
Deja vu: Fingerprinting Network Problems

Bhavish Aggarwal§, Ranjita Bhagwan∗, Lorenzo De Carli†,
Venkat Padmanabhan∗, Krishna Puttaswamy‡

∗Microsoft Research India
†University of California, Santa Barbara
‡University of Wisconsin, Madison

§Olacabs.com

ABSTRACT
We ask the question: can network problems experienced
by applications be identified based on symptoms contained
in a network packet trace? An answer in the affirmative
would open the doors to many opportunities, including non-
intrusive monitoring of such problems on the network and
matching a problem with past instances of the same prob-
lem.

To this end, we present Deja vu, a tool to condense the
manifestation of a network problem into a compact signa-
ture, which could then be used to match multiple instances
of the same problem. Deja vu uses as input a network-level
packet trace of an application’s communication and extracts
from it a set of features. During the training phase, each
application run is manually labeled as GOOD or BAD, de-
pending on whether the run was successful or not. Deja vu
then employs a novel learning technique to build a signa-
ture tree not only to distinguish between GOOD and BAD
runs but to also sub-classify the BAD runs, revealing the dif-
ferent classes of failures. The novelty lies in performing the
sub-classification without requiring any failure class-specific
labels.

We evaluate Deja vu in the context of the multiple web
browsers in a corporate environment and an email appli-
cation in a university environment, with promising results.
The signature generated by Deja vu based on the limited
GOOD/BAD labels is as effective as one generated using
full-blown classification with knowledge of the actual prob-
lem types.

1. INTRODUCTION
Network communication is an integral part of many

applications. Therefore, network problems often impact

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2011, December 6–9 2011, Tokyo, Japan.
Copyright 2011 ACM 978-1-4503-1041-3/11/0012 ...$10.00.

application behavior. The impact on network commu-
nication depends on the nature of the problem. If the
local name server is down, DNS requests will be sent
but no responses will be received. On the other hand, if
the firewall at the edge of a corporate network is block-
ing the https port, then SYN packets would be seen
but not any SYNACKs.

We ask the question: can network problems experi-
enced by applications be identified based on symptoms
contained in the application’s network packet trace?
There are several advantages to looking for symptoms
of network problems in a network packet trace. First,
it is not intrusive unlike tracing on an end system it-
self (e.g., system call tracing). So we could monitor the
health of applications running on several hosts without
requiring access to the hosts themselves. Second, net-
work communication represents the “narrow waist” of
network applications. Many versions of an application
(e.g., browser) and even OSes running on the end sys-
tems could exhibit consistent behavior at the level of
network protocol messages, thereby leading to similar
symptoms of problems at the network layer.

To answer the above question, we develop Deja vu, a
tool to condense the manifestation of a network prob-
lem into a compact signature. Each signature encapsu-
lates the symptoms corresponding to a particular prob-
lem. For instance, for a browser application that might
encounter the problems noted above, there would be
one signature corresponding to the local name server
problem and a different one corresponding to the fire-
wall problem. Although it might be tempting, based
on these simple examples, to employ a rule-based ap-
proach to constructing signatures, such an approach
suffers from the limitation of not being general enough
to accommodate new applications or even existing ap-
plications whose behavior is not fully understood or
documented.

Therefore, Deja vu uses a learning-based approach to
constructing signatures. We extract a set of features
from packet traces, using our domain knowledge to in-
form this. The features extracted correspond to proto-
cols such as DNS, IP, TCP, HTTP, etc. For instance,

there are features corresponding to the presence of a
DNS request, DNS reply, HTTP error code, etc.

Once these features have been extracted, designing
an algorithm to learn signatures is a key challenge. A
standard classification approach, such as decision trees,
would require labeled training data. Generating a train-
ing set with problem type-specific labels is onerous and
could even be infeasible when the failure cause for a
training run is unknown (e.g., a failure could occur in a
remote network component). At the same time, an un-
supervised learning approach, such as clustering, would
be vulnerable to noisy data. For instance, features ex-
tracted from unrelated background traffic might still get
picked for clustering.

To address this challenge, Deja vu employs a novel
approach. For training, we only assume coarse-grained
labels: GOOD when the training run of an application
was successful and BAD otherwise. These labels can be
determined based on the exhibited behavior of an appli-
cation, without the need to know, in the case of BAD,
the problem category. Then, by iteratively applying a
decision-tree learning algorithm, Deja vu automatically
learns different problem signatures for different cate-
gories of problems.

We evaluate the effectiveness of Deja vu in generat-
ing problem signatures for two classes of applications:
multiple web browsers and an email client. For each ap-
plication, we generate a training set by creating various
error conditions. Similarly we generate a test set. We
find that the problem signatures constructed by Deja vu
based on the training set are able to classify the traces
in the test set with 95% accuracy. In fact, the classifi-
cation performed by Deja vu using just the GOOD and
BAD labels is within 4.5% accuracy to that by a deci-
sion tree classifier operating with the benefit of problem
category labels attached to traces. We also show how
Deja vu learns new non-trivial problem signatures on-
the-fly, which a rule-based approach would have missed.
Finally we show the effectiveness of Deja vu’s signatures
in helping a human administrator match network packet
traces to problems.

2. DESIGN OVERVIEW AND SCOPE
The input to Deja vu is a set of network packet traces,

each coarsely labeled as GOOD or BAD. A GOOD trace
corresponds to a working application run while a BAD
trace corresponds to a non-working run. We believe
that not assuming more fine-grained labeling is the right
choice because we have found that applications often fail
giving the same error messages for different networking
problems, thereby not allowing a user to correctly dif-
ferentiate between different bad runs. In our work, the
GOOD/BAD labeling is performed by us in the lab, but
we touch on alternative strategies in Section 7.

The coarsely-labeled traces are fed to Deja vu’s fea-

ture extractor, which uses domain knowledge to extract
a set of features, as discussed in Section 3. These feature
sets, together with the GOOD/BAD labels, are then fed
to Deja vu’s signature construction algorithm discussed
in Section 4. The novelty of this algorithm is that, al-
though it is just given the coarse GOOD/BAD labels
as input, it infers a sub-categorization of BAD corre-
sponding to the different categories of problems that an
application encounters.

Once Deja vu has learnt and associated signatures
with problems, these could be used in a range of appli-
cations, helping to match the problems in a test trace to
ones that have previously been seen and assigned signa-
tures. We discuss two simple applications in Section 6.

Note that the extracted signatures can only be as
good as the data input to the algorithm. The quality
of the signatures therefore depends significantly on the
choice of features, and the accuracy of the value of the
features. Also, the scope of Deja vu is limited to prob-
lems that manifest themselves in network traces. There
are several problems that applications experience which
may not show as abnormalities in network traces. Deja
vu does not address these problems. Consequently, the
input features to our algorithm are extracted only from
network traces, as we discuss in the next section.

3. FEATURES
In this section we describe what information we ex-

tract from the raw network traces and input to the Deja
vu algorithm. As with any machine learning algorithm,
Deja vu requires as input a set of features. The fea-
ture set extractor reduces a network packet trace to
a compact set of features that summarizes the essential
characteristics of the trace. This process also makes the
input to Deja vu less noisy (e.g., features correspond-
ing to unrelated background traffic are excluded) and
strips it of privacy-sensitive information. For example,
the actual packet payload is discarded except for some
specific header fields in protocols such as HTTP and
SMB.

The choice of features is key. Features that are too
detailed often suffer from a lack of generality. To de-
termine what kind of features to extract, we manually
scrutinized and debugged traces for several networking
problems. Using our domain knowledge and experience,
we settled on the following broad categories of features
to extract:

1. Packet types: Often, problems manifest them-
selves as the presence or absence of packets of
a certain type. To capture this, we use bi-
nary features to record the presence or absence
of certain packet types, where type is determined
based on the packet header fields. By exam-
ining the headers of the packets contained in a
trace, we set the corresponding binary features

in the feature set for the trace. For example,
if a packet header indicates that it is an HTTP
200 Response (HTTP OK), we set the binary fea-
ture HTTP200 RESPONSE to 1. If no HTTP
200 Response is present in the trace, this fea-
ture is set to 0. We also set a special fea-
ture, NO HTTP RESPONSE, to 1 if no HTTP
response of any kind exists in the trace.

2. Sequence: The presence or absence of a partic-
ular sequence of packets in a trace could also be
symptomatic of a network problem. For example,
a faulty trace might contain a TCP SYN packet
but no corresponding TCP SYN/ACK packet,
which might be indicative of a problem. To cap-
ture such effects, we define composite binary fea-
tures, for example, one corresponding to the se-
quence TCP SYN → TCP SYNACK. We set this
feature to 1 if and only if a TCP SYN is followed
by a TCP SYNACK on the same connection. In
all other cases, including when no TCP SYN is
seen, it is set to 0.

We use our domain knowledge to trim the set of
such composite features. For example, the se-
quence TCP RST → TCP SYN is not meaningful
and therefore we do not record it.

3. Aggregate features: As we manually debugged
site-specific problems by looking at traffic ex-
changed with a small set of websites, we found
that the network traces for each site have very uni-
form characteristics in terms of aggregate quanti-
ties such as number of successful TCP connections,
number of successful HTTP connections, number
of bytes transferred, etc. While these features may
be unimportant for generic networking problems,
they are are particularly useful in the context of
site-specific problem signatures for certain (pop-
ular) remote sites or services. For example, the
www.cnn.com webpage has specific characteristics
in terms of its layout and the number of objects
on the page. The aggregate features can thus help
capture the problem symptoms specific to this site.
Also, the popularity of this site might make it
worthwhile to learn site-specific signatures for it.

In our implementation, we have written feature ex-
tractors for 12 protocols using Microsoft Network Mon-
itor’s Parser API [1]. Table 1 shows the set of protocols
and the number of features we capture from each pro-
tocol. For each application, we choose a subset of these
protocols to determine what features to extract. Fea-
ture extractors for some protocols take as input a port
number so that they extract features specific to traffic to
and from that port. For example, when analyzing traces
from browsers, we extract TCP-level features specific

Protocol No. of Features

ARP 3
DNS 4
HTTP 42

IKE/AUTHIP 4
IP 1

LLMNR 4
NBNS 4
RWS 4

SMB/SMB2 45
TCP 48
TLS 10
UDP 52

Table 1: Number of features for each protocol.

to port 80. We extract more features for higher-level
protocols such as HTTP and SMB because these pro-
tocols provide richer error information in their headers
than lower level protocols like TCP and IP. The fea-
ture extraction algorithm traverses each trace once to
extract all the features and is therefore is not compute-
intensive.

4. DEJA VU ALGORITHM
The Deja vu algorithm is used to identify signatures

corresponding to the various problems experienced by
an application. The algorithm takes as input the sets of
features from multiple application runs, each of which is
labeled as GOOD (if the run was successful) or BAD (if
the run was unsuccessful). The goal, and the key chal-
lenge, is to work with these coarse labels to decompose
the set of BAD runs into meaningful categories corre-
sponding to the different problems experienced by the
application.

This challenge sets the problem apart from stan-
dard problems of classification and clustering in ma-
chine learning. Unlike with classification, the cate-
gories of faults are not known in advance and hence we
do not have (fine-grained) labels corresponding to the
categories. Unlike with clustering, the coarse-grained
GOOD/BAD labels do matter since our goal, specifi-
cally, is to sub-categorize the BAD runs. In contrast,
clustering on the BAD runs to find categories might
bunch together runs based on some extraneous features
(e.g., the presence or absence of background noise).
These extraneous features may be similarly present or
absent in GOOD runs too, which means they are, in
essence, inconsequential and should have no bearing on
categorizing different kinds of BAD runs.

Consider the following example. Say half the traces
for an application (both GOOD and BAD) have ARP
requests, and the other half do not since the end-host
caches ARP responses. Therefore, the presence or ab-
sence of a ARP request is not a symptom of a prob-
lem. However a conventional clustering algorithm on

Figure 1: A signature tree learnt by Deja vu

the BAD traces will divide these traces into two cate-
gories based on the presence or absence of this feature.
On the other hand, including the GOOD traces in our
learning procedure will help us learn that the presence
of the ARP request is inconsequential since half of the
GOOD as well as the BAD traces have this feature, and
the other half do not.

To address the challenge of learning the categories of
problems from coarse-grained labels, we have developed
a novel algorithm for Deja vu. We start by illustrating
the algorithm with an example in Section 4.1, and then
specify it in Section 4.2.

4.1 Example
We now illustrate the operation of the Deja vu al-

gorithm by demonstrating how an example signature
tree is constructed for a browser application. The main
intent is to extract multiple problem signatures from
the input feature sets. Toward this goal, the algorithm
makes use of the C4.5 decision tree classifier([12]) in
multiple iterations. The signature tree captures all the
problem signatures for the application. Figure 1 shows
an example signature tree.

In the first iteration, the Deja vu algorithm inputs the
feature sets corresponding to all runs, labeled GOOD or
BAD, to the C4.5 decision tree classifier. The classifier
outputs the tree shown within the box titled “Iteration
1” in Figure 1. This tree tells us that:

If a trace does not have an HTTP 200 Response, it is
BAD.

While this statement tells us something about a
generic symptom that all the bad traces have, it does
not help categorize the bad traces into different sub-
categories or problems. So, we force the decision tree
classifier to learn an alternative way of classifying the
bad traces by removing the HTTP200 RESPONSE fea-
ture from all good and bad traces, and inputting the
pruned feature sets to C4.5 in Iteration 2. The output
of this iteration is shown in the box marked “Iteration
2” in Figure 1. This tells us that:

If the trace does not have an HTTP 304 Response, it
is BAD.

However, in this iteration too, the decision tree
classifies all bad traces into one category because it
found yet another (novel) feature that is common to
all bad traces. Hence, for iteration 3, we remove the
HTTP304 RESPONSE feature from all good and bad
feature sets and learn a decision tree again. In iteration
3, the tree has 2 leaf nodes labeled BAD:

If the trace (a) has no TCP SYN/SYNACK exchange
on port 80, OR (b) has a TCP SYN/SYNACK

exchange on port 80 AND an HTTP 502 Response
(proxy error), it is BAD.

Hence, by iteratively removing features that exist in
all BAD traces, the algorithm has succeeded in learn-
ing two different problem signatures and sub-categorizes
the bad traces across them. The absence of a TCP con-
nection characterizes the first signature (marked (a)),
while an HTTP 502 response (proxy error) character-
izes the second (marked (b)).

In iteration 4, we divide the BAD feature sets into two
categories: one each for the two leaves labeled BAD
in Iteration 3 above. The first category has no TCP
SYN/SYNACK exchange on port 80, whereas the sec-
ond category does but also includes an HTTP 502 re-
sponse. With each category of bad feature sets, we sep-
arately repeat the procedure described in the previous
iterations. Therefore, from the BAD feature sets in the
first category as well as from all GOOD feature sets,
we exclude the “TCP SYN → TCP SYNACK on port
80” feature and then rerun C4.5. On the other hand,
from the BAD feature sets in the second category as
well as from all GOOD feature sets, we exclude both
the “TCP SYN → TCP SYNACK on port 80” feature
and the “HTTP 502 Response” feature, and then rerun
C4.5.

Iteration 4 for the first BAD category obtained in
Iteration 3 gives us the tree shown in the box marked
“Iteration 4” in Figure 1. This tree tells us that

If the trace (a) has no IP traffic,OR (b) has IP traffic
but no Successful DNS Query, it is BAD.

The algorithm therefore splits the first BAD category
from Iteration 3 into 2 sub-categories: the first has no
IP traffic, and the second has IP traffic, but no suc-
cessful DNS exchange. With these two sub-categories,
we repeat the procedure we described in Iteration 3 of
splitting the BAD traces into two sets, removing the
discerning features from them, removing the same fea-
tures from all GOOD traces, and inputting this new
data to C4.5.

Both these runs of C4.5 yield trivial, one-node trees
with no branches, which is the stopping condition for
the Deja vu algorithm. Also, the second run of C4.5 in
iteration 4 (corresponding to the second BAD category
obtained in Iteration 3) yields a trivial, one-node tree.
Hence, the signature tree is complete.

Having completed the process of growing the signa-
ture tree, we now prune the signatures to make them
more concise. Note that this step is not necessary for
correctness. However, in general, several features in sig-
nature tree constructed above could be redundant. For
instance, in the example in Figure 1, the inclusion of
NO HTTP304 RESPONSE immediately following NO
HTTP200 RESPONSE is redundant since it does not
help sub-classify BAD. Hence, we remove redundant
features such as HTTP304 RESPONSE from all signa-
tures.

Our final list of problem signatures corresponding to
Figure 1 is:

1. NO HTTP200 RESPONSE AND TCPSYN80 →
TCPSYNACK80 AND HTTP502 RESPONSE

2. NO HTTP200 RESPONSE AND NO (TCP-
SYN80 → TCPSYNACK80) AND NO
IP TRAFFIC

3. NO HTTP200 RESPONSE AND NO
(TCPSYN80 → TCPSYNACK80) AND
IP TRAFFIC AND NO (DNS QUERY →
DNS SUCCESS RESPONSE)

These problem signatures are such that every bad
trace matches only one signature. This characteristic
is important in that it helps disambiguate between the
seemingly large number of error conditions that occur
in real-world applications.

If, instead of crafting these signatures through the
Deja vu algorithm, we use a simpler, rule-based problem
signature matching scheme which included the following
rules among others for example:

1. HTTP502 RESPONSE

2. HTTP401 RESPONSE

3. NO IP BACKGROUND TRAFFIC

we might not get the level of discernment that Deja vu
gives us. For instance, a web browser trace could con-
tain an HTTP 401 error (Unauthorized), at which point
the browser asks the user for a password. Once the user
enters the password, the connection succeeds. This case
demonstrates that just the presence of an HTTP 401 er-
ror does not necessarily indicate a problem. Our evalu-
ation in Section 5.2.1 describes instances where Deja vu
captured accurate problem signatures that a basic rule-
based engine would not have captured. In fact, even a
classifier-based approach with more fine-grained prob-
lem labels was unable to learn some problem signatures
that Deja vu learned.
4.2 Summary of Algorithm Steps

We summarize the main steps of the Deja vu algo-
rithm in the following 4 steps.

• Step 1: Extract all feature sets from the network
traces, and assigns a label – either GOOD or BAD
– to each feature set.

• Step 2: Input the labeled feature sets to the C4.5
algorithm, which yields us a decision tree.

• Step 3: If C4.5 does not give us a tree, stop the
algorithm. Else, find all BAD leaf nodes in the
tree.

• Step 4: For each BAD leaf, find all the features
and their values in the path from root to the leaf.
For all BAD feature sets that have these features
and the same values, and for all GOOD feature
sets, we remove these features. With these reduced
feature sets, we start from Step 2 again.

5. EVALUATION
Our evaluation focuses on the effectiveness of the

signatures learned by Deja vu along two dimensions:
(a) how Deja vu’s signatures, learned just using the
coarse-grained GOOD/BAD labels, compare with those
learned by a classifier that has the benefit of fine-
grained, problem-specific labels, and (b) how effective
Deja vu is in categorizing data in a test set and learning
new signatures.

5.1 Data Collection
Since obtaining network traces from the field, to-

gether with ground truth information on the presence
and nature of failures, is challenging, we have evaluated
Deja vu by recreating real network problems in two dif-
ferent live environments – a corporate network and a
university network. This fault injection based strategy
is similar to evaluation of algorithms in previous net-
work diagnostics research [2, 6]. The failures that we
recreated (described in the following) were selected by
browser popular user forums and discussing with net-
work administrators.

We have evaluated Deja vu with web browsers run-
ning in the corporate network, and with email clients
running in a university network. We chose web browsers
and email clients as applications to evaluate since these
represent significant applications in the today’s enter-
prises. For instance, web browsers are used not just to
access the public web but also to access myriad intranet
services (e.g. HR, payroll).

For each application, we recreated a mix of problem
scenarios ranging from obvious and well-known prob-
lems to more subtle issues, and collected network traces
of these scenarios. We manually injected the failures by
either misconfiguring the applications, operating sys-
tems, or network components. For each application run,
we recorded a network packet trace and labeled it as
GOOD or BAD, depending on whether the application
run was successful or not. Note that for a number of
these problems, the root cause is not obvious to the user
just from the message that the application provides, jus-
tifying the coarse-grained labeling of GOOD and BAD.
In addition, to enable comparison with a classifier, we
recorded fine-grained labels indicating the root cause
of each failure. Note that these labels were not made
available to Deja vu.

Next, we describe the specifics of the data collection
procedure we used for the browser and email datasets.

5.1.1 Browser
We used five different browsers – Google Chrome

5.0.3, Safari 5.0.1, Firefox 3.6, Opera 10.53, and IE 8
– to collect traces for various browser-related problems
from within a corporate network. To collect the traces,
we ran these browsers on three machines, each with a
different OS — Windows 7, Ubuntu Linux 9.10, and
Mac OSX 10.5.8 — subject to the availability of each
browser on these OSes.

We reproduced each of the problems listed in Table 2
in our setting on each available browser + OS combina-
tion. For each such combination, we collected a set of
GOOD traces and BAD traces for each of the problem
scenarios listed in Table 2. In some cases, the problem
was applicable to only a specific browser, so we collected
BAD traces only for that particular browser. In all, we
collected 878 traces for this dataset: 307 GOOD traces
and 571 BAD traces. Note that, for lack of space, in
the following we discuss signatures only for 7 of 11 the
cases listed in table 2.
Features: We use our domain knowledge to determine
which protocols are relevant to browsers, and extract
features pertinent to this set of protocols. The feature
extractor summarizes each browser trace using features
specific to HTTP, TCP on port 80, all name resolution
protocols in use (DNS, Netbios, LLMNR), and generic
features that can help capture low-level problems, such
as the presence or absence of background IP traffic.

5.1.2 Email

We collected email related problem traces in a univer-
sity network using the Thunderbird 3.1.2 client running
on three machines, each with a different client OS: Mac
OSX, Windows XP, and Ubuntu 9.10. The Windows
XP and Ubuntu traces are from the same university net-
work, while Mac traces are from a machine connected
to the university’s residential network via a wireless ac-
cess point. The clients connected to one of two email
servers, each of which supported IMAP and SMTP over
SSL.

We used these configurations to collect network traces
for problem scenarios where the client was correctly
sending and receiving emails, and then for the faulty
scenarios listed in Table 3. We reproduced each of the
problems listed in the table on each OS by manually
configuring the email client to reproduce the problem.
We collected 5 samples for each of the problems on each
OS. Thus, we collected a total of 15 samples for each
problem. In all, we collected 150 traces of email prob-
lems: 30 GOOD and 120 BAD.

Note that we cleared the DNS cache before each run
to capture the complete network activity of the email
client. Had we had not done so, the small size of our
experimental setup (3 clients and 2 servers) would have
meant that DNS queries would have been largely ab-
sent, having been filtered out by the cache. However,
in a real setting, with a large number of clients and
servers, there would be DNS queries associated with at
least a fraction of the successful transactions. We seek
to recreate such instances despite the small size of our
setup, by clearing the DNS cache before each run.
Features: The university uses IMAP and SMTP

over SSL, hence, the feature extractor summarizes each
email trace using features specific to SMTP over SSL,
IMAP over SSL, TCP on the respective ports, DNS
(this is the only name resolution protocol in use in the
university network), and generic features that can help
capture low-level problems, such as the presence or ab-
sence of background ARP and IP packets. Since all
traces involve the client machines connecting to one of
two mail servers, we also record aggregate features, as
discussed in Section 3, to capture server-specific behav-
ior.

5.2 Comparison with a Classifier
Our first evaluation concentrates on comparing the

signatures learned by Deja vu with those learned by a
conventional classifier. While we input traces labeled
as either GOOD or BAD to Deja vu, the classifier had
the added benefit of having each faulty trace labeled
with the root cause of the problem instead of just the
generic BAD label. To perform classification, we used
the C4.5 decision tree classifier, which has been used
often in prior work [2, 5].

Problem Root Cause Configuration Details # of Traces Collected
Internal corporate Unsupported Opera under certain Oses 13 bad traces
sites fail to load authentication fails to perform NTLM with Opera only.

with opera. protocol. authentication correctly.
Internal corporate Wrong browser The browser tries to 60 bad traces.
sites unreachable configuration. use the proxy to reach
by any browser. internal sites.

Certain websites display Certain corporate proxies are e.g. Yelp.com had
error “Forbidden: You dont blocked by these websites, blocked some subset of 64 traces via
have permission to access possibly due to excessive proxies in our setting. good proxies,
this server.” But accessing requests. Accessing the But accessing Yelp.com and 64 via
them via different proxies websites via these blocked via other proxies worked. blocked proxies.

loads the website fine. proxies displays the error.
Certain websites Flash or Ad blockers installed e.g. Pandora.com 92 traces

silently fail to load; in the browser prevent loading silently fails to load with flash
no error is displayed some components, which are in Firefox when Flashblock blocking and 92

to the user. critical for loading these sites. 1.5.13 add-on is enabled. without blocking.
Websites with popular IEs InPrivate Filtering, when Components of the websites 10 good and

third-party scripts fail to enabled, blocks loading of built using scripts such 10 bad traces
load in IE, making these third-party scripts that are as Google Analytics, or only with IE.

websites unusable. commonly found in websites. recaptcha.net fail to load.
Internal corporate sites VBScript not supported Sites used to manage internal 10 good and

fail to load except in IE8. in all browsers except IE8. information heavily use VBScript. 33 bad traces.
Some websites fail Wrong HTTPS proxy Pandora.com fails to load

55 bad traces.to load silently. server configuration some flash component, which
fails the entire website.

None of the websites Firewall on the client
Firewall blocks port 80.

64 good and
load in the browser. is blocking web browsing. 64 bad traces.
None of the websites Wrong proxy Configured a wrong proxy 15 good and
load in the browser. configuration. server in the browser. 64 bad traces.
Some websites fail User types in a wrong URL Entered wrong URL

64 bad traces.
to load. into the address bar. into the browser.

All websites fail Wrong DNS server Manually configured wrong 52 good and
to load. configuration. DNS server address. 52 bad traces

in Win 7 only.

Table 2: Browser trace details.

Figure 2 and Figure 3 show the root causes for our
email and browser datasets, and the signatures that
Deja vu and the classifier learned for each root cause
(depicted through arrows pointing out from the root
cause boxes). The labels on the side of each signature
give the serial number with which we refer to the sig-
nature in this section, followed by the number of BAD
traces that contributed to learning that signature. Note
that one root cause could have multiple signatures; for
instance, an incorrect proxy setting could lead to dis-
tinct signatures with different browsers. Likewise, mul-
tiple root causes could share the same signature; for
instance, the absence of SYNACKs could be because
of a wrong server address being used or a wrong port
number.

We do not expect the reader to parse each signature
in detail. The graphics are only meant to convey the
similarities and differences between the two signature
sets, which we touch on through specific examples in
Section 5.2.1. Similar parts of Deja vu’s signatures and
the corresponding classifier signatures are in bold. Note
that the browser signatures are more detailed (involving
a larger number of features) and also more diverse (one-
to-many mapping between root causes and signatures)
than the email signatures. This is so for both Deja vu
and the classifier, partly because the browser data set
contained data from 5 different browsers.

Equivalence: To measure how equivalent the sig-

natures learned by Deja vu and the classifier are, we
compute a difference metric between the signature sets.
The intuition behind this metric is that even if a Deja
vu signature and the corresponding classifier signature
look very different, these might still be equivalent de-
pending on how they categorize the traces. For every
pair of BAD traces in the training set, we check to see if
both traces share a Deja vu signature and, separately,
whether they share a classifier signature. If a pair of
traces shares a signature in both cases or does not in ei-
ther case, that means that both the Deja vu signatures
and the classifier signature are equivalent in terms of
how they categorize the two traces. However, if the sig-
nature is shared in one case but not in the other, there
is a mismatch and so we increment the difference met-
ric. Finally, we normalize the metric by total number
of faulty trace pairs.

For the email traces, there were 120 BAD traces, of
which we consider a total of 6329 trace pairs, since some
of the traces were deemed as noisy by either Deja vu or
the classifier, and did not contribute to a signature. Of
these 6329 pairs, only 189 differed in the sense we have
described above, yielding a normalized difference met-
ric of 3%. For the browser dataset, there were a total of
307 BAD traces, of which we consider 40186 pairs. Of
these, only 1806 differed, giving us a normalized differ-
ence metric of 4.5%. Thus, despite operating with just
coarse-grained GOOD/BAD labels, Deja vu is able to

Problem Root Cause
Cannot view email. Client returns error message Wrong username configured

“login to server <server-name> failed.” in the email client.
Cannot connect to the incoming email server. Client returns Wrong incoming server name

error “Failed to connect to server <email-address>.” configured in the client.
Cannot receive emails. The client returns error Wrong authentication

“The IMAP server <server-name> does not support the mode configured
selected authentication method. Please change the ‘Authentication with the incoming

method’ in the ‘Account Settings | Server Settings’.” server in the client.
Cannot receive emails. Client returns error “Could not connect Wrong incoming server

to the server <server-name>; the connection was refused.” port number configured.
Cannot send emails. The client returns error “Sending of message Wrong authentication

failed. The SMTP server <server-name> does not support the mode configured with
selected authentication method. Please change the ‘Authentication the outgoing server

method’ in the ‘Account Settings | Outgoing Server (SMTP)’.” in the email client.
Cannot send emails. Client returns “Sending of message failed.

An error occurred sending mail: SMTP server <server-name> is Wrong outgoing server
unknown. The server may be incorrectly configured. Please verify name configured in

that your SMTP server settings are correct and try again.” the email client.
Cannot send emails. Client returns “Sending of message failed.
The message could not be sent because connecting to SMTP Wrong outgoing server
server <server-name> failed. The server may be unavailable port number configured

or is refusing connections. Please verify that your server in the email client.
settings are correct and try again, or contact the administrator.”
Sending a message while Thunderbird is in “Offline Mode” puts User has forgotten that

the message in “outgoing” folder rather than sending it. “offline mode” is enabled.

Table 3: Email trace details. We collected 15 traces for each problem (5 per OS).

learn signatures almost as effectively as a classifier that
has access to fine-grained labels corresponding to the
root causes.

5.2.1 Signature comparison
We now subjectively compare the Deja vu signatures

to the classifier signatures.
1. Sometimes, Deja vu signatures provide more infor-
mation than classifier signatures. All three signatures
– D3, D4, and D5 in Figure 3 – capture the fact that
there is no successful Netbios response in the traces
(NBTNSRS = 0), whereas C2 does not. In fact, the
Deja vu signatures capture the actual root cause, be-
cause it is only when both Netbios and DNS fail, that
name resolution fails in the corporate network. The
classifier signature does not capture this because cap-
turing only the DNS failure is enough to differentiate
this failure category from other failure categories. This
example shows the benefits of using a learning approach
like Deja vu that compares BAD traces with all the
GOOD traces at every step.

Another example is signature D12 in Figure 3. We
investigated why there is no corresponding signature
with the classifier, and found that the D12 signature
specifically captures behavior of the Firefox and Opera
browsers, which behave differently under the “Wrong
URL” root cause compared to other browsers. The clas-
sifier does not capture this behavior because its input
labels are only at the granularity of the root cause, and
does not distinguish between browsers 1.

1We also tried inputting more fine-grained labels of the form
OS:Browser:RootCause to the classifier. This gave us very
noisy signatures since the classifier was forced to choose spu-
rious features to differentiate between similar traces from
different browsers and OSes.

2. Sometimes, Deja vu signatures did not differentiate
root causes but the classifier signatures did. Figure 2
shows that Deja vu did not pick out the right feature
differentiating root causes “Wrong Outgoing Port But
Correct Mail Server” (which would involve a successful
DNS resolution of the mail server name) and “Wrong
Outgoing Mail Server” (which would not include a suc-
cessful DNS resolution because the wrong mail server
name does not correspond to any real host). The rea-
son Deja vu did not pick this feature is that in 6 of
the 15 BAD traces for the former root cause there was
background DNS traffic that was failing, which confused
Deja vu into believing that such DNS lookup failure was
distributed across both of the above root causes, and
therefore not useful for separating them. In fact, this
confused the classifier too, which attributed the signa-
ture for “Wrong Outgoing Mail Server” to the former
root cause also. Removal of such background noise can
aid Deja vu’s learning significantly, as noted in Sec-
tion 7.
3. Deja vu signatures are in general longer than the
classifier signatures. For example, in Figure 2, sig-
nature D1 (the Deja vu signature for the “wrong in-
coming mail server address” root cause) is 6 features
long, whereas the corresponding classifier signature C1
is only 3 features long. The reason for the longer sig-
natures is that, at each iteration, Deja vu can choose
a feature only to differentiate BAD traces from GOOD
ones, whereas the classifier has the added freedom of
choosing a feature that directly differentiates between
different kinds of BAD traces. On the flip side, however,
the Deja vu signatures provide more insight into the
failure. For example, signature D1 from Deja vu tells
us that there was no successful TCP handshake on port

Figure 2: Root causes and corresponding Deja vu signatures and classifier signatures for email traces.

993 (IMAP over SSL) [TCPSYN993-TCPSYNACK993
= 0] whereas the classifier signature does not give us
this information.
4. Sometimes, Deja vu has multiple signatures corre-
sponding to the same root cause, whereas the classifier
does not. Since Deja vu does not have access to fine-
grained labels, it sometimes creates noisy splits in the
signature which the classifier avoids. Such noisy splits
can be avoided to some extent by techniques noted in
Section 7.

5.3 Signature Stability and Adaptability
Next, we turn to the question of how stable Deja

vu’s signatures are, and how effective the algorithm is
at learning new signatures on-the-fly. Would the signa-
tures learned from a training set still apply to a test set
gathered at a later time? Does the algorithm learn new
signatures when required?

To answer these questions, we collected a test dataset
in the corporate network for two browsers – IE and Fire-
fox – approximately 2 months after we had collected the
training dataset. We collected training data on Win-
dows 7, Mac OSX, and Ubuntu systems, and the test
dataset on a Windows XP machine. The test dataset
included 10 BAD traces (5 each for IE and Firefox) for
each of 6 root causes, giving us a total of 60 bad traces.
We could not collect data for the “Misconfigured outgo-
ing firewall” root cause because Windows XP does not
allow the configuration of outgoing firewall rules.

For 5 out of the 6 root causes, an overwhelming ma-

jority (95%) of the traces in the test dataset matched
the signatures of the same root cause that had been
learnt earlier from the training dataset. This demon-
strates the stability of the Deja vu signatures for these
5 root causes. However, Deja vu misclassified all 10
traces for the “Wrong proxy” root cause, marking them
either as “internal site authentication error” or “name
resolution error”.

To investigate this, we relearned the Deja vu signa-
tures by adding these 10 BAD traces to the initial train-
ing set of 878 traces. We found that Deja vu learned an
additional, new signature for the “Wrong proxy” root
cause, which all 10 new traces contributed to:

[HTTPR200 = 0] AND [N HTTPQ = 0] AND
[HTTPR502 = 0] AND [HTTPR500 = 0] AND
[HTTPR504 = 1]

To create the “Wrong proxy” root cause, we always
set the proxy to a non-existent IP address that we
were confident would not respond (e.g., 5.1.1.1). How-
ever, the new signature noted above indicates that not
only did requests to this IP address complete a success-
ful TCP handshake, it even responded with an HTTP
Gateway error! We communicated this to the relevant
network administrators, who investigated the matter
and then informed us that this strange behavior was
the result of some recent routing configuration changes
made on the corporate network that directed traffic to
some non-existent IP addresses to a set of misconfig-
ured servers that were responding to the requests with
a gateway error.

Figure 3: Root causes and corresponding Deja vu signatures and classifier signatures for browser traces.

This interesting anecdote shows that Deja vu signa-
tures are not just useful for failure classification, but
can also be a component of a network problem diag-
nosis tool. Whenever Deja vu learns a new problem
signature, the tool can alert the administrators so they
can investigate it to see if the signature reveals anything
untoward.

6. APPLICATIONS
Deja vu provides a way to characterize network prob-

lems with a compact fingerprint. Such a fingerprint
has several applications. A fingerprint could be used
to search through a large dataset to find instances of
a particular problem. It could also be used to recall
and match against previously seen instances of a prob-
lem. We briefly describe applications in each of these
categories.

6.1 Search Tool
Packet tracing tools such as tcpdump and netmon pro-

vide a way to apply filters to find specific packet types of
interest, either from a live capture or from a recorded
trace. However, what if we are interested in search-
ing for problem events rather than for specific pack-
ets? For instance, we might wish to find instances in
a trace where a secure webpage access failed because

the firewall blocked port 443 traffic. To provide this ca-
pability, we have built a simple search tool using Deja
vu. The target trace is sliced into windows, either slid-
ing windows or jumping windows. Features extracted
from each slice are then fed into the signature tree con-
structed by Deja vu for the problem of interest.

One question is how wide a slice should be. Ideally,
the slice should be wide enough to accommodate the
problem event of interest but no wider. For instance,
consider a problem signature that comprises a successful
DNS request-response exchanged followed by a success-
ful TCP SYN handshake followed, in turn, by an HTTP
request that fails to elicit a response. To be able to cap-
ture the full signature, the slice must be wide enough
to span all of the above packet exchanges. However, if
the slice were too wide, then it risks being polluted by
noise in the form of features from packets belonging to
an unrelated transaction.

In our implementation of the search tool, we use a
slice size of 30 seconds. We tested the tool on a 4MB
network trace collected over a period of 40 minutes.
We recreated 5 different problems from the set of root
causes shown in Figure 3. The search tool was success-
ful in finding 3 of these problems. It missed catching
one problem because the window size was too large and

background noise polluted it, and it missed the second
one because the window size was too small to capture
an important feature later in the trace. This indicates
that such a search tool should ideally use windows of
varying sizes to catch all problems in the trace.

6.2 Help Desk Application
A second application of Deja vu is in the context of

a help desk tool. Our help desk application uses the
problem signatures generated by Deja vu to automati-
cally match the problem being experienced by the user
against a database of known issues, i.e., ones for which
there is a known fix. Whenever a failure is encountered
(e.g., a browser error), the Deja vu component on the
client machine extracts features from the packet trace
in the recent past (tracing is an ongoing background
activity) and sends these to the Deja vu server. At the
server, these features are fed into the application’s sig-
nature tree and thereby matched against a known cate-
gory of failures. The problem notes associated with this
category would then guide the diagnosis and resolution
procedure.

A more sophisticated version of the help desk appli-
cation could use Deja vu signatures to index WikiDo [9]
tasks instead of just indexing manually crafted notes.

7. DISCUSSION
Noisy traces: We discuss the impact of noisy traces
on Deja vu’s signatures. Noise refers to packets that are
extraneous to the application of interest. Such noise
could arise from the network communication of other
applications or even other hosts, depending on where
the packet trace is captured. Deja vu’s feature extrac-
tor would then extract features from such background
traffic and include these with the (correct) features cor-
responding to the traffic of interest.

Such noisy features could be problematic in two ways:
(a) these could lead Deja vu to learn incorrect signa-
tures for problems, and (b) these could cause an incor-
rect match when an attempt is made to match the noisy
features against the signatures generated by Deja vu.

Deja vu’s use of GOOD/BAD labels helps mitigate
problem (a) because the noisy features are likely to
be uncorrelated with the success (GOOD) or failure
(BAD) of the application of interest and hence are
likely to be disregarded by Deja vu’s signature con-
struction algorithm. However, a noisy feature extracted
from background traffic (e.g., a successful DNS request-
response exchange) could still cause problems, as ex-
plained above.

To alleviate the above problem, we could leverage
prior work on application traffic fingerprinting (e.g., [11,
7, 15] to separate out just the subset of traffic in a
packet trace that corresponds to the application of in-
terest. Performing such separation thoroughly would

require the tracing to be performed on the end hosts,
so that traffic could be unambiguously tied to specific
applications.

Another source of inaccuracy in the traces is misla-
beling of GOOD and BAD traces. Previous work [2]
has shown that the C4.5 decision tree algorithm is ro-
bust to a certain degree of mislabeling in the context
of network diagnostics. However, no learning algorithm
can withstand large amounts of mislabeling. Applica-
tions that use Deja vu have to be designed in a way so
that the chances of mislabeling stays low. A discussion
of such application-level techniques are out of scope of
this paper.
Scalability: In our experiments, the Deja vu algo-
rithm took less than one second to complete processing
all the traces. For the applications we have discussed,
we expect practitioners to run Deja vu with a frequency
of approximately once a day, and we believe the current
performance is suitable for this design point. It is, how-
ever, possible that as the problem traces become more
diverse, Deja vu may learn a considerable number of
problem signatures in a single run. In such cases, sig-
natures can be prioritized based on the confidence that
the C4.5 algorithm assigns onto them. Signatures that
are seen more often can be bubbled to the top of the
priority list, thereby allowing an administrator or sup-
port engineer to look at the more predominant problems
first.

8. RELATED WORK
8.1 Network Traffic Analysis

Analysis of network traffic has been used to fin-
gerprint applications and infer the behavior of proto-
cols [15, 11]. While such analysis has used supervised
learning on coarse features such as packet size and flow
length to distinguish between applications, Deja vu op-
erates on more fine-grained features (e.g., features spe-
cific to DNS, TCP, HTTP, etc.) but with coarse-grained
GOOD vs. BAD labels.

Such analysis has also been used to discover the
session-level structure of applications [7], e.g., to dis-
cover that in an FTP session, a control connection is of-
ten followed by one or more data connections. However,
to our knowledge, such session structure has not been
used for constructing signatures for network problems.
Furthermore, discovering session structure is only semi-
automated, requiring the involvement of a human ex-
pert to actually reconstruct the session structure. Hu-
man involvement in Deja vu is limited to labeling train-
ing runs as GOOD or BAD, a much less onerous task.

Finally, such analysis has also been used to perform
network anomaly detection (e.g., [18]). The typical ap-
proach has been to construct a model of normal behav-
iors based on past traffic history and then look for sig-
nificant changes in short-term behavior based that are

inconsistent with the model. While anomaly detection
has focused on aggregate behavior, Deja vu focuses on
the network behavior of an individual application run.

8.2 Fingerprinting Problems
DebugAdvisor [3] is a tool to search through source

control systems and bug databases to aid debugging.
Unlike Deja vu, it uses a standard text search tool over
call stack information and bug reports. Deja vu is closer
in spirit to work on automating the diagnosis of system
problems, which involves extracting signatures from in-
formation such as system call traces (e.g., [16]). The
approach is to employ supervised learning (e.g., SVM)
on a fully labeled database of known problems. In a
similar vein, Clarify [5] is a system that improves error
reporting by classifying application behavior. Clarify
generate a behavior profile, i.e., a summary of the pro-
gram’s execution history, which is then labeled by a
human expert to enable learning-based classification.

In comparison with the above approaches, which re-
quire a human expert to perform full labeling, Deja vu
operates only with coarse-grained labels. Also, since
Deja vu focuses on network problems, there are a num-
ber of domain-specific choices it incorporates, including
for feature selection.

8.3 State-based Diagnosis
STRIDER [14] and PeerPressure [13] analyze state

information in the Windows registry, to identify fea-
tures (e.g., registry key settings) that are indicative of
a problem. Unlike with Deja vu, the goal of this body
of work was not to develop problem-specific signatures
based on the behavior of the system. Rather it is to de-
tect anomalous state by performing state differencing
between a health machine and a sick machine. Also,
the features (e.g., registry key settings) were treated
as opaque entities whereas Deja vu uses networking
domain-specific knowledge to define features.

Similarly, NetPrints [2] analyzes network configura-
tion information to diagnose home network problems.
While being largely state-based, NetPrints also made
limited use of network problem signatures to address
the issue of hidden configurations that are not available
to the state-based analysis.

Compared to the above, Deja vu is not intrusive since
it operates on network traffic and hence does not require
any tracing to be performed on the end system itself.

8.4 Active Probing
While Deja vu seeks to extract network problem

signatures from existing application traffic, there is a
large body of work on characterizing network problems
through active probing [10, 17, 4, 8]. Active prob-
ing with a carefully-crafted set of tests enables detailed
characterization of a range of problems, often enabling

diagnosis. In contrast, Deja vu strives to produce a
problem fingerprint based on the traffic that the appli-
cation generates anyway. These fingerprints may not
contain the detail to directly enable diagnostics. Nev-
ertheless, these provide a generic way to match a prob-
lem instance with a previously seen instance, thereby
enabling diagnostics, as noted in Section 6.2.

9. CONCLUSION
Deja vu is a tool to associate a compact signature

with each category of network problem experienced
by an application. It uses a novel algorithm to learn
the signatures from coarse-grained GOOD/BAD la-
bels. Our experimental evaluation, including compar-
ison with a standard classifier (which has the benefit
of knowing fine-grained labels) and a user study, has
demonstrated the effectiveness of Deja vu signatures.

10. REFERENCES
[1] Microsoft network monitor. URL

“http://www.microsoft.com/downloads/en/netmon”.
[2] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran,

V. Padmanabhan, and G. Voelker. NetPrints: Diagnosing
Home Network Misconfigurations using Shared Knowledge. In
NSDI, 2009.

[3] B. Ashok, J. Joy, H. Liang, S. Rajamani, G. Srinivasa, and
V. Vangala. DebugAdvisor: A Recommender System for
Debugging. In FSE, 2009.

[4] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi,
R. Mahajan, and S. Saroiu. Glasnost: Enabling End Users to
Detect Traffic Differentiation. In Networked Systems Design
and Implementation, 2010.

[5] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan,
D. E. Porter, D. L. Chen, and E. Witchel. Improved Error
Reporting for Software that Uses Black-box Components. In
PLDI, 2007.

[6] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, and
J. Padhye. Detailed diagnosis in computer networks. In
Sigcomm. ACM, 2010.

[7] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal.
Semi-Automated Discovery of Application Session Structure. In
IMC, 2006.

[8] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr:
Illuminating The Edge Network. In IMC, 2010.

[9] N. Kushman, M. Brodsky, S. Branavan, D. Katabi, R. Barzilay,
and M. Rinard. WikiDo. In HotNets, 2009.

[10] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson.
User-level Internet Path Diagnosis. In SOSP, October 2003.

[11] A. Moore and K. Papagiannaki. Toward the Accurate
Identification of Network Applications. In PAM, 2005.

[12] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kauffman, 1993.

[13] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang.
Automatic Misconfiguration Troubleshooting with
PeerPressure. In OSDI, 2004.

[14] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang,
C. Yuan, and Z. Zhang. STRIDER: A Black-box, State-based
Approach to Change and Configuration Management and
Support. In LISA, 2003.

[15] C. V. Wright, F. Monrose, and G. M. Masson. On Inferring
Application Protocol Behaviors in Encrypted Network Traffic.
J. Machine Learning Research, Dec 2006.

[16] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and
W.-Y. Ma. Automated Known Problem Diagnosis with Event
Traces. In EuroSys, 2006.

[17] Y. Zhang, Z. M. Mao, and M. Zhang. Effective Diagnosis of
Routing Disruptions from End Systems. In Networked Systems
Design and Implementation, 2008.

[18] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund.
Sketch-based Change Detection: Methods, Evaluation, and
Applications. In IMC, 2004.

