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Abstract. The availability of commodity depth sensors such as Kinect
has enabled development of methods which can densely reconstruct
arbitrary scenes. While the results of these methods are accurate and
visually appealing, they are quite often incomplete. This is either due
to the fact that only part of the space was visible during the data
capture process or due to the surfaces being occluded by other objects
in the scene. In this paper, we address the problem of completing and
refining such reconstructions. We propose a method for scene completion
that can infer the layout of the complete room and the full extent of
partially occluded objects. We propose a new probabilistic model, Contour
Completion Random Fields, that allows us to complete the boundaries
of occluded surfaces. We evaluate our method on synthetic and real
world reconstructions of 3D scenes and show that it quantitatively and
qualitatively outperforms standard methods. We created a large dataset
of partial and complete reconstructions which we will make available to
the community as a benchmark for the scene completion task. Finally, we
demonstrate the practical utility of our algorithm via an augmented-reality
application where objects interact with the completed reconstructions
inferred by our method.

Keywords: 3D Reconstruction, Scene Completion, Surface Reconstruc-
tion, Contour Completion

1 Introduction

The task of generating dense 3D reconstruction of scenes has seen great progress in
the last few years. While part of this progress is due to algorithmic improvements,
large strides have been made with the adoption of inexpensive depth cameras
and the fusion of color and depth signals. The combined use of depth and colour
signals has been successfully demonstrated for the production of large-scale models
of indoor scenes via both offline [1] and online [2] algorithms. Most RGB+D
reconstruction methods require data that show the scene from a multitude of
viewpoints and are not well suited for input sequences which contain a single-view
or limited number of viewpoints. Moreover, these reconstruction methods are
hindered by occlusion as they make no effort to infer the geometry of parts of
the scene that are not visible in the input sequences. Consequently, the resulting
3D models often contain gaps or holes and do not capture certain basic elements
of a scene, such as the true extent and shape of objects and scene surfaces.
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Fig. 1. Overview of the pipeline: Given a dense but incomplete reconstruction (a) we
first detect planar regions (b) and classify them into ceiling (not shown), walls (tan),
floor (green) and interior surfaces (pink) (c) Non-planar regions are shown in light blue.
Next, we infer the scene boundaries(d) and shape of partially occluded interior objects,
such as the dining table (e) to produce a complete reconstructed scene (f). Additional
visualizations are found in the supplementary material.

Accurate and complete surface reconstruction is of special importance in
Augmented Reality (AR) applications which are increasingly being used for
both entertainment and commerce. For example, a recently introduced gaming
platform [3] asks users to scan an interior scene from multiple angles. Using
the densely reconstructed model, the platform overlays graphically generated
characters and gaming elements. Furniture retailers (such as IKEA) enable
customers to visualize how their furniture will look when installed without having
to leave their homes. These applications often require a high fidelity dense
reconstruction so that simulated physical phenomenon, such as lighting, shadow
and object interactions (e.g. collisions) can be produced in a plausible fashion.
Unfortunately, such reconstructions often require considerable effort on the part
of the user. Applications either demand that users provide video capture of
sufficient viewpoint diversity or operate using an incomplete model of the scene.

Our goal is to complement the surface reconstruction for an input sequence
that is limited in viewpoint, and ”fill in” parts of the scene that are occluded or
not visible to the camera. This goal is driven by both a theoretical motivation
and a practical application. Firstly, basic scene understanding requires high
level knowledge of how objects interact and extend in 3D spaces. While most
scene understanding research is concerned with semantics and pixel labeling,
relatively little work has gone into inferring object or surface extent, despite
the prevalence and elemental nature of this faculty in humans. Second, online
surface reconstruction pipelines such as KinectFusion [2] are highly suitable for
AR applications, and could benefit from a scene completion phase, integrated
into the pipeline.

Our method assumes a partial dense reconstruction of the scene that is
represented as a voxel grid where each voxel can be occupied, free or its state in
unknown. We use the KinectFusion [2] method to compute this reconstruction
which also assigns a surface normal and truncated signed distance function (TSDF)
[4] to the voxels. Given this input, our method first detects planar surfaces in
the scene and classifies each one as being part of the scene layout (floor, walls
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ceiling) or part of an internal object. We then use the identities of the planes to
extend them by solving a labeling problem using our Contour-completion random
field (CCRF) model. Unlike pairwise Markov random fields, which essentially
encourage short boundaries, the CCRF model encourages the discontinuities in
the labeling to follow detected contour primitives such as lines or curves. We
use this model to complete both the floor map for the scene and estimate the
extents of planar objects in the room. This provides us with a watertight 3D
model of the room. Finally we augment the original input volume account for
our extended and filled scene. The stages of our algorithm are demonstrated in
figure 1.

Our Contributions: This paper makes the following technical contributions: (1)
We introduce the Contour Completion Random Field (CCRF), a novel algorithm
for completing or extending contours in 2D scenes. (2) We describe an algorithm
for inferring the extent of a scene and its objects. (3) We demonstrate how to
efficiently re-integrate the inferred scene elements into a 3D scene representation
to allow them to be used by a downstream application.

The rest of the paper is organized as follows. We discuss the relationship of
our work to the prior art in dense reconstruction in section 2. In section 3 we
describe how we detect and classify planar surfaces in the scene. In section 4
we discuss how we perform scene completion by inferring the extent of scene
boundaries and extending internal planes using our novel contour completion
MRF. The procedure for augmenting the original (TSDF) based reconstruction
with new values is discussed in section 5. In section 6 we perform qualitative
and quantitative evaluation of our methods and in section 7 discuss our results,
limitations and future work.

2 Related Work

KinectFusion [2] is a real-time dense surface mapping and tracking algorithm.
It maintains an active volume in GPU memory, updated regularly with new
depth observations from a Kinect camera. Each depth frame is tracked using the
iterative closest-point algorithm, and updates the reconstruction volume which
is represented as a truncated signed-distance function (TSDF) grid. At any point
the TSDF volume may be rendered (using ray casting) or transformed into an
explicit surface using marching cubes [5] (or similar algorithm). Our method
extends this pipeline by accessing the TSDF volume at certain key frames, and
augmenting it. As new depth observations reveal previously occluded voxels, our
augmentations are phased out. Our scene completion algorithm may be used to
augment other surface reconstruction methods such as [6,7] with little change.
However, most of these methods have different motivation, and are not real-time.
In SLAM++ [8], a database of 3D models is used during the reconstruction
process. This helps improve tracking, reduces representation size, and augments
the reconstructed scene. However, this method requires intensive preparation
time for each new scene in order to capture the various repeated objects found
in each one.
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In recent years there have been many papers on scene understanding from
a single image. Barinova et al [9] geometrically parse a single image to identify
edges, parallel lines and vanishing point, and a level horizon. Hoiem et al [10]
estimate the layout of a room from a single image, by using a generalized box
detector. This approach is not well suited to completing either highly occluded
scenes or non-rectangular objects. Ruiqi and Hoiem [11] attempt to label occluded
surfaces using a learning-based approach. This method is limited by the number
of classes which can be learned, and does not infer the extent of the hidden
objects. A more recent paper by the same authors [12] is more relevant to our
approach. They detect a set of supporting horizontal surfaces in a single-image
depth frame, and their extent is deduced using the features at each point and
surrounding predictions. However, they do not attempt to infer the full scene
layout and limit themselves to support-related objects.

Min Kim et al [13] augment and accelerate reconstruction of complex scenes
by carefully scanning and modeling objects which repeat in the scene, in advance.
These objects (e.g. office chairs, monitors ) are then matched in the noisy and
incomplete point cloud of the larger scene, and used to augment it. This approach
is less suited to capturing a new environment, in which we cannot model the
repeating objects independently (given that there are any). Kim et al[14] jointly
estimate the 3D reconstruction of a scene, and the semantic labels associated
with each voxel, on a coarse 3D volume. Their method works best with simple
occlusions and does not extend the volume to estimate the overall shape of the
room. Zheng et al [15] employ physical and geometrical reasoning to reconstruct
a scene. Their method relies on successful object segmentation, and a Manhattan-
world assumption. They fill occluded parts of objects by extrapolating along the
major axes of the scene. However, none of these methods can handle previously
unseen object and surfaces with non-linear boundaries.

3 Plane Detection and Classification

We now describe how our method detects the dominant planes from the partial
voxel based reconstruction. We denote the space of all possible 3D planes by
H, and the set of planes present in the scene by H. Let the set of all 3D points
visible in the scene be denoted by P = {p1, ...pN}. We estimate the most probable
labeling for H by minimizing the following energy function:

H∗ = arg min
H⊂H

N∑
i=1

fi(H) + λ|H|. (1)

where λ is a penalty on the number of planes and fi is a function that penalizes
the number of points not explained by any plane: fi(H) = min{minh∈H [δ(pi, h), λb]},
where the function δ returns a value of 0 if point pi falls on plane h and is infinity
otherwise. Minimizing the first term alone has the trivial degenerate solution
where we include a plane for every point pi in the set H. However, this situation
is avoided by the second terms of the energy which acts as a regularizer and adds
a penalty that linearly increases with the cardinality of H.
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Lemma 1. The energy function defined in equation (1) is a supermodular set
function.

Proof in the supplemental material

Computing the Optimal H Minimization of a super-modular function is an NP-
hard problem even when the set of possible elements is finite (which is not true
in our case). We employ a greedy strategy, starting from an empty set and
repeatedly adding the element that leads to the greatest energy reduction. This
method has been observed to achieve a good approximation [16]. We begin by
using the Hough transform [17] to select a finite set of planes. In our method,
each 3D point and its surface normal votes for a plane equation parameterized
by its azimuth θ, elevation ψ and distance from the origin ρ. Each of these votes
is accrued in an accumulator matrix of size A×E ×D where A is the number of
azimuth bins, E is the number of elevation bins and D is the number of distance
bins 1. After each point has voted, we run non-maximal suppression to avoid
accepting multiple planes that are too similar.

Once we have a set of candidate planes we sort them in descending order
by the number of votes they have received and iteratively associate points to
each plane. A point can be associated to a plane if it has not been previously
associated to any other plane and if its planar disparity and local surface normal
difference are small enough 2. As an additional heuristic, each new plane and its
associated points are broken into a set of connected components ensuring that
planes are locally connected.

Semantic Labeling Once we have a set of planes, we classify each one indepen-
dantly into one of four semantic classes: Floor, Wall, Ceiling and Internal. To
do so, we train a Random Forest Classifier to predict each plane’s class using
the ground truth labels and 3D features from [18], which capture attributes of
each plane including its height in the room, size and surface normal distribution.
Planes classified as one of Floor, Wall and Ceiling will be used for inferring the
floor plan and scene boundaries (section 4.6), whereas Internal planes will be
extended and filled in a subsequent step (section 4.7).

4 Scene Completion

Given the set of detected and classified planes we infer the true extent of the
scene, ie. obtain a water-tight room structure, and extend interior planes based
on evidence from the scene itself.

4.1 Completion as a Labeling Problem

We now describe how to estimate the boundaries of planes as seen from a top-down
view. We formulate boundary completion as a pixel labeling problem. Consider a

1 We use A=128, E=64 and D is found dynamically by spacing bin edges of size 5cm
apart between the max and minimum points

2 Planar disparity threshold=.1, angular disparity threshold = .1
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set S of nodes that represent grid locations in the top-down view of the scene.
We assume that a partial labeling of nodes i ∈ S in the grid can be observed
and is encoded by variables yi; i ∈ S where yi = 1, yi = 0 and yi = −1 represent
that i belongs to the plane, does not belong to the plane, and its membership is
uncertain respectively. Given y, we want to estimate the true extent of the plane
which we denote by x. Specifically, we will use the binary variable xi to encode
whether the plane covers the location of node i in the top-view. xi = 1 represents
that node i belongs to the plane while x1 = 0 represents that it does not.

The traditional approach for pixel labeling problems is to use a pairwise
Markov Random Field (MRF) model. The energy of any labeling y under the
pairwise MRF model is defined as: E(x) =

∑
i∈S φi(xi) +

∑
ij∈N φij(xi, xj),

where φi encode the cost of assigning a label xi and φij are pairwise potentials
that encourage neighboring (N ) nodes to take the same label, and K is a constant.
The unary potential functions force the estimated labels x to be consistent with
the observations y, ie. φi(xi) = inf if yi 6= −1 and xi 6= yi, and φi(yi) = 0
for all other cases, while the pairwise potentials take the form an Ising model.
The Maximum a Posteriori (MAP) labeling under the model can be computed
in polynomial time using graph cuts. However, the results are underwhelming
as the pairwise model does not encode any information about how boundaries
should be completed. It simply encourages a labeling that has a small number of
discontinuities.

4.2 Contour Completion Random Field

Unlike the standard MRF which penalizes the number of transitions in the
labeling, our Contour Completion Random Field (CCRF) model adds a penalty
based on the least number of curve primitives that can explain all the transitions.
We implement this by introducing higher order potentials in the model. These
potentials are defined over overlapping sets of edges where each set follows some
simple (low-dimensional) primitive curve shape such as a line or a circle. Formally,
the energy function for the CCRF model can be written as:

E(x) =
∑
i∈S

φi(xi) +
∑
g∈G

Ψg(x) (2)

where Ψg are our curve completion potentials, and G is a set where Each curve
g represents a set of nodes (edges) that follow a curve. The curve completion
potentials have a diminishing returns property. More formally,

Ψg(x) = F
( ∑
ij∈Eg

ψij(xi, xj)
)
, (3)

where Eg is the set of edges that defines the curve or edge group g. F is a
non-decreasing concave function. In our experiments, we defined F as an upper-
bounded linear function ie. F (t) = min{λ ∗ t, θ} where λ is the slope of the
function and θ is the upper-bound. It can be seen that once a few edges are
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cut t ≥ θ
λ , the rest of the edges in the group can be cut without any penalty.

This behavior of the model does not prevent the boundary in the labeling from
including large number of edges as long as they belong to the same group (curve).
The exact nature of these groups are described below.

4.3 Defining Edge Groups

We consider two types of edge groups: straight lines and parabolas. While
previous work has demonstrated the ability of the hough transform [17] to detect
other shapes, such as circles and ellipses, such high parameter shapes require
substantially more memory and computation and we found lines and parabolas
sufficiently flexible to capture most of the cases we encountered.

To detect lines, we used a modified Hough transform to not only detect lines
in the image, but also the direction of the transition (the plane to free space
or vice-versa). We use an accumulator with 3 parameters: ρ, the distance from
the origin to the line, θ, the angle between the vector from the origin to the
line and the X axis, and a quaternary variable d, which indicates the direction
of the transition (both bottom-top and left-right directions) 3. Following the
accumulation of votes, we run non-maximal suppression and create an edge group
for each resulting line.

The standard Hough transform for parabolas requires 4 parameters. To avoid
the computational and memory demands of such a design, we introduce a novel
and simple heuristic detailed in the supplemental material.

Fig. 2. Contour Completion Random Field: (a) A top-down view of a partially occluded
plane (b) We detect lines and parabolas along the contour of the known pixels (stippled
black lines), and hallucinate parallel lines (in red) (c) We apply CCRF inference to
extend the plane.

3 We use 400 angular bins for θ and evenly spaced bins for ρ 1 unit apart. The minimum
number of votes allowed was set to 10.
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4.4 Hierarchical Edge Groups

While using detected lines or curves may encourage the correct surface boundaries
to be inferred in many cases, in others, there is no evidence present in the image
of how a shape should be completed. For example see the right side of the shape in
figure 2 and the synthetic examples in figure 3(b). Motivated by the gestalt laws
of perceptual grouping, we attempt to add edge groups whose use in completion
would help provide for shapes that exhibited simple closure and symmetry. More
specifically, for each observed line detected, we add addition parallel edge groups
on the occluded side of the shape.

It is clear that defining edge groups that completely cover another edge group
would lead to double counting. To prevent this, we modify the formulation to
ensure that only one group from each hierarchy of edge groups is counted. To be
precise, our CCRF model allows edge groups to be organized hierarchically so
that a set of possible edges have a parent and only a single child per parent may
be active. This formulation is formalised as:

E(x) =
∑
i∈S

φi(xi) +
∑
g∈G

min
k∈c(g)

Ψk(x) (4)

where c(g) denotes the set of child edge groups for each parent g.
To summarize, our edge groups are obtained by fitting lines and parabolas to

the input image thus encouraging transitions that are consistent with these edges.
As indicated in Equation 4, not all edge groups can be active simultaneously
and in particular, any line used to hallucinate a series of edges is considered the
parent to its child hallucinated lines. Consequently, we constrain only a single
hallucinated line to be active (at most) at a time.

4.5 Inference with Hierarchical Edge Groups

Inference under higher order potentials defined over edges groups was recently
shown to be NP-hard even for binary random variables by Jegelka et al. [19].
They proposed a special purpose iterative algorithm for performing approximate
inference in this model. Later, Kohli et al. [20] proposed an approximate method
that could deal with multi-label variables. Their method transformed edge group
potentials into a sum of pairwise potentials with the addition of auxiliary variables
that allowed the use of standard inference method like graph cuts. However, both
these algorithms are unsuitable for CCRF because of the special hierarchical
structure defined over our edge groups.

Inspired from [20], we transformed the higher-order curve completion potential
(3) to the following pairwise form:

Ψp
g (x) = T + min

hg,z

{ ∑
ij∈Eg

θij((xi + xj − 2zij)hg − 2(xi + xj)zij + 4zij) − Thg

}
. (5)

where hg is the binary auxiliary corresponding to the group g, and zij ,∀ij ∈ Eg
are binary auxiliary variables corresponding to the edges that constitute the edge
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group g. However, this transformation deviates from the energy of the hierarchical
CCRF (equation 4) as it allows multiple edge groups in the hierarchy to be all
active at once.

To enure that only one edge group is active in each edge group hierarchy, we
introduce a series of constraints on the binary auxiliary variables corresponding
to the edge groups. More formally, we minimize the following energy :

E(x) =
∑
i∈S

φi(xi) +
∑
g∈G

Ψpg (x) s.t.∀g,
∑
k∈c(g)

hk ≤ 1 (6)

where c(g) denotes the set of child edge groups for each parent edge group g.
The minimum energy configuration of this formulation is equivalent to that of
hierarchical CCRF (equation 4).

In order to find the MAP solution, we now need to minimize the constrained
pairwise energy function (equation 6). We observe that on fixing the values of
the group auxiliary variable (h’s) the resulting energy becomes unconstrained
and submodular, and thus, can be minimized using graph cuts. We use this
observation to do inference by exhaustively searching over the space of edge
group auxiliary variables and minimizes the rest of the energy using graph cuts.
However, we can make the algorithm even more efficient by not allow the activity
of a child edge group to be explored if its parent is not already active. In other
words, we start by exhaustively searching over the auxiliary variables of the
parent edge groups (at the top of the hierarchy), and if a group variable is found
to be active, we check if its child variables can be made active instead of it.

4.6 Inferring Scene Boundaries

To extend and fill the scene boundaries, we begin by projecting the free space
of the input TSDF and the Wall planes (predicted by our classifier) onto the
floor plane. Given a 2D point cloud induced by these projections, we discretize
the points to form a projection image illustrated by figure 2 where each pixel yi
takes on the value of free space, wall or unknown. To infer the full scene layout,
we apply the CCRF (Equation 2) to infer the values of the unknown pixels. In
this case, we consider free space to be the area to be expanded (yi = 1) and the
walls to be the surrounding area to avoid being filled (yi = 0). We first detect
the lines and curves of the walls to create a series of edge groups. Next, we set
φi(xi = 1) =∞ if yi = 0 and φi(xi = 0) =∞ if yi = 1. Finally, we add a slight
bias [6] to assigning free space φi(xi = 0) = ε 4.

4.7 Extending Planar Surfaces

Once the scene boundary has been completed, we infer the full extent of internal
planar surfaces. For each internal plane, we project the TSDF onto the detected
2D plane as follows. First we find a coordinate basis for the plane using PCA

4 ε=1e-6
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Fig. 3. (Top) Pixel-wise classification error on our synthetic dataset. The plot demon-
strates performance as a function of the width of the evaluation region. (Bottom) Some
examples from our dataset of synthetic images showing classification results for occluded
pixels (yellow) using four methods.

and estimate the major and and minor axes of the plane, M and N , respectively.
Next, we create an image of size 2N + 1 × 2M + 1 where the center pixel of
the image corresponds to the centroid of the plane. We sample a grid along the
plane basis of size 2N + 1× 2M + 1 where the TSDF values sampled in each grid
location are used to assign each of the image’s pixels. If the sampled TSDF value
is occupied, yi is set to 1, if its free space yi is set to 0 and if its unknown, yi is
set to -1. In practice, we also sample several voxels away from the plane (along
the surface normal direction). This heuristic has the effect of reducing the effects
of sensor noise and error from plane fitting.

Once Y has been created, we detect all lines and parabolas in the image and
hallucinate the necessary lines to create our edge groups. Next, we assign the
local potentials in the same manner as described in Section 4.6.

5 Augmenting the Original Volume

The result of our scene completion is a water-tight scene boundary, and extended
interior planes. As the final step in our pipeline we augment the original TSDF we
imported. For the scene boundary we simplify the resutling polyline representing
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the boundary, and sample points along this boundary from floor to ceiling height.
For the interior planes we sample points in the extended parts of the planes. For
each sampled point (sampled densely as required, in our case γ) we traverse a
bresenham-line in the volume from the voxel closest to the point, and in two
directions, its normal and the inverse to its normal. For each encountered voxel,
we update the TSDF value with the distance to the surface. If the dimensions of
the original volume do not suffice to hold the new scene boundaries, we create a
new larger volume and copy the original TSDF to it, before augmenting it.

The augmented TSDF, in the originating surface reconstruction pipeline, is
continuously updated with new evidence (e.g. as the user moves). Augmented
areas are phased out as the voxels which they filled become known.

6 Experiments

We evaluate our method in several ways. First, we demonstrate the effectiveness of
the CCRF model by comparing it to several baselines for performing in-painting
of binary images. Second, we compare our results to a recently introduced method
[12] that performs extent-reasoning. Third, we demonstrate qualitative results
on a newly collected set of indoor scenes.

6.1 Synthetic validation

We generated a dataset of synthetic images inspired by shapes of planar surfaces
commonly found in indoor scenes. The dataset contained 16 prototypical shapes
meant to resemble objects like desks, conference tables, beds, kitchen counters,
etc. The set of 16 protypes were first divided into training and test sets. Each of
the 8 training and testing prototypes were then randomly rotated and occluded
10 times resulting in 80 total training and 80 test images.

Since we are primarily concerned with how these methods perform in predict-
ing the boundaries of the input images, we use the evaluation metric of [21] in
which we only evaluate the correctness of pixels immediately near the boundary
areas. We computed evaluation scores for various widths of the evaluation re-
gion. Quantitative results can be found in Figure 3. We compare against several
baseline methods that are commonly used for in-painting binary images. These
include both 4 connected and 8 connected graph cuts and a non-parametric patch-
matching algorithm for in-painting. The ideal parameters for each algorithm were
fine tuned on the training set and then applied to the test set.

6.2 Single Frame Scene Completion

We compare our approach to the work of Ruiqi and Hoiem [12] to demonstrate
its applicability to single frame scene completion. While we produce a binary
label indicating the voxels that are occupied, [12] output a heat map. Therefore,
for each frame of the NYU V2 dataset [18] we computed the filled voxels using
our regular pipeline. Since KinectFusion was not designed for single image inputs,
a small number of images failed to be fused and were ignored during evaluation.
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For the rest we used the metric of [12] and report the accuracy using the same
false positive rate as in our method.

[12] achieved 62.6% accuracy compared to our 60.6%. This demonstrates that
while our method was not meant for single frame completion, and does not use
RGB data, it achieves comparable results. For visual comparisons see figure 4.

Fig. 4. Comparison with [12]: (a) Frames from the NYU2 dataset (b) Ground truth
support extent (c) Predicted extent from [12] (d) A top down view of our completed
scene where inferred scene boundaries are highlighted in white and extended interior
objects are highlighted in red.

6.3 Qualitative Analysis

Using a Kinect Sensor attached to a notebook computer, we captured more than
100 scenes. Each scene is a collection of color and depth frames ranging from
hundreds to thousands of frames. Each of these sequences was input into the
KinectFusion pipeline, where for a large number of scenes we performed multiple
reconstructions, sharing a starting frame, but varying in number of frames
processed. This gave us a baseline for a qualitative and progressive evaluation of
our results.

For each such scene we were able to evaluate the original augmented and
original reconstruction at each step. As more evidence is revealed, extended
planes are replaced with their physical counterparts, and the scene boundaries are
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Fig. 5. Progressive surface reconstruction and scene completion. After 200 frames
large parts of the room are occluded, and filled in by the completion model. After
800 previously occluded areas are observed and replace the completion, and overall
the structure of the room is more accurate. For a more detailed figure please see
supplementary material.

updated to reflect reality. A sample progression can be seen in figure 5. Additional
results can be seen in figure 7(top row) and the supplemental material.

We implemented a complete AR system in the Unity 3D framework, in which
a user is able to navigate a captured scene, place virtual objects on horizontal
supporting planes, and throw balls which bounce around the scene. As seen in
figure 6, with scene completion, we are able to place figures on occluded planes,
and bounce balls realistically off completed surfaces. Video captured results can
be seen in the supplemental materials.

(a) (b) (c)

Fig. 6. We created an augmented reality application to demonstrate our results. (a) a
ball bouncing on an occluded floor falls through (b) a ball bouncing on the floor in a
completed scene bounces realistically (c) Virtual objects may be placed on any surface,
including occluded planes in the completed scene. The scene shown is the same as in
figure 5. Video clips of this application can be seen in the supplemental material.
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7 Discussion and Future Work

We have presented a complete and novel pipeline for surface reconstruction
augmentation via scene completion. Our novel contour completion MRF algorithm
is able to extend occluded surfaces in a believable manner, paving way for
enhanced AR applications. In this work we have focused on extending planar
surfaces and estimating scene boundaries, however we recognize the value in
augmenting volumetric (non-planar) objects and intend to address it in future
work. Moreover, in this work we do not rely on previously seen objects, nor
on repetition in the scene, both of which we intend to employ in future work.
Our current pipeline is implemented in Matlab and does not achieve online
performance (processing a volume takes up to a minute). In the future we intend
to integrate our pipeline directly into KinectFusion or an equivalent system.

Failure cases may occur in different stages along our pipeline. In some instances
we fail to detect or correctly classify planes. Sometimes the noise level is too high,
hampering the CCRF from fitting good contours. In some cases we receive faulty
volumetric information from the Kinect sensor, mostly due to reflectance and
transparencies in the scene. Some examples can be seen in figure 7 bottom row.

Fig. 7. Example scenes: darker colors represent completed areas, hues signify plane
classification. The top row contains mostly successful completions. The bottom row
contains failure cases, on the left the room is huge due to many reflective surfaces,
the middle image is of a staircase, vertical in nature, which leads to incorrect plane
classifications. And on the right a high ceiling and windows cause misclassification of
the floor plane.
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