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Abstract

This paper presents a unified, efficient model of random decision forests

which can be applied to a number of machine learning, computer vision

and medical image analysis tasks.

Our model extends existing forest-based techniques as it unifies clas-

sification, regression, density estimation, manifold learning, semi-

supervised learning and active learning under the same decision forest

framework. This means that the core implementation needs be writ-

ten and optimized only once, and can then be applied to many diverse

tasks. The proposed model may be used both in a generative or dis-

criminative way and may be applied to discrete or continuous, labelled

or unlabelled data.

The main contributions of this paper are: 1) proposing a single, proba-

bilistic and efficient model for a variety of learning tasks; 2) demonstrat-

ing margin-maximizing properties of classification forests; 3) introduc-

ing density forests for learning accurate probability density functions;

4) proposing efficient algorithms for sampling from the forest genera-

tive model; 5) introducing manifold forests for non-linear embedding

and dimensionality reduction; 6) proposing new and efficient forest-



based algorithms for transductive and active learning. We discuss how

alternatives such as random ferns and extremely randomized trees stem

from our more general model.

This paper is directed at both students who wish to learn the ba-

sics of decision forests, as well as researchers interested in our new

contributions. It presents both fundamental and novel concepts in a

structured way, with many illustrative examples and real-world appli-

cations. Thorough comparisons with state of the art algorithms such

as support vector machines, boosting and Gaussian processes are pre-

sented and relative advantages and disadvantages discussed. The many

synthetic examples and existing commercial applications demonstrate

the validity of the proposed model and its flexibility.
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1

Overview and scope

This document presents a unified, efficient model of random decision

forests which can be used in a number of applications such as scene

recognition from photographs, object recognition in images, automatic

diagnosis from radiological scans and semantic text parsing. Such ap-

plications have traditionally been addressed by different, supervised or

unsupervised machine learning techniques.

In this paper, diverse learning tasks such as regression, classification

and semi-supervised learning are explained as instances of the same

general decision forest model. This unified framework then leads to

novel uses of forests, e.g. in density estimation and manifold learning.

The corresponding inference algorithm can be implemented and opti-

mized only once, with relatively small changes allowing us to address

different tasks.

This paper is directed at engineers and PhD students who wish to

learn the basics of decision forests as well as more senior researchers

interested in the new research contributions.

We begin by presenting a roughly chronological, non-exhaustive sur-

vey of decision trees and forests, and their use in the past two decades.

Further references will be available in the relevant chapters.
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2 Overview and scope

1.1 A brief literature survey

One of the seminal works on decision tress is the Classification and Re-

gression Trees (CART) book of Breiman et al. [12], where the authors

describe the basics of decision trees and their use for both classifica-

tion and regression. However, training optimal decision trees from data

has been a long standing problem, for which one of the most popular

algorithms is “C4.5” of Quinlan [72].

In this early work trees are used as individual entities. However,

recently it has emerged how using an ensemble of learners (e.g. weak

classifiers) yields greater accuracy and generalization.1 One of the ear-

liest references to ensemble methods is in the boosting algorithm of

Schapire [78], where the author discusses how iterative re-weighting of

training data can be used to build accurate “strong” classifiers as linear

combination of many “weak” ones.

A random decision forest is instead an ensemble of randomly trained

decision trees. Decision forests seem to have been introduced for the

first time in the work of T. K. Ho for handwritten digit recognition [45].

In that work the author discusses tree training via randomized feature

selection; a very popular choice nowadays. All tree outputs are fused

together by averaging their class posteriors. In subsequent work [46]

forests are shown to yield superior generalization to both boosting and

pruned C4.5-trained trees on some tasks. The author also shows com-

parisons between different split functions in the tree nodes. A further

application of randomized trees to digit and shape recognition is re-

ported in [3].

Breiman’s work in [10, 11] further consolidated the random forest

model. However, the author introduces a different way of injecting ran-

domness in the forest by randomly sampling the labelled training data

(“bagging”). The author also describes techniques for predicting the

forest test error based on measures of tree strength and correlation.

In computer vision, ensemble methods became popular with the

seminal face and pedestrian detection papers of Viola and Jones [99,

98]. Recent years have seen an explosion of forest-based techniques in

1Depending on perspective trees can be seen as weak or strong classifiers [102].
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the machine learning, vision and medical imaging literature [9, 15, 24,

29, 33, 35, 52, 53, 54, 56, 58, 59, 60, 61, 65, 70, 80, 83, 88, 102]. Decision

forests compare favourably with respect to other techniques [15] and

have lead to one of the biggest success stories of computer vision in

recent years: the Microsoft Kinect for XBox 360 [37, 82, 100].

1.2 Outline

The document is organized as a tutorial, with different chapters for

different tasks and structured references within. It was compiled in

preparation for the homonymous tutorial presented at the International

Conference on Computer Vision (ICCV) held in Barcelona in 2011.

Corresponding slides and demo videos may be downloaded from [1].

A new, unified model of decision forests is presented in chapter 2.

Later chapters show instantiations of such model to specific tasks such

as classification (chapter 3) and regression (chapter 4). Chapter 5 in-

troduces, for the first time, the use of forests as density estimators.

The corresponding generative model gives rise to novel manifold forests

(chapter 6) and semi-supervised forests (chapter 7). Next, we present

details of the general forest model and associated training and testing

algorithms.
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The random decision forest model

Problems related to the automatic or semi-automatic analysis of com-

plex data such as text, photographs, videos and n-dimensional medical

images can be categorized into a relatively small set of prototypical

machine learning tasks. For instance:

• Recognizing the type (or category) of a scene captured in a

photograph can be cast as classification, where the output is

a discrete, categorical label (e.g. a beach scene, a cityscape,

indoor etc.).
• Predicting the price of a house as a function of its distance

from a good school may be cast as a regression problem. In

this case the desired output is a continuous variable.
• Detecting abnormalities in a medical scan can be achieved

by evaluating the scan under a learned probability density

function for scans of healthy individuals.
• Capturing the intrinsic variability of size and shape of pa-

tients brains in magnetic resonance images may be cast as

manifold learning.
• Interactive image segmentation may be cast as a semi-

4



2.1. Background and notation 5

supervised problem, where the user’s brush strokes define

labelled data and the rest of image pixels provide already

available unlabelled data.
• Learning a general rule for detecting tumors in images using

minimal amount of manual annotations is an active learning

task, where expensive expert annotations can be optimally

acquired in the most economical fashion.

Despite the recent popularity of decision forests their application,

has been confined mostly to classification tasks. This chapter presents

a unified model of decision forests which can be used to tackle all the

common learning tasks outlined above: classification, regression, den-

sity estimation, manifold learning, semi-supervised learning and active

learning.

This unification yields both theoretical and practical advantages. In

fact, we show how multiple prototypical machine learning problems can

be all mapped onto the same general model by means of different pa-

rameter settings. A practical advantage is that one can implement and

optimize the associated inference algorithm only once and then apply

it, with relatively small modifications, in many tasks. As it will become

clearer later our model can deal with both labelled and unlabelled data,

with discrete and continuous output.

Before delving into the model description we need to introduce the

general mathematical notation and formalism. Subsequent chapters will

make clear which components need be adapted and how for each specific

task.

2.1 Background and notation

2.1.1 Decision tree basics

Decision trees have been around for a number of years [12, 72]. Their

recent revival is due to the discovery that ensembles of slightly different

trees tend to produce much higher accuracy on previously unseen data,

a phenomenon known as generalization [3, 11, 45]. Ensembles of trees

will be discussed extensively throughout this document. But let us focus

first on individual trees.
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Fig. 2.1: Decision tree. (a) A tree is a set of nodes and edges organized

in a hierarchical fashion. In contrast to a graph, in a tree there are no

loops. Internal nodes are denoted with circles and terminal nodes with

squares. (b) A decision tree is a tree where each split node stores a test

function to be applied to the incoming data. Each leaf stores the final

answer (predictor). This figure shows an illustrative decision tree used

to figure out whether a photo represents and indoor or outdoor scene.

A tree is a collection of nodes and edges organized in a hierarchical

structure (fig. 2.1a). Nodes are divided into internal (or split) nodes

and terminal (or leaf) nodes. We denote internal nodes with circles

and terminal ones with squares. All nodes have exactly one incoming

edge. Thus, in contrast to graphs a tree does not contain loops. Also, in

this document we focus only on binary trees where each internal node

has exactly two outgoing edges.

A decision tree is a tree used for making decisions. For instance,

imagine we have a photograph and we need to construct an algorithm

for figuring out whether it represents an indoor scene or an outdoor

one. We can start by looking at the top part of the image. If it is blue

then that probably corresponds to a sky region. However, if also the
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bottom part of the photo is blue then perhaps it is an indoor scene

and we are looking at a blue wall. All the questions/tests which help

our decision making can be organized hierarchically, in a decision tree

structure where each internal node is associated with one such test.

We can imagine the image being injected at the root node, and a test

being applied to it (see fig. 2.1b). Based on the result of the test the

image data is then sent to the left or right child. There a new test is

applied and so on until the data reaches a leaf. The leaf contains the

answer (e.g. “outdoor”). Key to a decision tree is to establish all the

test functions associated to each internal node and also the decision-

making predictors associated with each leaf.

A decision tree can be interpreted as a technique for splitting com-

plex problems into a hierarchy of simpler ones. It is a hierarchical piece-

wise model. Its parameters (i.e. all node tests parameters, the leaves

parameters etc.) could be selected by hand for simple problems. In

more complex problems (such as vision related ones) the tree structure

and parameters are learned automatically from training data. Next we

introduce some notation which will help us formalize these concepts.

2.1.2 Mathematical notation

We denote vectors with boldface lowercase symbols (e.g. v), matrices

with teletype uppercase letters (e.g. M) and sets in calligraphic notation

(e.g. S).

A generic data point is denoted by a vector v = (x1, x2, · · · , xd) ∈
Rd. Its components xi represent some scalar feature responses. Such

features are kept general here as they depend on the specific application

at hand. For instance, in a computer vision application v may represent

the responses of a chosen filter bank at a particular pixel location. See

fig. 2.2a for an illustration.

The feature dimensionality d may be very large or even infinite

in practice. However, in general it is not necessary to compute all d

dimensions of v ahead of time, but only on a as-needed basis. As it

will be clearer later, often it is advantageous to think of features as

being randomly sampled from the set of all possible features, with a

function φ(v) selecting a subset of features of interest. More formally,
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Fig. 2.2: Basic notation. (a) Input data is represented as a collection

of points in the d-dimensional space defined by their feature responses

(2D in this example). (b) A decision tree is a hierarchical structure of

connected nodes. During testing, a split (internal) node applies a test

to the input data v and sends it to the appropriate child. The process

is repeated until a leaf (terminal) node is reached (beige path). (c)

Training a decision tree involves sending all training data {v} into the

tree and optimizing the parameters of the split nodes so as to optimize

a chosen energy function. See text for details.

φ : Rd → Rd′ , with d′ << d.

2.1.3 Training and testing decision trees

At a high level, the functioning of decision trees can be separated into

an off-line phase (training) and an on-line one (testing).

Tree testing (runtime). Given a previously unseen data point v

a decision tree hierarchically applies a number of predefined tests (see

fig. 2.2b). Starting at the root, each split node applies its associated

split function to v. Depending on the result of the binary test the data

is sent to the right or left child.1 This process is repeated until the data

point reaches a leaf node.

1 In this work we focus only on binary decision trees because they are simpler than n-ary

ones. In our experiments we have not found big accuracy differences when using non binary
trees.
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Usually the leaf nodes contain a predictor (e.g. a classifier, or a

regressor) which associates an output (e.g. a class label) to the input

v. In the case of forests many tree predictors are combined together (in

ways which will be described later) to form a single forest prediction.

Tree training (off-line). The off-line, training phase is in charge

of optimizing parameters of the split functions associated with all the

internal nodes, as well as the leaf predictors.

When discussing tree training it is convenient to think of subsets

of training points associated with different tree branches. For instance

S1 denotes the subset of training points reaching node 1 (nodes are

numbered in breadth-first order starting from 0 for the root fig. 2.2c);

and SL1 , SR1 denote the subsets going to the left and to the right children

of node 1, respectively. In binary trees the following properties apply

Sj = SLj ∪ SRj , SLj ∩ SRj = ∅, SLj = S2j+1 and SRj = S2j+2 for each split

node j.

Given a training set S0 of data points {v} and the associated ground

truth labels the tree parameters are chosen so as to minimize a chosen

energy function (discussed later). Various predefined stopping criteria

(discussed later) are applied to decide when to stop growing the var-

ious tree branches. In our figures the edge thickness is proportional

to the number of training points going through them. The node and

edge colours denote some measure of information, such as purity or

entropy, which depends on the specific task at hand (e.g. classification

or regression).

In the case of a forest with T trees the training process is typically

repeated independently for each tree. Note also that randomness is

only injected during the training process, with testing being completely

deterministic once the trees are fixed.

2.1.4 Entropy and information gain

Before discussing details about tree training it is important to famil-

iarize ourselves with the concepts of entropy and information gain.

These concepts are usually discussed in information theory or prob-

ability courses and are illustrated with toy examples in fig. 2.3 and
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Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Differ-

ent colours indicate different classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S)−
∑

i∈{1,2}

|Si|
|S|

H(Si)

with the Shannon entropy defined mathematically as: H(S) =

−
∑

c∈C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.
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Fig. 2.4: Information gain for continuous, parametric densities.

(a) Dataset S before a split. (b) After a horizontal split. (c) After a

vertical split.

The previous example has focused on discrete, categorical distribu-

tions. But entropy and information gain can also be defined for con-

tinuous distributions. In fact, for instance, the differential entropy of a

d-variate Gaussian density is defined as.

H(S) =
1

2
log
(

(2πe)d|Λ(S)|
)

An example is shown in fig. 2.4. In fig. 2.4a we have a set S of unlabelled

data points. Fitting a Gaussian to the entire initial set S produces

the density shown in blue. Splitting the data horizontally (fig. 2.4b)

produces two largely overlapping Gaussians (in red and green). The

large overlap indicates a suboptimal separation and is associated with

a relatively low information gain (I = 1.08). Splitting the data points

vertically (fig. 2.4c) yields better separated, peakier Gaussians, with a

correspondingly higher value of information gain (I = 2.43). The fact

that the information gain measure can be defined flexibly, for discrete

and continuous distributions, for supervised and unsupervised data is

a useful property that is exploited here to construct a unified forest

framework to address many diverse tasks.
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Fig. 2.5: Split and leaf nodes. (a) Split node (testing). A split node is

associated with a weak learner (or split function, or test function). (b)

Split node (training). Training the parameters θj of node j involves

optimizing a chosen objective function (maximizing the information

gain Ij in this example). (c) A leaf node is associated with a predic-

tor model. For example, in classification we may wish to estimate the

conditional p(c|v) with c ∈ {ck} indicating a class index.

2.2 The decision forest model

A random decision forest is an ensemble of randomly trained decision

trees. The forest model is characterized by a number of components.

For instance, we need to choose a family of split functions (also referred

to as “weak learners” for consistency with the literature). Similarly, we

must select the type of leaf predictor. The randomness model also has

great influence on the workings of the forest. This section discusses

each component one at a time.

2.2.1 The weak learner model

Each split node j is associated with a binary split function

h(v,θj) ∈ {0, 1}, (2.1)

with e.g. 0 indicating “false” and 1 indicating “true”. The data arriving

at the split node is sent to its left or right child node according to the

result of the test (see fig.2.5a). The weak learner model is characterized

by its parameters θ = (φ,ψ, τ ) where ψ defines the geometric primitive

used to separate the data (e.g. an axis-aligned hyperplane, an oblique

hyperplane [43, 58], a general surface etc.). The parameter vector τ
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Fig. 2.6: Example weak learners. (a) Axis-aligned hyperplane. (b)

General oriented hyperplane. (c) Quadratic (conic in 2D). For ease of

visualization here we have v = (x1 x2) ∈ R2 and φ(v) = (x1 x2 1) in

homogeneous coordinates. In general data points v may have a much

higher dimensionality and φ still a dimensionality of ≤ 2.

captures thresholds for the inequalities used in the binary test. The

filter function φ selects some features of choice out of the entire vector

v. All these parameters will be optimized at each split node. Figure 2.6

illustrates a few possible weak learner models, for example:

Linear data separation. In our model linear weak learners are de-

fined as

h(v,θj) = [τ1 > φ(v) ·ψ > τ2] , (2.2)

where [.] is the indicator function2. For instance, in the 2D example in

fig. 2.6b φ(v) = (x1 x2 1)>, and ψ ∈ R3 denotes a generic line in homo-

geneous coordinates. In (2.2) setting τ1 =∞ or τ2 = −∞ corresponds

to using a single-inequality splitting function. Another special case of

this weak learner model is one where the line ψ is aligned with one of

the axes of the feature space (e.g. ψ = (1 0 ψ3) or ψ = (0 1 ψ3), as

in fig. 2.6a). Axis-aligned weak learners are often used in the boosting

literature and they are referred to as stumps [98].

2Returns 1 if the argument is true and 0 if it is false.
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Nonlinear data separation. More complex weak learners are ob-

tained by replacing hyperplanes with higher degree of freedom surfaces.

For instance, in 2D one could use conic sections as

h(v,θj) =
[
τ1 > φ

>(v) ψ φ(v) > τ2

]
(2.3)

with ψ ∈ R3×3 a matrix representing the conic section in homogeneous

coordinates.

Note that low-dimensional weak learners of this type can be used

even for data that originally resides in a very high dimensional space

(d >> 2). In fact, the selector function φj can select a different, small

set of features (e.g. just one or two) and they can be different for

different nodes.

As shown later, the number of degrees of freedom of the weak learner

influences heavily the forest generalization properties.

2.2.2 The training objective function

During training, the optimal parameters θ∗j of the jth split node need

to be computed. This is done here by maximizing an information gain

objective function:

θ∗j = arg max
θj

Ij (2.4)

with

Ij = I(Sj ,SLj ,SRj ,θj). (2.5)

The symbols Sj ,SLj ,SRj denote the sets of training points before and

after the split (see fig. 2.2b and fig. 2.5b). Equation (2.5) is of an

abstract form here. Its precise definition depends on the task at hand

(e.g. supervised or not, continuous or discrete output) as will be shown

in later chapters.

Node optimization. The maximization operation in (2.4) can be

achieved simply as an exhaustive search operation. Often, finding the

optimal values of the τ thresholds may be obtained efficiently by means

of integral histograms.
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Fig. 2.7: Controlling the amount of randomness and tree cor-

relation. (a) Large values of ρ correspond to little randomness and

thus large tree correlation. In this case the forest behaves very much

as if it was made of a single tree. (b) Small values of ρ correspond to

large randomness in the training process. Thus the forest component

trees are all very different from one another.

2.2.3 The randomness model

A key aspect of decision forests is the fact that its component trees are

all randomly different from one another. This leads to de-correlation

between the individual tree predictions and, in turn, to improved gen-

eralization. Forest randomness also helps achieve high robustness with

respect to noisy data.

Randomness is injected into the trees during the training phase.

Two of the most popular ways of doing so are:

• random training data set sampling [11] (e.g. bagging), and
• randomized node optimization [46].

These two techniques are not mutually exclusive and could be used

together. However, in this paper we focus on the second alternative

which: i) enables us to train each tree on the totality of training data,

and ii) yields margin-maximization properties (details in chapter 3).

On the other hand, bagging yields greater training efficiency.

Randomized node optimization. If T is the entire set of all possi-

ble parameters θ then when training the jth node we only make avail-

able a small subset Tj ⊂ T of such values. Thus under the randomness
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model training a tree is achieved by optimizing each split node j by

θ∗j = arg max
θj∈Tj

Ij . (2.6)

The amount of randomness is controlled by the ratio |Tj |/|T |. Note that

in some cases we may have |T | = ∞. At this point it is convenient to

introduce a parameter ρ = |Tj |. The parameter ρ = 1, . . . , |T | controls

the degree of randomness in a forest and (usually) its value is fixed for

all nodes in all trees. For ρ = |T | all trees in the forests are identical

to one another and there is no randomness in the system (fig. 2.7a).

Vice-versa, for ρ = 1 we get maximum randomness and uncorrelated

trees (fig. 2.7b).

2.2.4 The leaf prediction model

During training, information that is useful for prediction in testing

will be learned for all leaf nodes. In the case of classification each leaf

may store the empirical distribution over the classes associated to the

subset of training data that has reached that leaf. The probabilistic

leaf predictor model for the tth tree is then

pt(c|v) (2.7)

with c ∈ {ck} indexing the class (see fig. 2.5c). In regression instead,

the output is a continuous variable and thus the leaf predictor model

may be a posterior over the desired continuous variable. In more con-

ventional decision trees [12] the leaf output was not probabilistic, but

rather a point estimate, e.g. c∗ = arg maxc pt(c|v). Forest-based prob-

abilistic regression was introduced in [24] and it will be discussed in

detail in chapter 4.

2.2.5 The ensemble model

In a forest with T trees we have t ∈ {1, · · · , T}. All trees are trained

independently (and possibly in parallel). During testing, each test point

v is simultaneously pushed through all trees (starting at the root) until

it reaches the corresponding leaves. Tree testing can also often be done

in parallel, thus achieving high computational efficiency on modern
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parallel CPU or GPU hardware (see [80] for GPU-based classification).

Combining all tree predictions into a single forest prediction may be

done by a simple averaging operation [11]. For instance, in classification

p(c|v) =
1

T

T∑
t=1

pt(c|v). (2.8)

Alternatively one could also multiply the tree output together (though

the trees are not statistically independent)

p(c|v) =
1

Z

T∏
t=1

pt(c|v) (2.9)

with the partition function Z ensuring probabilistic normalization

Figure 2.8 illustrates tree output fusion for a regression example.

Imagine that we have trained a regression forest with T = 4 trees to

predict a “dependent” continuous output y. 3 For a test data point v

we get the corresponding tree posteriors pt(y|v), with t = {1, · · · , 4}.
As illustrated some trees produce peakier (more confident) predictions

than others. Both the averaging and the product operations produce

combined distributions (shown in black) which are heavily influenced

by the most confident, most informative trees. Therefore, such simple

operations have the effect of selecting (softly) the more confident trees

out of the forest. This selection is carried out on a leaf-by-leaf level and

the more confident trees may be different for different leaves. Averaging

many tree posteriors also has the advantage of reducing the effect of

possibly noisy tree contributions. In general, the product based ensem-

ble model may be less robust to noise. Alternative ensemble models are

possible, where for instance one may choose to select individual trees

in a hard way.

2.2.6 Stopping criteria

Other important choices are to do with when to stop growing individ-

ual tree branches. For instance, it is common to stop the tree when

a maximum number of levels D has been reached. Alternatively, one

3Probabilistic regression forests will be described in detail in chapter 4.
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Fig. 2.8: Ensemble model. (a) The posteriors of four different trees

(shown with different colours). Some correspond to higher confidence

than others. (b) An ensemble posterior p(y|v) obtained by averaging

all tree posteriors. (c) The ensemble posterior p(y|v) obtained as prod-

uct of all tree posteriors. Both in (b) and (c) the ensemble output is

influenced more by the more informative trees.

can impose a minimum information gain. Tree growing may also be

stopped when a node contains less that a defined number of training

points. Avoiding growing full trees has repeatedly been demonstrated

to have positive effects in terms of generalization. In this work we avoid

further post-hoc operations such as tree pruning [42] to keep the train-

ing process as simple as possible.

2.2.7 Summary of key model parameters

In summary, the parameters that most influence the behaviour of a

decision forest are:

• The forest size T ;
• The maximum allowed tree depth D;
• The amount of randomness (controlled by ρ) and its type;
• The choice of weak learner model;
• The training objective function;
• The choice of features in practical applications.

Those choices directly affect the forest predictive accuracy, the accuracy

of its confidence, its generalization and its computational efficiency.
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For instance, several papers have pointed out how the testing accu-

racy increases monotonically with the forest size T [24, 83, 102]. It is

also known that very deep trees can lead to overfitting, although using

very large amounts of training data mitigates this problem [82]. In his

seminal work Breiman [11] has also shown the importance of random-

ness and its effect on tree correlation. Chapter 3 will show how the

choice of randomness model directly influences a classification forest’s

generalization. A less studied issue is how the weak learners influence

the forest’s accuracy and its estimated uncertainty. To this end, the

next chapters will show the effect of ρ on the forest behaviour with

some simple toy examples and compare the results with existing alter-

natives.

Now we have defined our generic decision forest model. Next we

discuss its specializations for the different tasks of interest. The ex-

planations will be accompanied by a number of synthetic examples in

the hope of increasing clarity of exposition and helping understand the

forests’ general properties. Real-world applications will also be pre-

sented and discussed.



3

Classification forests

This chapter discusses the most common use of decision forests, i.e.

classification. The goal here is to automatically associate an input data

point v with a discrete class c ∈ {ck}. Classification forests enjoy a

number of useful properties:

• they naturally handle problems with more than two classes;
• they provide a probabilistic output;
• they generalize well to previously unseen data;
• they are efficient thanks to their parallelism and reduced set

of tests per data point.

In addition to these known properties this chapter also shows that:

• under certain conditions classification forests exhibit margin-

maximizing behaviour, and
• the quality of the posterior can be controlled via the choice

of the specific weak learner.

We begin with an overview of general classification methods and then

show how to specialize the generic forest model presented in the previ-

ous chapter for the classification task.

20
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3.1 Classification algorithms in the literature

One of the most widely used classifiers is the support vector machine

(SVM) [97] whose popularity is due to the fact that in binary classifica-

tion problems (only two target classes) it guarantees maximum-margin

separation. In turn, this property yields good generalization with rela-

tively little training data.

Another popular technique is boosting [32] which builds strong clas-

sifiers as linear combination of many weak classifiers. A boosted classi-

fier is trained iteratively, where at each iteration the training examples

for which the classifier works less well are “boosted” by increasing their

associated training weight. Cascaded boosting was used in [98] for effi-

cient face detection and localization in images, a task nowadays handled

even by entry-level digital cameras and webcams.

Despite the success of SVMs and boosting, these techniques do not

extend naturally to multiple class problems [20, 94]. In principle, classi-

fication trees and forests work, unmodified with any number of classes.

For instance, they have been tested on ∼ 20 classes in [83] and ∼ 30

classes in [82].

Abundant literature has shown the advantage of fusing together

multiple simple learners of different types [87, 95, 102, 105]. Classifi-

cation forests represent a simple, yet effective way of combining ran-

domly trained classification trees. A thorough comparison of forests

with respect to other binary classification algorithms has been pre-

sented in [15]. In average, classification forests have shown good gen-

eralization, even in problems with high dimensionality. Classification

forests have also been employed successfully in a number of practical

applications [23, 54, 74, 83, 100].

3.2 Specializing the decision forest model for classification

This section specializes the generic model introduced in chapter 2 for

use in classification.

Problem statement. The classification task may be summarized as

follows:
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Fig. 3.1: Classification: training data and tree training. (a) In-

put data points. The ground-truth label of training points is denoted

with different colours. Grey circles indicate unlabelled, previously un-

seen test data. (b) A binary classification tree. During training a set of

labelled training points {v} is used to optimize the parameters of the

tree. In a classification tree the entropy of the class distributions asso-

ciated with different nodes decreases (the confidence increases) when

going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-

sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-

available” test data is typical of inductive tasks.1 In classification the

desired output is of discrete, categorical, unordered type. Consequently,

so is the nature of the training labels. In fig. 3.1a data points are de-

noted with circles, with different colours indicating different training

labels. Testing points (not available during training) are indicated in

grey.

More formally, during testing we are given an input test data v

and we wish to infer a class label c such that c ∈ C, with C = {ck}.
More generally we wish to compute the whole distribution p(c|v). As

1As opposed to transductive tasks. The distinction will become clearer later.
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usual the input is represented as a multi-dimensional vector of feature

responses v = (x1, · · · , xd) ∈ Rd. Training happens by optimizing an

energy over a training set S0 of data and associated ground-truth labels.

Next we specify the precise nature of this energy.

The training objective function. Forest training happens by op-

timizing the parameters of the weak learner at each split node j via:

θ∗j = arg max
θj∈Tj

Ij . (3.1)

For classification the objective function Ij takes the form of a classical

information gain defined for discrete distributions:

Ij = H(Sj)−
∑

i∈{L,R}

|Sij |
|Sj |

H(Sij)

with i indexing the two child nodes. The entropy for a generic set S of

training points is defined as:

H(S) = −
∑
c∈C

p(c) log p(c)

where p(c) is calculated as normalized empirical histogram of labels

corresponding to the training points in S. As illustrated in fig. 3.1b

training a classification tree by maximizing the information gain has

the tendency to produce trees where the entropy of the class distri-

butions associated with the nodes decreases (the prediction confidence

increases) when going from the root towards the leaves. In turn, this

yields increasing confidence of prediction.

Although the information gain is a very popular choice of objective

function it is not the only one. However, as shown in later chapters,

using an information-gain-like objective function aids unification of di-

verse tasks under the same forest framework.

Randomness. In (3.1) randomness is injected via randomized node

optimization, with as before ρ = |Tj | indicating the amount of random-

ness. For instance, before starting training node j we can randomly
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Fig. 3.2: Classification forest testing. During testing the same un-

labelled test input data v is pushed through each component tree. At

each internal node a test is applied and the data point sent to the ap-

propriate child. The process is repeated until a leaf is reached. At the

leaf the stored posterior pt(c|v) is read off. The forest class posterior

p(c|v) is simply the average of all tree posteriors.

sample ρ = 1000 parameter values out of possibly billions or even infi-

nite possibilities. It is important to point out that it is not necessary to

have the entire set T pre-computed and stored. We can generate each

random subset Tj as needed before starting training the corresponding

node.

The leaf and ensemble prediction models. Classification forests

produce probabilistic output as they return not just a single class point

prediction but an entire class distribution. In fact, during testing, each

tree leaf yields the posterior pt(c|v) and the forest output is simply:

p(c|v) =
1

T

T∑
t

pt(c|v).

This is illustrated with a small, three-tree forest in fig. 3.2.

The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.

In later chapter we will discuss how different choices lead to different
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models. Next, we discuss the effect of model parameters and important

properties of classification forests.

3.3 Effect of model parameters

This section studies the effect of the forest model parameters on clas-

sification accuracy and generalization. We use many illustrative, syn-

thetic examples designed to bring to life different properties. Finally,

section 3.6 demonstrates such properties on a real-world, commercial

application.

3.3.1 The effect of the forest size on generalization

Figure 3.3 shows a first synthetic example. Training points belonging

to two different classes (shown in yellow and red) are randomly drawn

from two well separated Gaussian distributions (fig. 3.3a). The points

are represented as 2-vectors, where each dimension represents a differ-

ent feature.

A forest of shallow trees (D = 2) and varying size T is trained

on those points. In this example simple axis-aligned weak learners are

used. In such degenerate trees there is only one split node, the root

itself (fig. 3.3b). The trees are all randomly different from one another

and each defines a slightly different partition of the data. In this sim-

ple (linearly separable) example each tree defines a “perfect” partition

since the training data is separated perfectly. However, the partitions

themselves are still randomly different from one another.

Figure 3.3c shows the testing classification posteriors evaluated for

all non-training points across a square portion of the feature space (the

white testing pixels in fig. 3.3a). In this visualization the colour associ-

ated with each test point is a linear combination of the colours (red and

yellow) corresponding to the two classes; where the mixing weights are

proportional to the posterior itself. Thus, intermediate, mixed colours

(orange in this case) correspond to regions of high uncertainty and low

predictive confidence.

We observe that each single tree produces over-confident predictions

(sharp probabilities in fig. 3.3c1). This is undesirable. In fact, intuitively

one would expect the confidence of classification to be reduced for test
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Fig. 3.3: A first classification forest and the effect of forest size

T . (a) Training points belonging to two classes. (b) Different training

trees produce different partitions and thus different leaf predictors. The

colour of tree nodes and edges indicates the class probability of training

points going through them. (c) In testing, increasing the forest size

T produces smoother class posteriors. All experiments were run with

D = 2 and axis-aligned weak learners. See text for details.

data which is “different” than the training data. The larger the differ-

ence, the larger the uncertainty. Thanks to all trees being different from

one another, increasing the forest size from T = 1 to T = 200 produces

much smoother posteriors (fig. 3.3c3). Now we observe higher confi-

dence near the training points and lower confidence away from training

regions of space; an indication of good generalization behaviour.

For few trees (e.g. T = 8) the forest posterior shows clear box-

like artifacts. This is due to the use of an axis-aligned weak learner

model. Such artifacts yield low quality confidence estimates (especially
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when extrapolating away from training regions) and ultimately imper-

fect generalization. Therefore, in the remainder of this paper we will

always keep an eye on the accuracy of the uncertainty as this is key

for inductive generalization away from (possibly little) training data.

The relationship between quality of uncertainty and maximum-margin

classification will be studied in section 3.4.

3.3.2 Multiple classes and training noise

One major advantage of decision forests over e.g. support vector ma-

chines and boosting is that the same classification model can handle

both binary and multi-class problems. This is illustrated in fig. 3.4 with

both two- and four-class examples, and different levels of noise in the

training data.

The top row of the figure shows the input training points (two

classes in fig. 3.4a and four classes in figs. 3.4b,c). The middle row

shows corresponding testing class posteriors. the bottom row shows

entropies associated to each pixel. Note how points in between spiral

arms or farther away from training points are (correctly) associated

with larger uncertainty (orange pixels in fig. 3.4a’ and grey-ish ones in

figs. 3.4b’,c’).

In this case we have employed a richer conic section weak learner

model which removes the blocky artifacts observed in the previous ex-

ample and yields smoother posteriors. Notice for instance in fig. 3.4b’

how the curve separating the red and the green spiral arms is nicely

continued away from training points (with increasing uncertainty).

As expected, if the noise in the position of training points increases

(cf fig. 3.4b and 3.4 c) then training points for different classes are more

intermingled with one another. This yields a larger overall uncertainty

in the testing posterior (captured by less saturated colours in fig. 3.4c’).

Next we delve further into the issue of training noise and mixed or

“sloppy” training data.

3.3.3 “Sloppy” labels and the effect of the tree depth

The experiment in fig. 3.5 illustrates the behaviour of classification

forests on a four-class training set where there is both mixing of la-
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Fig. 3.4: The effect of multiple classes and noise in training data. (a,b,c)
Training points for three different experiments: 2-class spiral, 4-class spiral and
another 4-class spiral with noisier point positions, respectively. (a’,b’,c’) Corre-
sponding testing posteriors. (a”,b”,c”) Corresponding entropy images (brighter
for larger entropy). The classification forest can handle both binary as well as multi-
class problems. With larger training noise the classification uncertainty increases
(less saturated colours in c’ and less sharp entropy in c”). All experiments in this
figure were run with T = 200, D = 6, and a conic-section weak-learner model.

bels (in feature space) and large gaps. Here three different forests have

been trained with the same number of trees T = 200 and varying max-

imum depth D. We observe that as the tree depth increases the overall

prediction confidence also increases. Furthermore, in large gaps (e.g.

between red and blue regions), the optimal separating surface tends to
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Fig. 3.5: The effect of tree depth. A four-class problem with both

mixing of training labels and large gaps. (a) Training points. (b,c,d)

Testing posteriors for different tree depths. All experiments were run

with T = 200 and a conic weak-learner model. The tree depth is a

crucial parameter in avoiding under- or over-fitting.

be placed roughly in the middle of the gap.2

Finally, we notice that a large value of D (D = 15 in the exam-

ple) tends to produce overfitting, i.e. the posterior tends to split off

isolated clusters of noisy training data (denoted with white circles in

the figure). In fact, the maximum tree depth parameter D controls

the amount of overfitting. By the same token, too shallow trees pro-

duce washed-out, low-confidence posteriors. Thus, while using multiple

2This effect will be analyzed further in the next section.
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trees alleviates the overfitting problem of individual trees, it does not

cure it completely. In practice one has to be very careful to select the

most appropriate value of D as its optimal value is a function of the

problem complexity.

3.3.4 The effect of the weak learner

Another important issue that has perhaps been a little overlooked in

the literature is the effect of a particular choice of weak learner model

on the forest behaviour.

Figure 3.6 illustrates this point. We are given a single set of training

points arranged in four spirals, one for each class. Six different forests

have been trained on the same training data, for 2 different values

of tree depth and 3 different weak learners. The 2 × 3 arrangement

of images shows the output test posterior for varying D (in different

rows) and varying weak learner model (in different columns). All ex-

periments are conducted with a very large number of trees (T = 400)

to remove the effect of forest size and reach close to the maximum

possible smoothness under the model.

This experiment confirms again that increasing D increases the con-

fidence of the output (for fixed weak learner). This is illustrated by

the more intense colours going from top row to the bottom row. Fur-

thermore we observe that the choice of weak learner model has a large

impact on the test posterior and the quality of its confidence. The axis-

aligned model may still separate the training data well, but produces

large blocky artifacts in the test regions. This tends to indicate bad

generalization. The oriented line model [43, 58] is a clear improvement,

and better still is the non-linear model as it extrapolates the shape of

the spiral arms in a more naturally curved manner.

On the flip side, of course, we should also consider the fact that axis-

aligned tests are extremely efficient to compute. So the choice of the

specific weak learner has to be based on considerations of both accuracy

and efficiency and depends on the specific application at hand. Next we

study the effect of randomness by running exactly the same experiment

but with a much larger amount of training randomness.
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Fig. 3.6: The effect of weak learner model. The same set of 4-class

training data is used to train 6 different forests, for 2 different values

of D and 3 different weak learners. For fixed weak learner deeper trees

produce larger confidence. For constant D non-linear weak learners

produce the best results. In fact, an axis-aligned weak learner model

produces blocky artifacts while the curvilinear model tends to extrap-

olate the shape of the spiral arms in a more natural way. Training has

been achieved with ρ = 500 for all split nodes. The forest size is kept

fixed at T = 400.

3.3.5 The effect of randomness

Figure 3.7 shows the same experiment as in fig. 3.6 with the only dif-

ference that now ρ = 5 as opposed to ρ = 500. Thus, much fewer pa-

rameter values were made available to each node during training. This

increases the randomness of each tree and reduces their correlation.

Larger randomness helps reduce a little the blocky artifacts of the

axis-aligned weak-learner as it produces more rounded decision bound-

aries (first column in fig. 3.7). Furthermore, larger randomness yields a
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Fig. 3.7: The effect of randomness. The same set of 4-class training

data is used to train 6 different forests, for 2 different values of D

and 3 different weak learners. This experiment is identical to that in

fig. 3.6 except that we have used much more training randomness. In

fact ρ = 5 for all split nodes. The forest size is kept fixed at T = 400.

More randomness reduces the artifacts of the axis-aligned weak learner

a little, as well as reducing overall prediction confidence too. See text

for details.

much lower overall confidence, especially noticeable in shallower trees

(washed out colours in the top row).

A disadvantage of the more complex weak learners is that they are

associated to a larger parameters space. Thus finding discriminative

sets of parameter values may be time consuming. However, in this toy

example the more complex conic section learner model works well for

deeper trees (D = 13) even for small values of ρ (large randomness).

The results reported here are only indicative. In fact, which specific

weak learner to use depends on considerations of efficiency as well as

accuracy and it is application dependent. Many more examples, ani-
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mations and demo videos are available at [1].

Next, we move on to show further properties of classification forests.

Specifically, we demonstrate how under certain conditions forests ex-

hibit margin-maximizing capabilities.

3.4 Maximum-margin properties

The hallmark of support vector machines is their ability to separate

data belonging to different classes via a margin-maximizing surface.

This, in turn, yields good generalization even with relatively little train-

ing data. This section shows how this important property is replicated

in random classification forests and under which conditions. Margin

maximizing properties of random forests were discussed in [52]. Here

we show a different, simpler formulation, analyze the conditions that

lead to margin maximization, and discuss how this property is affected

by different choices of model parameters.

Imagine we are given a linearly separable 2-class training data

set such as that shown in fig. 3.8a. For simplicity here we assume

d = 2 (only two features describe each data point), an axis-aligned

weak learner model and D = 2 (trees are simple binary stumps). As

usual randomness is injected via randomized node optimization (sec-

tion 2.2.3).

When training the root node of the first tree, if we use enough

candidate features/parameters (i.e. |T0| is large) the selected separating

line tends to be placed somewhere within the gap (see fig. 3.8a) so as to

separate the training data perfectly (maximum information gain). Any

position within the gap is associated with exactly the same, maximum

information gain. Thus, a collection of randomly trained trees produces

a set of separating lines randomly placed within the gap (an effect

already observed in fig. 3.3b).

If the candidate separating lines are sampled from a uniform distri-

bution (as is usually the case) then this would yield forest class poste-

riors that vary within the gap as a linear ramp, as shown in fig. 3.8b,c.

If we are interested in a hard separation then the optimal separating

surface (assuming equal loss) is such that the posteriors for the two

classes are identical. This corresponds to a line placed right in the mid-
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Fig. 3.8: Forest’s maximum-margin properties. (a) Input 2-class

training points. They are separated by a gap of dimension ∆. (b) Forest

posterior. Note that all of the uncertainty band resides within the gap.

(c) Cross-sections of class posteriors along the horizontal, white dashed

line in (b). Within the gap the class posteriors are linear functions of

x1. Since they have to sum to 1 they meet right in the middle of the

gap. In these experiments we use ρ = 500, D = 2, T = 500 and axis

aligned weak learners.

dle of the gap, i.e. the maximum-margin solution. Next, we describe

the same concepts more formally.

We are given the two-class training points in fig. 3.8a. In this sim-

ple example the training data is not only linearly separable, but it is

perfectly separable via vertical stumps on x1. So we constrain our weak

learners to be vertical lines only, i.e.

h(v,θj) = [φ(v) > τ ] with φ(v) = x1.
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Under these conditions we can define the gap ∆ as ∆ = x′′1−x′1, with x′1
and x′′1 corresponding to the first feature of the two “support vectors”3,

i.e. the yellow point with largest x1 and the red point with smallest x1.

For a fixed x2 the classification forest produces the posterior p(c|x1)

for the two classes c1 and c2. The optimal separating line (vertical) is

at position τ∗ such that

τ∗ = arg min
τ
|p(c = c1|x1 = τ)− p(c = c2|x1 = τ)|.

We make the additional assumption that when training a node its

available test parameters (in this case just τ) are sampled from a uni-

form distribution, then the forest posteriors behave linearly within the

gap region, i.e.

lim
ρ→|T |,T→∞

p(c = c1|x1) =
x1 − x′1

∆
∀x1 ∈ [x′1, x

′′
1].

(see fig. 3.8b,c). Consequently, since
∑

c∈{c1,c2} p(c|x1) = 1 we have

lim
ρ→|T |,T→∞

τ∗ = x′1 + ∆/2.

which shows that the optimal separation is placed right in the middle

of the gap. This demonstrates the forest’s margin-maximization prop-

erties for this simple example.

Note that each individual tree is not guaranteed to produce

maximum-margin separation; it is instead the combination of multi-

ple trees that at the limit T → ∞ produces the desired max-margin

behaviour. In practice it suffices to have T and ρ “large enough”. Fur-

thermore, as observed earlier, for perfectly separable data each tree

produces over-confident posteriors. Once again, their combination in a

forest yields fully probabilistic and smooth posteriors (in contrast to

SVM).

The simple mathematical derivation above provides us with some

intuition on how model choices such as the amount of randomness or

the type of weak learner affect the placement of the forest’s separating

surface. The next sections should clarify these concepts further.

3 analogous to support vectors in SVM.
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3.4.1 The effect of randomness on optimal separation

The experiment in fig. 3.8 has used a large value of ρ (ρ → |T |, little

randomness, large tree correlation) to make sure that each tree decision

boundary fell within the gap. When using more randomness (smaller ρ)

then the individual trees are not guaranteed to split the data perfectly

and thus they may yield a sub-optimal information gain. In turn, this

yields a lower confidence in the posterior. Now, the locus of points where

p(c = c1|x1) = p(c = c2|x1) is no longer placed right in the middle of the

gap. This is shown in the experiment in fig. 3.9 where we can observe

that by increasing the randomness (decreasing ρ) we obtain smoother

and more spread-out posteriors. The optimal separating surface is less

sharply defined. The effect of individual training points is weaker as

compared to the entire mass of training data; and in fact, it is no

longer possible to identify individual support vectors. This may be

advantageous in the presence of “sloppy” or inaccurate training data.

The role of the parameter ρ is very similar to that of “slack” vari-

ables in SVM [97]. In SVM the slack variables control the influence of

individual support vectors versus the rest of training data. Appropriate

values of slack variables yield higher robustness with respect to training

noise.

3.4.2 Influence of the weak learner model

Figure 3.10 shows how more complex weak learners affects the shape

and orientation of the optimal, hard classification surface (as well as the

uncertain region, in orange). Once again, the position and orientation

of the separation boundary is more or less sensitive to individual train-

ing points depending on the value of ρ. Little randomness produces a

behaviour closer to that of support vector machines.

In classification forests, using linear weak-learners still produces

(in general) globally non-linear classification (see the black curves in

fig. 3.9c and fig. 3.10b). This is due to the fact that multiple simple

linear split nodes are organized in a hierarchical fashion.
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Fig. 3.9: The effect of randomness on the forest margin. (a)

Forest posterior for ρ = 50 (small randomness). (b) Forest posterior

for ρ = 5. (c) Forest posterior for ρ = 2 (highest randomness). These

experiments have used D = 2, T = 400 and axis-aligned weak learners.

The bottom row shows 1D posteriors computed along the white dashed

line. Increasing randomness produces less well defined separating sur-

faces. The optimal separating surface, i.e. the loci of points where the

class posteriors are equal (shown in black) moves towards the left of

the margin-maximizing line (shown in green in all three experiments).

As randomness increases individual training points have less influence

on the separating surface.

3.4.3 Max-margin in multiple classes

Since classification forests can naturally apply to more than 2 classes

how does this affect their maximum-margin properties? We illustrate

this point with a multi-class synthetic example. In fig. 3.11a we have

a linearly separable four-class training set. On it we have trained two
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Fig. 3.10: The effect of the weak learner on forest margin. (a)

Forest posterior for axis aligned weak learners. (b) Forest posterior for

oriented line weak learners. (c) Forest posterior for conic section weak

learners. In these experiments we have used ρ = 50, D = 2, T = 500.

The choice of weak learner affects the optimal, hard separating surface

(in black). Individual training points influence the surface differently

depending on the amount of randomness in the forest.

forests with |Tj | = 50, D = 3, T = 400. The only difference between

the two forests is the fact that the first one uses an oriented line weak

learner and the second a conic weak learner. Figures 3.11b,c show the

corresponding testing posteriors. As usual grey pixels indicate regions

of higher posterior entropy and lower confidence. They roughly delin-

eate the four optimal hard classification regions. Note that in both

cases their boundaries are roughly placed half-way between neighbour-

ing classes. As in the 2-class case the influence of individual training

points is dictated by the randomness parameter ρ.

Finally, when comparing fig. 3.11c and fig. 3.11b we notice that for

conic learners the shape of the uncertainty region evolves in a curved

fashion when moving away from training data.

3.4.4 The effect of the randomness model

This section shows a direct comparison between the randomized node

optimization and the bagging model.

In bagging randomness is injected by randomly sampling different
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Fig. 3.11: Forest’s max-margin properties for multiple classes.

(a) Input four-class training points. (b) Forest posterior for oriented

line weak learners. (c) Forest posterior for conic section weak learners.

Regions of high entropy are shown as grey bands and correspond to loci

of optimal separation. In these experiments we have used the following

parameter settings ρ = 50, D = 3, T = 400.

subsets of training data. So, each tree sees a different training subset.

Its node parameters are then fully optimized on this set. This means

that specific “support vectors” may not be available in some of the

trees. The posterior associated with those trees will then tend to move

the optimal separating surface away from the maximum-margin one.

This is illustrated in fig. 3.12 where we have trained two forests with

ρ = 500, D = 2, T = 400 and two different randomness models. The

forest tested in fig. 3.12a uses randomized node optimization (RNO).

The one in fig. 3.12b uses bagging (randomly selecting 50% training

data with replacement) on exactly the same training data. In bagging,

when training a node, there may be a whole range of values of a cer-

tain parameter which yield maximum information gain (e.g. the range

[τ ′1, τ
′′
1 ] for the threshold τ1). In such a case we could decide to always

select one value out of the range (e.g. τ ′1). But this would probably

be an unfair comparison. Thus we chose to randomly select a parame-

ter value uniformly within that range. In effect here we are combining

bagging and random node optimization together. The effect is shown

in fig. 3.12b. In both cases we have used a large value of ρ to make

sure that each tree achieves decent optimality in parameter selection.
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Fig. 3.12: Max-margin: bagging v randomized node optimiza-

tion. (a) Posterior for forest trained with randomized node optimiza-

tion. (b) Posterior for forest trained with bagging. In bagging, for each

tree we use 50% random selection of training data with replacement.

Loci of optimal separation are shown as black lines. In these experi-

ments we use ρ = 500, D = 2, T = 400 and axis-aligned weak learners.

Areas of high entropy have been shown strongly grey to highlight the

separating surfaces.

We observe that the introduction of training set randomization leads

to smoother posteriors whose optimal boundary (shown as a vertical

black line) does not coincide with the maximum margin (green, solid

line). Of course this behaviour is controlled by how much (training set)

randomness we inject in the system. If we were to take all training data

then we would reproduce a max-margin behaviour (but it would not

be bagging). One advantage of bagging is increased training speed (due

to reduced training set size). More experiments and comparisons are

available in [1]. In the rest of the paper we use the RNO randomness

model because it allows us to use all available training data and en-
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ables us to control the maximum-margin behaviour simply, by means

of changing ρ.

3.5 Comparisons with alternative algorithms

This section compares classification forests to existing state-of-the art

algorithms.

3.5.1 Comparison with boosting

Figure 3.13 shows a comparison between classification forests and Mod-

estBoost on two synthetic experiments.4 Here, for both algorithm we

use shallow tree stumps (D = 2) with axis-aligned split functions as

this is what is conventionally used in boosting [99].

The first column presents the soft testing posteriors of the classifica-

tion forest. The third column presents a visualization of the real-valued

output of the boosted strong classifier, while the second column shows

the more conventional, thresholded boosting output. The figure illus-

trates the superiority of the forest in terms of the additional uncertainty

encoded in its posterior. Although both algorithms separate the train-

ing data perfectly, the boosting binary output is overly confident, thus

potentially causing incorrect classification of previously unseen testing

points. Using the real valued boosted output (third column) as a proxy

for uncertainty does not seem to produce intuitively meaningful confi-

dence results in these experiments. In fact, in some cases (experiment

1) there is not much difference between the thresholded and real-valued

boosting outputs. This is due to the fact that all boosting’s weak learn-

ers are identical to one another, in this case. The training procedure

of the boosting algorithm tested here does not encourage diversity of

weak learners in cases where the data can be easily separated by a single

stump. Alternative boosting technique may produce better behaviour.

4Boosting results are obtained via the publically available Matlab toolbox in
http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox
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Fig. 3.13: Comparison between classification forests and boost-

ing on two examples. Forests produce a smooth, probabilistic output.

High uncertainty is associated with regions between different classes or

away from training data. boosting produces a hard output. Interpreting

the output of a boosted strong classifier as real valued does not seem to

produce intuitively meaningful confidence. The forest parameters are:

D = 2, T = 200, and we use axis-aligned weak learners. Boosting was

also run with 200 axis-aligned stumps and the remaining parameters

optimized to achieve best results.

3.5.2 Comparison with support vector machines

Figure 3.14 illustrates a comparison between classification forests and

conventional support vector machines5 on three different four-class

training sets. In all examples the four classes are nicely separable

5SVM experiments are obtained via the publically available code in http://asi.insa-

rouen.fr/enseignants/ arakotom/toolbox/index.html. For multi-class experiments we run
one-v-all SVM.
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Fig. 3.14: Comparison between classification forests and sup-

port vector machines. All forest experiments were run with D = 3,

T = 200 and conic weak learner. The SVM parameters were optimized

to achieve best results.

and both forests and SVMs achieve good separation results. However,

forests also produce uncertainty information. Probabilistic SVM coun-

terparts such as the relevance vector machine [93] do produce confi-

dence output but at the expense of further computation.

The role of good confidence estimation is particularly evident in

fig. 3.14b where we can see how the uncertainty increases as we move

away from the training data. The exact shape of the confidence region

is dictated strongly by the choice of the weak learner model (conic

section in this case), and a simple axis-aligned weak learner would

produce inferior results. In contrast, the SVM classifier assigns a hard

output class value to each pixel, with equal confidence.

Unlike forests, SVMs were born as two-class classifiers, although
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Fig. 3.15: Classification forests in Microsoft Kinect for XBox

360. (a) An input frame as acquired by the Kinect depth camera.

(b) Synthetically generated ground-truth labeling of 31 different body

parts [82]. (c) One of the many features of a “reference” point p. Given

p computing the feature amounts to looking up the depth at a “probe”

position p + r and comparing it with the depth of p.

recently they have been adapted to work with multiple classes. Fig-

ure 3.14c shows how the sequentiality of the one-v-all SVM approach

may lead to asymmetries which are not really justified by the training

data.

3.6 Human body tracking in Microsoft Kinect for XBox 360

This section describes the application of classification forests for the

real-time tracking of humans, as employed in the Microsoft Kinect gam-

ing system [100]. Here we present a summary of the algorithm in [82]

and show how the forest employed within is readily interpreted as an

instantiation of our generic decision forest model.

Given a depth image such as the one shown in fig. 3.15a

we wish to say which body part each pixel belongs to.

This is a typical job for a classification forest. In this ap-

plication there are thirtyone different body part classes:

c ∈ {left hand, right hand, head, l. shoulder, r. shoulder, · · · }.
The unit of computation is a single pixel in position p ∈ R2 and with

associated feature vector v(p) ∈ Rd.
During testing, given a pixel p in a previously unseen test image we
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Fig. 3.16: Classification forests in Kinect for XBox 360. (a) An

input depth frame with background removed. (b) The body part clas-

sification posterior. Different colours corresponding to different body

parts, out of 31 different classes.

wish to estimate the posterior p(c|v). Visual features are simple depth

comparisons between pairs of pixel locations. So, for pixel p its feature

vector v = (x1, . . . , xi, . . . , xd) ∈ Rd is a collection of depth differences:

xi = J(p)− J
(

p +
ri
J(p)

)
(3.2)

where J(.) denotes a pixel depth in mm (distance from camera plane).

The 2D vector ri denotes a displacement from the reference point p

(see fig. 3.15c). Since for each pixel we can look around at an infinite

number of possible displacements (∀ r ∈ R2) we have d =∞.

During training we are given a large number of pixel-wise labelled

training image pairs as in fig 3.15b. Training happens by maximizing

the information gain for discrete distributions (3.1). For a split node j

its parameters are

θj = (rj , τj)

with rj a randomly chosen displacement. The quantity τj is a learned

scalar threshold. If d = ∞ then also the whole set of possible split

parameters has infinite cardinality, i.e. |T | =∞.

An axis-aligned weak learner model is used here with the node split
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function as follows

h(v,θj) = [φ(v, rj) > τj ] .

As usual, the selector function φ takes the entire feature vector v and

returns the single feature response (3.2) corresponding to the chosen

displacement rj . In practice, when training a split node j we first ran-

domly generate a set of parameters Tj and then maximize the infor-

mation gain by exhaustive search. Therefore we never need to compute

the entire infinite set T .

Now we have defined all model parameters for the specific applica-

tion at hand. Some example results are shown in fig. 3.16; with many

more shown in the original paper [82]. Now that we know how this ap-

plication relates to the more abstract description of the classification

forest model it would be interesting to see how the results change, e.g.

when changing the weak learner model, or the amount of randomness

etc. However, this investigation is beyond the scope of this paper.

Moving on from classification, the next chapter addresses a closely

related problem, that of probabilistic, non-linear regression. Interest-

ingly, regression forests have very recently been used for skeletal joint

prediction in Kinect images [37].
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Regression forests

This chapter discusses the use of random decision forests for the esti-

mation of continuous variables.

Regression forests are used for the non-linear regression of depen-

dent variables given independent input. Both input and output may

be multi-dimensional. The output can be a point estimate or a full

probability density function.

Regression forests are less popular than their classification counter-

part. The main difference is that the output label to be associated with

an input data is continuous. Therefore, the training labels are continu-

ous. Consequently the objective function has to be adapted appropri-

ately. Regression forests share many of the advantages of classification

forests such as efficiency and flexibility.

As with the other chapters we start with a brief literature survey

of linear and non-linear regression techniques, then we describe the

regression forest model and finally we demonstrate its properties with

examples and comparisons.

47
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4.1 Nonlinear regression in the literature

Given a set of noisy input data and associated continuous measure-

ments, least squares techniques [7] (closely related to principal compo-

nent analysis [48]) can be used to fit a linear regressor which minimizes

some error computed over all training points. Under this model, given

a new test input the corresponding output can be efficiently estimated.

The limitation of this model is in its linear nature, when we know

that most natural phenomena have non-linear behaviour [79]. Another

well known issue with linear regression techniques is their sensitivity

to input noise.

In geometric computer vision, a popular technique for achieving

robust regression via randomization is RANSAC [30, 41]. For instance

the estimation of multi-view epipolar geometry and image registration

transformations can be achieved in this way [41]. One disadvantage of

conventional RANSAC is that its output is non probabilistic. As will

be clearer later, regression forests may be thought of as an extension

of RANSAC, with little RANSAC regressors for each leaf node.

In machine learning, the success of support vector classifica-

tion has encouraged the development of support vector regression

(SVR [51, 86]). Similar to RANSAC, SVR can deal successfully with

large amounts of noise. In Bayesian machine learning Gaussian pro-

cesses [5, 73] have enjoyed much success due to their simplicity, elegance

and their rigorous uncertainty modeling.

Although (non-probabilistic) regression forests were described

in [11] they have only recently started to be used in computer vision

and medical image analysis [24, 29, 37, 49, 59]. Next, we discuss how to

specialize the generic forest model described in chapter 2 to do prob-

abilistic, nonlinear regression efficiently. Many synthetic experiments,

commercial applications and comparisons with existing algorithms will

validate the regression forest model.

4.2 Specializing the decision forest model for regression

The regression task can be summarized as follows:
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Fig. 4.1: Regression: training data and tree training. (a) Training

data points are shown as dark circles. The associated ground truth

label is denoted by their position along the y coordinate. The input

feature space here is one-dimensional in this example (v = (x)). x is

the independent input and y is the dependent variable. A previously

unseen test input is indicated with a light gray circle. (b) A binary

regression tree. During training a set of labelled training points {v}
is used to optimize the parameters of the tree. In a regression tree

the entropy of the continuous densities associated with different nodes

decreases (their confidence increases) when going from the root towards

the leaves.

Given a labelled training set learn a general mapping which asso-

ciates previously unseen independent test data with their correct

continuous prediction.

Like classification the regression task is inductive, with the main

difference being the continuous nature of the output. Figure 4.1a pro-

vides an illustrative example of training data and associated continuous

ground-truth labels. A previously unseen test input (unavailable during

training) is shown as a light grey circle on the x axis.

Formally, given a multi-variate input v we wish to associate a con-

tinuous multi-variate label y ∈ Y ⊆ Rn. More generally, we wish

to estimate the probability density function p(y|v). As usual the



50 Regression forests

Fig. 4.2: Example predictor models. Different possible predictor

models. (a) Constant. (b) Polynomial and linear. (c) Probabilistic-

linear. The conditional distribution p(y|x) is returned in the latter.

input is represented as a multi-dimensional feature response vector

v = (x1, · · · , xd) ∈ Rd.

Why regression forests? A regression forest is a collection of ran-

domly trained regression trees (fig. 4.3). Just like in classification it

can be shown that a forest generalizes better than a single over-trained

tree.

A regression tree (fig. 4.1b) splits a complex nonlinear regression

problem into a set of smaller problems which can be more easily handled

by simpler models (e.g. linear ones; see also fig.4.2). Next we specify

the precise nature of each model component.

The prediction model. The first job of a decision tree is to decide

which branch to direct the incoming data to. But when the data reaches

a terminal node then that leaf needs to make a prediction.

The actual form of the prediction depends on the prediction model.

In classification we have used the pre-stored empirical class posterior as

model. In regression forests we have a few alternatives, as illustrated in

fig. 4.2. For instance we could use a polynomial function of a subspace

of the input v. In the low dimensional example in the figure a generic

polynomial model corresponds to y(x) =
∑n

i=0wix
i. This simple model

also captures the linear and constant models (see fig. 4.2a,b).

In this paper we are interested in output confidence as well as its
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Fig. 4.3: Regression forest: the ensemble model. The regression

forest posterior is simply the average of all individual tree posteriors

p(y|v) = 1
T

∑T
t=1 pt(y|v).

actual value. Thus for prediction we can use a probability density func-

tion over the continuous variable y. So, given the tth tree in a forest

and an input point v, the associated leaf output takes the form pt(y|v).

In the low-dimensional example in fig. 4.2c we assume an underlying

linear model of type y = w0 +w1x and each leaf yields the conditional

p(y|x).

The ensemble model. Just like in classification, the forest output

is the average of all tree outputs (fig. 4.3):

p(y|v) =
1

T

T∑
t

pt(y|v)

A practical justification for this model was presented in section 2.2.5.

Randomness model. Like in classification here we use a random-

ized node optimization model. Therefore, the amount of randomness

is controlled during training by the parameter ρ = |Tj |. The random

subsets of split parameters Tj can be generated on the fly when training
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the jth node.

The training objective function. Forest training happens by op-

timizing an energy over a training set S0 of data and associated con-

tinuous labels. Training a split node j happens by optimizing the pa-

rameters of its weak learner:

θ∗j = arg max
θj∈Tj

Ij . (4.1)

Now, the main difference between classification and regression forest is

in the form of the objective function Ij .

In [12] regression trees are trained by minimizing a least-squares

or least-absolute error function. Here, for consistency with our general

forest model we employ a continuous formulation of information gain.

Appendix A illustrates how information theoretical derivations lead to

the following definition of information gain:

Ij =
∑
v∈Sj

log (|Λy(v)|)−
∑

i∈{L,R}

∑
v∈Sij

log (|Λy(v)|)

 (4.2)

with Λy the conditional covariance matrix computed from probabilis-

tic linear fitting (see also fig. 4.4). Sj indicates the set of training

data arriving at node j, and SLj , SRj the left and right split sets. Note

that (4.2) is valid only for the case of a probabilistic-linear prediction

model (fig. 4.2).

By comparison, the error or fit objective function used in [12] (for

single-variate output y) is:

∑
v∈Sj

(
y − yj

)2 − ∑
i∈{L,R}

∑
v∈Sij

(
y − yj

)2 , (4.3)

with yj indicating the mean value of y for all training points reach-

ing the jth node. Note that (4.3) is closely related to (4.2) but limited

to constant predictors. Also, in [12] the author is only interested in a

point estimate of y rather than a fully probabilistic output. Further-

more, using an information theoretic formulation allows us to unify
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Fig. 4.4: Probabilistic line fitting. Given a set of training points

we can fit a line l to them, e.g. by least squares or RANSAC. In this

example l ∈ R2. Matrix perturbation theory (see appendix A) enables

us to estimate a probabilistic model of l from where we can derive

p(y|x) (modelled here as a Gaussian). Training a regression tree involves

minimizing the uncertainty of the prediction p(y|x) over the training

set. Therefore, the training objective is a function of σ2
y evaluated at

the training points.

different tasks within the same, general probabilistic forest model. To

fully characterize our regression forest model we still need to decide

how to split the data arriving at an internal node.

The weak learner model. As usual, the data arriving at a split

node j is separated into its left or right children (see fig. 4.1b) according

to a binary weak learner stored in an internal node, of the following

general form:

h(v,θj) ∈ {0, 1}, (4.4)

with 0 indicating “false” (go left) and 1 indicating “true” (go right).

Like in classification here we consider three types of weak learners:

(i) axis-aligned, ii) oriented hyperplane, (iii) quadratic (see fig. 4.5 for

an illustration on 2D→1D regression). Many additional weak learner

models may be considered.

Next, a number of experiments will illustrate how regression forests
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Fig. 4.5: Example weak learners. The (x1, x2) plane represents the

d−dimensional input domain (independent). The y space represents the

n−dimensional continuous output (dependent). The example types of

weak learner are like in classification (a) Axis-aligned hyperplane. (b)

General oriented hyperplane. (c) Quadratic (corresponding to a conic

section in 2D). Further weak learners may be considered.

work in practice and the effect of different model choices on their out-

put.

4.3 Effect of model parameters

This section discusses the effect of model choices such as: tree depth,

forest size and weak learner model on the forest behaviour.

4.3.1 The effect of the forest size

Figure 4.6 shows a first, simple example. We are given the training

points shown in fig. 4.6a. We can think of those as being randomly

drawn from two segments with different orientations. Each point has a

1-dimensional input feature x and a corresponding scalar, continuous

output label y.

A forest of shallow trees (D = 2) and varying size T is trained on

those points. We use axis-aligned weak learners, and probabilistic-linear

predictor models. The trained trees (fig. 4.6b) are all slightly different

from each other as they produce different leaf models (fig. 4.6b). During

training, as expected each leaf model produces smaller uncertainty near
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Fig. 4.6: A first regression forest and the effect of its size T .

(a) Training points. (b) Two different shallow trained trees (D = 2)

split the data into two portions and produce different piece-wise

probabilistic-linear predictions. (c) Testing posteriors evaluated for all

values of x and increasing number of trees. The green curve denotes

the conditional mean E [y|x] =
∫
y · p(y|x) dy. The mean curve corre-

sponding to a single tree (T = 1) shows a sharp change of direction

in the gap. Increasing the forest size produces smoother class poste-

riors p(y|x) and smoother mean curves in the interpolated region. All

examples have been run with D = 2, axis-aligned weak learners and

probabilistic-linear prediction models.

the training points and larger away from them. In the gap the actual

split happens in different places along the x axis for different trees.

The bottom row (fig. 4.6c) shows the regression posteriors evaluated

for all positions along the x axis. For each x position we plot the entire

distribution p(y|x), where darker red indicates larger values of the pos-

terior. Thus, very compact, dark pixels correspond to high prediction

confidence.
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Note how a single tree produces a sharp change in direction of the

mean prediction y(x) = E [y|x] =
∫
y ·p(y|x) dy (shown in green) in the

large gap between the training clusters. But as the number of trees in-

creases both the prediction mean and its uncertainty become smoother.

Thus smoothness of the interpolation is controlled here simply by the

parameter T . We can also observe how the uncertainty increases as we

move away from the training data (both in the interpolated gap and in

the extrapolated regions).

4.3.2 The effect of the tree depth

Figure 4.7 shows the effect of varying the maximum allowed tree depth

D on the same training set as in fig.4.6. A regression forest with D = 1

(top row in figure) corresponds to conventional linear regression (with

additional confidence estimation). In this case the training data is more

complex than a single line and thus such a degenerate forest under-fits.

In contrast, a forest of depth D = 5 (bottom row in figure) yields over-

fitting. This is highlighted in the figure by the high-frequency variations

in the prediction confidence and the mean y(x).

4.3.3 Spatial smoothness and testing uncertainty

Figure 4.8 shows four more experiments. The mean prediction curve

y(x) is plotted in green and the mode ŷ(x) = arg maxy p(y|x) is

shown in grey. These experiments highlight the smooth interpolating

behaviour of the mean prediction in contrast to the more jagged nature

of the mode.1 The uncertainty increases away from training data. Fi-

nally, notice how in the gaps the regression forest can correctly capture

multi-modal posteriors. This is highlighted by the difference between

mode and mean predictions. In all experiments we used a probabilistic-

linear predictor with axis-aligned weak learner, T = 400 and D = 7.

Many more examples, animations and videos are available at [1].

1The smoothness of the mean curve is a function of T . The larger the forest size the
smoother the mean prediction curve.
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Fig. 4.7: The effect of tree depth. (Top row) Regression forest

trained with D = 1. Trees are degenerate (each tree corresponds only

to their root node). This corresponds to conventional linear regression.

In this case the data is more complex than a single linear model and

thus this forest under-fits. (Bottom row) Regression forest trained

with D = 5. Much deeper trees produce the opposite effect, i.e. over-

fitting. This is evident in the high-frequency, spiky nature of the test-

ing posterior. In both experiments we use T = 400, axis-aligned weak

learners and probabilistic-linear prediction models.

4.4 Comparison with alternative algorithms

The previous sections have introduced the probabilistic regression for-

est model and discussed some of its properties. This section shows a

comparison between forests and allegedly the most common probabilis-

tic regression technique, Gaussian processes [73].

4.4.1 Comparison with Gaussian processes

The hallmark of Gaussian processes is their ability to model uncer-

tainty in regression problems. Here we compare regression forests with
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Fig. 4.8: Spatial smoothness, multi-modal posteriors and test-

ing uncertainty. Four more regression experiments. The squares indi-

cate labelled training data. The green curve is the estimated conditional

mean y(x) = E[y|x] =
∫
y · p(y|x) dy and the grey curve the estimated

mode ŷ(x) = arg maxy p(y|x). Note the smooth interpolating behaviour

of the mean over large gaps and increased uncertainty away from train-

ing data. The forest is capable of capturing multi-modal behaviour in

the gaps. See text for details.

Gaussian Processes on a few representative examples.2

In figure 4.9 we compare the two regression models on three differ-

ent training sets. In the first experiment the training data points are

simply organized along a line segment. In the other two experiments

the training data is a little more complex with large gaps. We wish to

investigate the nature of the interpolation and its confidence in those

gaps. The 2× 3 table of images show posteriors corresponding to the 3

different training sets (columns) and 2 models (rows).

2The Gaussian process results in this section were obtained with the “Gaussian

Process Regression and Classification Toolbox version 3.1”, publically available at
http://www.gaussianprocess.org/gpml/code/matlab/doc.
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Fig. 4.9: Comparing regression forests with Gaussian processes.

(a,b,c) Three training datasets and the corresponding testing poste-

riors overlaid on top. In both the forest and the GP model uncertain-

ties increase as we move away from training data. However, the actual

shape of the posterior is different. (b,c) Large gaps in the training

data are filled in both models with similarly smooth mean predictions

(green curves). However, the regression forest manages to capture the

bi-modal nature of the distributions, while the GP model produces

intrinsically uni-modal Gaussian predictions.

Gaussian processes are well known for how they model increasing

uncertainty with increasing distance from training points. The bottom

row illustrates this point very clearly. Both in extrapolated and in-

terpolated regions the associated uncertainty increases smoothly. The

Gaussian process mean prediction (green curve) is also smooth and well

behaved.

Similar behaviour can be observed for the regression forest too (top

row). As observed also in previous examples the confidence of the

prediction decreases with distance from training points. The specific

shape in which the uncertainty region evolves is a direct consequence

of the particular prediction model used (linear here). One striking dif-

ference between the forest and the GP model though is illustrated in
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Fig. 4.10: Comparing forests and GP on ambiguous training

data. (a) Input labelled training points. The data is ambiguous be-

cause a given input x may correspond to multiple values of y. (b) The

posterior p(y|x) computed via random regression forest. The middle

(ambiguous) region remains associated with high uncertainty (in grey).

(c) The posterior computed via Gaussian Processes. Conventional GP

models do not seem flexible enough to capture spatially varying noise in

training points. This yields an over-confident prediction in the central

region. In all these experiments the GP parameters have been automat-

ically optimized for optimal results, using the provided Matlab code.

figs. 4.9b,c. There, we can observe how the forest can capture bi-modal

distributions in the gaps (see orange arrows). Due to their piece-wise

nature the regression forest seems more apt at capturing multi-modal

behaviour in testing regions and thus modeling intrinsic ambiguity (dif-

ferent y values may be associated with the same x input). In contrast,

the posterior of a Gaussian process is by construction a (uni-modal)

Gaussian, which may be a limitation in some applications. The same

uni-modal limitation also applies to the recent “relevance voxel ma-

chine” technique in [76].

This difference between the two models in the presence of ambigu-

ities is tested further in fig. 4.10. Here the training data itself is ar-

ranged in an ambiguous way, as a “non-function” relation (see also [63]

for computer vision examples). For the same value of x there may be

multiple training points with different values of y.

The corresponding testing posteriors are shown for the two models
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in fig. 4.10b and fig. 4.10c, respectively. In this case neither model can

model the central, ambiguous region correctly. However, notice how

although the mean curves are very similar to one another, the uncer-

tainty is completely different. The Gaussian process yields a largely

over-confident prediction in the ambiguous region; while the forest cor-

rectly yields a very large uncertainty. it may be possible to think of im-

proving the forest output e.g. by using a mixture of probabilistic-linear

predictors at each leaf (as opposed to a single line). Later chapters will

show how a tighter, more informative prediction can be obtained in

this case, using density forests.

4.5 Semantic parsing of 3D computed tomography scans

This section describes a practical application of regression forest which

is now part of the commercial product Microsoft Amalga Unified Intel-

ligence System.3

Given a 3D Computed Tomography (CT) image we wish to au-

tomatically detect the presence/absence of a certain anatomical struc-

ture, and localize it in the image (see fig. 4.11). This is useful for e.g. (i)

the efficient retrieval of selected portions of patients scans through low

bandwidth networks, (ii) tracking patients’ radiation dose over time,

(iii) the efficient, semantic navigation and browsing of n-dimensional

medical images, (iv) hyper-linking regions of text in radiological reports

with the corresponding regions in medical images, and (v) assisting the

image registration in longitudinal studies [50]. Details of the algorithm

can be found in [24]. Here we give a very brief summary of this al-

gorithm to show how it stems naturally from the general model of

regression forests presented here.

In a given volumetric image the position of each voxel is denoted

with a 3-vector p = (x y z). For each organ of interest we wish

to estimate the position of a 3D axis-aligned bounding box tightly

placed to contain the organ. The box is represented as a 6-vector con-

taining the absolute coordinates (in mm) of the corresponding walls:

b =
(
bL, bR, bH, bF, bA, bP

)
∈ R6 (see fig. 4.12a). For simplicity here we

3 http://en.wikipedia.org/wiki/Microsoft Amalga.
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Fig. 4.11: Automatic localization of anatomy in 3D Computed

Tomography images. (a) A coronal slice (frontal view) from a test

3D CT patient’s scan. (b) Volumetric rendering of the scan to aid

visualization. (c) Automatically localized left kidney using regression

forest. Simultaneous localization of 25 different anatomical structures

takes ∼ 4s on a single core of a standard desktop machine, with a

localization accuracy of ∼ 1.5cm. See [24] for algorithmic details.

focus on a single organ of interest.4

The continuous nature of the output suggests casting this task as a

regression problem. Inspired by the work in [33] here we allow each voxel

to vote (probabilistically) for the positions of all six walls. So, during

testing, each voxel p in a CT image votes for where it thinks e.g. the

left kidney should be. The votes take the form of relative displacement

vectors

d(p) =
(
dL(p), dR(p), dA(p), dP(p), dH(p), dF(p)

)
∈ R6

(see fig. 4.12b). The L, R, A, P, H, F symbols are conventional radiological

notation and indicate the left, right, anterior, posterior, head and foot

directions of the 3D volumetric scan. Some voxels have more influence

(because associated with more confident localization predictions) and

some less influence on the final prediction. The voxels relative weights

are estimated probabilistically via a regression forest.

4A more general parametrization is given in [24].
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Fig. 4.12: Automatic localization of anatomy in 3D CT images.

(a) A coronal view of the abdomen of a patient in a CT scan. The

bounding box of the right kidney is shown in orange. (b) Each voxel p

in the volume votes for the position of the six walls of the box via the

relative displacements dR(p), dL(p), and so on.

For a voxel p its feature vector v(p) = (x1, . . . , xi, . . . , xd) ∈ Rd is

a collection of differences:

xi =
1

|Bi|
∑
q∈Bi

J(q). (4.5)

where J(p) denotes the density of the tissue in an element of volume

at position p as measured by the CT scanner (in calibrated Hounsfield

Units). The 3D feature box B (not to be confused with the output organ

bounding box) is displaced from the reference point p (see fig. 4.13a).

Since for each reference pixel p we can look at an infinite number of

possible feature boxes (∀ B ∈ R6) we have d =∞.

During training we are given a database of CT scans which have

been manually labelled with 3D boxes around organs of interest. A

regression forest is trained to learn the association of voxel features

and bounding box location. Training is achieved by maximizing a con-

tinuous information gain as in (4.1). Assuming multivariate Gaussian

distributions at the nodes yields the already known form of continuous
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Fig. 4.13: Features and results. (a) Feature responses are defined

via integral images in displaced 3D boxes, denoted with B. (b,c,d,e)

Some results on four different test patients. The right kidney (red box)

is correctly localized in all scans. The corresponding ground-truth is

shown with a blue box. Note the variability in position, shape and

appearance of the kidney, as well as larger scale variations in patient’s

body, size, shape and possible anomalies such as the missing left lung,

in (e).

information gain:

Ij = log |Λ(Sj)| −
∑

i∈{L,R}

|Sij |
|Sj |

log |Λ(Sij)| (4.6)

with Λ(Sj) the 6 × 6 covariance matrix of the relative displacement

vector d(p) computed for all points p ∈ Sj . Note that here as a pre-

diction model we are using a multivariate, probabilistic-constant model

rather than the more general probabilistic-linear one used in the earlier

examples. Using the objective function (4.6) encourages the forest to

cluster voxels together so as to ensure small determinant of prediction
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covariances, i.e. highly peaked and confident location predictions. In

this application, the parameters of a split node j are

θj = (Bj , τj) ∈ R7,

with Bj the “probe” feature box, and τj a scalar parameter. Here we

use an axis-aligned weak learner model

h(v,θj) = [φ(v,Bj) > τj ] ,

with φ(v,Bj) = xj . The leaf nodes are associated with multivariate-

Gaussians as their predictor model. The parameters of such Gaussians

are learned during training from all the relative displacements arriving

at the leaf.

During testing all voxels of a previously unseen test volume are

pushed through all trees in the regression forest until they reach their

leaves, and the corresponding Gaussian predictions for the relative dis-

placements are read off. Finally, posteriors over relative displacements

are mapped to posteriors over absolute positions [24].

Figure 4.13 shows some illustrative results on the localization of the

right kidney in 2D coronal slices. In fig. 4.13e the results are relatively

robust to the large anomaly (missing left lung). Results on 3D detec-

tions are shown in fig. 4.11b with many more available in the original

paper.

An important advantage of decision forests (compared to e.g. neu-

ral networks) is their interpretability. In fact, in a forest it is possible

to look at individual nodes and make sense of what has been learned

and why. When using a regression forest for anatomy localization the

various tree nodes represent clusters of points. Each cluster predicts

the location of a certain organ with more or less confidence. So, we can

think of the nodes associated with higher prediction confidence as auto-

matically discovered salient anatomical landmarks. Figure 4.14 shows

some such landmark regions when localizing kidneys in a 3D CT scan.

More specifically, given a trained regression tree and an input volume,

we select one or two leaf nodes with high prediction confidence for a

chosen organ class (e.g. l. kidney). Then, for each sample arriving at

the selected leaf nodes, we shade in green the cuboidal regions of the

input volume that were used during evaluation of the parent nodes’



66 Regression forests

Fig. 4.14: Automatic discovery of salient anatomical landmarks.

(a) Leaves associated with the most peaked densities correspond to

clusters of points which predict organ locations with high confidence.

(b) A 3D rendering of a CT scan and (in green) landmarks automat-

ically selected as salient predictors of the position of the left kidneys.

(c) Same as in (b) but for the right kidney.

feature tests. Thus, the green regions represent some of the anatomical

locations that were used to estimate the location of the chosen organ. In

this example, the bottom of the left lung and the top of the left pelvis

are used to predict the position of the left kidney. Similarly, the bot-

tom of the right lung is used to localize the right kidney. Such regions

correspond to meaningful, visually distinct, anatomical landmarks that

have been computed without any manual tagging.

Recently, regression forests were used for anatomy localization in

the more challenging full-body, magnetic resonance images [68]. See

also [38, 76] for alternative techniques for regressing regions of interest
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in brain MR images with localization of anatomically salient voxels.

The interested reader is invited to browse the InnerEye project page [2]

for further examples and applications of regression forests to medical

image analysis.
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Density forests

Chapters 3 and 4 have discussed the use of decision forests in supervised

tasks, i.e. when labelled training data is available. In contrast, this

chapter discusses the use of forests in unlabelled scenarios.

For instance, one important task is that of discovering the intrinsic

nature and structure of large sets of unlabelled data. This task can be

tackled via another probabilistic model, density forest. Density forests

are explained here as an instantiation of our more abstract decision

forest model (described in chapter 2). Given some observed unlabelled

data which we assume has been generated from a probabilistic den-

sity function we wish to estimate the unobserved underlying generative

model itself. More formally, one wishes to learn the density p(v) which

has generated the data.

The problem of density estimation is closely related to that of data

clustering. Although much research has gone in tree-based clustering

algorithms, to our knowledge this is the first time that ensembles of

randomized trees are used for density estimation.

We begin with a very brief literature survey, then we show how to

adapt the generic forest model to the density estimation task and then

discuss advantages and disadvantages of density forests in comparison

68
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with alternative techniques.

5.1 Literature on density estimation

The literature on density estimation is vast. Here we discuss only a few

representative papers.

Density estimation is closely related to the problem of data cluster-

ing, for which an ubiquitous algorithm is k-means [55]. A very success-

ful probabilistic density model is the Gaussian mixture model (GMM),

where complex distributions can be approximated via a collection of

simple (multivariate) Gaussian components. Typically, the parameters

of a Gaussian mixture are estimated via the well known Expectation

Maximization algorithm [5]. EM can be thought of as a probabilistic

variant of k-means.

Popular, non-parametric density estimation techniques are kernel-

based algorithms such as the Parzen-Rosenblatt windows estima-

tor [67]. The advantage of kernel-based estimation over e.g. more crude

histogram-based techniques is in the added smoothness of the recon-

struction which can be controlled by the kernel parameters. Closely

related is the k-nearest neighbour density estimation algorithm [5].

In Breiman’s seminal work on forests the author mentions using

forests for clustering unsupervised data [11]. However, he does it via

classification, by introducing dummy additional classes. In contrast,

here we use a well defined information gain-based optimization, which

fits well within our unified forest model. Forest-based data clustering

has been discussed in [61, 83] for computer vision applications.

For further reading on general density estimation techniques the

reader is invited to explore the following material [5, 84].

5.2 Specializing the forest model for density estimation

This section specializes the generic forest model introduced in chapter 2

for use in density estimation.

Problem statement. The density estimation task can be summa-

rized as follows:
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Fig. 5.1: Input data and density forest training. (a) Unlabelled

data points using for training a density forest are shown as dark circles.

White circles indicate previously unseen test data. (b) Density forests

are ensembles of clustering trees.

Given a set of unlabelled observations we wish to estimate the

probability density function from which such data has been gen-

erated.

Each input data point v is represented as usual as a multi-

dimensional feature response vector v = (x1, · · · , xd) ∈ Rd. The

desired output is the entire probability density function p(v) ≥
0 s.t.

∫
p(v)dv = 1, for any generic input v. An explanatory illustra-

tion is shown in fig. 5.1a. Unlabelled training data points are denoted

with dark circles, while white circles indicate previously unseen test

data.

What are density forests? A density forest is a collection of ran-

domly trained clustering trees (fig. 5.1b). The tree leaves contain simple

prediction models such as Gaussians. So, loosely speaking a density for-

est can be thought of as a generalization of Gaussian mixture models

(GMM) with two differences: (i) multiple hard clustered data partitions

are created, one by each tree. This is in contrast to the single “soft”
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clustering generated by the EM algorithm, (ii) the forest posterior is a

combination of tree posteriors. So, each input data point is explained

by multiple clusters (one per tree). This is in contrast to the single

linear combination of Gaussians in a GMM.

These concepts will become clearer later. Next, we delve into a de-

tailed description of the model components, starting with the objective

function.

The training objective function. Given a collection of unlabelled

points {v} we train each individual tree in the forest independently

and if possible in parallel. As usual we employ randomized node opti-

mization. Thus, optimizing the jth split node is done as the following

maximization:

θ∗j = arg max
θj∈Tj

Ij

with the generic information gain Ij defined as:

Ij = H(Sj)−
∑
i=L,R

|Sij |
|Sj |

H(Sij) (5.1)

In order to fully specify the density model we still need to define

the exact form of the entropy H(S) of a set of training points S. Unlike

classification and regression, here the are no ground-truth labels. Thus,

we need to define an unsupervised entropy, i.e. one which applies to

unlabelled data. As with a GMM, we use the working assumption of

multi-variate Gaussian distributions at the nodes. Then, the differential

(continuous) entropy of an d−variate Gaussian can be shown to be

H(S) =
1

2
log
(

(2πe)d|Λ(S)|
)

(with Λ the associated d × d covariance matrix). Consequently, the

information gain in (5.1) reduces to

Ij = log(|Λ(Sj)|)−
∑

i∈{L,R}

|Sij |
|Sj |

log
(
|Λ(Sij)|

)
(5.2)

with | · | indicating a determinant for matrix arguments, or cardinality

for set arguments.
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Motivation. For a set of data points in feature space, the determinant

of the covariance matrix is a function of the volume of the ellipsoid

corresponding to that cluster. Therefore, by maximizing (5.2) the tree

training procedure tends to split the original dataset S0 into a number

of compact clusters. The centres of those clusters tends to be placed

in areas of high data density, while the separating surfaces are placed

along regions of low density. In (5.2), weighting by the cardinality of

children sets avoids splitting off degenerate, single-point clusters.

Finally, our derivation of density-based information gain in (5.2)

builds upon an assumption of Gaussian distribution at the nodes. Of

course, this is not realistic as real data may be distributed in much more

complex ways. However, this assumption is useful in practice as it yields

a simple and efficient objective function. Furthermore, the hierarchical

nature of the trees allows us to construct very complex distributions by

mixing the individual Gaussians associated at the leaves. Alternative

measures of “cluster compactness” may also be employed.

The prediction model. The set of leaves in the tth tree in a forest

defines a partition of the data such that

l(v) : Rd → L ⊂ N

where l(v) denotes the leaf reached (deterministically) by the input

point v, and L the set of all leaves in a given tree (the tree index t is

not shown here to avoid cluttering the notation). The statistics of all

training points arriving at each leaf node are summarized by a single

multi-variate Gaussian distribution N (v;µl(v), Λl(v)). Then, the output

of the tth tree is:

pt(v) =
πl(v)

Zt
N (v;µl(v), Λl(v)). (5.3)

The vector µl denotes the mean of all points reaching the leaf l and Λl
the associated covariance matrix. The scalar πl is the proportion of all

training points that reach the leaf l, i.e. πl = |Sl|
S0 . Thus (5.3) defines a

piece-wise Gaussian density (see fig. 5.2 for an illustration).

Partition function. Note that in (5.3) each Gaussian is truncated by

the boundaries of the partition cell associated with the corresponding
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Fig. 5.2: A tree density is piece-wise Gaussian. (a,b,c,d) Different

views of a tree density pt(v) defined over an illustrative 2D feature

space. Each individual Gaussian component is defined over a bounded

domain. See text for details.

leaf (see fig. 5.2). Thus, in order to ensure probabilistic normalization

we need to incorporate the partition function Zt, which is defined as

follows:

Zt =

∫
v

(∑
l

πl N (v;µl, Λl) p(l|v)

)
dv. (5.4)

However, in a density forest each data point reaches exactly one termi-

nal node. Thus, the conditional p(l|v) is a delta function p(l|v) = [v ∈
l(v)] and consequently (5.4) becomes

Zt =

∫
v
πl(v) N (v;µl(v), Λl(v)) dv. (5.5)

As it is often the case when dealing with generative models, computing

Zt in high dimensions may be challenging.

In the case of axis-aligned weak learners it is possible to compute

the partition function via the cumulative multivariate normal distribu-

tion function. In fact, the partition function Zt is the sum of all the

volumes subtended by each Gaussian cropped by its associated parti-

tion cell (cuboidal in shape, see fig. 5.2). Unfortunately, the cumulative

multivariate normal does not have a close form solution. However, ap-

proximating its functional form has is a well researched problem and a

number of good numerical approximations exist [39, 71].

For more complex weak-learners it may be easier to approximate Zt
by numerical integration, i.e.

Zt ≈ ∆ ·
∑
i

πl(vi) N (vi;µl(vi), Λl(vi)),
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Fig. 5.3: Density forest: the ensemble model. A density forest is

a collection of clustering trees trained on unlabelled data. The tree

density is the Gaussian associated with the leaf reached by the input

test point: pt(v) =
πl(v)
Zt
N
(
v;µl(v), Λl(v)

)
. The forest density is the

average of all tree densities: p(v) = 1
T

∑T
t=1 pt(v).

with the points vi generated on a finite regular grid with spacing ∆

(where ∆ represents a length, area, volume etc. depending on the di-

mensionality of the domain). Smaller grid cells yield more accurate ap-

proximations of the partition function at a greater computational cost.

Recent, Monte Carlo-based techniques for approximating the partition

function are also a possibility [64, 85]. Note that estimating the parti-

tion function is necessary only at training time. One may also think of

using density forests with a predictor model other than Gaussian.

The ensemble model. The forest density is given by the average of

all tree densities

p(v) =
1

T

T∑
t=1

pt(v), (5.6)

as illustrated in fig. 5.3.

Discussion. There are similarities and differences between the prob-

abilistic density model defined above and a conventional Gaussian mix-

ture model. For instance, both models are built upon Gaussian compo-
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nents. However, given a single tree an input point v belongs determin-

istically to only one of its leaves, and thus only one domain-bounded

Gaussian component. In a forest with T trees a point v belongs to T

components, one per tree. The ensemble model (5.6) induces a uniform

“mixing” across the different trees. The benefits of such forest-based

mixture model will become clearer in the next section. The parameters

of a GMM are typically learned via Expectation Maximization (EM).

In contrast, the parameters of a density forest are learned via a hierar-

chical information gain maximization criterion. Both algorithms may

suffer from local minima.

5.3 Effect of model parameters

This section studies the effect of the forest model parameters on the

accuracy of density estimation. We use many illustrative, synthetic ex-

amples, designed to bring to life different properties, advantages and

disadvantages of density forests compared to alternative techniques.

We begin by investigating the effect of two of the most important pa-

rameters: the tree depth D and the forest size T .

5.3.1 The effect of tree depth

Figure 5.4 presents first density forest results. Figure 5.4a shows some

unlabelled points used to train the forest. The points are randomly

drawn from two 2D Gaussian distributions.

Three different density forests have been trained on the same input

set with T = 200 and varying tree depth D. In all cases the weak learner

model was of the axis-aligned type. Trees of depth 2 (stumps) produce

a binary partition of the training data which, in this simple example,

produce perfect separation. As usual the trees are all slightly different

from one another, corresponding to different decision boundaries (not

shown in the figure). In all cases each leaf is associated with a bounded

Gaussian distribution learned from the training points arriving at the

leaf itself. We can observe that deeper trees (e.g. for D = 5) tend

to create further splits and smaller Gaussians, leading to over-fitting

on this simple dataset. Deeper trees tend to “fit to the noise” of the

training data, rather than capture the underlying nature of the data.
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Fig. 5.4: The effect of tree depth on density. (a) Input unlabelled

data points in a 2D feature space. (b,c,d) Individual trees out of three

density forests trained on the same dataset, for different tree depths

D. A forest with unnecessarily deep trees tends to fit to the training

noise, thus producing very small, high-frequency bumps in the density.

In this simple example D = 2 (top row) produces the best results.

5.3.2 The effect of forest size

Figure 5.5 shows the output of six density forests trained on the input

data in fig. 5.4a for two different values of T and three values of D.

The images visualize the output density p(v) computed for all points

in a square subset of the feature space. Dark pixels indicate low values

and bright pixels high values of density.

We observe that even if individual trees heavily over-fit (e.g. for

D = 6), the addition of further trees tends to produce smoother densi-

ties. This is thanks to the randomness of each tree density estimation

and reinforces once more the benefits of a forest ensemble model. The

tendency of larger forests to produce better generalization has been
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Fig. 5.5: The effect of forest size on density. Densities p(v) for six

density forests trained on the same unlabelled dataset for varying T

and D. Increasing the forest size T always improves the smoothness of

the density and the forest generalization, even for deep trees.

observed also for classification and regression and it is an important

characteristic of forests. Since increasing T always produces better re-

sults (at an increased computational cost) in practical applications we

can just set T to a “sufficiently large” value, without worrying too much

about optimizing its value.

5.3.3 More complex examples

A more complex example is shown in fig. 5.6. The noisy input data is

organized in the shape of a four-arm spiral (fig. 5.6a). Three density

forests are trained on the same dataset with T = 200 and varying

depth D. The corresponding densities are shown in fig. 5.6b,c,d. Here,

due to the greater complexity of the input data distribution shallower
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Fig. 5.6: Density forest applied to a spiral data distribution. (a)

Input unlabelled data points in their 2D feature space. (b,c,d) Forest

densities for different tree depths D. The original training points are

overlaid in green. The complex distribution of input data is captured

correctly by a deeper forest, e.g. D = 6, while shallower trees produce

under-fitted, overly smooth densities.

trees yield under-fitting, i.e. overly smooth and detail-lacking density

estimates. In this example good results are obtained for D = 6 as the

density nicely captures the individuality of the four spiral arms while

avoiding fitting to high frequency noise. Just like in classification and

regression here too the parameter D can be used to set a compromise

between smoothness of output and the ability to capture structural

details.

So far we have described the density forest model and studied some

of its properties on synthetic examples. Next we study density forests

in comparison to alternative algorithms.

5.4 Comparison with alternative algorithms

This section discusses advantages and disadvantages of density forests

as compared to the most common parametric and non-parametric den-

sity estimation techniques.

5.4.1 Comparison with non-parametric estimators

Figure 5.7 shows a comparison between forest density, Parzen window

estimation and k-nearest neighbour density estimation. The compari-
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son is run on the same three datasets of input points. In the first exper-

iments points are randomly drawn from a five-Gaussian mixture. In the

second they are arranged along an “S” shape and in the third they are

arranged along four short spiral arms. Comparison between the forest

densities in fig. 5.7b and the corresponding non-parametric densities in

fig. 5.7c,d clearly shows much smoother results for the forest output.

Both the Parzen and the nearest neighbour estimators produce arti-

facts due to hard choices of e.g. the Parzen window bandwidth or the

number k of neighbours. Using heavily optimized single trees would

also produce artifacts. However, the use of many trees in the forest

yields the observed smoothness.

A quantitative assessment of the density forest model is presented

at the end of this chapter. Next, we compare (qualitatively) density

forests with variants of the Gaussian mixture model.

5.4.2 Comparison with GMM EM

Figure 5.8 shows density estimates produced by forests in comparison to

various GMM-based densities for the same input datasets as in fig. 5.7a.

Figure 5.7b shows the (visually) best results obtained with a GMM,

using EM for its parameter estimation [5]. We can observe that on

the simpler 5-component dataset (experiment 1) the two models work

equally well. However, the “S” and spiral-shaped examples show very

distinct blob-like artifacts when using the GMM model. One may argue

that this is due to the use of too few components. So we increased

their number k and the corresponding densities are shown in fig. 5.7c.

Artifacts still persist. Some of them are due to the fact that the greedy

EM optimization gets stuck in local minima. So, a further alternative

to improve the GMM results is to add randomness. In fig. 5.7c, for

each example we have trained 400 GMM-EM models (trained with 400

random initializations, a common way of injecting randomness in GMM

training) and averaged together their output to produce a single density

(as shown in the figure). The added randomness produces benefits in

terms of smoothness, but the forest densities are still slightly superior,

especially for the spiral dataset.

In summary, our synthetic experiments confirm that the use of ran-
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Fig. 5.7: Comparison between density forests and non parametric estima-
tors. (a) Input unlabelled points for three different experiments. (b) Forest-based
densities. Forests were computed with T = 200 and varying depth D. (c) Parzen
window densities (with Gaussian kernel). (d) K-nearest neighbour densities. In all
cases parameters were optimized to achieve the best possible results. Notice the
abundant artifacts in (c) and (d) as compared to the smoother forest estimates in
(b).

domness (either in a forest model or in a Gaussian mixture model)

yields improved results. Possible issues with EM getting stuck in local

minima produce artifacts which appear to be mitigated in the forest

model. Let us now look at differences in terms of computational cost.
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Fig. 5.8: Comparison with GMM EM (a) Forest-based densities. Forests were
computed with T = 200 and optimized depth D. (b) GMM density with a relatively
small number of Gaussian components. The model parameters are learned via EM.
(c) GMM density with a larger number of Gaussian components. Increasing the
components does not remove the blob-like artifacts. (d) GMM density with multiple
(400) random re-initializations of EM. Adding randomness to the EM algorithm
improves the smoothness of the output density considerably. The results in (a) are
still visually smoother.

Comparing computational complexity. Given an input test

point v evaluating p(v) under a random-restart GMM model has cost

R× T ×G, (5.7)
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with R the number of random restarts (the number of trained GMM

models in the set), T the number of Gaussian components and G the

cost of evaluating v under each individual Gaussian.

Similarly, estimating p(v) under a density forest with T trees of

maximum depth D has cost

T ×G + T ×D ×B, (5.8)

with B the cost of a binary test at a split node.

The cost in (5.8) is an upper bound because the average length

of a generic root-leaf path is less than D nodes. Depending on the

application, the binary tests can be extremely efficient to compute1,

thus we may be able to ignore the second term in (5.8). In this case

the cost of testing a density forest becomes comparable to that of a

conventional, single GMM (with T components).

Comparing training costs between the two models is a little harder

because it involves the number of EM iterations (in the GMM model)

and the value of ρ (in the forest). In practical applications (especially

real-time ones) minimizing the testing time is more important than

reducing the training time. Finally, testing of both GMM as well as

density forests can be easily parallelized.

5.5 Sampling from the generative model

The density distribution p(v) we learn from the unlabelled input data

represents a probabilistic generative model. In this section we de-

scribe an algorithm for the efficient sampling of random data under

the learned model. The sampling algorithm uses the structure of the

forest itself (for efficiency) and proceeds as described in algorithm 5.1.

See also fig. 5.9 for an accompanying illustration.

In this algorithm for each sample a random path from a tree root

to one of its leaves is randomly generated and then a feature vec-

tor randomly generated from the associated Gaussian. Thus, drawing

one random sample involves generating at most D random numbers

from uniform distributions plus sampling a d-dimensional vector from

1A weak learner binary stump is applied usually only to a small, selected subset of features
φ(v) and thus it can be computed very efficiently.
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Fig. 5.9: Drawing random samples from the generative density

model. Given a trained density forest we can generate random samples

by: i) selecting one of the component trees, ii) randomly navigating

down to a leaf and, iii) drawing a sample from the associated Gaussian.

The precise algorithmic steps are listed in algorithm 5.1.

Given a density forest with T trees:
(1) Draw uniformly a random tree index t ∈ {1, , T} to select a single tree

in the forest.
(2) Descend the tree

(a) Starting at the root node, for each split node randomly generate
the child index with probability proportional to the number of
training points in edge (proportional to the edge thickness in
fig. 5.9);

(b) Repeat step 2 until a leaf is reached.

(3) At the leaf draw a random sample from the domain bounded Gaussian
stored at that leaf.

Algorithm 5.1: Sampling from the density forest model.

a Gaussian.

An equivalent and slightly faster version of the sampling algorithm

is obtained by compounding all the probabilities associated with indi-

vidual edges at different levels together as probabilities associated with
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Given a set of R GMMs learned with random restarts:
(1) Draw uniformly a GMM index r ∈ {1, , R} to select a single GMM in

the set.
(2) Select one Gaussian component by randomly drawing in proportion to

the associated priors.
(3) Draw a random sample from the selected Gaussian component.

Algorithm 5.2: Sampling from a random-restart GMM.

the leaves only. Thus, the tree traversal step (step 2 in algorithm 5.2)

is replaced by direct random selection of one of the leaves.

Efficiency. The cost of randomly drawing N samples under the forest

model is

N × (1 + 1)× J + N ×G

with J the cost (almost negligible) of randomly generating an inte-

ger number and G the cost of drawing a d-dimensional vector from a

Gaussian distribution.

For comparison, sampling from a random-restart GMM is illus-

trated in the algorithm 5.2. The cost of drawing samples under a GMM

model is also

N × (1 + 1)× J + N ×G

It is interesting to see how although the two algorithms are built upon

different data structures, their steps are very similar. Their theoretical

complexity is the same.

In summary, despite the added richness in the hierarchical structure

of the density forest its sampling complexity is very much comparable

to that of a random-restart GMM.

Results. Figure 5.10 shows results of sampling 10, 000 random points

from density forest trained on five different input datasets. The top row

of the figure shows the densities on a 2D feature space. The bottom

row shows (with small red dots) random points drawn from the cor-

responding forests via the algorithm described in algorithm 5.1. Such
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Fig. 5.10: Sampling results (Top row) Densities learned from hun-

dreds of training points, via density forests. (Bottom row) Random

points generated from the learned forests. We draw 10,000 random

points per experiment (different experiments in different columns).

a simple algorithm produces good results both for simpler, Gaussian-

mixture distributions (figs. 5.10a,b) as well as more complex densities

like spirals and other convolved shapes (figs. 5.10c,d,e).

5.6 Dealing with non-function relations

Chapter 4 concluded by showing shortcomings of regression forests

trained on inherently ambiguous training data, i.e. data such that for

a given value of x there may be multiple corresponding values of y (a

relation as opposed to a function). This section shows how better pre-

dictions may be achieved in ambiguous settings by means of density

forests.

5.6.1 Regression from density

In fig. 4.10b a regression forest was trained on ambiguous training data.

The corresponding regression posterior p(y|x) yielded a very large un-

certainty in the ambiguous, central region. However, despite its inherent

ambiguity, the training data shows some interesting, multi-modal struc-

ture that if modelled properly could increase the prediction confidence
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Fig. 5.11: Training density forest on a “non-function” dataset.

(a) Input unlabelled training points on a 2D space. (b,c,d) Three den-

sity forests are trained on such data, and the corresponding densities

shown in the figures. Dark pixels correspond to small density and vice-

versa. The original points are overlaid in green. Visually reasonable

results are obtained in this dataset for D = 4.

(see also [63]).

We repeat a variant of this experiment in fig. 5.11. However, this

time a density forest is trained on the “S-shaped” training set. In con-

trast to the regression approach in chapter 4, here the data points are

represented as pairs (x, y), with both dimensions treated equally as

input features. Thus, now the data is thought of as unlabelled. Then,

the joint generative density function p(x, y) is estimated from the data.

The density forest for this 2D dataset remains defined as

p(x, y) =
1

T

T∑
t=1

pt(x, y)

with t indexing the trees. Individual tree densities are

pt(x, y) =
πl
Zt
N ((x, y);µl, Λl) ,

where l = l(x, y) denotes the leaf reached by the point (x, y). For each

leaf l in the tth tree we have πl = |Sl|/|S0|, the mean µl = (µx, µy) and

the covariance

Λl =

(
σ2
xx σ2

xy

σ2
xy σ2

yy

)
.
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In fig. 5.11 we observe that a forest with D = 4 produces a visually

smooth, artifact-free density. Shallower or deeper trees produce under-

fitting and over-fitting, respectively. Now, for a previously unseen, input

test point v = (x, y) we can compute its probability p(v). However, in

regression, at test time we only know the independent variable x, and its

associated y is unknown (y is the quantity we wish to regress/estimate).

Next we show how we can exploit the known generative density p(x, y)

to predict the regression conditional p(y|x).

Figure 5.12a shows the training points and an input value for the

independent variable x = x∗. Given the trained density forest and x∗

we wish to estimate the conditional p(y|x = x∗). For this problem we

make the further assumption that the forest has been trained with

axis-aligned weak learners. Therefore, some split nodes act only on the

x coordinate (namely x-nodes) and others only on the y coordinate

(namely y-nodes). Figure 5.12b illustrates this point. When testing a

tree on the input x = x∗ the y-nodes cannot apply the associated split

function (since the value of y is unknown). In those cases the data point

is sent to both children. In contrast, the split function associated to the

x-nodes is applied as usual and the data sent to the corresponding

single child. So, in general multiple leaf nodes will be reached by a

single input (see the bifurcating orange paths in fig. 5.12b). As shown

in fig. 5.12c this corresponds to selecting multiple, contiguous cells in

the partitioned space, so as to cover the entire y range (for a fixed x∗).

So, along the line x = x∗ several Gaussians are encountered, one

per leaf (see fig. 5.12d and fig. 5.13). Consequently, the tree conditional

is piece-wise Gaussian and defined as follows:

pt (y|x = x∗) =
1

Zt,x∗

∑
l∈Lt,x∗

[yBl ≤ y < yTl ] πl N
(
y;µy|x,l, σ

2
y|x,l

)
(5.9)

with the leaf conditional mean µy|x,l = µy +
σ2
xy

σ2
yy

(x∗ − µx) and variance

σ2
y|x,l = σ2

yy −
σ4
xy

σ2
xx

. In (5.9) Lt,x∗ denotes the subset of all leaves in the

tree t reached by the input point x∗ (three leaves out of four in the

example in the figure).

The conditional partition function Zt,x∗ ensures normalization, i.e.
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Fig. 5.12: Regression from density forests. (a) 2D training points

are shown in black. The green vertical line denotes the value x∗ of

the independent variable. We wish to estimate p(y|x = x∗). (b) When

testing a tree on the input x∗ some split nodes cannot apply their

associated split function and the data is sent to both children (see

orange paths). (c) The line x = x∗ intersects multiple cells in the

partitioned feature space. (d) The line x = x∗ intersects multiple leaf

Gaussians. The conditional output is a combination of those Gaussians.

∫
y pt(y|x = x∗) dy = 1, and can be computed as follows:

Zt,x∗ =
∑

l∈Lt,x∗
πl
(
φt,l(y

T
l |x = x∗)− φt,l(yBl |x = x∗)

)
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Fig. 5.13: The tree conditional is a piece-wise Gaussian. See text

for details.

with φ denoting the 1D cumulative normal distribution function

φt,l(y|x = x∗) =
1

2

1 + erf

y − µy|x,l√
2σ2

y|x,l

 .
Finally, the forest conditional is:

p(y|x = x∗) =
1

T

T∑
t=1

pt(y|x = x∗)

Figure 5.14 shows the forest conditional distribution computed for

five fixed values of x. When comparing e.g. the conditional p(y|x = x3)

in fig. 5.14 with the distribution in 4.10b we see that now the condi-

tional shows three very distinct modes rather than a large, uniformly

uninformative mass. Although some ambiguity remains (it is inherent

in the training set) now we have a more precise description of such

ambiguity.

5.6.2 Sampling from conditional densities

We conclude this chapter by discussing the issue of efficiently drawing

random samples from the conditional model p(y|x).



90 Density forests

Fig. 5.14: Regression from density forests. The conditionals

p(y|x = xi) show multimodal behaviour. This is an improvement com-

pared to regression forests.

Given a fixed and known x = x∗ we would like to sample different

random values of y distributed according to the conditional p(y|x =

x∗). Like in the previous version we assume available a density forest

which has been trained with axis-aligned weak learners (fig. 5.15). The

necessary steps are described in Algorithm 5.3.

Each iteration of Algorithm 5.3 produces a value y drawn randomly

from p(y|x = x∗). Results on our synthetic example are shown in

fig. 5.16, for five fixed values of the independent variable x. In fig. 5.16b

darker regions indicate overlapping sampled points. Three distinct clus-

ters of points are clearly visible along the x = x3 line, two clusters along

the x = x2 and along the x = x4 lines and so on. This algorithm ex-

tends to more than two dimensions. As expected, the quality of the

sampling depends on the usual parameters such as the tree depth D,
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Fig. 5.15: Sampling from conditional model. Since x is known and

y unknown y-nodes cannot apply the associated split function. When

sampling from such a tree a child of a y-node is chosen randomly.

Instead, the child of an x-node is selected deterministically. See text

for details.

the forest size T , the amount of training randomness ρ etc.

5.7 Quantitative analysis

This section assesses the accuracy of the density estimation algorithm

with respect to ground-truth. Figure 5.17a shows a ground-truth prob-

ability density function. The density is represented non-parametrically

as a normalized histogram defined over the 2D (x1, x2) domain.

Given the ground-truth density we randomly sample 5, 000 points

numerically (fig. 5.17b), via the multivariate inverse probability integral

transform algorithm [26]. The goal now is as follows: Given the sampled

points only, reconstruct a probability density function which is as close

as possible to the ground-truth density.

Thus, a density forest is trained using the sampled points alone. No

use is made of the ground-truth density in this stage. Given the trained

forest we test it on all points in a predefined domain (not just on the

training points, fig. 5.17c). Finally, a quantitative comparison between
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Given a density forest with T trees trained with axis-aligned weak learners and an
input value x = x∗:

(1) Sample uniformly t ∈ {1, · · · , T} to select a tree in the forest.
(2) Starting at the root node descend the tree by:

• at x-nodes applying the split function and following the corre-
sponding branch.

• at a y-node j random sample one of the two children accord-

ing to their respective probabilities: P2j+1 =
|S2j+1|
|Sj |

, P2j+2 =
|S2j+2|
|Sj |

.

(3) Repeat step 2 until a (single) leaf is reached.
(4) At the leaf sample a value y from the domain bounded 1D conditional

p(y|x = x∗) of the 2D Gaussian stored at that leaf.

Algorithm 5.3: Sampling from conditionals via a forest.

Fig. 5.16: Results on conditional point sampling. Tens of thou-

sands of random samples of y are drawn for five fixed positions in x

following algorithm 5.3. In (b) the multimodal nature of the under-

lying conditional becomes apparent from the empirical distribution of

the samples.

the estimated density (p(v)) and the ground-truth one (pgt(v)) can

be carried out. The density reconstruction error is computed here as a
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Fig. 5.17: Quantitative evaluation of forest density estimation.

(a) An input ground-truth density (non-Gaussian in this experiment).

(b) Thousands of random points drawn randomly from the density.

The points are used to train four density forests with different depths.

(c) During testing the forests are used to estimate density values for

all points in a square domain. (d) The reconstructed densities are com-

pared with the ground-truth and error curves plotted as a function of

the forest size T . As expected, larger forests yield higher accuracy. In

these experiments we have used four forests with T = 100 trees and

D ∈ {3, 4, 5, 6}.

sum of squared differences:

E =
∑
v

(
p(v)− pgt(v)

)2
(5.10)

Alternatively one may consider the technique in [90]. Note that due to

probabilistic normalization the maximum value of the error in (5.10)

is 4. The curves in fig. 5.17d show how the reconstruction error di-

minishes with increasing forest size and depth. Unsurprisingly, in our
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Fig. 5.18: Quantitative evaluation, further results. (a) Input

ground-truth densities. (b) Thousands of points sampled randomly

from the ground-truth densities. (c) Densities estimated by the for-

est. Density values are computed for all points in the domain (not just

the training points). (d) Error curves as a function of the forest size

T . As expected a larger forest yields better accuracy. These results are

obtained with T = 100 and D = 5. Different parameter values and

using richer weak learners may improve the accuracy in troublesome

regions (e.g. at the centre of the spiral arms).

experiments we have observed the overall error to start increasing again

after an optimal value of D (suggesting overfitting).

Figure 5.18 shows further quantitative results on more complex ex-

amples. In the bottom two examples some difficulties arise in the central

part (where the spiral arms converge). This causes larger errors. Us-

ing different weak learners (e.g. curved surfaces) may produce better

results in those troublesome areas.

Density forests are the backbone of manifold learning and semi-

supervised learning techniques, described next.
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Manifold forests

The previous chapter has discussed the use of decision forests for mod-

eling the density of unlabelled data. This has led to an efficient prob-

abilistic generative model which captures the intrinsic structure of the

data itself.

This chapter delves further into the issue of learning the structure of

high-dimensional data as well as mapping it onto a much lower dimen-

sional space, while preserving relative distances between data points.

This task goes under the name of manifold learning and is closely re-

lated to dimensionality reduction and embedding.

This task is important because real data is often characterized by

a very large number of dimensions. However, a careful inspection of-

ten shows a much lower dimensional underlying distribution (e.g. on

a hyper-plane, or a curved surface etc.). So, if we can automatically

discover the underlying manifold and “unfold” it, this may lead to eas-

ier data interpretation as well as more efficient algorithms for handling

such data.

Here we show how decision forests can be used also for mani-

fold learning. Advantages with respect to other techniques include:

(i) computational efficiency (due to ease of parallelization of forest-

95



96 Manifold forests

based algorithms), (ii) automatic selection of discriminative features

via information-based energy optimization, (iii) being part of a more

general forest model and, in turn code re-usability, and (iv) automatic

estimation of the optimal dimensionality of the target space (this is in

common with other spectral techniques). After a brief literature sur-

vey we discuss details of the manifold forest model and then show its

properties with examples and experiments.

6.1 Literature on manifold learning

Discovering the intrinsic structure of a dataset (manifold learning) and

mapping it onto a lower dimensional representation (dimensionality

reduction or embedding) are related problems which have been inves-

tigated at length in the literature. The simplest algorithm is “principal

component analysis” (PCA) [48]. PCA is based on the computation of

directions of maximum data spread. This is obtained simply by eigen-

decomposition of the data covariance matrix computed in the original

space. Therefore, PCA is a linear model and as such has considerable

limitations for more realistic problems. A popular, nonlinear technique

is “isometric feature mapping” (or IsoMap) [92] which estimates low

dimensional embeddings that tend to preserve geodesic distances be-

tween point pairs.

Manifold forests build upon “Laplacian eigenmaps” [4] which is a

technique derived from spectral graph theory. Laplacian eigenmaps try

to preserve local pairwise point distances only, with a simple and effi-

cient algorithm. This technique has very close connections with spec-

tral clustering and the normalized cuts image segmentation algorithm

in [81]. Recent probabilistic interpretation of spectral dimensionality

reduction may be found in [62, 25]. A generative, probabilistic model

for learning a latent manifold is discussed in [6].

Manifold learning has recently become popular in the medical image

analysis community, e.g. for cardiac analysis [103, 28], registration [40]

and brain image analysis [34]. A more thorough exploration of the

vast literature on manifold learning and dimensionality reduction is

beyond the scope of this work. The interested reader is referred to

some excellent surveys in [16, 18].



6.2. Specializing the forest model for manifold learning 97

6.2 Specializing the forest model for manifold learning

The idea of using tree-based random space projections for manifold

learning is not new [31, 44]. Here we show how a whole ensemble of

randomized trees can be used for this purpose, and its advantages. We

start by specializing the generic forest model (chapter 2) for use in

manifold learning.

Problem statement. The manifold learning task is summarized

here as follows:

Given a set of k unlabelled observations {v1,v2, . . . ,vi, . . . ,vk}
with vi ∈ Rd we wish to find a smooth mapping f : Rd →∈
Rd′ , f(vi) = v′i such that d′ << d and that preserves the

observations’ relative geodesic distances.

As illustrated in fig. 6.1 each input observation v is represented as a

multi-dimensional feature response vector v = (x1, · · · , xd) ∈ Rd. The

desired output is the mapping function f(·).
In fig. 6.1a input data points are denoted with circles. They live in

a 2D space. We wish to find a function f(·) which maps those points

to their corresponding locations in a lower dimensional space (in the

figure, d′ = 1) such that Euclidean distances in the new space are as

close as possible to the geodesic distances in the original space.

What are manifold forests? As mentioned, the manifold learn-

ing problem and the density estimation one are closely related. This

chapter builds upon density forests, with much of the mathematical

modeling borrowed from chapter 5. So, manifold forests are also collec-

tions of clustering trees. However, unlike density forests, the manifold

forest model requires extra components such as an affinity model and

an efficient algorithm for estimating the optimal mapping f . Details are

described next.

The training objective function. Using randomized node opti-

mization, training happens by maximizing a continuous information
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Fig. 6.1: Manifold learning and dimensionality reduction. (a)

Input, unlabelled data points are denoted with circles. They live in

a high-dimensional space (here d = 2 for illustration clarity). A red

outline highlights some selected points of interest. (b) The target space

is much lower dimensionality (here d′ = 1 for illustration). Geodesic

distances and ordering are preserved.

gain measure

θ∗j = arg max
θj∈Tj

Ij

with Ij defined as for density forests:

Ij = log(|Λ(Sj)|)−
∑

i∈{L,R}

|Sij |
|Sj |

log(|Λ(Sij)|). (6.1)

The previous chapter has discussed properties and advantages of (6.1).

The predictor model. Like in the density model the statistics of all

training points arriving at each leaf node is summarized with a single

multi-variate Gaussian:

pt(v) =
πl(v)

Zt
N (v;µl(v), Λl(v)).

The affinity model. Unlike other tasks, in manifold learning we

need to estimate some measure of similarity or distance between data
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points so that we can preserve those inter-point distances after the

mapping. When working with complex data in high dimensional spaces

it is important for this affinity model to be as efficient as possible. Here

we introduce another novel contribution. We use decision forests to

define data affinity in a simple and effective way.

As seen in the previous chapter, at its leaves a clustering tree t

defines a partition of the input points

l(v) : Rd → L ⊂ N

with l a leaf index and L the set of all leaves in a given tree (the tree

index is not shown to avoid cluttering the notation). For a clustering

tree t we can compute the k×k points’ affinity matrix Wt with elements

Wtij = e−D
t(vi,vj). (6.2)

The matrix Wt can be thought of as un-normalized transition probabili-

ties in Markov random walks defined on a fully connected graph (where

each data point corresponds to a node). The distance D can be defined

in different ways. For example:

Mahalanobis affinity

Dt(vi,vj) =

{
d>ij

(
Λtl(vi)

)−1
dij if l(vi) = l(vj)

∞ otherwise
(6.3)

Gaussian affinity

Dt(vi,vj) =

{
d>ijdij

ε2
if l(vi) = l(vj)

∞ otherwise
(6.4)

Binary affinity

Dt(vi,vj) =

{
0 if l(vi) = l(vj)

∞ otherwise
(6.5)

where dij = vi−vj , and Λl(vi) is the covariance matrix associated with

the leaf reached by the point vi. Note that in all cases it is not neces-

sary to compute the partition function Zt. More complex probabilistic

models of affinity may also be used.
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The simplest and most interesting model of affinity in the list above

is the binary one. It can be thought of as a special case of the Gaussian

model with the length parameter ε → ∞. Thus the binary affinity

model is parameter-free. It says that given a tree t and two points

vi and vj we assign perfect affinity (affinity=1, distance=0) to those

points if they end up in the same cluster (leaf) and null affinity (infinite

distance) otherwise.

The crucial aspect of manifold forests is that information-theoretical

objective function maximization leads to a natural definition of point

neighborhoods and similarities. In fact, defining appropriate data

neighborhoods is an important problem in many manifold learning algo-

rithms as it is crucial for defining good approximations to the pairwise

geodesic distances. In data intensive applications using an information-

gain objective is more natural than having to design pairwise distances

between complex data points.

The ensemble model. In Laplacian eigenmaps [4] constructing an

affinity matrix of the type in (6.2) is the first step. Then, spectral

analysis of the affinity matrix produces the desired mapping f . However,

for a single randomly trained tree its affinity matrix is not going to

be representative of the correct pairwise point affinities. This is true

especially if binary affinity is employed. However, having a collection of

random trees enables us to collect evidence from the entire ensemble.

This has the effect of producing a smooth forest affinity matrix even

in the presence of a parameter-free binary affinity model. Once again,

the use of randomness is key here.

More formally, in a forest of T trees its affinity matrix is defined as:

W =
1

T

T∑
t=1

Wt. (6.6)

In a given tree two points may not belong to the same cluster. In some

other tree they do. The averaging operation in (6.6) has the effect of

propagating pairwise affinities across the graph of all points.

Having discussed how to use forests for computing the data affinity

matrix (i.e. building the graph), next we proceed with the actual esti-

mation of the mapping function f(·). This second part is based on the
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well known Laplacian eigen-maps technique [4, 62] which we summarize

here for convenience.

Estimating the embedding function. A low dimensional embed-

ding is now found by simple linear algebra. Given a graph whose nodes

are the input points and its affinity matrix W we first construct the k×k
normalized graph-Laplacian matrix as:

L = I− Υ−
1
2WΥ−

1
2 (6.7)

with the normalizing diagonal (“degree”) matrix Υ, such that Υii =∑
j Wij [18]. Now, the nonlinear mapping f is found via eigen-

decomposition of L. Let e0, e1, · · · , ek−1 be the solutions of (6.7) in

increasing order of eigenvalues

Le0 = λ0e0 (6.8)

Le1 = λ1e1

· · ·
Lek−1 = λk−1ek−1

with

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk−1

We ignore the first eigenvector e0 as it corresponds to a degenerate

solution (global translation) and use the next d′ << d eigenvectors

(from e1 to ed′) to construct the k × d′ matrix E as

E =

 | | | | | |
e1 e2 · · · ej · · · ed′

| | | | | |


with j ∈ {1, · · · , d′} indexing the eigenvectors (represented as column

vectors). Finally, mapping a point vi ∈ Rd onto its corresponding point

v′ ∈ Rd′ is done simply by reading the ith row of E:

v′i = f(vi) = (Ei1, · · · , Eij , · · · , Eid′)> (6.9)

where i ∈ {1, · · · , k} indexes the individual points. Note that d′ must

be < k which is easy to achieve as we normally wish to have a small
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target dimensionality d′. In summary, the embedding function f re-

mains implicitly defined by its k corresponding point pairs, through

the eigenvector matrix E. In contrast to existing techniques, here, we

do not need to fine-tune a length parameter or a neighborhood size.

In fact, when using the binary affinity model the point neighborhood

remains defined automatically by the forest leaves.

Mapping previously unseen points. There may be applications

where after having trained the forest on a given training set, further

data points become available. In order to map the new points to the

corresponding lower dimensional space one may think of retraining the

entire manifold forest from scratch. However, a more efficient, approx-

imate technique consists in interpolating the point position given the

already available embedding. More formally, given a previously unseen

point v and an already trained manifold forest we wish to find the cor-

responding point v′ in the low dimensional space. The point v′ may be

computed as follows:

v′ =
1

T

∑
t

1

ηt

∑
i

(
e−D

t(v,vi) f(vi)
)

with ηt =
∑

i e
−Dt(v,vi) the normalizing constant and the distance

Dt(·, ·) computed by testing the existing tth tree on v. This interpola-

tion technique works well for points which are somewhat close to the

original training set. Other alternatives are possible.

6.2.1 Properties and advantages.

Let us discuss some properties of manifold forests.

Ensemble clustering for distance estimation. When dealing

with complex data (e.g. images) defining pairwise distances can be

a challenging. Here we avoid that problem since we use directly the

pairwise affinities defined by the tree structure itself. This is especially

true of the simpler binary affinity model. The trees and their tests are

automatically optimized from training data with minimal user input.
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As an example, imagine that we have a collection of holiday photos

containing images of beaches, forests and cityscapes (see fig. 6.2). Each

image defines a data point in a high dimensional space. When training

a manifold forest we can imagine that e.g. some trees group all beach

photos in a cluster, all forest photos in a different leaf and all cityscapes

in yet another leaf. A different tree, by using different features may be

mixing some of the forest photos with some of the beach ones (e.g.

because of the many palm trees along the shore), but the cityscape are

visually very distinct and will tend to remain (mostly) in a separate

cluster. So, forests and beach scenes are more likely to end up in the

same leaf while building photos do not tend to mix with other classes

(just an example). Therefore, the matrix (6.6) will assign higher affinity

(smaller distance) to a forest-beach image pair than to a beach-city

pair. This shows how an ensemble of multiple hard clusterings can

yield a soft distance measure.

Choosing the feature space. An issue with manifold learning tech-

niques is that often one needs to decide ahead of time how to represent

each data point. For instance one has to decide its dimensionality and

what features to use. Thinking of the practical computer vision prob-

lem of learning manifolds of images the complexity of this problem

becomes apparent.

One potential advantage of manifold forests is that we do not need

to specify manually the features to use. We can define the generic family

of features (e.g. gradients, Haar wavelent, output of filter banks etc.).

Then the tree training process will automatically select optimal features

and corresponding parameters for each node of the forest, so as to

optimize a well defined objective function (a clustering information

gain in this case). For instance, in the illustrative example in fig. 6.2

as features we could use averages of pixel colours within rectangles

placed within the image frame. Position and size of the rectangles is

selected during training. This would allow the system to learn e.g. that

brown-coloured regions are expected towards the bottom of the image

for beach scenes, long vertical edges are expected in cityscapes etc.
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Fig. 6.2: Image similarity via ensemble clustering. Differ-

ent trees (whose leaves are denoted by different colour curves)

induce different image partitions. The red tree yields the parti-

tion {{a, b, c, d}, {e, f}, {g, h}}. The green tree yields the partition

{{a, b, c}, {d, e, f}, {g, h}}. The overlap between clusters in different

trees is captured mathematically by the forest affinity matrix W. In W we

will have that image e is closer to image c than to image g. Therefore,

ensemble-based clustering induces data affinity. See text for details.

Computational efficiency. In this algorithm the bottleneck is the

solution of the eigen-system (6.7) which could be slow for a large num-

ber of input points k. However, in (6.9) only the d′ << k bottom eigen-

vectors are necessary. This, in conjunction with the fact that the matrix

L is usually very sparse (especially for the binary affinity model) can

yield efficient implementations. Please note that only one eigen-system
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needs be solved, independent from the forest size T . On the other hand

all the tree-based affinity matrices Wt may be computed in parallel.

Estimating the target intrinsic dimensionality. The algorithm

above can be applied for any dimensionality d′ of the target space. If we

do not know d′ in advance (e.g. from application-specific knowledge)

an optimal value can be chosen by looking at the profile of (ordered)

eigenvalues λj and choosing the minimum number of eigenvalues cor-

responding to a sharp elbow in such profile [4]. Here we need to make

clear that being able to estimate automatically the manifold dimen-

sionality is a property shared with other spectral techniques and is not

unique to manifold forests. This idea will be tested in some examples

at the end of the chapter.

6.3 Experiments and the effect of model parameters

This section presents some experiments and studies the effect of the

manifold forest parameters on the accuracy of the estimated non-linear

mapping.

6.3.1 The effect of the forest size

We begin by discussing the effect of the forest size parameter T . In

a forest of size T each randomly trained clustering tree produces a

different, disjoint partition of the data.1 In the case of a binary affinity

model the elements of the affinity matrices Wt are binary (∈ {0, 1},
either two points belong to the same leaf/cluster or not). A given pair

of points will belong to the same cluster (leaf) in some trees and not in

others (see fig. 6.3). Via the ensemble model the forest affinity matrix

W is much smoother since multiple trees enable different point pairs to

exchange information about their relative position. Even if we use the

binary affinity case the forest affinity W is in general not binary. Large

forests (large values of T ) correspond to averaging many tree affinity

matrices together. In turn, this produces robust estimation of pairwise

1 If the input points were reordered correctly for each tree we would obtain an affinity matrix
Wt with block-diagonal structure.
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Fig. 6.3: Different clusterings induced by different trees. (a)

The input data in 2D. (b,c,d) Different partitions learned by different

random trees in the same manifold forest. A given pair of points will

belong to the same cluster (leaf) in some trees and not in others.

affinities even between distant pairs of points.

Figure 6.4 shows two examples of nonlinear dimensionality reduc-

tion. In each experiment we are given some noisy, unlabelled 2D points

distributed according to some underlying nonlinear 1D manifold. We

wish to discover the manifold and map those points onto a 1D real axis

while preserving their relative geodesic distances. The figure shows that

when using a very small number of trees such mapping does not work

well. This is illustrated e.g. in fig. 6.4b-leftmost, by the vertical banding

artifacts; and in fig. 6.4d-leftmost by the single red colour for all points.

However, as the number of trees the affinity matrix W better represents

the true pairwise graph affinity. Consequently the colour coding (lin-

early going from dark blue to dark red) starts to follow correctly the

1D evolution of the points.

6.3.2 The effect of the affinity model

Here we discuss advantages and disadvantages of using different affin-

ity models. Binary affinities (6.5) are extremely fast to compute and

avoid the need to define explicit distances between (possibly complex)

data points. For example defining a sensible distance metric between

images is difficult. With our binary model pairwise affinities are defined

implicitly by the hierarchical structure of the trees.

Figure 6.5 compares the binary and Gaussian affinity models in a
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Fig. 6.4: Manifold forest and non-linear dimensionality reduc-

tion. The effect of T . (a,c) Input 2D points for two different syn-

thetic experiments. (b,d) Non-linear mapping from the original 2D

space to the 1D real line is colour coded, from dark red to dark blue.

In both examples a small forest (small T ) does not capture correctly

the intrinsic 1D manifold. For larger values of T (e.g. T = 100) the

accuracy of such a mapping increases. (e) The colour legend. Different

colours, from red to blue, denote the position of the mapped points in

their target 1D space.

synthetic example. The input points are embedded within a 3D space

with their intrinsic manifold being a 2D rectangle. A small number of

trees in both cases produces a roughly triangular manifold, but as T

increases the output manifold becomes more rectangular shaped. Notice

that our model preserves local distances only. This is not sufficient to

reproduce sharp 90-degree angles (see rightmost column in fig. 6.5).
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Fig. 6.5: The effect of the similarity model. In this experiment we

map 3D points into their intrinsic 2D manifold. (a) The input 3D data

is a variant of the well known “Swiss Roll” dataset. The noisy points

are organized as a spiral in one plane with a sinusoidal component in

the orthogonal direction. (c) Different mappings into the 2D plane for

increasing forest size T . Here we use binary affinity. (d) As above but

with a Gaussian affinity model. A sufficiently large forest manages to

capture the roughly rectangular shape of the embedded manifold. For

this experiment we used max forest size T = 100, D = 4 and weak

learner = oriented hyperplane (linear).

For a sufficiently large forest both models do a reasonable job at re-

organizing the data points on the target flat surface.

Figure 6.6 shows three views of the “Swiss Roll” example from dif-

ferent viewpoints. Its 3D points are colour-coded by the discovered un-
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Fig. 6.6: The “Swiss Roll” manifold. Different 3D views from vari-

ous viewpoints. Colour-coding indicates the mapped 2D manifold. See

colour-legend in fig. 6.5.

derlying 2D manifold. The mapped colours confirm the roughly correct

2D mapping of the original points. In our experiments we have observed

that the binary model converges (with T ) more slowly than the Gaus-

sian model, but with clear advantages in terms of speed. Furthermore,

the length parameter ε in (6.4) may be difficult to set appropriately

(because it has no immediate interpretation) for complex data such

as images (see fig. 6.2). Therefore, a model which avoids this step is

advantageous.

Figure 6.7 shows a final example of a 3D space being mapped onto

the underlying planar manifold. Once again binary affinities were used

here.

6.3.3 Discovering the manifold intrinsic dimensionality

We conclude this chapter by investigating how we can choose the opti-

mal dimensionality of the target space. In terms of accuracy it is easy

to see that a value of d′ identical to the dimensionality of the original

space would produce the best results because there would be no loss

of information. But one criterion for choosing d′ is to drastically re-

duce the complexity of the target space. Thus we definitely wish to use

small values of d′. By plotting the (ordered) eigenvalues it is also clear

that there are specific dimensionalities at which the spectrum presents

sharp changes [4]. This indicates that there are values of d′ such that

if we used d′ + 1 we would not gain very much. These special loci can

be used to define “good” values for the target dimensionality.
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Fig. 6.7: The “Christmas Tree” manifold. (a) The unlabelled input

data points in their 3D space. (b) The reconstructed 2D space. (c) The

2D colour legend. (d,e,f) Different views of the 3D points with colour

coding corresponding to the automatically discovered 2D mapping.

Figure 6.8 plots the eigenvalue spectra for the “Swiss Roll” dataset

and the binary and Gaussian affinity models, respectively. As expected

from theory λ0 = 0 (corresponding to a translation component that we

ignore). The sharp elbow in the curves, corresponding to λ2 indicates

an intrinsic dimensionality d = 2 (correct) for this example. In our

experiments we have observed that higher values of T produce a more

prominent elbow in the spectrum and thus a clearer choice for the value

of d. Similarly, Gaussian affinities produce sharper elbows than binary

affinities.

6.3.4 Discussion

Above we have discussed some of the advantages of manifold forests

and have studies the effects of its parameters. For example we have

seen that manifold forests can be efficient, avoid the need to prede-

fine the features to be used, and can provide guidance with respect to
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Fig. 6.8: Discovering the manifold intrinsic dimensionality. (a)

The sorted eigenvalues of the normalized graph Laplacian for the “Swiss

Roll” 3D example, with binary affinity model. (b) As above but with

Gaussian affinity. In both curves there is a clear elbow in correspon-

dence of λ2 thus indicating an intrinsic dimensionality d′ = 2. Here we

used forest size T = 100, D = 4 and weak learner = linear.

the optimal dimensionality of the target space. On the flip side it is

important to choose the forest depth D carefully, as this parameter in-

fluences the number of clusters in which the data is partitioned and, in

turn, the smoothness of the recovered mapping. In contrast to existing

techniques here we also need to choose a weak-learner model to guide

the way in which different clusters are separated. The forest size T is

not a crucial parameter since, as usual, the more trees the better the

behaviour.

The fact that the same decision forest model can be used for man-

ifold learning and nonlinear dimensionality reduction is an interesting

discovery. This chapter has only presented the manifold forest model

and some basic intuitions. However, a more thorough experimental val-

idation with real data is necessary to fully assess the validity of such

model. Next, we discuss a natural continuation of the supervised and

unsupervised models discussed so far, and their use in semi-supervised

learning.
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Semi-supervised forests

Previous chapters have discussed the use of decision forests in super-

vised problems (e.g. regression and classification) as well as unsuper-

vised ones (e.g. density and manifold estimation). This chapter puts

the two things together to achieve semi-supervised learning. We focus

here on semi-supervised classification but the results can be extended

to regression too.

In semi-supervised classification we have available a small set of

labelled training points and a large set on unlabelled ones. This is a

typical situation in many scenarios. For instance, in medical image anal-

ysis getting hold of numerous anonymized patients scans is relatively

easy and cheap. However, labeling them with ground-truth annotations

requires experts time and effort and thus is very expensive. A key ques-

tion then is if we can exploit the existence of unlabelled data to improve

classification.

Semi-supervised machine learning is interested in the problem of

transferring existing ground-truth labels to the unlabelled (and already

available) data. When in order to solve this problem we make use of

the underlying data distribution then we talk of transductive learning.

This is in contrast with the inductive learning already encountered in

112
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previous chapters (chapters 3 and 4), where the test data is not available

at training time. This chapter focuses on transductive classification

and also revisits the inductive process in the light of its transductive

counterpart. Decision forests can address both tasks accurately and

efficiently.

Intuitively, in transductive classification we wish to separate the

data so as to: (i) keep different known class labels in different regions

and, (ii) make sure that classification boundaries go through areas of

low data density. Thus, it is necessary to borrow concepts from both

supervised classification and density estimation.

After a brief literature survey, we show how to adapt the generic for-

est model to do transductive semi-supervised classification. This chap-

ter also shows how, given a transductive forest we can easily upgrade it

to a general inductive classification function for previously unseen test

data. Numerous examples and comparative experiments illustrate ad-

vantages and disadvantages of semi-supervised forests over alternative

popular algorithms. The use of decision forests for the related active

learning task is also briefly mentioned.

7.1 Literature on semi-supervised learning

A popular technique for semi-supervised learning is transductive sup-

port vector machines [47, 101]. Transductive SVM (TSVM) is an ex-

tension of the popular support vector machine algorithm [97] which

maximizes the separation of both labelled and unlabelled data. The

experimental section of this chapter will present comparisons between

forests and TSVM.

Excellent, recent references for semi-supervised learning and active

learning are [18, 19, 91, 104] which provide a nice structure to the vast

amount of literature on these topics. A thorough literature survey is

well beyond the scope of this paper and here we focus on forest-based

models.

In [52] the authors discuss the use of decision forests for semi-

supervised learning. They achieve this via an iterative, deterministic

annealing optimization. Tree-based semi-supervised techniques for vi-

sion and medical applications are presented in [13, 17, 27]. Here we
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introduce a new, simple and efficient, one-shot semi-supervised forest

algorithm.

7.2 Specializing the decision forest model for semi-
supervised classification

This section specializes the generic forest model introduced in chap-

ter 2 for use in semi-supervised classification. This model can also be

extended to semi-supervised regression though this is not discussed

here.

Problem statement. The transductive classification task is summa-

rized here as follows:

Given a set of both labelled and unlabelled data we wish to as-

sociate a class label to all the unlabelled data.

Unlike inductive classification here all unlabelled “test” data is al-

ready available during training.

The desired output (and consequently the training labels) are of

discrete, categorical type (unordered). More formally, given an input

point v we wish to associate a class label c such that c ∈ {ck}. As usual

the input is represented as a multi-dimensional feature response vector

v = (x1, · · · , xd) ∈ Rd.
Here we consider two types of input data: labelled vl ∈ L and

unlabelled vu ∈ U . This is illustrated in fig. 7.1a, where data points

are denoted with circles. Coloured circles indicate labelled training

points, with different colours denoting different labels. Unlabelled data

is shown in grey. Figures 7.1b,c further illustrate the difference between

transductive and inductive classification.

What are semi-supervised forests? A transductive forest is a col-

lection of trees that have been trained on partially labelled data. Both

labelled and unlabelled data are used to optimize an objective func-

tion with two components: a supervised and an unsupervised one, as

described next.
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Fig. 7.1: Semi-supervised forest: input data and problem state-

ment. (a) Partially labelled input data points in their two-dimensional

feature space. Different colours denote different labels. Unlabelled data

is shown in grey. (b) In transductive learning we wish to propagate

the existing ground-truth labels to the many, available unlabelled data

points. (c) In inductive learning we wish to learn a generic function

that can be applied to previously unavailable test points (grey circles).

Training a conventional classifier on the labelled data only would pro-

duce a sub-optimal classification surface, i.e. a vertical line in this case.

Decision forests can effectively address both transduction and induc-

tion. See text for detail.

The training objective function. As usual, forest training hap-

pens by optimizing the parameters of each internal node j via

θ∗j = arg max
θj∈Tj

Ij

Different trees are trained separately and independently. The main dif-

ference with respect to other forests is that here the objective function

Ij must encourage both separation of the labelled training data as well

as separating different high density regions from one another. This is

achieved via the following mixed information gain:

Ij = Iuj + αIsj . (7.1)

In the equation above Isj is a supervised term and depends only on

the labelled training data. In contrast, Iuj is the unsupervised term and
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depends on all data, both labelled and unlabelled. The scalar parameter

α is user defined and it specifies the relative weight between the two

terms.

As in conventional classification, the term Isj is an information gain

defined over discrete class distributions:

Isj = H(Sj)−
∑

i∈{L,R}

|Sij |
|Sj |

H(Sij) (7.2)

with the entropy for a subset S ⊆ L of training points H(S) =

−
∑

c p(c) log p(c) with c the ground truth class labels of the points

in L.

Similarly, as in density estimation, the unsupervised gain term Iuj
is defined via differential entropies defined over continuous parameters

(i.e. the parameters of the Gaussian associated with each cluster):

Iuj = log |Λ(Sj)| −
∑

i∈{L,R}

|Sij |
|Sj |

log |Λ(Sij)| (7.3)

for all points in Sj ⊆ (U ∪ L). Like in chapter 5 we have made the

working assumption of Gaussian node densities.

The ensemble model. During testing, a semi-supervised classifica-

tion trees t yields as output the posterior pt(c|v). Here we think of the

input point v as already available during training (v ∈ U , for trans-

duction) or previously unseen (for induction). The forest output is the

usual posterior mean:

p(c|v) =
1

T

T∑
t

pt(c|v).

Having described the basic model components next we discuss details

of the corresponding label propagation algorithm.

7.3 Label propagation in transduction forest

This section explains tree-based transductive label propagation. Fig-

ure 7.2 shows an illustrative example. We are given a partially labelled
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Fig. 7.2: Label transduction in semi-supervised forests. (a) In-

put points, only four of which are labelled as belonging to two classes

(red and yellow). (b,c,d) Different transductive trees produce different

partitions of the feature space. Different regions of high data density

tend to be separated by cluster boundaries. Geodesic optimization en-

ables assigning labels to the originally unlabelled points. Points in the

central region (away from original ground-truth labels) tend to have

less stable assignments. In the context of the entire forest this captures

uncertainty of transductive assignments. (e,f,g) Different tree-induced

partitions correspond to different Gaussian Mixture models. (h) Label

propagation via geodesic path assignment.

dataset (as in fig. 7.2a) which we use to train a transductive forest of

size T and maximum depth D by maximizing the mixed information

gain (7.1).

Different trees produce randomly different partitions of the feature

space as shown in fig. 7.2b,c,d. The different coloured regions repre-

sent different clusters (leaves) in each of the three partitions. If we use

Gaussian models then each leaf stores a different Gaussian distribution

learned by maximum likelihood for the points within. Label transduc-

tion from annotated data to unannotated data can be achieved directly
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via the following minimization:

c(vu)⇐ c

(
arg min

vl∈L
D(vu,vl)

)
∀ vu ∈ U . (7.4)

The function c(·) indicates the class index associated with a point

(known in advance only for points in L). The generic geodesic distance

D(·, ·) is defined as

D(vu,vl) = min
Γ∈{Γ}

L(Γ)−1∑
i=0

d(si, si+1),

with Γ a geodesic path (here represented as a discrete collection of

points), L(Γ) its length, {Γ} the set of all possible geodesic paths and

the initial and end points s0 = vu, sn = vl, respectively. The local

distances d(·, ·) are defined as symmetric Mahalanobis distances

d(si, sj) =
1

2

(
dij
>Λ−1

l(vi)
dij + dij

>Λ−1
l(vj)dij

)
with dij = si − sj and Λl(vi) the covariance associated with the leaf

reached by the point vi. Figure 7.2h shows an illustration. Using Maha-

lanobis local distances (as opposed to e.g. Euclidean ones) discourages

paths from cutting across regions of low data density, a key require-

ment for semi-supervised learning.1 In effect we have defined geodesics

on the space defined by the automatically inferred probability density

function.

Some example results of label propagation are shown in fig. 7.2b,c,d.

Figures 7.2e,f,g illustrate the corresponding Gaussian clusters associ-

ated with the leaves. Following label transduction (7.4) all unlabelled

points remain associated with one of the two labels (fig. 7.2b,c,d). Note

that such transducted labels are different for each tree, and they are

more stable for points closer to the original labelled data. When look-

ing at the entire forest this yields uncertainty in the newly obtained

labels. Thus, in contrast to some other transductive learning algorithms

1Since all leaves are associated with the same Gaussian the label propagation algorithm can

be implemented very efficiently by acting on each leaf cluster rather than on individual
points. Very efficient geodesic distance transform algorithms exist [22].
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a semi-supervised forest produces a probabilistic transductive output

p(c|vu).

Usually, once transductive label propagation has been achieved one

may think of using the newly labelled data as ground-truth and train

a conventional classifier to come up with a general, inductive classifi-

cation function. Next we show how we can avoid this second step and

go directly from transduction to induction without further training.

7.4 Induction from transduction

Previously we have described how to propagate class labels from la-

belled training points to already available unlabelled ones. Here we

describe how to infer a general probabilistic classification rule p(c|v)

that may be applied to previously unseen test input (v 6∈ U ∪ L).

We have two alternatives. First, we could apply the geodesic-based

algorithm in (7.4) to every test input. But this involves T shortest-

path searches for each v. A simpler alternative involves constructing

an inductive posterior from the existing trees, as shown next.

After transduction forest training we are left with T trained trees

and their corresponding partitions (fig. 7.2b,c,d). After label propa-

gation we also have attached a class label to all available data (with

different trees possibly assigning different classes to the points in U).

Now, just like in classification, counting the examples of each class ar-

riving at each leaf defines the tree posteriors pt(c|v). These act upon

the entire feature space in which a point v lives and not just the already

available training points. Therefore, the inductive forest class posterior

is the familiar

p(c|v) =
1

T

T∑
t=1

pt(c|v).

Here we stress again that the tree posteriors are learned from all (exist-

ing and transducted) class labels ignoring possible instabilities in class

assignments. We also highlight that building the inductive posterior is

extremely efficient (it involves counting) and does not require training

a whole new classifier.

Figure 7.3 shows classification results on the same example as in

fig. 7.2. Now the inductive classification posterior is tested on all points
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Fig. 7.3: Learning a generic, inductive classification rule. Output

classification posteriors, tested on all points in a rectangular section of

the feature space. Labelled training points are indicated by coloured

circles (only four of those per image). Available unlabelled data are

shown by small grey squares. Note that a purely inductive classification

function would separate the left and right sides of the feature space

with a vertical line. In contrast here the separating surface is “S”-

shaped because affected by the density of the unlabelled points, thus

demonstrating the validity of the use of unlabelled data densities. From

left to right the number of trees in the forest increases from T = 1 to

T = 100. See text for details.

within a rectangular section of the feature space. As expected a larger

T produces smoother posteriors. Note also how the inferred separat-

ing surface is “S”-shaped because it takes into account the unlabelled

points (small grey squares). Finally we observe that classification un-

certainty is greater in the middle due to its increased distance from the

four ground-truth labelled points (yellow and red circles).

Discussion. In summary, by using our mixed information gain and

some geodesic manipulation the generic decision forest model can

be readily adapted for use in semi-supervised tasks. Semi-supervised

forests can be used both for transduction and (refined) induction with-

out the need for a two-stage training procedure. Further efficiency is

due to the parallel nature of forests. Both for transduction and induc-

tion the output is fully probabilistic. We should also highlight that
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semi-supervised forests are very different from e.g. self-training tech-

niques [75]. Self-training techniques work by: (i) training a supervised

classifier, (ii) classifying the unlabelled data, (iii) using the newly clas-

sified data (or perhaps only the most confident subset) to train a new

classifier, and so on. In contrast, semi-supervised forests are not iter-

ative. Additionally, they are driven by a clear objective function, the

maximization of which encourages the separating surface to go through

regions of low data density, while respecting existing ground-truth an-

notations.

Next we present further properties of semi-supervised forests (such

as their ability to deal with any number of classes) with toy examples

and comparisons with alternative algorithms.

7.5 Examples, comparisons and effect of model parameters

This section studies the effect of the forest model parameters on its ac-

curacy and generalization. The presented illustrative examples are de-

signed to bring to life different properties. Comparisons between semi-

supervised forests with alternatives such as transductive support vector

machines are also presented.

Figure 7.3 has already illustrated the effect of the presence of un-

labelled data as well as the effect of increasing the forest size T on the

shape and smoothness of the posterior. Next we discuss the effect of

increasing the labelled points.

The effect of additional labelled data and active learning. As

observed already, the central region in fig. 7.4a shows higher classifi-

cation uncertainty (dimmer, more orange pixels). Thus, as typical of

active learning [14] we might decide to collect and label additional data

precisely in those low-confidence regions. This should have the effect of

refining the classification posterior and increasing it confidence. This

effect is indeed illustrated in fig. 7.4b.

As expected, a guided addition of further labelled data in regions of

high uncertainty increases the overall predictor confidence. The impor-

tance of having a probabilistic output is clear here as it is the confidence

of the prediction (and not the class prediction itself) which guides, in
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Fig. 7.4: Active learning. (a) Test forest posterior trained with only

four labelled points and hundreds of unlabelled ones. The middle re-

gion shows lower confidence (pointed at by two arrows). (b) As before,

but with two additional labelled points placed in regions of high un-

certainty. The overall confidence of the classifier increases considerably

and the overall posterior is sharper. Figure best seen on screen.

an economical way, the collection of additional training data. Next we

compare semi-supervised forests with alternative algorithms.

Comparison with support vector machines. Figure 7.5 shows a

comparison between semi-supervised forests and conventional SVM [97]

as well as transductive SVM [47, 101], on the same two input datasets. 2

In the figure we observe a number of effects. First, unlike SVM

the forest captures uncertainty. As expected, more noise in the input

data (either in the labelled or unlabelled sets, or both) is reflected in

lower prediction confidence. Second, while transductive SVM manages

to exploit the presence of available unlabelled data it still produces a

hard, binary classification. For instance, larger amounts of noise in the

training data is not reflected in the TSVM separating surface.

2 In this example the SVM and transductive SVM results were generated using the “SVM-
light” Matlab toolbox in http://svmlight.joachims.org/.
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Fig. 7.5: Comparing semi-supervised forests with SVM and

transductive SVM. (a) Input partially labelled data points. (b)

Semi-supervised forest classification posterior. The probabilistic out-

put captures prediction uncertainty (mixed-colour pixels in the central

region). (c) Unsurprisingly, conventional SVM produces a vertical sep-

arating surface and it is not affected by the unlabelled set. (d) Trans-

ductive SVM follows regions of low density, but still does not capture

uncertainty. (a’) As in (a) but with larger noise in the point positions.

(b’) The increased input noise is reflected in lower overall confidence

in the forest prediction. (c’,d’) as (c) and (d), respectively, but run on

the noisier training set (a’).

Handling multiple classes. Being tree-based models semi-

supervised forests can natively handle multiple (> 2) classes. This is

demonstrated in fig. 7.6 with a four-class synthetic experiment. The

input points are randomly drawn from four bi-variate Gaussians. Out

of hundreds of points only four are labelled with their respective classes

(shown in different colours). Conventional one-v-all SVM classification

results in hard class assignments (fig. 7.6b). Tree-based transductive la-

bel propagation (for a single tree) is shown in fig. 7.6c. Note that slightly

different assignments are achieved for different trees. The forest-based
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Fig. 7.6: Handling multiple classes. (a) Partially labelled input

data. We have 4 labelled points for the 4 classes (different colours for

different classes). (b) Classification results for one-v-all support vec-

tor machines. (c) Transduction results based on a single decision tree.

Originally unlabelled points are assigned a label based on tree-induced

geodesic distances. (d) Final semi-supervised classification posterior.

Unlabelled points nicely contribute to the shape of the posterior (e.g.

look at the elongated yellow blob). Furthermore, regions of low confi-

dence nicely overlap regions of low data density.

inductive posterior (computed for T = 100) is shown in fig. 7.6d where

the contribution of previously unlabelled points to the shape of the final

posterior is clear. Regions of low confidence in the posterior correspond

to regions of low density.
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Fig. 7.7: Semi-supervised forest: effect of depth. (a) Input la-

belled and unlabelled points. We have 4 labelled points and 4 classes

(colour coded). (a’) As in (a) but with double the labelled data. (b,b’)

Semi-supervised forest classification posterior for D = 6 tree levels.

(c,c’) Semi-supervised forest classification posterior for D = 10 tree

levels. The best results are obtained in (c’), with largest amount of

labelled data and deepest trees.

The effect of tree depth. We conclude this chapter by studying

the effect of the depth parameter D in fig. 7.7. The figure shows two

four-class examples. The input data is distributed according to four-

arm spirals. In the top row we have only four labelled points. In the

bottom row we have eight. Similar to classification forests, increasing

the depth D from 6 to 10 produces more accurate and confident results.

And so does increasing the amount of labelled data. In this relatively

complex example, accurate and sharp classification is achieved with

just 2× 4 labelled data points (for D = 10 tree levels) and hundreds of
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unlabelled ones.

The recent popularity of decision forests has meant an explosion of

different variants in the literature. Although collecting and categorizing

all of them is a nearly impossible task, in the next chapter we discuss

a few important ones.



8

Random ferns and other forest variants

This chapter describes some of the many variants on decision forests

that have emerged in the last few years. Many such variations can be

seen as special instances of the same general forest model. Specifically

here we focus on: random ferns, extremely randomized trees, entangled

forests, online training and the use of forests on random fields.

8.1 Extremely randomized trees

Extremely randomized trees (ERT) are ensembles of randomly trained

trees where the optimization of each node parameters has been greatly

reduced or even removed altogether [36, 61].

In our decision model the amount of randomness in the selec-

tion/optimization of split nodes is controlled by the parameter ρ = |Tj |
(section 2.2). In our randomized node optimization model when train-

ing the jth internal node the set Tj is selected at random from the entire

set of possible parameters T . Then optimal parameters are chosen only

within the Tj subset. Consequently, extremely randomized trees are a

specific instance of the general decision forest model with the additional

constraint that ρ = 1 ∀j. In this case no node training is performed.

127
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Fig. 8.1: Forests, extremely randomized trees and ferns. (a)

Input training points for four classes. (b) Posterior of a classification

forest. (c) Posterior of an ensemble of extremely randomized trees. (d)

Posterior of a random fern. The randomness parameter is changed as

illustrated. All other parameters are kept fixed. Extremely randomized

trees are faster to train than forests but produce a lower-confidence

posterior (in this example). The additional constraints of random ferns

yield further loss of posterior confidence.

Figure 8.1 shows a comparison between classification forests and

extremely randomized trees for a toy example. Some training points

belonging to four different classes are randomly distributed along four

spiral arms. Two decision forests were trained on the data. One of

them with ρ = 1000 and another with ρ = 1 (extremely random-

ized). All other parameters are kept identical (T = 200, D = 13, weak

learner = conic section, predictor = probabilistic). The corresponding

testing posteriors are shown in fig. 8.1b, and fig. 8.1c, respectively. It

can be observed that the increased randomness produces lower overall

prediction confidence. Algorithmically higher randomness yields slower

convergence of test error as a function of the forest size T .

8.2 Random ferns

Random ferns can also be thought of as a specific case of decision

forests. In this case the additional constraint is that the same test

parameters are used in all nodes of the same tree level [66, 68].

Figure 8.2 illustrates this point. As usual training points are indi-
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cated with coloured circles with different colours indicating different

classes. In both a decision tree and a decision fern the first node (root)

does an equally good job at splitting the training data into two sub-

set. Here we consider only axis-aligned weak learners. In this example

going to the next level starts to show the difference between the two

models (fig. 8.2d). The fact that all parameters θ of all nodes in the

same level are identical induces partitions of the feature space with

complete hyper-surfaces (as opposed to the “half-surfaces” used by the

forest, see fig. 8.2d,e). Consequently, in order to split exactly the lin-

early separable input dataset the fern requires deeper levels than the

forest. This explains why in fig. 8.1c we see lower prediction confidence

(very washed-out colours) as compared to extremely randomized trees

or full forests.

The fact that extremely randomized trees and random ferns are

lower-parametric versions of decision forests can be an advantage in

some situations. For instance, in the presence of limited training data

ERT and ferns run less risk of overfitting than forests. Thus, as usual

the best optimal model to use depends on the application at hand.

8.3 Online forest training

One of the advantages of decision forests is that thanks to their paral-

lelism they are efficient both during training and testing. Most of the

time they are used in an off-line way, i.e. they are trained on a training

data and then tested on previously unseen test data. The entirety of

the training data is assumed given in advance. However, there are many

situations where the labelled training data may be arriving at different

points in time. In such cases it is convenient to be able to update the

learned forest quickly, without having to start training from scratch.

This second mode of training is often referred to as on-line training.

Given a forest trained on a starting training set, the simplest form

of on-line training is that of keeping the learned parameters and forest

structure fixed and only update the leaf distributions. As new training

data is available it can be simply “pushed through” all trees until it

reaches the corresponding leaves. Then, the corresponding distributions

(e.g. unnormalized histograms) can be quickly updated (e.g. by sim-
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Fig. 8.2: Forests and ferns. A set of labelled training data is used

to train a forest and a fern. Here simple axis-aligned weak learners are

employed. A fern has fewer parameters than the forest and thus the

fern typically requires deeper trees than a forest to split equally well

the input training data.

ply adding the new counts in the appropriate bins). The work in [77]

presents further details.

8.4 Structured-output Forests

Often decision forests are used for the semantic segmentation of images.

This involves assigning a class posterior to each pixel (voxel) in the im-

age domain (e.g. in Microsoft Kinect). However, such class decisions

are often made independently for each pixel. Classic Markov random

fields [8] add generic spatial priors to achieve more homogeneous out-

puts by smoothing noisy local evidence. In this section we mention two
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techniques which try to improve on this generic smoothness model and

learn a class-specific model of spatial context.

8.4.1 Entangled forests

Entangled forests [60] are decision forests where the feature vector used

as input to a split node is a function of: (i) the image data and (ii) the

output of previous split nodes in the same tree.

The basic idea stems from the work on Probabilistic Boosting

Trees [95] and autocontext [96]. In the latter the author shows how

a sequence of trees, where each uses the output of the previous tree as

input, yields better results than using a single tree. In fact, each stage

moves us one step closer from the original image data to its “semantic”

meaning.

However, due to their hierarchical structure each tree is composed

of multiple subtrees. So, the idea of taking the output of a tree as input

for the next can also be applied within the same decision tree/forest,

as shown in [60]. In [60] the authors extend the feature pool by using

both image intensities and various combinations of class posteriors ex-

tracted at different internal nodes in a classification forest. They show

much improved generalization with shallower (and thus more efficient)

forests. One of the reasons why entangled forests work well is because

of learned, class-specific context. For example, the system learns that

a voxel which is 5cm below the right lung and 5cm above the right

kidney is likely to be in the liver.

Biased randomization. The work in [60] also introduces a variant on

randomized node optimization where the available test parameters Tj
are no longer drawn uniformly from T , but according to a learned pro-

posal distribution. This increases both training efficiency and testing

accuracy as it reduces the enormous search space (possibly infinite) to

a more manageable subset which is still highly discriminative.

8.4.2 Decision tree fields

Recently, Nowozin et al. [65] proposed another technique for learning

class-specific models of context. They combined random decision forests

and random fields together in a decision tree field model. In this model,
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both the per-pixel likelihoods as well as the spatial smoothing priors are

dependent on the underlying image content. Different types of pair-wise

weights are learned from images using randomized decision trees. By

using approximate likelihood functions the training of the decision tree

field model remains efficient, however, the test-time inference requires

the minimization of a random field energy and therefore may prohibit

its use in real-time applications, at present.

8.5 Further forest variants

The “STAR” model in [69] can also be interpreted as a forest of T ,

randomly trained non-binary trees of depth D = 1. The corresponding

training and testing algorithms are computational efficient. A related

model, made of multiple single nodes is “node harvest” [57]. Node har-

vest has the advantage of high interpretability, but seems to work best

in low signal-to-noise conditions.

This chapter has presented only a small subset of all possible vari-

ants on tree-based machine learning techniques. Further interesting

ones exist, but collecting all of them in the same document is a near

impossible task.



Conclusions

This paper has presented a general model of decision forest and shown

its applicability to various different tasks including: classification, re-

gression, density estimation, manifold learning, semi-supervised learn-

ing and active learning.

We have presented both a tutorial on known forest-related concepts

as well as a series of novel contributions such as demonstrating margin-

maximizing properties, introducing forest-based density estimation and

manifold forests, and discussing a new algorithm for transductive learn-

ing. Finally, we have studied for the first time the effects of important

forest parameters such as the amount of randomness and the weak

learner model on accuracy.

A key advantage of decision forests is that the associated inference

algorithms can be implemented and optimized once. Yet relatively small

changes to the model enable the user to solve many diverse tasks, de-

pending on the application at hand. Decision forests can be applied to

supervised, unsupervised and semi-supervised tasks.

The feasibility of the decision forest model has been demonstrated

both theoretically and in practice, with synthetic experiments and in

some commercial applications. Whenever possible, forest results have
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been compared directly with well known alternatives such as support

vector machines, boosting and Gaussian processes. Amongst other ad-

vantages, the forest’s intrinsic parallelism and consequent efficiency are

very attractive for data-heavy practical applications.

Further research is necessary e.g. to figure out optimal ways of in-

corporating priors (e.g. of shape) within the forest and to increase their

generalization further. An interesting avenue that some researchers

have started to pursue is the idea of combining classification and regres-

sion [37]. This can be interesting as the two models can enrich one an-

other. The more exploratory concepts of density forest, semi-supervised

forest and manifold forests presented here need more testing in real ap-

plications to demonstrate their feasibility. We hope that this work can

serve as a springboard for future exciting research to advance the state

of the art in automatic image understanding for medical image analysis

as well as general computer vision.

For further details, animations and demo videos, the interested

reader is encouraged to view the additional material available at [1].



Appendix A – Deriving the regression
information gain

This chapter shows the mathematical derivation leading to the continu-

ous regression information gain measure in (4.2). We start by describing

probabilistic linear regression.

Least squares line regression. For simplicity the following descrip-

tion focuses on fitting a line to a set of 2D points but it can be easily

generalized to hyperplanes in a higher dimensional space. We are given

a set of points (as shown in fig. 3) and we wish to estimate a probabilis-

tic model of the line through those points. A 2D point x is represented

in homogeneous coordinates as x = (x y 1)>. A line in homogeneous

coordinates is written as the 3-vector l = (lx ly lw)>. If a point is

on the line then l · x = 0. Thus, for n points we can setup the linear

system

A l = 0
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with the n× 3 matrix A

A =


x1 y1 1

x2 y2 1

· · ·
xn yn 1

 .

The input points are in general noisy and thus it is not possible to find

the line exactly. As usual in these cases we use the well known least

squares technique where we define a cost function C = l>A>Al to be

minimized while satisfying the constraint ||l|| = 1. The corresponding

Lagrangian is

L = l>A>Al− λ(l>l− 1).

Taking the derivative of L and setting it to 0 as follows

∂L
∂l

= 2A>Al− 2λl = 0

leads to the following eigen-system:

A>Al = λl.

Therefore, the optimal line solution l is the eigenvector of the 3 × 3

matrix M = A>A corresponding to its minimum eigenvalue.

Estimating the distribution of line parameters. By assuming

noisy training points and employing matrix perturbation theory [21, 89]

we can estimate a Gaussian density of the line parameters: l ∼ N
(
l, Λl
)
,

as follows.

The generic ith row in the “design” matrix A is ai = (xi yi 1) = x>i .

Thus the corresponding covariance is

E
[
a>i ai

]
= Λi

with E denoting expectation and where the point covariance Λi takes

the form

Λi =

 σ2
xi σxiyi 0

σxiyi σ2
yi 0

0 0 0


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Fig. 3: Probabilistic line fitting. Given a set of training points we can

fit a line model to them. For instance, in this example l ∈ R2. Matrix

perturbation theory enables us to compute the entire conditional den-

sity p(l|x) from where we can derive p(y|x). Training a regression tree

involves minimizing the uncertainty of the prediction p(y|x). Therefore,

the training objective is a function of σ2
y .

Finally the 3× 3 line covariance matrix is

Λl = J S J (1)

with the 3× 3 Jacobian matrix

J = −
3∑

k=2

uku
>
k

λk

where λk denotes the kth eigenvalues of the matrix M and uk its corre-

sponding eigenvector. The 3× 3 matrix S in (1) is

S =
n∑
i=1

(
a>i ail

>Λil
)
.

Therefore the distribution over l remains completely defined. Now,

given a set of (x, y) pairs we have found the maximum-likelihood line

model N
(
l, Λl
)
. However, what we want is the conditional distribution

p(y|x) (see fig. 3) this is discussed next.
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Estimating the conditional p(y|x). In regression forests we are

given an input point x and the mean and covariance of the line pa-

rameters l for the leaf reached by the input point. The task now is

to estimate of the conditional probability p(y|x). At the end of this

chapter we will see how this is used in the regression information gain.

In its explicit form a line equation is y = a x + b with a = −lx/ly
and b = −lw/ly. Thus we can define l′ = (a b)> with

l′ = f(l) =

(
−lx/ly
−lw/ly

)
.

Its 2× 2 covariance is then Λl′ = ∇f Λl ∇f> with

∇f =

(
− 1
ly

lx
l2y

0

0 lw
l2y
− 1
ly

)
Now we can rewrite the line equation as y = g(x) = l′ · x with

x = (x 1)> and the variance of y becomes

σ2
y(x) = ∇g Λl′ ∇g>

with ∇g = x>. So, finally the conditional density p(y|x) remains de-

fined as

p(y|x) = N
(
y; y, σ2

y(x)
)
. (2)

See also fig. 3.

Regression information gain. In a regression forest the objective

function of the jth split node is

Ij = H(Sj)−
∑

i∈{L,R}

|Sij |
|Sj |

H(Sij ) (3)

with the entropy for a generic training subset S defined as

H(S) = − 1

|S|
∑
x∈S

∫
y
p(y|x) log p(y|x) dy (4)

by substituting (2) in (4) we obtain

H(S) =
1

|S|
∑
x∈S

1

2
log
(
(2πe)2σ2

y(x)
)
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which when plugged into (3) yields the information gain

Ij ∝
∑
xj∈Sj

log (σy(xj))−
∑

i∈{L,R}

 ∑
xj∈Sij

log (σy(xj))


up to a constant scale factor which has no influence over the node

optimization procedure and thus can be ignored.

In this appendix we have derived the regression information gain

for the simple case of 1D input x and 1D output y. It is easy to up-

grade the derivation to multivariate variables, yielding the more general

regression information gain in (4.2).
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