, 21], which uses target-directed, cross-unit continuous
movement of vocal tract resonances (VTR) as the basis for model-
ing the underlying dynamic speech structure and for predicting the
acoustic features (i.e., observation data) in the form of "static" cep-
stra. In the work presented in this paper, we generalize the earlier
HTM by predicting not only the "static" cepstra but also the frame-
differential cepstra (also known as dynamic or delta or regression
features [7, 10, 22]).

The importance ofmodeling speech dynamics for speech process-
ing applications has been well known for many years [7]. The early
approaches exploited frame-differential acoustic features as a sim-
plistic representation of speech dynamics, and fed them into standard
pattern recognition systems with weak dynamic modeling capabili-
ties. It is widely known that the use of these "dynamic" features is
problematic and inconsistent within the traditional pattern recogni-
tion frameworks (e.g., HMM). Numerous analyses on and empiri-
cal remedy of the inconsistency have appeared in the literature (e.g.,

[20, 22]), demonstrating the usefulness ofthe dynamic features such
as the delta cepstra.

Later approaches to exploiting speech dynamics made use of
the statistical "segment" models that represent correlations of ob-
served acoustic features across frames (e.g., [15, 2]). The most re-
cent approaches, exemplified by our previous HTM [4, 21], repre-
sented speech dynamics not on the observed acoustic domain, but
on the unobserved or "hidden" domain (including VTR or articu-
latory domain), and the observed acoustic dynamics (in the form
of sequences of "static" cepstral vectors) becomes a natural conse-
quence of the modeled "hidden dynamics". Within this generative-
modeling framework, it is natural to extend our earlier HTM so that
it accounts for not only sequences of "static" vectors but also se-
quences of "delta" ones. Part of the motivation of this extension
is the demonstrated usefulness of the delta features in HMM-based
speech processing applications.

The incorporation of delta features in the HMM is straightfor-
ward via direct training of additional means and variances associ-
ated with the delta-feature component in the HMM using the identi-
cal training algorithm (e.g., Baum-Welch algorithm) to that designed
for the static-feature component in the HMM. In contrast, the use of
delta features in the HTM requires an additional prediction stage
for these new features, the main topic of this paper. This stage is
bypassed in the HMM, responsible for the creation of apparent in-
consistency between the uses of static and dynamic features in the
overall generative modeling framework.

The paper is organized as follows. In Section 2, we review the
earlier HTM which predicts static cepstral sequences. A generalized
HTM which predicts joint static and delta cepstral sequences is pre-
sented in Section 3. The learning algorithm for the generalized HTM
is described in Section 4. We present experimental results on pho-
netic recognition, showing recognition accuracy improvement over
the earlier version of the HTM in Section 5.

2. HIDDEN TRAJECTORY MODEL WITH CEPSTRA AS
ACOUSTIC FEATURES

In this section, we provide a brief overview of the earlier version
of the HTM detailed in [4], where "static" cepstra are used as the
acoustic features that are predicted by the model. The notation in
[4] has been slightly modified so that the generalization of the HTM
described in the next section can be more easily identified.

Given the VTR hidden trajectory, Zk, which is a function of
time frame k, the conditional distribution of cepstra is assumed to be
Gaussian:

P(Ok Zk, S) = A[ok; F[zkl + Us(k) I Es(k)]. (1)

where F[Zk] is a fixed, parameter-free nonlinear function, with ,k
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and E (k) being the model parameters (related to the cepstral-prediction
residual component) subject to optimization from the cepstral data
Ok. (The model parameters related to the stochastic VTR targets
have been presented in [5, 4] and will not be discussed in this paper.)

We further assume that the prior distribution of zk for each time
k, given the phonetic unit or state s is a Gaussian:

p(zk s) = JV (zk; ,zk' k) (2)

where the mean vector ttzk and covariance matrix Wz k are depen-
dent on the underlying model parameters representing the phonetic
targets and on the coarticulatory properties of the stochastic target-
directed "hidden" speech dynamics (see details in [4, 1]).

To compute the acoustic likelihood, we marginalize the hidden
variable zk to obtain

P(ok Is) = P(Ok Zk, S)P(Zk Is)dZk

I\(hk; [Zk] + er(k)e Ee(k))e\F(Z; zk eqfzk)dZk

/ O"(k; F [Z]z+ bk, Qk3)

where

Then, the conditional distribution ofthe joint cepstral/delta-cepstral
features becomes:

p(Ok, dklZk,Zk 0, Zk+0, s) =

Ar([ dk ]; [ rzk k]¶lzk] k)+ s
(k)

dk Tzk+O -20 k-0

6(k)

(9)

rs(k) 1)

Using first-order Taylor series approximation for nonlinear func-
tion F[zk] according to (6), we approximate the conditional pdf of
(9) by

O[k ]; [ Zk

dk Ak Zk+0

[LZk-0

Ak=
F

where

and

I Hbk,

0
T'[zo +0]

20

(k) ° (10)

0
' [z° 0]

k0 I (11)

-F[Zk] + fl,(kS - -n [Zk]Zk
bk = [zk+O][z k0 0]+F [z-0]z- +H (k)I

20 + 6s (k)20(12)
We assume a block-diagonal Gaussian distribution for the joint

hidden trajectory vector, p(zk, Zk+, Zk0 Is). That is,

bk = F[Z] H-+ Us(k) T[Zk]zk (4)

Qk = Es(k) + F [Z]k'zk ( kZ) 5

The approximation in (3) was due to the use of first-order vector
Taylor series expansion:

F[Zk] - [Z]k + F [Zk](Zk- Zo) (6)
where zo is the Taylor series expansion point, which, in our cur-
rent modeling implementation, is obtained by a high-quality VTR or
formant tracker [3, 6].

The learning algorithm for the cepstral prediction residual para-
meters tt and Es (as well as the model parameters related to sto-
chastic targets) can be found in [4] and will not be reviewed here.

3. GENERALIZATION: JOINT
CEPSTRA/DELTA-CEPSTRA AS ACOUSTIC FEATURES

We now generalize the above HTM with static cepstra as the ob-
servation vectors to one that accounts for joint static cepstra and its
temporal differentials. The differential or delta cepstra is defined by

dk Ok+- Ok-0
20

Using (7) and (1), we obtain conditional pdf for delta-cepstra:

p[dk lZk, Zk+O, Zk0, s] =

dk; F[Zk0]k [k01aH-]6Zk0+ ] (8)20

where 6s(k) and Us(k) are relatedto/ (k+0)' s(k -0), s(k+o), and
E,(k 0). In the current model implementation, however, we treat
6s (k) and s (k) as new parameters in the training for simplicity pur-
poses. This treatment avoids otherwise more complex constrained
optimization problem where the constraints based on the relations
are imposed. (Solving this difficult constrained optimization prob-
lem is our planned future research work.)

FZ 1 'zk 1, [ zk 0 0
H([ z j; [z I O W+ or'ZkO Ik+O [o 0f'k 'kJLZk-0 J Hzk-0J L0 O O fzk-0

(13)
where x,zk' k+ and x, k are the covariances of the hidden
trajectory vectors at three different frames. They are determined
by the VTR-targets' covariance parameters of the HTM and by the
coarticulation properties of the VTR dynamics as elaborated in [4],
and are considered fixed for the discussion ofthe cepstral prediction
residual parameters as the focus of this paper.

Now we compute the acoustic likelihood, p(ok, dk s), by mar-
ginalizing the hidden trajectory variables:

Jp(ok, dk Zk, Zk-0, Zk+0, S)p(Zk, Zk+0, Zk 0s)dZkdZk+odZk-0

(14)
This integration has a closed form, which gives

P(ok,dk IS)xo(aa k]c Ak[rkiO Hbk, bk) (15)

where the covariance matrix can be shown to be

s[ k 0 [ 0

(7) &Qk =
f1 A 0 'PL'k+O

~~00

0
O AkT

qf,k-0 _(
(16)

which is enlarged from that in the conditional likelihood of (9).
It is clear that the acoustic likelihood in (15), where joint cepstra

and their temporal differentials are used as the acoustic features, is a
principled generalization of that in (3) with only static cepstra as the
acoustic features. The quantity Ak = J'[z°] in (3) is generalized
to (11) with a higher dimension, and the quantity bk in (4) is also
expanded to a higher dimension shown in (12). The same kind of
expansion can be seen for the time-varying covariance matrix Qk,
from (5) to (16). Note these quantities are not intrinsic model para-
meters but functions ofthem. Hence these quantities and the acoustic
likelihood can be computed once the intrinsic model parameters are
determined from the training data, which is presented next.
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4. PARAMETER ESTIMATION

In this section, we present estimating formulas for the intrinsic model
parameters -i,E,:, 6, and Fr in the above generalized HTM
using maximum likelihood. It is assumed that the boundaries of each
phone unit, denoted by s, are given (either provided by the databases
such as TIMIT, or computed from an HMM system in advance).

We first take derivatives of log products of (15), over all frames
in the training data, with respect to the vector-valued parameters [I,
and 6, (related to mean vectors of cepstral prediction residuals). Set-
ting the derivatives to zero and solving for the parameters, we obtain
the closed-form estimation formulas:

[is= K Ok-k[Zk

k=l

.F[z o1o .'F'[z o14]tik

20n[k+0] + kk 0

zk -o))]

where K, is the total number of frames associated with phone unit s
in the training data.

For estimating the parameters Es and F , covariance matrices
of cepstral prediction residuals, no closed-form estimation formu-
las can be obtained. In the current model implementation, we sim-
plify the problem by assuming diagonality of Es and Fr and then
estimate their diagonal elements only. Further, we use the "frame-
independent approximation" (described in [4] in detail) and gener-
alize the approximate estimation formula derived in [4] for cepstral
features only to those with joint static and delta cepstra:

diag(E,) OKE[( [Z]k

[ZkI(itk - Zk) - )2

diagF'[z] (T [Z0]) )] (19)

diag(F)) 1 Z{[dk
k=l

+T z+o I [tzk+o](Z
-F[zk o1"zk-]

diag(Ak [0

20 (F[zk+o1

- Zk+o) 6z2-(

-_0 ) - s (2(

k ° °0

kO kZ_

where element-by-element vector square operations are used above.

5. PHONETIC RECOGNITION EXPERIMENTS

Phonetic recognition experiments are carried out, aimed at evaluat-
ing the effectiveness of adding the differential cepstra as acoustic
features in the HTM and of the parameter learning algorithm de-
scribed in this paper. The standard TIMIT phone set with 48 labels
is expanded to 58 (as described in [2, 21]) in training the HTM pa-
rameters using standard training utterances. Phonetic recognition
errors are tabulated using the commonly adopted 39 labels after the

label folding. The results are reported on the standard core testset of
192 utterances (24 speakers), the same setup as that described in [8].

Phonetic recognition performance is measured from the pho-
netic decoding results obtained by an A* search on the phonetic
lattice, which is generated by our baseline triphone HMM system
with the bi-gram language model. (The same LM is used for eval-
uating the HTM recognizer.) The numbers of the lattice nodes and
links per utterance are 1289 and 8276, respectively, averaged over
192 core test-set utterances. A detailed description of this lattice-
constrained A* search algorithm can be found in [21] for the HTM
with the use of static (frequency-warped) cepstra as the acoustic fea-
tures, where the complete log likelihood score used in the decoding
process uses a weighted sum of 1) log HTM likelihood, 2) logHMM
likelihood, 3) LM score, and 4) insertion penalty. The basic struc-
ture of this decoder remains the same for the new HTM with the use
ofjoint (frequency-warped) cepstra and their temporal differentials.
The main change is to replace the old log HTM likelihood computed
using Eq.(3) by the new one according to Eq.(15). In addition, the
weights are re-adjusted.

In Table 1 we show phonetic recognition performance compar-
isons between the earlier version of the HTM [4] and the new ver-
sion presented in this paper. In addition to the percent Accuracy
and Correctness as the most common recognition performance mea-
sures, error types (Substitution, Deletion, and Insertion) are listed
also for both versions of the HTM. We also show the performance
of the baseline HMM using joint static and delta cepstra features in
the final row of Table 1. The HMM system has a total of 1,170,000
parameters. In contrast, the two versions of the HTM have much
fewer parameters 6,272 and 11,056, respectively.

Table 1. Phonetic recognition performance comparisons on the
TIMIT core test set between two versions ofHTM: HTMwhich pre-
dicts static (frequency-warped) cepstra and HTM which predicts
joint static and delta cepstra. Lattice-constrained A * search [21]
is usedfor phonetic decoding with weighted HTM, HMM, and LM
scores. The final row lists the performance ofthe baseline HMM

|_______________ I Acc %0 Corr Sub %0 Del %0 Ins %
HTM (static 75.07 78.28 15.94 5.78 3.20

cepstra)
HTM (static/ 75.17 78.40 15.80 5.80 3.23
delta cepstra)
HMM (baseline) 72.48 75.70 17.74 6.76 3.22

The results in Table 1 show that both HTM systems perform
significantly better than the HMM system, and the addition of delta
cepstral features in the new version of HTM gives a moderate gain
over the earlier version of HTM with static cepstral features alone.
The magnitude of this gain for the HTM is smaller than the counter-
part for the HMM, likely due to the fact that the HTM has already
incorporated dynamic information in the model structure while the
HMM does not. Nevertheless, since the performance is already at
a high level, the moderate gain observed Table 1 indicates bene-
fits of the expanded capability of the new HTM in predicting the
delta cepstral features. To put such performance comparisons into
a perspective, we summarize in Table 2 the accuracy performances
on the same TIMIT phonetic recognition task reported in the liter-
ature using a wide variety of different techniques by other groups
worldwide. The best-ever result on TIMIT phonetic recognition task
with the core test set is one obtained by combining the results from
a large number of classifiers each with different acoustic measure-
ments. Without using such combinations, our HTM performs better
than all other techniques in the literature, and is only 0.43% lower
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than the best-ever recognition accuracy. In light of these high levels
of the performance,1 the 0.100% gain we have achieved as shown in
Table 1 is meaningful and informative.

Table 2. Summary ofphonetic recognition accuracy on the TIMIT
core test set in the literature using a wide range oftechniques

Technique Phone Accuracy%0
Triphone Discrete HMMs [12] 66.08

Triphone Continuous HMMs [11] 72.90
Conditional Random Field [13] 65.23
Recurrent Neural Nets [16] 73.90
Large-Margin GMM [18] 67.00

Monophone HTMs (this paper) 75.17
Anti-Phone, Heterogeneous Classifiers [9] 75.60

6. SUMMARY AND CONCLUSION

While the conventional technique for incorporating speech dynam-
ics into speech recognizers involves the use of cross-frame differ-
entials (deltas) of speech features, the realistic speech dynamics (as
illustrated in [23, 14, 19], etc.) exhibit more intricate, linguistically
correlated patterns far beyond what these simplistic differentials can
characterize. Our previous version ofthe HTM [4] captures some re-
alistic aspects of such speech dynamics in the model structure while
predicting the static speech features (in the form of cepstra). In this
paper, the HTM is extended so that its dynamic structure is used also
to predict cross-frame differentials of speech features as well. We
provide a rigorous mathematical formulation ofthis extended model,
and present the newly developed parameter estimation technique.

The evaluation experiments on the standard TIMIT phonetic recog-
nition task demonstrate benefits of adding the new component of the
HTM in predicting delta cepstra, measured by moderate recognition
accuracy improvement over the earlier version of the HTM. This
improvement is on top of the best performance on this task with-
out using many heterogeneous classifiers/recognizers with combined
scores. Our future work involves design of more elaborate dynamic
acoustic features and of new elements in the hidden structure of the
HTM that can accurately predict such features. This enhanced gen-
erative modeling capability is expected to further increase phonetic
and word recognition accuracy in our HTM-based recognizer.
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