
DCell: A Scalable and Fault-Tolerant Network
Structure for Data Centers

Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi†, Yongguang Zhang, Songwu Lu‡
∗

Microsoft Research Asia, †Tsinghua University, ‡UCLA
{chguo, hwu, kuntan, ygz}@microsoft.com,
†shijim@mails.thu.edu.cn, ‡slu@cs.ucla.edu

ABSTRACT
A fundamental challenge in data center networking is how
to efficiently interconnect an exponentially increasing num-
ber of servers. This paper presents DCell, a novel network
structure that has many desirable features for data cen-
ter networking. DCell is a recursively defined structure, in
which a high-level DCell is constructed from many low-level
DCells and DCells at the same level are fully connected with
one another. DCell scales doubly exponentially as the node
degree increases. DCell is fault tolerant since it does not
have single point of failure and its distributed fault-tolerant
routing protocol performs near shortest-path routing even
in the presence of severe link or node failures. DCell also
provides higher network capacity than the traditional tree-
based structure for various types of services. Furthermore,
DCell can be incrementally expanded and a partial DCell
provides the same appealing features. Results from theoret-
ical analysis, simulations, and experiments show that DCell
is a viable interconnection structure for data centers.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topol-
ogy, Packet-switching networks

General Terms
Algorithms, Design

Keywords
Data center, Network topology, Throughput, Fault tolerance

1. INTRODUCTION
In recent years, many large data centers are being built

to provide increasingly popular online application services,
such as search, e-mails, IMs, web 2.0, and gaming, etc. In
addition, these data centers also host infrastructure services

∗This work was performed when Lei Shi was an intern and
Songwu Lu was a visiting professor at Microsoft Research
Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

such as distributed file systems (e.g., GFS [8]), structured
storage (e.g., BigTable [7]), and distributed execution engine
(e.g., MapReduce [5] and Dryad [11]). In this work, we focus
on the networking infrastructure inside a data center, which
connects a large number of servers via high-speed links and
switches. We call it data center networking (DCN).

There are three design goals for DCN. First, the network
infrastructure must be scalable to a large number of servers
and allow for incremental expansion. Second, DCN must
be fault tolerant against various types of server failures, link
outages, or server-rack failures. Third, DCN must be able to
provide high network capacity to better support bandwidth-
hungry services.

Two observations motivate these goals. First, data center
is growing large and the number of servers is increasing at
an exponential rate. For example, Google has already had
more than 450,000 servers in its thirty data centers by 2006
[2, 9], and Microsoft and Yahoo! have hundreds of thou-
sands of servers in their data centers [4, 19]. Microsoft is
even doubling the number of servers every 14 months, ex-
ceeding Moore’s Law [22]. Second, many infrastructure ser-
vices request for higher bandwidth due to operations such
as file replications in GFS and all-to-all communications in
MapReduce. Therefore, network bandwidth is often a scarce
resource [5]. The current DCN practice is to connect all the
servers using a tree hierarchy of switches, core-switches or
core-routers. With this solution it is increasingly difficult to
meet the above three design goals. It is thus desirable to
have a new network structure that can fundamentally ad-
dress these issues in both its physical network infrastructure
and its protocol design.

To meet these goals we propose a novel network structure
called DCell. DCell uses a recursively-defined structure to
interconnect servers. Each server connects to different lev-
els of DCells via multiple links. We build high-level DCells
recursively from many low-level ones, in a way that the low-
level DCells form a fully-connected graph. Due to its struc-
ture, DCell uses only mini-switches to scale out instead of
using high-end switches to scale up, and it scales doubly ex-
ponentially with the server node degree. In practice, a DCell
with a small degree (say, 4) can support as many as several
millions of servers without using expensive core-switches or
core-routers.

DCell is fault tolerant. There is no single point of failure
in DCell, and DCell addresses various failures at link, server,
and server-rack levels. Fault tolerance comes from both its
rich physical connectivity and the distributed fault-tolerant
routing protocol operating over the physical structure.



DCell supports high network capacity. Network traffic in
DCell is distributed quite evenly among servers and across
links at a server. High-level links in the hierarchy will not
pose as the bottleneck, which is the case for a tree-based
structure. Our experimental results on a 20-server DCell
testbed further show that DCell provides 2 times through-
put compared with the conventional tree-based structure for
MapReduce traffic patterns.

In summary, we have proposed a new type of physical net-
work infrastructure that possesses three desirable features
for DCN. This is the main contribution of this work, and has
been confirmed by simulations and experiments. A potential
downside of our solution is that DCell trades-off the expen-
sive core switches/routers with higher wiring cost, since it
uses more and longer communication links compared with
the tree-based structures. However, we believe this cost is
well justified by its scaling and fault tolerance features.

The rest of the paper is organized as follows. Section 2
elaborates on design issues in DCN. Section 3 describes the
DCell structure. Sections 4 and 5 present DCell routing and
the solution to incremental expansion, respectively. Sections
6 and 7 use both simulations and implementations to evalu-
ate DCell. Section 8 compares DCell with the related work.
Section 9 concludes the paper.

2. DATA CENTER NETWORKING
Data centers today use commodity-class computers and

switches instead of specially designed high-end servers and
interconnects for better price-performance ratio [3]. The
current DCN practice is to use the switch-based tree struc-
ture to interconnect the increasing number of servers. At
the lowest level of the tree, servers are placed in a rack (typ-
ically 20-80 servers) and are connected to a rack switch. At
the next higher level, server racks are connected using core
switches, each of which connects up to a few hundred server
racks. A two-level tree can thus support a few thousand
servers. To sustain the exponential growth of server popula-
tion, more high levels are added, which again use even more
expensive, higher-speed switches.

The tree-based structure does not scale well for two rea-
sons. First, the servers are typically in a single layer-2
broadcast domain. Second, core switches, as well as the
rack switches, pose as the bandwidth bottlenecks. The tree
structure is also vulnerable to “single-point-of-failure”: a
core switch failure may tear down thousands of servers. A
quick fix using redundant switches may alleviate the prob-
lem, but does not solve the problem because of inherently
low connectivity.

To address DCN issues, it seems that we may simply re-
use certain structures proposed in the area of parallel com-
puting. These structures connect components such as mem-
ory and CPU of a super computer, and include Mesh, Torus,
Hypercube, Fat Tree, Butterfly, and de Bruijn graph [12].
However, they addressed a different set of issues such as low-
latency message passing in the parallel computing context
and cannot meet the goals in DCN. We will provide detailed
comparisons of these structures and our work in Section 8.
We now elaborate on the three design goals we have briefly
mentioned in the previous section.
Scaling: Scaling requirement in DCN has three aspects.
First, the physical structure has to be scalable. It must
physically interconnect hundreds of thousands or even mil-
lions of servers at small cost, such as a small number of links

at each node and no dependence on high-end switches to
scale up. Second, it has to enable incremental expansion by
adding more servers into the already operational structure.
When new servers are added, the existing running servers
should not be affected. Third, the protocol design such as
routing also has to scale.

Fault tolerance: Failures are quite common in current
data centers [3, 8]. There are various server, link, switch,
rack failures due to hardware, software, and power outage
problems. As the network size grows, individual server and
switch failures may become the norm rather than excep-
tion. Fault tolerance in DCN requests for both redundancy
in physical connectivity and robust mechanisms in protocol
design.

High network capacity: Many online infrastructure ser-
vices need large amount of network bandwidth to deliver
satisfactory runtime performance. Using the distributed file
system [8] as an example, a file is typically replicated several
times to improve reliability. When a server disk fails, re-
replication is performed. File replication and re-replication
are two representative, bandwidth-demanding one-to-many
and many-to-one operations. Another application example
requiring high bandwidth is MapReduce [5]. In its Reduce
operation phase, a Reduce worker needs to fetch interme-
diate files from many servers. The traffic generated by the
Reduce workers forms an all-to-all communication pattern,
thus requesting for high network capacity from DCN.

3. THE DCELL NETWORK STRUCTURE
The DCell-based DCN solution has four components that

work in concert to address the three challenges. They are the
DCell scalable network structure, efficient and distributed
routing algorithm that exploits the DCell structure, fault-
tolerant routing that addresses various types of failures such
as link/server/rack failures, and an incremental upgrade scheme
that allows for gradual expansion of the DCN size. Sections
3-5 describe these components in details.

3.1 DCell Physical Structure
DCell uses servers equipped with multiple network ports

and mini-switches to construct its recursively defined archi-
tecture. In DCell, a server is connected to several other
servers and a mini-switch via communication links, which
are assumed to be bidirectional. A high-level DCell is con-
structed from low-level DCells. We use DCellk (k ≥ 0) to
denote a level-k DCell. The following example (in Figure 1)
illustrates how DCells of different levels are constructed.

DCell0 is the building block to construct larger DCells. It
has n servers and a mini-switch (n = 4 for DCell0 in Figure
1). All servers in DCell0 are connected to the mini-switch.
In our design, n is a small integer (say, n ≤ 8). Therefore,
a commodity 8-port switch with 1Gb/s or 10Gb/s per port
could serve the purpose.

A level-1 DCell1 is constructed using n + 1 DCell0s. In
DCell1, each DCell0 is connected to all the other DCell0s
with one link. In the example of Figure 1, DCell1 has n+1 =
5 DCell0s. DCell connects the 5 DCell0s as follows. Assign
each server a 2-tuple [a1, a0], where a1 and a0 are the level-
1 and level-0 IDs, respectively. Thus a1 and a0 take values
from [0,5) and [0,4), respectively. Then two servers with 2-
tuples [i, j − 1] and [j, i] are connected with a link for every
i and every j > i. The linking result for DCell1 is shown



Figure 1: A DCell1 network when n=4. It is com-
posed of 5 DCell0 networks. When we consider each
DCell0 as a virtual node, these virtual nodes then
form a complete graph.

in Figure 1. Each server has two links in DCell1. One
connects to its mini-switch, hence to other nodes within its
own DCell0. The other connects to a server in another
DCell0.

In DCell1, each DCell0, if treated as a virtual node, is
fully connected with every other virtual node to form a
complete graph. Moreover, since each DCell0 has n inter-
DCell0 links, a DCell1 can only have n + 1 DCell0s, as
illustrated in Figure 1.

For a level-2 or higher DCellk, it is constructed in the
same way to the above DCell1 construction. If we have
built DCellk−1 and each DCellk−1 has tk−1 servers, then
we can create a maximum tk−1 + 1 of DCellk−1s. Again
we treat each DCellk−1 as a virtual node and fully connect
these virtual nodes to form a complete graph. Consequently,
the number of DCellk−1s in a DCellk, denoted by gk, is
tk−1 +1. The number of servers in a DCellk, denoted by tk,
is tk−1(tk−1 + 1). The number of DCellk−1s in a DCellk,
(i.e., gk), and the total number of servers in a DCellk (i.e.,
tk) are

gk = tk−1 + 1
tk = gk × tk−1

for k > 0. DCell0 is a special case when g0 = 1 and t0 = n,
with n being the number of servers in a DCell0.

3.2 BuildDCells: the Procedure
To facilitate the DCell construction, each server in a DCellk

is assigned a (k + 1)-tuple [ak, ak−1, · · · , a1, a0], where
ai < gi(0 < i ≤ k) indicates which DCelli−1 this server is
located at and a0 < n indicates the index of the server in
that DCell0. We further denote [ak, ak−1, · · · , ai+1] (i > 0)
as the prefix to indicate the DCelli this node belongs to.
Each server can be equivalently identified by a unique ID
uidk, taking a value from [0, tk). The mapping between
a unique ID and its (k + 1)-tuple is a bijection. The ID
uidk can be calculated from the (k + 1)-tuple using uidk =

a0 +
∑k

j=1{aj × tj−1}, and the (k + 1)-tuple can also be
derived from its unique ID.

A server in DCellk is denoted as [ak, uidk−1], where ak is
the DCellk−1 this server belongs to and uidk−1 is the unique
ID of the server inside this DCellk−1.

The recursive DCell construction procedure BuildDCells

/* pref is the network prefix of DCelll
l stands for the level of DCelll
n is the number of nodes in a DCell0*/

BuildDCells(pref , n, l)

Part I:

if (l == 0) /*build DCell0*/

for (int i = 0; i < n; i + +)

connect node [pref, i] to its switch;

return;

Part II:

for (int i = 0, i < gl; i + +) /*build the DCelll−1s*/

BuildDCells([pref, i], n, l− 1);

Part III:

for (int i = 0, i < tl−1; i + +) /*connect the DCelll−1s*/

for (int j = i + 1, j < gl; j + +)

uid 1 = j − 1; uid 2 = i;

n1 = [pref, i, uid 1]; n2 = [pref, j, uid 2];

connect n1 and n2;

return;

Figure 2: The procedure to build a DCelll network.

is shown in Figure 2. It has three parts. Part I checks
whether it constructs a DCell0. If so, it connects all the
n nodes to a corresponding switch and ends the recursion.
Part II recursively constructs gl number of DCelll−1s. Part
III interconnects these DCelll−1s, where any two DCelll−1s
are connected with one link. Recall that in Figure 1, nodes
[i, j − 1] and [j, i] use a link to fully interconnect DCell0s
inside a DCell1. Similar procedure is used to interconnect
the DCelll−1s in a DCelll as illustrated in Part III of Build-
DCells.

Each server in a DCellk network has k + 1 links (i.e., the
node degree of a server is k+1). The first link, called a level-
0 link, connects to a switch that interconnects DCell0. The
second link, a level-1 link, connects to a node in the same
DCell1 but in a different DCell0. Similarly, the level-i link
connects to a different DCelli−1 within the same DCelli.

3.3 Properties of DCell
The following theorem describes and bounds tk, the num-

ber of servers in a DCellk. Its proof is in Appendix A.

Theorem 1.

tk = gkgk−1 · · · g0t0 = t0

k∏
i=0

gi,

and

(n +
1

2
)
2k

− 1

2
< tk < (n + 1)2

k − 1

for k > 0, where n is the number of servers in a DCell0.

Theorem 1 shows that, the number of servers in a DCell
scales doubly exponentially as the node degree increases. A
small node degree can lead to a large network size. For
example, when k = 3 and n = 6, a DCell can have as many
as 3.26-million servers!

Bisection width denotes the minimal number of links to
be removed to partition a network into two parts of equal
size. A large bisection width implies high network capacity
and a more resilient structure against failures. DCell has
the following lower bound to its bisection width.



Theorem 2. The bisection width of a DCellk is larger
than tk

4 logn tk
for k > 0.

The theorem can be proven by showing the bisection of
DCell is larger than 1

2tklogntk
times of the bisection of its em-

bedding directed complete graph. The proof simply follows
the techniques in Section 1.9 of [12].

4. ROUTING IN A DCELL
Routing in a DCell-based DCN cannot use a global link-

state routing scheme since DCell’s goal is to interconnect up
to millions of servers. The hierarchical OSPF [15] is also
not suitable since it needs a backbone area to interconnect
all the other areas. This creates both bandwidth bottleneck
and single point failure.

In this section, we propose our DCell Fault-tolerant Rout-
ing protocol (DFR), a near-optimal, decentralized routing
solution that effectively exploits the DCell structure and can
effectively handle various failures (due to hardware, soft-
ware, and power problems), which are common in data cen-
ters [3, 8]. We start with a routing scheme without failures
and a broadcast scheme, on which DFR is built.

4.1 Routing without Failure

4.1.1 DCellRouting
DCell uses a simple and efficient single-path routing al-

gorithm for unicast by exploiting the recursive structure of
DCell. The routing algorithm, called DCellRouting, is shown
in Figure 3. The design of DCellRouting follows a divide-
and-conquer approach. Consider two nodes src and dst that
are in the same DCellk but in two different DCellk−1s.
When computing the path from src to dst in a DCellk,
we first calculate the intermediate link (n1, n2) that inter-
connects the two DCellk−1s. Routing is then divided into
how to find the two sub-pathes from src to n1 and from n2

to dst. The final path of DCellRouting is the combination
of the two sub-pathes and (n1, n2).

/* src and dst are denoted using the (k + 1)-tuples

src = [sk, sk−1, · · · , sk−m+1, sk−m, · · · , s0]

dst = [dk, dk−1, · · · , dk−m+1, dk−m, · · · , d0]*/

DCellRouting(src, dst)

pref =GetCommPrefix(src, dst);

m = len(pref);

if (m == k) /*in the same DCell0*/

return (src, dst);

(n1, n2) = GetLink(pref, sk−m, dk−m);

path1 = DCellRouting(src, n1);

path2 = DCellRouting(n2, dst);

return path1 + (n1, n2) + path2;

Figure 3: Pseudocode for routing in a DCellk when
there is no failure.

In Figure 3, GetCommPrefix returns the common prefix
of src and dst and GetLink calculates the link that intercon-
nects the two sub-DCells. The link can be directly derived
from the indices of the two sub-DCells. Let sk−m and dk−m

(sk−m < dk−m) be the indices of the two sub-DCells. Based
on BuildDCells (shown in Fig 2), the link that interconnects
these two sub-DCells is ([sk−m, dk−m − 1], [dk−m, sk−m]).

n k tk Shortest-path DCellRouting
mean stdev mean stdev

4 2 420 4.87 1.27 5.16 1.42
5 2 930 5.22 1.23 5.50 1.33
6 2 1,806 5.48 1.18 5.73 1.25
4 3 176,820 9.96 1.64 11.29 2.05
5 3 865,830 10.74 1.59 11.98 1.91
6 3 3,263,442 11.31 1.55 12.46 1.79

Table 1: The mean value and standard deviation
of path length in shortest-path routing and DCell-
Routing.

The following Theorem 3 gives the upper bound on the
maximum path length of DCellRouting. It can be readily
proved by induction.

Theorem 3. The maximum path length in DCellRouting
is at most 2k+1 − 1.

Theorem 3 shows that the recursion occurs for at most
2k+1 − 1 times. Therefore, DCellRouting can be performed
quickly since a small k (say, k ≤ 3) is sufficient to build large
networks in practice. If we need to know only the next hop
instead of the whole routing path, the time complexity can
be reduced to O(k) instead of O(2k), since we do not need
to calculate the sub-pathes that do not contain the next hop
in this case.

The following theorem gives an upper bound on the di-
ameter of the DCell network, i.e., the maximum path length
among all the shortest-pathes. It can be shown from Theo-
rem 3.

Theorem 4. The diameter of a DCellk network is at
most 2k+1 − 1.

The DCell diameter is small in practice. For k = 3, the
diameter is at most 15. Given the total number of servers
in DCellk as tk. The diameter of a DCellk is less than

2 logntk − 1, since we have tk > n2k

from Theorem 1. One
might conjecture that 2k+1−1 is the exact diameter of DCell.
This, however, is not true. We have two counter-intuitive
facts on DCellRouting and DCell diameter:

• DCellRouting is not a shortest-path routing scheme.
It can be shown by the following example. For a
DCell2 with n = 2 and k = 2, the shortest path be-
tween nodes [0,2,1] and [1,2,1] is ([0,2,1], [6,0,0], [6,0,1],
[1,2,1]) with length 3. The path using DCellRouting
is ([0,2,1], [0,2,0], [1,0,0], [0,0,0], [1,0,0], [1,0,1], [1,2,0],
[1,2,1]) with length 7.

• 2k+1−1 is not a tight bound for the diameter of DCell.
For a DCell with n = 2 and k = 4, the diameter should
be 27 rather than 24+1−1 = 31. However, the diameter
of a DCell is 2k+1 − 1 when k < 4.

Nonetheless, the performance of DCellRouting is quite
close to that of shortest-path routing. Table 1 computes
the average path lengths and the standard deviations un-
der DCellRouting and shortest-path routing for DCells with
different n and k. We observe that the differences are small.
Since DCellRouting is much simpler than shortest-path rout-
ing, we use DCellRouting to build DFR.

4.1.2 Traffic Distribution in DCellRouting
We now show that the traffic is distributed quite evenly

in DCellRouting under the all-to-all communication model.



High bandwidth can be achieved under both many-to-one
and one-to-many communication models. DCell can thus
provide high bandwidth for services such as MapReduce and
GFS.

All-to-all communication model: In this model, all
the nodes in a DCell communicate with all the other nodes.
We have the following theorem, which is proved in Appendix
B.

Theorem 5. Consider an all-to-all communication model
for DCellk where any two servers have one flow between
them. The number of flows carried on a level-i link is less
than tk2k−i when using DCellRouting.

Theorem 5 shows that, links at different levels carry a dif-
ferent number of flows. The bottleneck link, if any, is at
the lowest-level links rather than at the highest-level links.
Since k is small (say, k = 3), the difference among the num-
ber of flows at different levels is bounded by a small constant
(e.g., 23 = 8). Theorem 5 also shows that DCell can well
support MapReduce [5], whose Reduce phase generates an
all-to-all traffic pattern when each Reduce worker fetches
intermediate files from many other servers.

One-to-Many and Many-to-One communication mod-
els: In both cases, a DCell server can utilize its multiple
links to achieve high throughput. This property is useful for
services such as GFS [8], which can utilize multiple links at
a server to accelerate file replication and recovery.

We now introduce how a node selects its destinations to
fully utilize its multiple links. Given a node src, the other
nodes in a DCellk can be classified into groups based on
which link node src uses to reach them. The nodes reached
by the level-i link of src belong to Groupi. The number
of nodes in Groupi, denoted as σi, is given by Theorem 6,
which is proved in Appendix C.

Theorem 6. σi = (
∏k

j=i+1 gj)ti−1 for k > i > 0 and
σk = tk−1.

Theorem 6 implies that, the number of nodes in Group0 is
σ0 = tk −

∑k
i=1 σk. The proof of Theorem 6 also shows how

to compute the set of nodes for each Groupi(0 ≤ i ≤ k).
When src communicates with m other nodes, it can pick
a node from each of Group0, Group1, etc. This way, the
maximum aggregate bandwidth at src is min(m, k+1) when
assuming the bandwidth of each link as one.

When multi-path routing is used, we can show that the
maximum bandwidth between any two nodes in a DCellk
is k + 1. It also shows that DCell provides high network
capacity though we do not use multi-path routing in this
work.

4.2 Broadcast
A straightforward approach to broadcast is not fault tol-

erant: From src to all the other nodes, the approach con-
structs a spanning tree and then propagates broadcast mes-
sages along the tree. The scheme minimizes the number of
forwarding messages, but is vulnerable to failures. When
one intermediate node fails, the sub-tree under that node
will not receive the broadcast message.

To address the above issue, we introduce DCellBroadcast,
a simple yet robust broadcast scheme. In DCellBroadcast,
a sender delivers the broadcast packet to all its k + 1 neigh-
bors when broadcasting a packet in a DCellk. Upon receiv-
ing a broadcast packet, a receiver first checks whether this

packet has been received before. The receiver drops a du-
plicate packet but broadcasts a new packet to its other k
links. DCellBroadcast is fault-tolerant in that a broadcast
packet can reach all the receivers as long as the network is
connected.

In DCellBroadcast, we limit the broadcast scope by en-
coding a scope value k into each broadcast message. The
message is broadcasted only within the DCellk network that
contains the source node. Since the diameter of DCellk is at
most 2k+1 − 1, a broadcast message needs at most 2k+1 − 1
steps to reach all the nodes in DCellk.

4.3 Fault-tolerant Routing
DFR is a distributed, fault-tolerant routing protocol for

DCell networks without global link state. It uses DCell-
Routing and DCellBroadcast as building blocks. DFR han-
dles three types of failures: server failure, rack failure, and
link failure. Rack failure occurs when all the machines in
a rack fail (e.g., due to switch or power outage). Link fail-
ure is a basic one since all the failures result in link failure.
Hence, link failure handling is a basic part of DFR. DFR
uses three techniques of local reroute, local link-state, and
jump-up to address link failure, server failure, and rack fail-
ure, respectively. We now present the three techniques and
then describe DFR.

4.3.1 Local-reroute and Proxy
As shown in Section 4.1, DCellRouting is simple and its

performance is close to the shortest-path routing. This mo-
tivated us to introduce local-reroute to bypass failed links
in DCellRouting. Effectively, local-reroute makes only local
decisions to reroute packets.

Local-reroute is best illustrated by the following example.
Let nodes src and dst be in the same DCellk. We compute
a path from src to dst using DCellRouting. Now assume
an intermediate link (n1, n2) has failed. Local-reroute is
performed at n1 as follows. It first calculates the level of
(n1, n2), denoted by l. Then n1 and n2 are known to be
in the same DCelll but in two different DCelll−1s. Since
there are gl DCelll−1 subnetworks inside this DCelll, it can
always choose a DCelll−1 (e.g., the one nearest to n1 but
different from the one n2 is in). There must exist a link,
denoted as (p1, p2), that connects this DCelll−1 and the
one where n1 resides. Local-reroute then chooses p2 as its
proxy and re-routes packets from n1 to the selected proxy p2.
Upon receiving the packet, p2 simply uses DCellRouting to
route the packet to dst. In DCellRouting, the new and the
original pathes converge when they both reach DCelll or
above.

Local-route is efficient in handling link failures. This is be-
cause most links in a path are low-level links using DCellRouting.
When local re-route is used to bypass a failed level-l link,
the path length increases on average by the average path
length in a DCelll−1. This is because local re-route needs
to route the packet into the proxy DCelll−1 to bypass the
failed link.

Local-reroute is not loop free. But loops can happen only
when there are multiple link failures and the re-routes form
a ring, hence is of very low probability. We discuss how to
remove looped packets from DCell in Section 4.3.3. Local-
reroute alone cannot completely address node failures. This
is because it is purely based on DCell topology and does
not utilize any kind of link or node states. We illustrate



Figure 4: DFR: Fault tolerant routing in DCell.

the problem via an example. Consider from src to dst there
is sub DCellRouting path {(q1, q2), (q2, q3)}. The level of
(q1, q2) is 1 and the level of (q2, q3) is 3. Now q1 finds that
(q1, q2) is down (while actually q2 failed). Then, no matter
how we re-route inside this DCell2, we will be routed back
to the failed node q2! In the extreme case, when the last
hop to dst is broken, the node before dst is trapped in a
dilemma: if dst fails, it should not perform local-reroute; if
it is a link failure, it should perform local-reroute. To solve
the problem faced by pure local-reroute, we next introduce
local link-state.

4.3.2 Local Link-state
With local link-state, we use link-state routing (with Dijk-

stra algorithm) for intra-DCellb routing and DCellRouting
and local reroute for inter-DCellb routing. In a DCellb, each
node uses DCellBroadcast to broadcast the status of all its
(k + 1) links periodically or when it detects link failure. A
node thus knows the status of all the outgoing/incoming
links in its DCellb. b is a small number specifying the size
of DCellb. For example, a DCellb has 42 or 1806 servers
when b is 1 or 2 and n = 6.

Figure 4 illustrates how local link-state routing works to-
gether with local re-route. Use node m2 as an example.
Upon receiving a packet, m2 uses DCellRouting to calculate
the route to the destination node dst. It then obtains the
first link that reaches out its own DCellb (i.e., (n1, n2) in
the figure). m2 then uses intra-DCellb routing, a local link-
state based Dijkstra routing scheme, to decide how to reach
n1. Upon detecting that (n1, n2) is broken, m2 invokes local-
reroute to choose a proxy. It chooses a link (p1, p2) with the
same level as (n1, n2) and sets p2 as the proxy. After that,
m2 routes the packet to p2. When p2 receives the packet,
it routes the packet to dst. Note that we handle the failure
of (n1, n2) successfully, regardless of a link failure or a node
failure at n2.

4.3.3 Jump-up for Rack Failure
We now introduce jump-up to address rack failure. As-

sume the whole DCellb, i2, fails in Figure 4. Then the packet
will be re-routed endlessly around i2, since all the re-routed
paths need to go through r1. The idea of jump-up can also be
illustrated in Figure 4. Upon receiving the rerouted packet
(implying (n1, n2) has failed), p2 checks whether (q1, q2) has
failed or not. If (q1, q2) also fails, it is a good indication that
the whole i2 failed. p2 then chooses a proxy from DCells
with higher level (i.e., it jumps up). Therefore, with jump-
up, the failed DCell i2 can be bypassed. Note that when dst

is in the failed i2, a packet will not be able to reach dst no
matter how we local-reroute or jump-up. To remove packets
from the network, we introduce two mechanisms as our final
defense. First, a retry count is added in the packet header.
It decrements by one when a local-reroute is performed. A
packet is dropped when its retry count reaches zero. Sec-
ond, each packet has a time-to-live (TTL) field, which is
decreased by one at each intermediate node. The packet
is discarded when its TTL reaches zero. When a packet is
dropped, a destination unreachable message is sent back to
the sender so that no more packets to the destination will
be injected.

4.3.4 DFR: DCell Fault-tolerant Routing
Our DFR protocol uses all three techniques for fault-tolerant

routing. The detailed procedure of DFR is shown in Figure
5. Denote the receiver node as self.uid. Upon receiving a
packet, a node first checks whether it is the destination. If
so, it delivers the packet to upper layer and returns (line
1). Otherwise, it checks the proxy field of the packet. If
the proxy value of the packet matches the node, implying
that the packet has arrived at the proxy, we then clear the
proxy field (line 2). Let dcn dst denote our DCellRouting
destination. When the proxy field of the packet is empty,
dcn dst is the destination of the packet; otherwise, it is the
proxy of the packet (lines 3-4). DCellRouting is then used
to compute a path from the current node to dcn dst (line 5),
and to find the first link with level > b from the path (with
FirstLink, line 6). If we cannot find such a link (indicating
that dcn dst and the receiver are in the same DCellb), we
set dij dst, which is the destination to be used in Dijkstra
routing within this DCellb, to dcn dst. Once found, such a
link is denoted as (n1, n2). We know that n1 and n2 are in
two different DCelll−1s but in the same DCelll, where l is
the level of (n1, n2). We then check the status of (n1, n2). If
(n1, n2) failed, we perform local-rerouting; otherwise, we set
dij dst to n2, the last hop in our DijkstraRouting (line 10).
Once dij dst is chosen, we use DijkstraRouting to perform
intra-DCell routing and obtain the next hop. If the next hop
is found, we forward the packet to it and return (line 13).
However, If we cannot find a route to dij dst and the desti-
nation of the packet and the receiver are in the same DCellb,
we drop the packet and return (lines 14-15); otherwise, we
local-reroute the packet.

When we need to reroute a packet, we use SelectProxy
to select a link to replace the failed link (n1, n2). In case
we cannot find a route to n1 inside DCellb, we treat it as
equivalent to (n1, n2) failure. The idea of SelectProxy is
simple. Our preferred choice is to find a link that has the
same level as (n1, n2). When rack failure occurs, we increase
the link level by 1 to ‘jump-up’. Once we determine the level
for proxy selection, we use a greedy algorithm to choose the
proxy. We choose the node that has an alive link with our
preferred level and is the closest one to self.uid. In the ex-
ample of Figure 4, link (p1, p2) is chosen, node p1 is in the
same DCellb with the current receiver m2 and p2 is chosen
as the proxy.

5. INCREMENTAL EXPANSION
It is unlikely that a full DCell-based DCN is constructed

at one time. Servers need to be added into data centers
incrementally. When new machines are added, it is desirable
that existing applications should not be interrupted, thus



DFR(pkt) /*pkt is the received packet*/

1 if (pkt.dst == self.uid) { deliver(pkt); return; }
2 if (self.uid == pkt.proxy) pkt.proxy =NULL;

3 if (pkt.proxy!=NULL) dcn dst = pkt.proxy;

4 else dcn dst = pkt.dst;

5 path = DCellRouting(self.uid, dcn dst);

6 (n1, n2) = FirstLink(path, b);

7 if ((n1, n2) ==NULL) dij dst = dcn dst;

8 else

9 if ((n1, n2) fails) goto local-reroute;

10 else dij dst = n2;

11 next hop = DijkstraRouting(pkt, dij dst);

12 if (next hop!=NULL)

13 forward pkt to next hop and return;

14 else if (self.uid and pkt.dst are in a same DCellb))

15 drop pkt and return;

local-reroute:

16 pkt.retry −−;

17 if (pkt.retry == 0){drop(pkt); return;}
18 pkt.proxy = SelectProxy(uid, (n1, n2)))

19 return DFR(pkt);

Figure 5: Pseudocode for DFR.

requiring that: (1) re-wiring should not be allowed, and (2)
addresses of existing machines should not change. A direct
consequence of these requirements is that, the number of
servers in a DCell0, denoted as n, should be fixed.

A straightforward way to gradually build DCell is the
bottom-up approach. When a DCell0 is full, we start to
build a DCell1. When a DCellk−1 is full, we start to build
a DCellk. This way, neither re-addressing nor re-wiring is
needed when new machines are added. The system grows
incrementally. However, this approach may generate interim
structure that is not fault-tolerant. For example, when the
number of nodes in the system is 2 × ti−1, it will form two
full DCelli−1s connected by a single link. If this link fails,
the network is partitioned into two parts.

In this work, we propose a top-down approach to incre-
mentally build a DCell. When constructing a DCellk, we
start from building many incomplete DCellk−1s and make
them fully connected. Hence, even interim structure is fault
tolerant. In our approach, we require that the minimal quan-
tum of machines added at one time be much larger than one.
In this paper, we use DCell1 as the basic adding unit. This
does not pose any difficulty in reality since servers are added
in racks in data centers. A DCell1 has 20, 30, 42 servers
when n = 4, 5, 6. It can be readily placed into a rack, which
typically has 20-80 servers. We also fix k at the planning
stage of a data center. A choice of k = 3 accommodates
millions of servers.

The AddDCell procedure is shown in Figure 6. It adds
a DCell1 and runs recursively. When adding a new level-1
DCell d1, AddDCell starts from DCellk and recursively finds
the right DCell2 for the new DCell1. The right sub-DCell
for d1 is found via calling sub-routine GetIndex, which sim-
ply checks the number of its DCelll−1. If the number is less
than (t1 + 1), it allocates a new empty DCelll−1. If all the
DCelll−1s are full, a new DCelll−1 is created; Otherwise,
it finds the first none-full DCelll−1. Then d1 is added into
the sub-DCell. After d1 is added, all the nodes in d1 are
connected to their existing neighbors (not shown in Figure
6).

AddDCell(pref , l, d1) /*d1 is the DCell1 to add*/
if (l == 2)
i is the largest index of the existing DCell1s;
assign prefix [pref , i + 1] to d1;
return;

id = GetIndex(pref , l);
AddDCell([pref, id], l− 1, d1);
return;

GetIndex(pref , l){ /*get the DCelll−1 to add d1*/

m = the number of DCelll−1 subnetworks;

if (m < (t1 + 1)) return m;

if (all these m DCelll−1 are full)

return m;

m2 = the smallest index of the non-full DCelll−1s;

return m2;

Figure 6: Add a DCell1 subnetwork into a DCelll
network.

The operations of GetIndex show that, when the first t1+1
of DCell1s are added into a DCellk, t1 + 1 of DCellk−1

subnetworks are created and each contains only one DCell1.
Note that there are only t1 machines in a DCell1. Therefore,
t1 + 1 is the maximum number of DCellk−1s to form a full-
connected graph. Compared with the bottom-up scheme,
this top-down approach generates much more fault-tolerant
interim structures, as it seeks to build complete graph at
each level of DCell. A DCelli forms a complete graph at
level i if all its DCelli−1 are fully connected. The connec-
tivity of our incrementally-built DCell is formalized by The-
orem 7. The proof can be derived from the AddDCell pro-
cedure.

Theorem 7. A DCelli(i > 2) built by AddDCell either
is a complete graph at level i, or becomes a complete graph
at level i after we remove its DCelli−1 subnetwork that has
the largest prefix.

An incrementally expanding DCell is highly fault toler-
ant because of good connectivity. When building a DCellk
(k > 1) using AddDCell, the number of DCellk−1 networks
is at least min(t1 + 1, θ), where θ is the number of added
DCell1s. This result, together with Theorem 7, demon-
strates the good connectivity achieved by AddDCell.

AddDCell also fits naturally with our DFR routing algo-
rithm. When a server cannot forward a packet to a sub-
DCell, it just treats the next link as a failed one (no matter
whether it is due to failure or an incomplete DCell). Using
DCell1 as the adding unit also ensures that the intra-DCell
link-state routing of DFR works well since DCells at levels
1 and 2 are always fully connected.

6. SIMULATIONS
In this section, we use simulations to evaluate the perfor-

mance of DFR under server node, rack, and link failures.
We compare DFR with the Shortest-Path Routing (SPF),
which offers a performance bound. The results are obtained
by averaging over 20 simulation runs.

6.1 DFR in a Full DCell
In our simulation, different types of failures are randomly

generated. A randomly selected node routes packets to all
the other nodes. We study both the path failure ratio and
the average path length for the found paths. In all the sim-
ulations, we set the intra-DCell routing level b = 1 and each



Figure 7: Path failure ration vs. node failure ratio.

DCell1 is a rack. We vary the (node/rack/link) failure ratios
from 2% to 20%. The networks we use are a DCell3 with
n = 4 (176,820 nodes) and a DCell3 with n = 5 (865,830
nodes).

Figure 7 plots the path failure ratio versus the node failure
ratio under node failures. We observe that, DFR achieves
results very close to SPF. Even when the node failure ratio
is as high as 20%, DFR achieves 22.3% path failure ratio for
n = 4 while the bound is 20%. When the node failure ratio
is lower than 10%, DFR performs almost identical to SPF.
Moreover, DFR performs even better as n gets larger.

Since DFR uses local reroute to bypass failed links, one
concern is that local reroute might increase the path length.
Table 2 shows that, the difference in path length between
DFR and SPF increases very slowly as the node failure ra-
tio increases. We also have studied the standard deviations
of the path lengths under DFR and SPF. The standard de-
viation of DFR also increases very slowly as the node failure
increases. When the node failure rate is as high as 20%, the
standard deviation is still less than 5.

We have also studied the effect of rack failure. We ran-
domly select DCell1s and let all the nodes and links in those
DCell1 fail. Table 2 shows that, the impact of rack failure
on the path length is smaller than that of node failure. This
is because when a rack fails, SPF also needs to find alterna-
tive paths from higher-level DCells. Our jump-up strategy
is very close to SPF routing in this case. The path failure
ratio is not shown here since it is very similar to the node
failure case in Figure 7.

Figure 8 plots the path failure ratio under link failures,
which would occur when wiring is broken. We see that the
path failure ratio of DFR increases with the link failure ratio.
However, the path failure ratio of SPF is almost 0. This
is because very few nodes are disconnected from the graph
(indicating the robustness of our DCell structure). However,
DFR cannot achieve such performance since it is not globally
optimal. When the failure ratio is small (say, less than 5%),
the performance of DFR is still very close to SPF. As shown
in Table 2, the average path length under link failure is
similar to that under node failure.

6.2 DFR in a Partial DCell
We have also evaluated DFR when a DCell is incremen-

tally upgraded using our incremental expansion procedure
of Section 5. To this end, we consider a large DCell3 net-
work with n=6 (that supports up to 3.26-million servers).

Figure 8: Path failure ratio vs. link failure ratio.

Failure Node failure Rack failure Link failure
ratio DFR SPF DFR SPF DFR SPF
0.02 11.60 10.00 11.37 10.00 11.72 10.14
0.04 12.00 10.16 11.55 10.01 12.40 10.26
0.08 12.78 10.32 11.74 10.09 13.73 10.55
0.12 13.60 10.50 11.96 10.14 14.97 10.91
0.2 16.05 11.01 12.50 10.32 17.90 11.55

Table 2: Average path lengths for DFR and SPF in
a DCell3 with n = 4.

We show that DFR achieves stable performance with vari-
ous ratio of deployed nodes.

Figure 9 plots the performance of DFR with the ratio
of deployed nodes varying from 10% to 100%. The failure
rate is set to 5% for all three failure models. The results
of SPF are stable at 5% under nodes and rack failures, but
close to 0 under link failures. DFR has its path failure ra-
tios smaller than 0.9% under link failures, and smaller than
6% under node and rack failures, respectively. The result
demonstrates that DCell is fault tolerant even when it is
partially deployed.

7. IMPLEMENTATION
In this section, we design and implement a DCN protocol

suite for DCell. We also report experimental results from an
operational DCell testbed with over twenty server nodes.

7.1 DCN Protocol Suite
The DCN protocol suite serves as a network layer for

DCell-based data centers. It includes DCN addressing, DCN
header format, and protocols for neighborhood and link-
state management. It provides functionalities similar to IP
over the Internet [18].
DCN Addressing: We use a 32-bit uid to identify a server.
The most significant bit (bit-0) is used to identify the address
type. If it is 0, the address is the uid of a server; otherwise,
the address is a multicast address. For a multicast address,
the 1∼3 bits are used to identify the scope of the DCell,
within which the message can propagate. The remaining
28 bits are used to indicate the multicast group. Currently,
only one concrete multicast address is defined: when these
28 bits are all ones, it defines a broadcast address.
DCN Header: Figure 10 shows the format of the DCN
header. The header size is 20 or 24 bytes depending on the
existence of the Proxy DCN Address(see Section 4.3 for de-



Figure 9: Path failure ratios when the
node/rack/linik failure probabilities are 5%.

Figure 10: The DCN protocol header.

tails). The design of the DCN header borrows heavily from
IP, herein we highlight only the fields specific to DCN. Iden-
tification is 32, rather than 16 bits, as in IP. This is because
the link bandwidth in data centers is quite high. A 16-bit
field will incur identification recycles within a very short pe-
riod of time. Retry is a 4-bit field to record the maximum
number of local-reroutes allowed. It decrements by one for
each local-reroute performed. A packet is dropped once its
retry count becomes 0. Our current implementation sets the
initial retry count as 5. Flags is a 4-bit field, and only bit-3
of the flag, PF (Proxy Flag), is currently defined. When PF
is set, the Proxy DCN Address is valid; otherwise, the data
payload starts right after the Destination DCN Address.
Neighbor Maintenance: To detect various failures, we
introduce two mechanisms for neighbor maintenance. First,
a DCN node transmits heart-beat messages over all its out-
bound links periodically (1 second by default). A link is
considered down if no heart-beat message is received before
timeout (5 seconds by default). Second, we use link-layer
medium sensing to detect neighbor states. When a cable
becomes disconnected or re-connected, a notification mes-
sage is generated by the link-layer drivers. Upon receiving
notification, the cache entry at the corresponding neighbor
is updated immediately.
Link-state Management: DFR uses link-state routing in-
side DCellb subnetworks. Therefore, each node needs to
broadcast its link states to all other nodes inside its DCellb.
This is done by using DCellBroadcast (see Section 4.2). A
node performs link-state updates whenever the status of its
outbound neighboring links changes. It also broadcasts its
link states periodically. Links that have not been refreshed
before timeout are considered as down and thus removed
from the link-state cache.

7.2 Layer-2.5 DCN Prototyping
Conceptually, the DCN protocol suite works at layer 3 and

is a network-layer protocol. However, replacing IP with the
DCN layer requires application changes, as almost all cur-
rent network applications are based on TCP/IP. To address
this issue, we implement the DCN suite at an intermediate
layer between IP and the link layer, which we call Layer-2.5
DCN. In DCN, IP address is used for end-host identification
without participating in routing, and current applications
are supported without any modification. In our design, we
choose to have a fixed one-to-one mapping between IP and
DCN addresses. This design choice greatly simplifies the
address resolution between IP and DCN.

We have implemented a software prototype of Layer-2.5
DCN on Windows Server 2003. Our implementation con-
tains more than 13000 lines of C code. The DCN protocol
suite is implemented as a kernel-mode driver, which offers
a virtual Ethernet interface to the IP layer and manages
several underlying physical Ethernet interfaces. In our cur-
rent implementation, operations of routing and packet for-
warding are handled by CPU. A fast forwarding module is
developed to receive packets from all the physical network
ports and decide whether to accept packets locally or for-
ward them to other servers. The forwarding module main-
tains a forwarding table. Upon receiving a packet, we first
check whether its next hop can be found in the forwarding
table. When the next hop of a packet is not in the forwarding
table, DFR routing will be used to calculate the next hop,
which is subsequently cached in the forwarding table. When
any link state changes, the forwarding table is invalidated
and then recalculated by DFR.

7.3 Experimental Results
We have an operational testbed of a DCell1 with over 20

server nodes. This DCell1 is composed of 5 DCell0s, each
of which has 4 servers (see Figure 1 for the topology). Each
server is a DELL 755DT desktop with Intel 2.33GHz dual-
core CPU, 2GB DRAM, and 160GB hard disk. Each server
also installs an Intel PRO/1000 PT Quad Port Ethernet
adapter. The Ethernet switches used to form the DCell0s
are D-Link 8-port Gigabit switches DGS-1008D (with each
costing about $50). Each server uses only two ports of the
quad-port adapter. Twisted-pair lines are used to intercon-
nect the DCN testbed. Two experiments are carried out to
study the fault-tolerance and network capacity of DCell:
Fault-tolerance: In this experiment, we set up a TCP con-
nection between servers [0,0] and [4,3] in the topology of Fig-
ure 1. The path between the two nodes is [0,0], [0,3], [4,0],
[4,3] initially. To study the performance under link failures,
we manually unplugged the link ([0,3], [4,0]) at time 34s
and then re-plugged it in at time 42s. We then shutdown
the server [0,3] at time 104s to assess the impact of node
failures. After both failures, the routing path is changed to
[0,0], [1,0], [1,3], [4,1], [4,3]. And after re-plug event, the
path returns to the original one. The TCP throughput is
plotted in Figure 11. The CPU utilizations are about 40%,
45%, and 40% for sender, receiver, and forwarder, respec-
tively.

We make two observations from the experiment. First,
DCell is resilient to both failures. The TCP throughput is
recovered to the best value after only a few seconds. Sec-
ond, our implementation detects link failures much faster
than node failures, because of using the medium sensing



Figure 11: TCP throughput with node and link fail-
ures.

technique. Figure 11 shows that, the link failure incurs only
1-second throughput degradation, while the node failure in-
curs a 5-second throughput outage that corresponds to our
link-state timeout value.
Network capacity: In this experiment, we compare the ag-
gregate throughput of DCell and that of the tree structure.
The target real-life application scenario is MapReduce [5].
In its Reduce-phase operations, each Reduce worker fetches
data from all the other servers, and it results in an all-to-all
traffic pattern. In our experiment, each server established
a TCP connection to each of the remaining 19 servers, and
each TCP connection sent 5GB data. The 380 TCP con-
nections transmitted 1.9TB data in total. There was no
disk access in this experiment. This is to separate network
performance from that of disk IO. We study the aggregate
throughput under DCell and a two-level tree structure. In
the two-level tree, the switches of the 5 DCell0s were con-
nected to an 8-port Gigabit Ethernet switch.

Figure 12 plots both the aggregate throughput of DCell
and that using the two-level tree. The transmission in DCell
completed at 2270 seconds, but lasted for 4460 seconds in
the tree structure. DCell was about 2 times faster than Tree.
The maximum aggregate throughput in DCell was 9.6Gb/s,
but it was only 3.6Gb/s in the tree structure.

DCell achieves higher throughput than the tree-based scheme.
We observed that, the 20 one-hop TCP connections using
the level-1 link had the highest throughput and completed
first at the time of 350s. All the 380 TCP connections
completed before 2270s. Since we currently use software
for packet forwarding, CPU becomes the major bottleneck
(with 100% CPU usage in this experiment), which prevents
us from realizing all the potential capacity gains of DCell.
In our future implementation when packet forwarding is of-
floaded to hardware, we expect DCell to deliver much higher
peak throughput of about 20Gb/s. Moreover, our current
gain is achieved using a small-scale testbed. The merits
of DCell will be more significant as the number of servers
grows.

One might expect the tree structure to have much higher
throughput than the measured 3.6Gb/s. Each pair of the
servers sharing a single mini-switch should be able to send/receive
at the line speed, and the aggregate throughput should be
close to 20Gb/s in the beginning. However, this is not true.
The top-level switch is the bottleneck and soon gets con-
gested. Due to the link-layer flow control, this will eventu-

Figure 12: Aggregate TCP Throughput under DCell
and Tree.

ally cause queue to build up at each sender’s buffer. All TCP
connections at a server share the same sending buffer on a
network port. Therefore, all TCP connections are slowed
down, including those not traversing the root switch. This
results in much smaller aggregate TCP throughput.

8. RELATED WORK
Interconnection networks have been extensively studied in

parallel computing for two decades (see e.g., [21, 16, 6, 17,
13, 12]). In this section, we compare DCell with several rep-
resentative interconnection structures in the DCN context.
Our comparison does not imply, in any sense, that other
structures are not suitable for their original design scenarios.
Instead, we intend to show that DCell is a better structure
for data centers, which require scaling, fault tolerance, high
network capacity, and incremental expansion.

Table 3 shows the comparison results. We use N to de-
note the number of supported servers. The metrics used
are: (1)Node degree: Small node degree means fewer links,
and fewer links lead to smaller deployment overhead; (2)Net-
work diameter: A small diameter typically results in efficient
routing; (3)Bisection width (BiW): A large value shows good
fault-tolerant property and better network capacity; (4)Bot-
tleneck Degree (BoD): BoD is the maximum number of flows
over a single link under an all-to-all communication model.
A small BoD implies that the network traffic is spread out
over all the links.

FullMesh has the smallest diameter, largest BiW, and
smallest BoD, but its node degree is N − 1. Ring and 2D
Torus use only local links. Ring has the smallest node de-
gree, but a BiW of 2, large diameter and BoD. 2D Torus
[17] uses only local links and has a constant degree of 4.

But it has large diameter (
√

N − 1) and BoD (in proportion

to N
√

N). These three structures are not practical even for
small data centers with hundreds of servers.

In a Tree structure, servers are attached as leaves, and
switches are used to build the hierarchy. When the switches
are of the same degree d, the diameter of the Tree is 2 logd−1N .
But Tree has a bisection width of 1 and the bottleneck de-
gree is in proportion to N2. Fat Tree [6] overcomes the
bottleneck degree problem by introducing more bandwidth
into the switches near the root. Specifically, the aggregated
bandwidth between level-i and level-(i + 1) is the same for
all levels. Due to the problem of large node degree at the



Structure Degree Diameter BiW BoD

FullMesh N − 1 1 N2

4
1

Ring 2 N
2

2 N2

8

2D Torus 4
√

N − 1 2
√

N N
√

N
8

Tree - 2 logd−1N 1 N2( d−1
d2 )

FatTree - 2 log2N N
2

N

Hypercube log2N log2N N
2

N
2

Butterfly+ 4 2l N
l+1

O(Nl)

de Bruijn d logdN 2dN
logdN

O(N logdN)

DCell k + 1 < 2 lognN − 1 N
4 logn N

< N lognN

+For Butterfly, we have N = (l + 1)× 2l.

Table 3: Comparison of different network struc-
tures.

root node, alternatives were proposed to approximate a Fat
Tree using multi-stage networks that are formed by small
switches. In that case, the required number of switches
scales as O(N logN), where N is the number of supported
servers. Hence, the scalability of Fat Tree is not comparable
with that of DCell.

Hypercube [12] is a widely used structure in high-performance
computing. It has large bisection width N

2
and small bot-

tleneck degree (N
2

). The problem of hypercube is that its
node degree is log2N , which is not small when N becomes
large. Hypercube hence does not scale well and is hardly
applicable to large data centers.

Butterfly [12] has a constant node degree of 4. The num-
ber of supported nodes in a Butterfly network is N = (l +
1)2l, where l is the dimensions of Butterfly. The diame-
ter and bottleneck degree of Butterfly are reasonably good,
considering that it has a node degree of four. Butterfly, how-
ever, does not scale as fast as our DCell. Furthermore, it is
not fault-tolerant, since there is only one path between two
nodes.

de Bruijn [14] achieves near-optimal tradeoff between node
degree and network diameter. The number of supported
nodes in a de Bruijn network is N = d∆, where d is the node
degree and ∆ is the diameter. de Bruijn also has reasonably
good bisection width and bottleneck degree. But de Bruijn
is not suitable for data centers for two reasons: (1) de Bruijn
is not incrementally deployable. If we increase ∆ even by
one, the whole network has to be re-wired; (2) the links in de
Bruijn are asymmetric, thus doubling our wire deployment
and maintenance effort.

The structures in Table 3 sample only a small represen-
tative portion of the interconnection networks. There are
other structures such as k-ary, n-cubes [16], star-graph [1],
cube-connected cycles [17]. There are also switch-based in-
terconnects like Autonet, Myrinet, and Server-Net [6] that
support networks with arbitrary topologies. When com-
pared with the existing structures, to the best of our knowl-
edge, DCell is the only one that scales doubly exponentially
and targets the DCN scenario.

In recent years, many P2P structures have been devel-
oped for scalable lookup service, with Chord [23] and CAN
[20] being two representatives. P2P and DCN target differ-
ent networking scenarios. In P2P, nodes use logical links to
interact with each other, a node degree of O(logN) is con-
sidered quite reasonable. But DCN requires a much smaller
node degree since links must be physically deployed. More-

over, DCN needs to increase its physical network capacity
and to allow for incremental expansion. All these factors
lead to a different set of challenges and hence different de-
sign choices.

One deployment problem faced by DCell, as well as other
low-diameter structures (including Hypercube, Butterfly, de
Bruijn), is the wiring problem. Though the degree of DCell
is small (e.g., ≤ 4), the high-level links in a DCell may travel
a relatively long distance. For example, for a DCell with
n = 6 and k = 3, a DCell2 has 1806 machines. The wires
to interconnect the DCell2s may be quite long. At the cur-
rent stage, we can at least use optical fibers for long-haul
interconnections. The latest Ethernet optical transceivers
support connections from 550 meters to 10 kilometers [10].
Another option is to aggregate the spatially adjacent wires
in DCell using multiplexing/demultiplexing technologies like
SDH (Synchronous Digital Hierarchy); this reduces the num-
ber of physical wires.

9. CONCLUSION
In this paper, we have presented the design, analysis, and

implementation of DCell. DCell is a novel network infras-
tructure to interconnect servers. Each server is connected to
a different level of DCells via its multiple links, but all the
servers act equally. High-level DCells are built recursively
from many low-level DCells. DCell uses only mini-switches
to scale out, and it scales doubly exponentially with the
server node degree. Therefore, a DCell with a small server
node degree (say, 4) can support up to several millions of
servers without using core switches/routers.

On top of its interconnection structure, DCell also runs
its fault-tolerant routing protocol DFR. DFR performs dis-
tributed, fault-tolerant routing without using global states
and has performance close to the optimal shortest-path rout-
ing. Moreover, DCell offers much higher network capacity
compared with the tree-based, current practice. Traffic car-
ried by DCell is distributed quite evenly across all links;
there is no severe bottleneck.

The best application scenario for DCell is large data cen-
ters. In recent years, online services supported by data cen-
ters have gained increasing popularity. They include both
end-user applications (e.g., Web search and IM) and dis-
tributed system operations (e.g., MapReduce and GFS).
Given such a trend, data center networking (DCN) is likely
to become an important research area. The ultimate goal
for DCN research is to support various, all-to-all, many-to-
one, one-to-many traffic patterns, all at high speed, in a
scalable and fault-tolerant manner. DCN research thus calls
for renovations in both its physical topology and efficient
protocol designs. The DCell-based solution represents our
effort along this direction.
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APPENDIX
A. Proof of Theorem 1
The first equation can be directly derived from the defi-

nitions of gk and tk. From both definitions, we have

tk = gk × tk−1 = (tk−1 + 1)tk−1 = (tk−1)
2 + tk−1

Therefore, we have

tk = (tk−1 + 1
2
)2 − 1

4
> (tk−1 + 1

2
)2 − 1

2

tk + 1
2

> (tk−1 + 1
2
)2

Similarly, we have

tk = (tk−1)
2 + tk−1 = (tk−1 + 1)2 − tk−1 − 1

< (tk−1 + 1)2 − 1
tk + 1 < (tk−1 + 1)2

Then, we have tk > (n + 1
2
)2

k − 1
2

and tk < (n + 1)2
k − 1,

and conclude the proof of Theorem 1. 2

B. Proof of Theorem 5
The total number of flows in a DCellk is tk(tk − 1). The

number of level-i (0 ≤ i ≤ k) links is tk.
We first consider the level-k links. Note that in a DCellk,

a flow can travel at most one level-k link once. This is be-
cause all the DCellk−1s are one-one connected. When node
n1 in one DCellk−1 to reach node n2 in another DCellk−1,
it needs only to traverse the link that connects these two
DCellk−1s. Since the links are symmetric, the number of
flows carried on all the level-k links should be identical.
Then, the number of flows carried in a level-k link is smaller

than tk(tk−1)
tk

= tk − 1 < tk.

For level-(k − 1) links, note that when a flow traverses
a level-k link, it traverses at most two level-k − 1 links.
The number of flows carried over a level-(k− 1) link is thus
smaller than 2tk.

Similarly, the number of flows that a level-i link carries is
2k−itk. 2

C: Proof of Theorem 6
src uses its level-k link to connect to a DCellk−1. src

uses its level-k link to reach all the nodes in that DCellk−1.
Hence we have σk = tk−1.

For the level-i(k > i > 0) link of src, src uses it to connect
to a DCelli−1. Note that all the nodes in this DCelli−1

need to go through this level-i link of src to reach src. The
number of nodes in this DCelli−1 is ti−1. Each node in
this DCelli−1 can use its level-i + 1 links to connect to a
DCelli. All the nodes in this DCelli also need to go through
the level-i link of src. The number of total nodes is then
ti−1 + ti−1ti = ti−1gi+1. All these nodes then use their i+2
links to connect to a set of DCelli+1 DCells, to expand the
total number of nodes to ti−1gi+1gi+2. Similar procedures
can be sequentially carried out to the level i + 3, i + 4,
· · · , k links. Consequently, we get σi = ti−1

∏k
j=i+1 gj for

k > i > 0. 2


