
Low-Complexity, Near-Lossless Coding of Depth

Maps from Kinect-Like Depth Cameras

Sanjeev Mehrotra, Zhengyou Zhang, Qin Cai, Cha Zhang, Philip A. Chou

Microsoft Research

Redmond, WA, USA
{sanjeevm,zhang,qincai,chazhang,pachou}@microsoft.com

Abstract—Depth cameras are gaining interest rapidly in the
market as depth plus RGB is being used for a variety of appli-
cations ranging from foreground/background segmentation, face
tracking, activity detection, and free viewpoint video rendering.
In this paper, we present a low-complexity, near-lossless codec for
coding depth maps. This coding requires no buffering of video
frames, is table-less, can encode or decode a frame in close to
5ms with little code optimization, and provides between 7:1 to
16:1 compression ratio for near-lossless coding of 16-bit depth
maps generated by the Kinect camera.

I. INTRODUCTION

Over the past few years, depth cameras have been rapidly

gaining popularity with devices such as Kinect becoming

popular in the consumer space as well as the research space.

Depth information of a scene can be used for a variety of

purposes and can be used on its own or in conjunction with

texture data from a RGB camera. It can be used for aiding

foreground/background segmentation, performing activity de-

tection, face tracking, pose tracking, skeletal tracking, and

for free viewpoint video rendering [1], [2], [3], needed for

immersive conferencing and entertainment scenarios.

Depth cameras primarily operate using one of two technolo-

gies, one is by computing the time of flight from light being

emitted and the other is by observing the actual pattern that

gets displayed when a known infrared pattern is projected onto

the scene. The second of these two technologies requires an

infrared projecter to project a known pattern onto the scene and

an infrared camera to read the projected pattern. It is known

that in the second of these two technologies, such as that used

in the Microsoft Kinect sensors, the accuracy of the camera

actually reduces with the inverse of the depth. For example,

the error in the actual depth when reading a depth value which

is twice as far as another one will be two to four times as large.

This can be used when coding depth maps to lower the bitrate

while maintaining the full fidelity of the sensor. Stereovision

systems, usually using two or three video cameras [4], produce

depth maps with the depth accuracy also decreasing with the

inverse of the depth. Therefore, the compression technique

proposed in this paper can also be applied to depth maps from

stereovision systems.

In addition, depth maps typically have only a few values

in a typical scene. For example in a typical scene with a

background and a single foreground object, the background

has no variation in depth. In fact the variation is much less

than that found in texture map of the background. Even the

foreground has less variation in depth when going from one

pixel to the next as a greater degree of continuity naturally

exists in depth when compared to texture. For example, if we

look at ones clothing, the clothing itself may have significant

variation in texture due to the design, but the depth will still be

relatively continuous as it is still physically the same object.

This fact can be used to predict the depth of a given pixel

from neighboring pixels. After this prediction, simple run-

length/level techniques can be used to further perform entropy

coding allowing for high compression ratios.

The coding of depth maps is a relatively recent topic of

interest to MPEG [5]. In this paper, we do not attempt to

come up with a relatively complicated lossy compression

scheme, but rather present a low-complexity, and near-lossless

compression scheme for depth maps which gives a high

compression ratio between 7 (2.3bpp) to 16 (1bpp) depending

on the content. This coding can be used as front-end to

other compression schemes, or can be used on its own for

compressing depth maps. For example, it can be implemented

directly on the camera and used for sending the depth map

to the computer. This bitrate reduction can allow for multiple

depth cameras (depth camera array) to be put onto a single

USB interface or allow for higher resolution depth cameras to

be used on a single USB interface.

Alternate methods for depth map encodings have been

proposed [6], [7], [8]. Several methods use triangular mesh

representations for the depth map. Extracting the mesh from

the raw depth map takes additional complexity which we avoid

by directly coding the depth map using the pixel representa-

tion. In addition, even using a mesh representation does not

perform better than JPEG 2000 encoding [8], whereas our

method does perform better for lossless coding. In addition,

we concentrate on a lossless to near-loss encoding as opposed

to a lossy encoding.

II. DEPTH MAP CODING

An example depth map from a scene as captured from

the depth camera on Microsoft’s Kinect is shown in Fig. 1.

Regardless of the texture, we can see that the depth map

captures the outlines of the objects in the scene. It can be seen

from the depth map that there are only a few distinct values

in the depth map and thus we can infer that high compression

ratios should be possible. In this paper, we present a low



Fig. 1. An example depth map from Set 1.

complexity, near-lossless compression scheme which consists

of three components which will be described in greater detail.

1) Inverse coding of the depth map: As the depth map

accuracy from the sensor decreases with distance, we can

quantize depth values which are further out more.

2) Prediction: Since the depth map is relatively continuous

from pixel to pixel simple prediction schemes can be

applied to remove redundancy.

3) Adaptive Run-length / Golomb-Rice (RLGR) coding [9]:

After prediction, there will typically be large runs of ze-

ros. Thus we can use adaptive RLGR as an adaptive, low-

complexity, table-less code to perform entropy coding.

A. Inverse Coding of Depth Map

It is well known that the sensor accuracy of depth cameras

such as the Kinect has an accuracy which is at least inversely

proportional to the actual depth — Kinect’s depth accuracy is

actually proportional to the inverse of squared depth. Let Z be

the depth value produced by the camera. We define Zmin to be

the minimum depth that can be produced by the sensor of the

depth camera and let Zmax be the maximum depth. We define

Z0 to be the depth at which the accuracy is 1 unit. This value

can be found by looking at the sensor specifications of the

manufacturer or can be measured by placing objects at known

depths and repeatedly measuring the depth values using the

camera. Therefore, at distances less than Z0, the depth map

coding does not fully encode the sensor capabilities and at

distances greater than Z0, the sensor accuracy decreases with

depth. For example, at Z = 2Z0, the sensor accuracy is 2 units

rather than 1 (if inversely proportional) or 4 units (if inversely

proportional to the square). and therefore we can quantize all

values 2Z0 − 1, 2Z0, and 2Z0 + 1 all to 2Z0 and still be

encoding the full fidelity of the sensor.

As an alternative to non-uniform quantization, we can use

something similar to that proposed in [1], and simply code the

inverse of the depth (call it D),

D =
a

Z
+ b, (1)

where a is chosen to maintain full depth accuracy. That is

a

Z0

−
a

Z0 + 1
≥ 1, (2)

a ≥ Z0(Z0 + 1). (3)

To minimize the number of bits in the coding while maintain-

ing the encoding capabilities of the sensor, we can simply use

a = Z0(Z0+1). b is an arbitrary offset and can be determined

by setting D = 1 at Z = Zmax, which gives

b = 1−
a

Zmax

. (4)

Z = 0 can be used as a special value to indicate missing depth

values and can be coded as D = 0.

Decoding can simply invert Eqn. 1, and we get

Z =
a

D − b
. (5)

Note that although the decoded depth value may not be the

same as the original depth value, it is still “lossless” in that

little to no additional noise is being introduced than that

already present due to the sensor accuracy.

The dynamic range of the coefficients after applying the

inverse mapping is given by

∆D = a

(
1

Zmin

−
1

Zmax

)

=
a(Zmax − Zmin)

ZminZmax

. (6)

If a < ZminZmax, then we see that the dynamic range of

the coefficients after applying the inverse mapping is reduced,

and thus even in the absence of other entropy coding schemes,

there is a bit rate reduction of log2
ZminZmax

a
bits needed to

represent the depth map values.

B. Prediction

D is coded in the integer domain, that is we simply take

the round(.) of Eqn. 1. To take advantage of the continuity of

the depth map, D is predicted using the previous neighboring

value. We simply raster scan the depth map to create a one-

dimensional array. Other scanning methods such as the well

known zig-zag scan are also possible, although the raster

scan takes advantage of cache locality and is thus faster in

implementation, and also gets most of the prediction gains.

After raster scan, the nth pixel gets coded using

Cn = Dn −Dn−1. (7)

More complicated schemes can also be used for prediction

such as adaptive linear prediction techniques and various

directional prediction schemes as used in the video coding

literature. However, again, for purposes of simplicity and since

we already get good compression efficiency, we choose to just

use a one step prediction.

For low memory usage, we also choose to only do spa-

tial prediction and do not rely on any temporal or motion

prediction schemes. Thus we do not require any additional

frame buffer for encoding or decoding. Because there is

significant spatial continuity in the depth map, additional

temporal prediction will provide additional gain primarily at

the boundaries of the objects. The pixels internal to the objects

is already being predicted fairly well.



C. Adaptive RLGR Coding

We use the adaptive Run-Length / Golomb-Rice code from

[9] to code the resulting Cn values. Since this entropy coding

method uses a backward adaptive method for parameter adap-

tation, no additional side information needs to be sent, and

no tables are needed to perform the encoding or decoding.

Although the original depth map, Z , and the inverse depth

map, D, consist of positive values, the predicted values,

C, can be negative or positive. If we assume that Cn is

distributed according to a Laplacian distribution, then, we can

apply the interleave mapping to get a source with exponential

distribution as needed by Golomb-Rice code,

Fn =

{
2Cn if Cn ≥ 0
−2Cn − 1 if Cn < 0

. (8)

After this, the codec operates in either the “no-run” mode

or the “run” mode. There are two parameters in the codec

which are adapted, k and kR. In the no-run mode (k = 0),

each symbol Fn gets coded using a Golomb-Rice coding,

represented as GR(Fn, kR). In the the run mode (k 6= 0),

a run of m = 2k zeros gets coded using a 0, and a run

of m < 2k symbols gets coded using 1 followed by the

binary representation of m using k bits followed by the level

GR(Fn, kR).

The Golomb-Rice coding is simply given by

GR(Fn, kR) = 11 . . . 1
︸ ︷︷ ︸

p-bit prefix

bkR−1bkR−2 . . . b0
︸ ︷︷ ︸

kR-bit suffix

, (9)

where there are p = ⌊ u

2
kR

⌋ prefix bits and the suffix value is

the remainder of u

2kR
.

Instead of keeping k and kR fixed parameters, they are

adapted using the backward adaptation similar to that de-

scribed in [9]. Although the adaptive RLGR coding on its own

is table-less, we have optimized the decoding using a trivial

amount of memory of 3KB. With minimal optimizations, we

can easily encode a 640x480 16-bit per pixel frame in close

to 5ms on a single-core 3GHz core.

D. Lossy Coding

The proposed coding scheme is numerically lossless if

only the prediction and adaptive RLGR entropy coding is

performed. It is also practically lossless, because of the

sensor accuracy, if the inverse depth coding is done using

a = Z0(Z0 + 1). To introduce some small amount of loss,

we can choose one of three methods

1) a < Z0(Z0 + 1) can be chosen. This will introduce loss

in that the sensor capabilities will not be fully encoded.

2) Cn can be mildly quantized. In this case the coefficient

that gets coded becomes Cn = Q(Dn − D′

n−1
), where

Q(.) is the quantization operation, and D′

n−1 is the

previous decoded pixel. The decoded pixel can be found

by D′

n = IQ(Cn) + D′

n−1, where IQ(.) is the inverse

quantization operation.

3) The level in the adaptive RLGR coding can be quantized.

In this paper, we explore lossy coding using the first of these

three options, that is choosing a < Z0(Z0 + 1).
Lossy coding can also be done using more complex methods

and different schemes may be used depending on the actual

application of the depth map. For example, if the coded depth

map is being used to reconstruct different views of a video

scene, then the criteria to be optimized is the actual video

reconstruction and not the accuracy of the coded depth map.

III. RESULTS

We present two sets of results, one is to show the computa-

tional complexity and compression efficiency of the proposed

depth map coding with an implementation done using minimal

optimizations. The other set of results compares the recon-

struction of video from alternate viewpoints when using the

texture map and a coded depth map from a given viewpoint.

The depth map is coded using near-lossless and slightly lossy

compression using the method proposed.

A. Coding Efficiency

We compress two sets of captured depth maps from the

Kinect camera. These two sets of depth maps are taken from

multiple video sequences, the total consisting of close to 165

seconds of video and depth maps captured at 30fps, 640x480,

and 16 bits/pixel (bpp). The first of these two sets is a more

complicated depth map (Fig. 1 is a depth map from this

set) with multiple depth values, the second is a relatively

simpler depth map consisting of only a single background and

foreground object (Fig. 5(b)).

The coding is done using the following five methods. In the

Microsoft Kinect sensors, we measure and use the following

parameters for the inverse coding presented in Sec. II-A,

Zmin = 300mm, Z0 = 750mm, and Zmax = 10000mm.

1) Without inverse coding: This method just uses the entropy

coding (prediction plus adaptive RLGR coding) and pro-

duces numerically lossless results.

2) With inverse coding (lossless): This method uses the

inverse coding method with Z0 = 750mm. This value

of Z0 is the measured depth value at which the sensor

accuracy is 1 unit. Thus, this produces results which fully

encode the sensor capabilities.

3) With inverse coding (lossy): We reduce Z0 to Z0 =
600mm. This induces mild compression, with a quan-

tization factor of 1.25.

4) With inverse coding (lossy): We further reduce to Z0 =
300mm. This results in stronger compression as the depth

values are quantized by a factor 2.5.

5) With JPEG 2000 [10] lossless mode encoding. We use

this state of the art lossless image codec to compare the

efficiency of our compression scheme.

The coding efficiency results for these two sets of depth

maps are summarized in Table I when using methods 1 to

4. In Table. I, we list the 10-th percentile, 50-th percentile

(median), and 90-th percentile results for the compression ratio

per frame, encode time per frame, and decode time per frame.

We do not show results for the mean compression ratio as they



TABLE I
SUMMARY OF COMPRESSION RATIO AND CPU UTILIZATION RESULTS FOR BOTH WITHOUT AND WITH INVERSE CODING. THIS TABLE SHOWS THE 10-TH

PERCENTILE, 50-TH PERCENTILE (MEDIAN), 90-TH PERCENTILE VALUES FOR COMPRESSION RATIO (CR), ENCODE TIME (LISTED AS “ENC”) PER

FRAME, AND DECODE TIME (LISTED AS “DEC”) PER FRAME. WITHOUT INV. CODING IS NUMERICALLY LOSSLESS,Z0 = 750mm IS NEARLY LOSSLESS

BECAUSE OF THE SENSOR ACCURACY, Z0 = 600mm AND Z0 = 300mm ARE LOSSY DUE TO ADDITIONAL QUANTIZATION OF DEPTH VALUES BY A

FACTOR OF 1.25 AND 2.50 RESPECTIVELY.

Set1 Set2

W/O Inv. Inv. Coding Inv. Coding Inv. Coding W/O Inv. Inv. Coding Inv. Coding Inv. Coding
Coding Z0 = 750mm Z0 = 600mm Z0 = 300mm Coding Z0 = 750mm Z0 = 600mm Z0 = 300mm

10-th% CR 4.4279 5.7479 6.3408 13.3827 12.6955 15.2030 16.6360 33.1284
50-th% CR 4.8855 6.1754 6.8012 15.1446 12.9683 15.4539 16.8819 34.1922
90-th% CR 5.2915 7.2276 7.9825 16.6762 13.5149 16.0821 17.5864 35.8543

10-th% Enc 5.213ms 6.648ms 6.585ms 4.728ms 3.186ms 3.797ms 3.753ms 2.909ms
50-th% Enc 5.833ms 7.429ms 7.415ms 5.177ms 3.523ms 3.901ms 3.857ms 2.961ms
90-th% Enc 6.472ms 7.900ms 7.966ms 5.553ms 4.109ms 3.978ms 4.138ms 3.010ms

10-th% Dec 7.027ms 7.871ms 8.196ms 4.763ms 3.538ms 3.943ms 3.911ms 2.550ms
50-th% Dec 7.862ms 9.097ms 9.248ms 5.362ms 3.883ms 4.036ms 4.013ms 2.601ms
90-th% Dec 8.831ms 9.704ms 10.047ms 5.813ms 4.590ms 4.210ms 4.470ms 2.698ms

2 4 6 8
0

1

2

3

4

5
x 10

−3

Compression Ratio

F
ra

c
ti
o

n

5 10 15
0

0.002

0.004

0.006

0.008

0.01

Compression Ratio

F
ra

c
ti
o

n

5 10 15 20 25
0

0.005

0.01

0.015

Compression Ratio

F
ra

c
ti
o

n

5 10 15 20
0

1

2

3

4

5
x 10

−3

Compression Ratio

F
ra

c
ti
o

n

(a) (b) (c) (d)

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

Compression Ratio

F
ra

c
ti
o

n

5 10 15
0

0.05

0.1

0.15

0.2

0.25

Compression Ratio

F
ra

c
ti
o

n

5 10 15 20
0

0.05

0.1

0.15

0.2

Compression Ratio

F
ra

c
ti
o

n

10 20 30 40
0

0.05

0.1

0.15

0.2

Compression Ratio
F

ra
c
ti
o

n

(e) (f) (g) (h)

Fig. 2. PDF of compression ratios of two sets of depth maps. (a) Numerically lossless coding (without inverse coding), (b) Lossless coding of sensor
capabilities (Z0 = 750mm), (c) Lossy coding with additional quantization factor of 1.25 (Z0 = 600mm), (d) Lossy coding with additional quantization
factor of 2.5 (Z0 = 300mm). (a)-(d) are results for Set 1 and (e)-(h) are for Set 2.

get skewed towards the high side since some frames (with a

constant depth value) get compressed to very few bytes (as

little as 5 bytes) resulting in very high compression ratios.

For the first set, we see that we can achieve up to a ratio of

5.3 for numerically lossless compression, and 7.2 (2.2bpp) for

near-lossless compression (lossless up to the sensor accuracy)

by using inverse coding. For the second set (simpler set), we

can achieve lossless compression ratios of up to 16 (1 bpp).

The higher compression ratio for the second set is due to the

simplicity of the scene where most of the background is out

of sensor range and thus does not have a valid depth value.

This can be seen by comparing the depth map in Fig. 1 (from

the first set) with the one in Fig. 5 (from the second set).

If lossy coding is allowed, with Z0 = 300mm, we achieve

compression ratios of 15 (for the first set) up to 30 (for the

second set) resulting in 0.5-1bpp. The histogram (PDF) of the

compression ratio for the first four coding methods are also

plotted in Fig. 2 for the two data sets.

For comparison, JPEG 2000 [10] lossless mode encoding

gives 10%, 50%, and 90% compression ratios of 3.52, 3.73,

and 3.98 respectively for Set 1, and 9.37, 9.70, and 10.18 for

Set 2. This makes our lossless compression efficiency – even

without inverse coding – more than 30% better (see Table I)

than the JPEG 2000 lossless codec. Additionally, the encoding

and decoding complexity for JPEG 2000 is noticeably higher.

B. Computational Complexity

The implementation is done in pure C-code on a PC (no

assembly code written). We measure the encode/decode times

per frame when running on a single core 3GHz PC. The

results are summarized in Table I, showing the 10-th%, 50-th%

(median), and 90-th% encode and decode times. The PDF of

the encode and decode times are plotted in Fig. 3 and Fig. 4

respectively for the first data set.

From the results, we see that for we can simultaneously

encode and decode close to 70fps-200fps (encode plus decode

time is between 5ms-15ms). The encode and decode time with

inverse coding is somewhat higher since there is a divide that



0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

Enc Time (ms)

F
ra

c
ti
o

n

0 5 10 15
0

0.005

0.01

0.015

0.02

Enc Time (ms)

F
ra

c
ti
o

n

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

Enc Time (ms)

F
ra

c
ti
o

n

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

Enc Time (ms)

F
ra

c
ti
o

n

(a) (b) (c) (d)

Fig. 3. PDF of encode time per frame for the first data set. (a) Numerically lossless coding (without inverse coding), (b) Lossless coding of sensor capabilities
(Z0 = 750mm), (c) Lossy coding with additional quantization factor of 1.25 (Z0 = 600mm), (d) Lossy coding with additional quantization factor of 2.5
(Z0 = 300mm).

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

Dec Time (ms)

F
ra

c
ti
o

n

0 5 10 15
0

0.005

0.01

0.015

0.02

Dec Time (ms)

F
ra

c
ti
o

n

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

Dec Time (ms)

F
ra

c
ti
o

n

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

Dec Time (ms)

F
ra

c
ti
o

n

(a) (b) (c) (d)

Fig. 4. PDF of decode time per frame for the first data set. (a) Numerically lossless coding, (b) Lossless coding of sensor capabilities (Z0 = 750mm), (c)
Lossy coding with Z0 = 600mm, (d) Lossy coding with Z0 = 300mm.

takes place, but this can easily be reduced by using a look up

table to perform the division. Other optimizations can easily

further reduce the computational cost so that it can even be

directly implemented on the camera itself.

C. Viewpoint Reconstruction using Coded Depth Map

We also use the coded depth map and texture map to re-

construct alternate viewpoints to measure the effect of coding

on the reconstruction. Let viewpoint A be the viewpoint from

which we capture video and depth which is used to reconstruct

an alternate viewpoint, B. As an example, the texture map and

depth map from viewpoint A are shown in Fig. 5(a) and (b).

The reconstructed video from viewpoint B using the uncoded

depth map and the coded depth map (using Z0 = 750mm)

is shown in Fig. 5(d) and (f) respectively. The coded depth

map is shown in Fig. 5(e). For comparison, the actual video

captured from viewpoint B is shown in Fig. 5(c).

The video used in this experiment consists of 47 frames. To

measure the accuracy of the coded depth maps, we reconstruct

video from five alternate viewpoints using the texture and

depth map from viewpoint A. At the same time, we also

capture video directly from these five alternate viewpoints.

The cameras at these five alternate viewpoints (viewpoint B)

are calibrated to the camera at viewpoint A, i.e. we know the

translation and rotation.

We measure the PSNR between the captured video and

the reconstructed video. These results are shown in Fig. 6(a)

for the four different encoding methods explained before —

numerically lossless, sensor-wise lossless (Z0 = 750mm), and

lossy using Z0 = 600mm and 300mm. The five alternate

viewpoint PSNR results (shown for the luminance component

(Y) only) are all shown together in the Figure (each viewpoint

consists of 47 frames in the figure). The best viewpoint

reconstruction results in a PSNR of about 21dB and the worst

is about 14.5dB. However, we note that regardless of which

method is being used to encode the depth map, the PSNR

results are all very similar. Thus, even mildly lossy compres-

sion (with Z0 = 300mm) gives a bitrate reduction of 15 to 30

times, but produces no additional artifacts in reconstruction

when compared to the actual video. That is most of the addi-

tional errors introduced by the mild quantization of the depth

map are masked by the errors introduced by reconstruction

inaccuracies when compared to the actual captured video. Only

for the fifth viewpoint do we see additional errors introduced

by quantization of the depth map of about 0.5dB in PSNR.

In Fig. 6(b), we show the PSNR results between the nu-

merically lossless video reconstruction and the reconstructions

with the inverse coding for the various Z0 values. This result

shows the reconstruction errors introduced by the depth map

quantization when comparing to the reconstruction obtained

using an unquantized depth map as opposed to the actual

captured video as in Fig. 6(a). We see that Z0 = 750mm

produces a reconstruction which is very close to that obtained

when using the numerically lossless depth map (PSNR >

40dB). Even the Z0 = 300mm encoding produces good

results with PSNR close to 32dB.

IV. CONCLUSION

In this paper, we have presented a low-complexity, high-

compression efficiency, near-lossless coding of depth maps.

The coding takes advantage of the sensor accuracy, and

continuity in the depth map to encode. The encoding consists

of three components, inverse depth coding, prediction, and

adaptive RLGR coding. The coding provides a high compres-

sion ratio even for a near-lossless representation of the depth

map. In addition, reconstruction of alternative viewpoints from

the coded depth map does not result in additional artifacts. It

can be implemented as either a front-end to more complicated



(a) (b) (c)

(d) (e) (f)

Fig. 5. Images from Set 2. (a) The original texture map from viewpoint A. (b) The original depth map from viewpoint A. (c) The original video captured
from viewpoint B. (d) The reconstructed video from viewpoint B using texture map and uncoded (lossless) depth map from viewpoint A. (e) The coded depth
map using Z0 = 750mm, (f) The reconstructed video from viewpoint B using texture map and coded (using Z0 = 750mm) depth map from viewpoint A.

0 50 100 150 200 250
14

16

18

20

22

Frame Number

P
S

N
R

 (
d

B
)

 

 

LL
Z

0
=750mm

Z
0
=600mm

Z
0
=300mm

0 50 100 150 200 250
25

30

35

40

45

50

55

Frame Number

P
S

N
R

 (
d

B
)

 

 

Z
0
=750mm

Z
0
=600mm

Z
0
=300mm

(a) (b)

Fig. 6. PSNR Results. (a) PSNR between captured video and video reconstructed using texture map plus depth map. The depth map is coded using four
different ways, “LL” stands for numerically lossless (without inverse coding), Z0 = 750mm is lossless encoding of sensor capabilities, Z0 = 600mm, and
Z0 = 300mm are lossy encodings. (b) PSNR between video reconstruction using original (uncoded) depth map and video reconstruction using coded depth
map for various Z0 values. The five viewpoints are shown back to back for the 47 frame sequence (frames 1-47 represent the first viewpoint, frames 48-94
the second viewpoint, and so on).

lossy compression algorithms, or can be used on its own,

allowing multiple high-definition depth camera arrays to be

connected on a single USB interface.

REFERENCES

[1] K. Müller, P. Merkle, and T. Wiegand, “3-d video representation using
depth maps,” Proceedings of the IEEE, vol. 99, no. 4, pp. 643–656, Apr.
2011.

[2] B.-B. Chai, S. Sethuraman, and H. Sawhney, “A depth map repre-
sentation for real-time transmission and view-based rendering of a
dynamic 3d scene,” in Proc. First International Symposium on 3D Data

Processing Visualization and Transmission, 2002, pp. 107–114.

[3] A. Smolic, K. Mueller, P. Merkle, P. Kauff, and T. Wiegand, “An
overview of available and emerging 3d video formats and depth en-
hanced stereo as efficient generic solution,” in Proc. Picture Coding

Symposium, May 2009, pp. 1–4.

[4] O. Faugeras, Three Dimensional Computer Vision. MIT Press, 1993.
[5] Overview of 3D Video Coding, Apr. 2008, ISO/IEC JTC1/SC29/WG11,

Doc. N9784.
[6] S.-Y. Kim and Y.-S. Ho, “Mesh-based depth coding for 3d video using

hierarchical decomposition of depth maps,” in Image Processing, 2007.
ICIP 2007. IEEE International Conference on, vol. 5, Oct. 2007.

[7] K.-J. Oh, A. Vetro, and Y.-S. Ho, “Depth coding using a boundary
reconstruction filter for 3-d video systems,” IEEE Trans. Circuits and

Systems for Video Technology, vol. 21, Mar. 2011.
[8] B.-B. Chai, S. Sethuraman, H. S. Sawhney, and P. Hatrack, “Depth map

compression for real-time view-based rendering,” Pattern Recognition

Letters, Elsevier, pp. 755–766, May 2004.
[9] H. S. Malvar, “Adaptive Run-Length / Golomb-Rice encoding of quan-

tized generalized Gaussian sources with unknown statistics,” in Data

Compression Conference, 2006, pp. 23–32.
[10] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The jpeg 2000 still im-

age compression standard,” Signal Processing Magazine, IEEE, vol. 18,
no. 5, pp. 36 –58, Sep. 2001.


