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Abstract: The physical locations of clients and access points
in a wireless LAN may have a large impact on network perfor-
mance. However, today’s WLAN management tools do not pro-
vide information about the location of clients apart from which
access point they associate with. In this paper, we describe a
scalable and easy-to-deploy WLAN management system that in-
cludes a self-configuring location estimation engine. Our sys-
tem has been in operation on one floor of our building for sev-
eral months. Using our system to observe WLAN usage in our
building, we show that information about client locations is cru-
cial for understanding WLAN performance. Although WLAN
location systems are a widely studied topic, the novel aspects of
our location system primarily relate to ease of deployment. The
main contribution of this paper is to show theutility of office-
granularity locationin performing wireless management tasks.

1 Introduction
Wireless LANs (WLANs) are an important part of today’s
enterprise networks. However, end users typically do not
enjoy the same level of service from WLANs that they
have come to expect from wired networks. Better tools for
managing WLANs are required for improving the reliabil-
ity and the level of service provided by today’s WLANs.

Wireless networks are fundamentally different from
wired networks, in that the behavior of the network is
location-dependent. Due to the nature of wireless signal
propagation, the physical location of both the transmitter
and the receiver may have a large influence on the per-
formance observed by end-users. Specifically, the prob-
ability of frame loss, and the data rate selected for frame
transmission can be impacted by the locations of the trans-
mitter and the receiver.

The need for incorporating location information in
WLAN management tools is also reflected in the common
questions asked by administrators of WLANs: Is the ac-
cess point (AP) placement adequate for serving the loca-
tions from where my network is most actively used? Are
there areas in my network where clients consistently ex-
perience poor performance? How does the distance be-
tween an AP and a client affect client’s performance? Are
there areas that have no coverage at all? With answers to
these questions, network administrators can take concrete
steps to improve the reliability and performance of their
networks.

The WLAN management and monitoring systems
available today can not satisfactorily answer these ques-
tions. The reason is that many of them provide no in-
formation about client’s location at all [26, 12]. Oth-
ers [8, 21, 18] simply approximate the location of the

client with the location of the AP that the client is asso-
ciated with. Our data shows that in our network, 25% of
active clients do not associate with the nearest AP. Conse-
quently, these systems can not accurately characterize the
influence of location on client performance.

We note that there has been a lot of research on accu-
rate location estimation using WLAN technologies [7, 23,
22, 30, 17]. We believe that the primary reason that these
technologies are not integrated with today’s WLAN mon-
itoring systems is that the location estimation techniques
are generally not easy to deploy. Many location systems
require a mapping step whereby an administrator walks
throughout the area being covered by the location system
to create a “profile” of the environment. Moreover, this
profile needs to be updated at regular intervals to ensure
that it reflects the current environment.

We have designed and implemented a WLAN man-
agement system with an integrated, self-configuring in-
door location system. Our location system is accurate to
the granularity of individual offices and requires minimal
manual intervention to setup and operate.

Our system is built upon the DAIR platform described
in [6, 5]. The DAIR platform turns ordinary user desk-
tops into wireless monitors (AirMonitors) by attaching a
wireless USB dongle to each of them. The DAIR archi-
tecture allows us to create a dense deployment of WLAN
monitors in a scalable and cost-effective manner.

The dense deployment of AirMonitors has several ad-
vantages. In most cases, there is at least a single AirMoni-
tor that can hear a majority of the packets flowing between
a given client and its AP in a single direction (another Air-
Monitor may hear most of the packets flowing between
the client and the AP in the other direction). This allows
us to sidestep the complex tasks of trace merging and fine-
grained time synchronization faced by other WLAN mon-
itoring systems [26, 12]. The dense deployment also al-
lows us to use very simple location estimation algorithms,
yet achieve office-level accuracy.

We have deployed this system in our building over the
last six months. Our current deployment consists of 59
AirMonitors, and covers an entire floor. We have been us-
ing it to monitor the WLAN in our building. During this
time, our system was able to answer many of the ques-
tions we posed earlier. For example, we detected that
clients in one corner of our building received consistently
poor performance. We were able to provide a fine-grained
characterization of the workload on our network: we no-
ticed that clients located in people’s offices tend to down-
load more data than clients located in various conference
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Figure 1:The DAIR Architecture.

rooms. We characterized the impact of distance on uplink
and downlink transmission rates as well as loss rates in
our environment. Much to the delight of system admin-
istrators, we also located transmitters that were sending
malformed 802.11 packets. We discovered and reported a
serious misconfiguration shortly after new APs were de-
ployed on our floor. These APs sent downlink traffic at
5.5Mbps, regardless of the location of the client. This
problem has since been fixed.

In summary, the key contributions of our paper are:
• To the best of our knowledge, we are the first to in-
tegrateoffice-levellocation accuracy into a WLAN man-
agement system.

• We show that correlating client locations with a variety
of performance metrics yields new insights into WLAN
behavior.

• We demonstrate the usefulness of our system by using
it to monitor an operational WLAN.

• We show that by using a dense deployment of wireless
sensors, one can significantly simplify the tasks of wire-
less monitoring and location estimation.

2 The DAIR Platform
The design and the architecture of the DAIR system has
been described in detail in [5]. Here, we provide a brief
review of the system architecture.

The DAIR system is designed for easy and inexpensive
deployment in enterprise environments. Existing desktop
machines serve double-duty as WLAN monitors. The IT
department can mandate which desktops perform this ser-
vice, and they can also manage the process of deploying
the DAIR software on these systems.

Figure 1 provides a high-level illustration of the three
major components of the DAIR system: the AirMonitors;
the database server; and the inference engine. We use the
term AirMonitor to refer to ordinary desktop computers
in the enterprise that are equipped with inexpensive USB
802.11 wireless cards and have two components of the
DAIR software installed: (1) the AirMonitor service; and
(2) a custom device driver that works with USB wireless
cards based on the Atheros chipset. The AirMonitor ser-
vice is user-level code that runs as a Windows service,
the equivalent of a daemon on Unix systems. The device
driver customizations allow the wireless card to receive all

802.11 frames, including those destined for other 802.11
stations and those with decoding errors.

The AirMonitor service contains all of the user-level
code for monitoring. It enables packet logging at the
driver level, at which point all frames are delivered to the
service. Within the service, the basic unit of extensibility
is a “filter’: each new application built to use the DAIR
system installs an application-specific filter that runs in-
side the AirMonitor service. Each frame from the driver is
delivered to all running filters. The filter’s primary task is
to analyze the frames, summarize them in an application-
specific manner, and then submit those summaries to the
database server.

The intent is that filters do whatever summarization is
sensible to improve the scalability of the system without
imposing an undue CPU burden on the AirMonitors – we
don’t want to submit every frame that each AirMonitor
overhears to the database, yet we also don’t want the Air-
Monitors to do all of the complex data analysis, which
is the responsibility of the inference engine. While the
precise definition of what constitutes undue burden varies
based on circumstances, parameters such as history of
CPU and memory usage are taken into consideration [14].

We use Microsoft’s SQL Server 2005 as our database
server. We made no custom modifications to the database
server. The DAIR system is designed to scale to handle
very large enterprises. When the number of AirMonitors
in the system exceeds the capacity of a single database
server, one can simply deploy another database server.
However, AirMonitors should be assigned to servers in
a location-aware manner, to limit the number of queries
that must be performed across multiple database servers.

The computationally intensive analysis tasks are all
performed by the inference engines. Inference engines are
stand-alone programs that analyze the data gathered by
the AirMonitors. The inference engines learn about new
events by issuing periodic queries to the database server.

3 Management System Design
In this section, we describe the new infrastructure com-
ponents, beyond the original DAIR platform described in
our previous work, that are utilized by all of our wireless
management applications.

3.1 Location engine
The goal of our location engine is to determine the loca-
tion of any 802.11-compatible transmitter (which includes
WLAN clients such as laptops and hand-held devices) on
our office floor, and to communicate that location to the
rest of the management system. Our design was guided
by the following set of requirements.

First, we require no cooperation from the clients: no
special software or hardware is needed, and the clients
need not communicate directly with the location system.
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Second, the location system should provide “office-level”
accuracy: the error should be within 3 meters, approxi-
mately the size of a typical office. Although other pro-
posed location systems provide greater accuracy, this level
is sufficient for our needs. Third, to ensure easy deploy-
ment, the system must be self-configuring – it cannot
require manual calibration. Finally, the location system
must produce output in a way that is physically meaning-
ful to the network administrators, which precludes having
the system construct its own virtual coordinate space as
Vivaldi does [13].

The basic idea behind our location system is similar to
that of many previous 802.11-based location systems. The
AirMonitors record the signal strengths of frames trans-
mitted by a sender. This information is combined with
the known AirMonitor locations to estimate the location
of the transmitter. The key distinguishing features of our
location system are: 1) by deploying AirMonitors with
high density, we can avoid the manual profiling step re-
quired by previous indoor 802.11 location systems [7, 17];
and 2) we use external sources of information commonly
available in enterprises environments to automatically de-
termine the location of most AirMonitors.

In the remainder of this section, we describe the boot-
strapping method for automatically determining the Air-
Monitor locations, followed by the three simple location
estimation algorithms supported by the location engine.

3.1.1 Determining the AirMonitor Locations

To automatically determine the physical location of the
AirMonitors, we start by determining the number of the
office that each AirMonitor is located in. Because the
DAIR system uses end-user desktops for the AirMonitors,
we can analyze the login history of these machines to de-
termine who the primary user is. In a typical enterprise,
the occupant of an office is generally the primary user for
the machines in that office. We examine the system event-
log for user login and console unlock events, and extract
the user identifier for these events. We ignore remote lo-
gin events and non-console unlock events. We then deter-
mine the primary user by selecting the user with the most
login and unlock events in a given time period. With this
information, we then consult a database of users and of-
fice numbers (our implementation uses the Microsoft Ac-
tive Directory service [27]) to determine the office number
where the machine is likely located.

The final step uses online to-scale building maps, which
are available to us in Visio XML format. The map in-
cludes labels for the office numbers, which are centered
within each office. We parse the XML, determine the
graphical coordinates of each label, and convert these to
the physical coordinates. This procedure gives us an esti-
mate of the center of each office. By combining this infor-
mation with the user-to-office mapping, we can automati-

cally determine the location of most of our AirMonitors.
The details of this procedure are clearly specific to our

particular environment. Although we believe that many
enterprise environments maintain similar types of infor-
mation, the specific applications and data formats may
differ. Also, even in our environment these techniques are
not completely general. For example, this procedure tends
not to work well for machines located in public spaces,
such as conference rooms and lounges, because the login
history on these machine does not tell us much. For such
machines, we still must manually inform the system of the
office number to get the coordinates into our database.

Our assumption that the AirMonitor location is in the
center of each office is another source of error. We do
not try to pinpoint the location of an AirMonitor within
an office because doing so would require significant man-
ual effort. This approximation is appropriate for us be-
cause we only require office-level accuracy. We assume
that the physical location of AirMonitors does not change
often. We determine the location of the AirMonitor when
we first deploy it and re-confirm it only infrequently.

3.1.2 Locating a Transmitter: StrongestAM

During the course of their normal operation, various Air-
Monitors hear the frames sent by the transmitter, which
we identify by the sender MAC address. On a periodic ba-
sis, the AirMonitors submit summaries to the database of
the signal strength of those frames overheard. These sum-
maries contain start and end timestamps, the AirMonitor
identifier, the sender MAC address, the channel on which
the frames were heard, the number of frames sent by this
transmitter, and the total RSSI of those frames.

When the inference engine wants to locate a client, it
provides the start and end time and the sender MAC ad-
dress to the location engine. The location engine com-
putes the average signal strength seen by each AirMon-
itor during the specified time period for that transmitter.
Then, it chooses the AirMonitor that saw the highest av-
erage RSSI (i.e. strongest signal strength) during this pe-
riod and reports this AirMonitor’s location as the location
of the client.

The StrongestAM algorithm is very simple, and is
likely to give inaccurate results in many cases. One rea-
son is that even when a client is stationary, the RSSI seen
by the AirMonitors can fluctuate significantly. Some of
these fluctuations are masked due to averaging over multi-
ple packets. Yet, if two AirMonitors are reporting roughly
equal signal strength, the fluctuations may make it impos-
sible to pick the strongest AM without ambiguity.

However, if the AirMonitor density is high enough,
this simple algorithm might suffice to provide office-level
granularity in most cases. As we will show later, this al-
gorithm works well primarily when the client is located in
an office where we do have an AirMonitor.

3



3.1.3 Locating a Transmitter: Centroid

The next algorithm we implemented, Centroid, is a vari-
ant on the StrongestAM: instead of selecting only the
strongest AirMonitor, we select all AirMonitors whose
average RSSI is within 15% of the average RSSI of the
strongest AirMonitor. We then report the client location
as the centroid of the set of selected AirMonitors. If there
are no AMs within 15% of the strongest AM, the location
is just reported to be that of the strongest AM.

This algorithm has several attractive features, espe-
cially in our deployment, where we have an AirMonitor
in about half of the offices on our floor. When the trans-
mitter is in the same office with an AM, it is generally
the case that this AM sees significantly higher RSSI val-
ues, compared to all other AMs. As a result, the office is
correctly picked as the location of the transmitter, with-
out any adjustment. Also, the accuracy of this algorithm
is not affected by the moderate adjustments in transmit
power that are seen when clients use transmit power con-
trol. If a packet is sent at a lower power level, all the AMs
will see a proportional decrease in the observed RSSI.

In addition, the Centroid algorithm is unaffected by
small fluctuations in the RSSI that various AirMonitors
report. The threshold implies that the set of AMs that
we compute the centroid over does not change with small
fluctuations in reported signal strength.

The Centroid algorithm does have one drawback. If the
set of AirMonitors we compute the centroid over are all
on one side of the actual client location, we could see a
significant error. As it turns out, this is not a significant
problem in our deployment but it certainly could be in
other environments. We discuss the issue more in Sec-
tion 5. To address this problem, we developed a third al-
gorithm which we discuss next.

3.1.4 Locating a Transmitter: Spring-and-ball

The previous two algorithms do not explicitly take into
account the radio propagation characteristics of the local
environment. Our third algorithm, Spring-and-ball (in-
spired by Vivaldi [13]), addresses this problem by using
“profiles” of the area in which the WLAN is deployed.

A profile is an approximate, compact representation of
how the signal strength degrades with distance in the lo-
cal environment. To generate a profile, each AirMonitor
broadcasts special probe packets at regular intervals, that
contain the identity of the transmitting AirMonitor. The
other AirMonitors record these probe packets and report
the average signal strength of packets heard from each
AirMonitor to the central database. Using the known dis-
tance between two AirMonitors and the observed average
RSSI between those AirMonitors, the inference engine fits
a set of simple curves to the combined observation data,
and picks the best fit as the profile of the environment.
The resulting profile is labeled with the channel on which
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Figure 2:Sample profile data and two fitted curves. The
equation of the exponential curve is:RSSI = 47.72 ∗
e−0.096∗Dist, while the equation of the power-law curve
is RSSI = 215.73 ∗ Dist−1.445.

the probe packets were sent and stored in the database.
We currently consider linear, exponential, logarithmic,

and power law curves. Each of these curves can be fit-
ted using variants of the least-squares fitting method. We
do not filter the raw data in any way; all points are con-
sidered while determining the fit. The goodness of fit is
determined by theR2 (correlation coefficient) value. An
example is shown in Figure 2.

When the location engine is asked to locate a client, it
computes the average signal strength that each AirMoni-
tor observed. It then calculates the initial estimate of the
location using the Centroid algorithm. The estimate is the
refined using a Spring-and-ball algorithm as follows.

We select the most recent profile that matches the fre-
quency band of the channel on which the packets were
heard. Using the profile, we calculate the signal strength
that each AirMonitorshouldhave seen had the transmit-
ter been at the estimated location1. We then consider the
difference between the calculated signal strength and the
signal strength that the AirMonitor actually observed.

The absolute value of the difference corresponds to the
magnitude of the force on the ”spring” that connects the
transmitter to the AirMonitor. The sign of the difference
indicates whether the spring is compressed or stretched.
The direction of the force is along the line connecting the
AirMonitor location to the estimated transmitter location.

We then move the estimated location of the transmit-
ter a short distance in the direction of the cumulative
force2. This reduces the magnitude of the error by a small
amount. This is the new estimated location of the client.
We recalculate the forces at this new location, and repeat
the process until one of the following is true: (i) 5000 it-
erations have elapsed, (ii) the magnitude of the error falls
below 0.1, or (iii) the force at the new location exceeds by
10% the minimum force seen so far.

1If the calculated signal strength value is less than 0, it is assumed to
be 0. Similarly, if the calculated signal strength value exceeds 100, it is
assumed to be 100.

2If either the X or the Y co-ordinate of the location falls outside the
boundary of the floor, it is adjusted to be within the boundary.
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The Spring-and-ball algorithm will converge to a global
minimum only when the magnitude of the force is linearly
proportional to the distance [13]. This is not true in our
setting, since the drop in signal strengths is not linearly
proportional to the distance. However, we have found that
the algorithm works well in practice.

This algorithm overcomes the key limitation of the
Centroid algorithm. If all the AirMonitors that hear a
particular client are on one side, the Centroid algorithm
would pull the client to be in midst of those AirMonitors.
The Spring-and-ball algorithm will realize that the signal
strengths reported by the AMs are too low to be coming
from the central location, and will push the client to the
correct side.

The key challenge in implementing the Spring-and-ball
algorithm is the generation of profiles. Questions that
arise include: How often should profiles be generated (i.e.
do time-of-day effects create significant errors)? What
type of curve should we use to fit the data? We have car-
ried out extensive experimental sensitivity analysis of the
Spring-and-ball algorithm. We have found that the time
of day effects do not significantly impact the accuracy. In
fact, we only generate new profiles when we add new Air-
Monitors to the system. We have also found that either
a log or power curve provides a good fit to the observed
data. We do not describe the results of our study further,
because we want to focus our results on theuseof the
location system for management applications.

Some of the previous WLAN location estimation sys-
tems proposed in the literature are more accurate than our
system. Our goal, however, was to design a location sys-
tem that provided office-level accuracy, and that met our
rather stringent requirements for ease of deployment.

3.2 AP Tracking

The corporate APs in our building are controlled by a
central server [3], which dynamically reconfigures which
channels the APs operate on. The frequency of change
depends on a variety of factors, including traffic load.
We have observed some of our APs changing channels
as many as six times in a 12 hour period. As a result of
this dynamic channel assignment, we can not assign our
AirMonitors to listen to fixed channels. Instead, each Air-
Monitor is assigned to track the nearest AP – this config-
uration is shown in Figure 3.

The AirMonitor implements AP tracking by continu-
ously looking for beacons sent by the assigned AP. If no
beacons are observed during a 10-second period, the Air-
Monitor goes into scanning mode, where it listens for bea-
cons for 150 ms on each of the 11 channels in the 2.4 GHz
band, until the assigned AP is heard from again. If scan-
ning fails to find the assigned AP within two minutes, it
goes back to the previous channel where it heard the AP,
on the assumption that the AP may have failed. Every 30

minutes, it re-enters scanning mode and looks for the AP
on the other channels. While in scanning mode, packet
delivery to all the filters is suspended.

3.3 Address Matching

The frame format of the 802.11 standard is not fully self-
describing. One example of this is that there are two types
of 802.11 frames, namely the CTS (clear-to-send) and
ACK (acknowledgment) frames, that do not contain the
MAC address of the device that transmits those frames.
This means that for devices using promiscuous mode to
passively listen to 802.11 conversations, they cannot di-
rectly determine who sent those packets. Fortunately, if
the passive listener is capable of overhearing both direc-
tions of the conversation, then it is possible to infer the
address of the transmitter of such frames.

One component of the AirMonitor service is responsi-
ble for inferring and then filling in both the transmitter and
BSSID fields for both CTS and ACK frames. This infor-
mation is filled in before the frame is handed off to any
other filters that are running on the AirMonitor, and there-
fore these filters can simply assume that this information
is available whenever matching was possible.

The strategies we use to infer the transmitter are dif-
ferent for ACK frames than for CTS frames. To deter-
mine the transmitter of an ACK frame, we need to ana-
lyze packets that arrive back-to-back. If the first frame
type is a Data or Management frame, then we remember
the value of the Duration header for that frame. When the
next frame arrives, we determine if it is an ACK frame that
has arrived within the time period allocated by the previ-
ous frame. If so, then we know that the receiver of the first
frame must be the transmitter of the ACK frame. Further-
more, we use the ToDS and FromDS bits in the header
of the previous frame to determine the correct BSSID to
attribute to this ACK frame.

To infer the transmitter for CTS frames, we consid-
ered using a similar strategy where the previous frame
should be an RTS frame. However, in our network the
vast majority (more than 99%) of CTS frames are “CTS-
to-self” frames that are used for 802.11g-mode protection.
In other words, there is no previous RTS frame to match
with. Fortunately, the convention for these g-mode protec-
tion frames is that the Duration of the CTS frame covers
the time period when the actual data frame will be sent,
and the receiver address in the CTS frame should match
the transmitter address of the following frame.

There is additional complexity in our system for match-
ing packets where the Duration header is empty, as is the
case for Data Null frames. Due to space constraints, we
provide these details in [11].
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3.4 Time Synchronization

The AirMonitors timestamp the data they submit to the
central database using their own local clock. We shall see
in Sections 4.1 and 4.2 that the inference engine some-
times needs to correlate the data submitted by various Air-
Monitors. Hence, we need to synchronize the AirMonitor
clocks. However, unlike [26, 12] we do not need to cor-
relate data at packet level granularity. As a result, time
synchronization provided by NTP [28] is sufficient for our
purposes.

4 Management Applications
In this section we explore three location-aware WLAN
management applications that our location engine en-
ables. The Client Performance Tracker application moni-
tors the data transfers between clients and APs, and corre-
lates client location with a variety of performance statis-
tics. The Connectivity Tracker monitors the association
behavior of clients, and correlates connectivity problems
with client location. Finally, the Bad Frame Tracker de-
tects and locates transmitters which send invalid 802.11
frames.

We implement each of these applications with two com-
ponents: a filter that runs on each AirMonitor and sum-
marizes the overheard frames into the relevant data for
that application, and an inference engine which queries
the central database to analyze the summarized data.

4.1 The Client Performance Tracker

The goal of the client performance tracker application is to
provide insight for the network administrator into where
the clients are using the wireless LAN, and to provide ag-
gregate statistics about the nature of their usage and the
quality of service they obtain. With information about
client locations, this allows the administrator to look at the
relationship between a variety of performance metrics and
location. There are many different interesting questions
one can answer with this application. For example: do ac-
tive clients typically associate with the nearest AP? What
is the relationship between distance from the client to the
AP and the observed loss rates? How is transmission-rate
selection affected by the distance from the client to the
AP? Where are the most heavily utilized locations in ser-
vice area? Do the APs do a good job of covering those
locations?
The Client Performance Filter: The client performance
filter submits data summaries to the database using a ran-
domized interval between 30 and 60 seconds. The ran-
domization is used to avoid having all the clients submit
in a synchronized manner, thus making the load on the
database server more uniform.

For each (transmitter, receiver) pair, the client perfor-
mance filter maintains a large set of aggregate counters.

Counter Description
TotalCount Total number of frames.
TotalBytes Total number of bytes in all frames.
DataCount Total number of Data frames, excluding Data

Null frames.
DataBytes Total number of bytes in Data frames, excluding

Data Null frames.
DataNullCount Total number of Data Null frames.
DataNullBytes Total number of bytes in Data Null frames.
MgmtCount Total number of Management frames.
MgmtBytes Total number of bytes in Management frames.
CtrlCount Total number of Control frames.
CtrlBytes Total number of bytes in Control frames.
RetryCount Total number of frames where the Retry bit is set.
RetryBytes Total number of bytes in Retry frames.

Table 1:Aggregate counters maintained by the client per-
formance filter on a per (transmitter, receiver) pair basis.

A complete list of these counters is shown in Figure 4.1.
Note that for these counters, address matching has already
occurred (see Section 3.3), so the counters include frames
for which the transmitter address was inferred. For those
frames where the transmitter could not be inferred, the
counters will not be incremented. We will see shortly how
the inference engine of the client performance tracker at-
tempts to compensate for this.

In addition to the basic usage statistics, the filter col-
lects two additional kinds of information to allow anal-
ysis of clients’ auto-rate and packet loss behavior. For
auto-rate analysis the filter collects two histograms: one
of the number of packets transmitted at each of the possi-
ble rates, and another of the number of bytes transmitted
at each of the rates.

Understanding the packet loss behavior requires the fil-
ter to perform a significant amount of online analysis,
which we now summarize. The complete details of our
loss estimation algorithm can be found in [11]. The tech-
niques we use to analyze uplink (client to AP) and down-
link (AP to client) traffic differ. For downlink traffic, we
use an approach very similar to the “nitWit” component of
the Wit system [26] to infer certain packets were transmit-
ted even though our AirMonitors did not directly observe
them. For example, when we see a data frame with a se-
quence number that we have not seen before, and the retry
bit is set on that data frame, then we know that an initial
data frame with that same sequence number was transmit-
ted, even though our AirMonitor did not observe it. Addi-
tional information is provided by ACKs that travel in the
reverse direction, and the address matching code allows us
to correctly attribute the transmitter of these ACKs. Our
analysis provides us with twoestimatedvalues: an esti-
mate of the combined number of management and data
frames transmitted, as well as an estimate of the loss rate.

For the uplink traffic, in addition we also analyze gaps
in the sequence number space to infer more about the
number of frames transmitted, as was suggested as fu-
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ture work in the Wit paper. Because stations operating
in infrastructure-mode only communicate with one ac-
cess point at a time, we can analyze gaps in the sequence
number space to further infer traffic that our monitor has
missed. This has to be done carefully, however. Clients
periodically perform scanning: they change channels to
search for other nearby access points. Fortunately, most
clients send a Data Null frame to the AP with the power-
save bit set just before switching channels, so that the AP
will buffer any incoming data, and they send another Data
Null with power-save bit cleared when they return from
scanning. By analyzing these Data Nulls, we avoid at-
tributing these gaps as communication between the station
and AP that was missed by our AirMonitor.

One additional issue arises with analyzing sequence
number gaps: suppose that during a single summarization
period, a client begins by communicating with AP1, then
switches to AP2, and later switches back to AP1. The Air-
Monitor may not see any of the communication with AP2
because it may take place on a different channel. To deal
with this situation, we take a conservative approach: we
discard the inferred counters for any row where this “AP
flipping” behavior is detected, and we use the inference
engine to detect this situation after the fact, by analyzing
the client association data summarized by the Connectiv-
ity Tracker.
The Client Performance Inference Engine: As de-
scribed above, we may have many different AirMoni-
tors observing and analyzing the same communication be-
tween a transmitter and a receiver, and many of the Air-
Monitors will be performing their analysis based on in-
complete views of this communication. Therefore, the
key job of the inference engine is to select, during a partic-
ular time interval, the two AirMonitors that were best able
to overhear each direction of the communication. In other
words, we select the best AirMonitor for the uplink, and
the best AirMonitor for the downlink, and these may or
may not end up being the same AirMonitor. Typically, the
Inference engine ends up selecting one of the AirMonitors
that is physically close to the transmitter.

We analyze each direction of the communication sepa-
rately, but in order for our loss estimates to be accurate,
the AirMonitor analyzing frames flowing in one direction
still needs to be able to overhear the corresponding ACK
frames flowing in the opposite direction. Fortunately, we
never see ACKs transmitted at rates higher than 24 Mbps,
which means that it is typically much easier for AirMoni-
tors to overhear them than it is to overhear high data-rate
frames such as those sent at 48 or 54 Mbps. To decide
which AirMonitors to select during a given time interval,
we simply use packet counts to figure out which AirMon-
itor was best able to overhear the particular conversation.

Using the AirMonitor selection metric of most pack-
ets overheard is potentially in conflict with the random-

ized data submission strategy used by the client perfor-
mance filter. In other words, we don’t want to always
end up being biased toward choosing the AirMonitor that
submitted data most recently. To avoid this problem, the
inference engine must analyze the data over a timescale
that is significantly longer than the data submission inter-
val. We typically use a 15 minute analysis interval for
the inference engine, versus a 30 to 60 second submission
interval for the filters. The impact of this design choice
is that the Client Performance Tracker application can-
not provide instantaneous information about performance
problems to the network administrator, it can only provide
summaries about moderately recent activity.

In Section 5.2, we demonstrate the utility of the Client
Performance Tracker by using it to analyze the operational
wireless LAN in our building, and by showing the results
for our network to many of the questions raised at the be-
ginning of this section.

4.2 The Connectivity Tracker

An 802.11 client goes through a sequence of steps before
it can connect to an AP. First, it first sends probes to dis-
cover nearby APs, then it authenticates to a selected AP,
and finally it associates to that AP. Each of these steps in-
volves a client request frame followed by an AP response
frame. Once the client has associated, it can exchange
data with the AP.

The connectivity tracker monitors and summarizes this
association process for all clients while tracking their lo-
cations. Analyzing this data helps a network administra-
tor answer a number of key management questions, such
as: How many clients in a particular region were able to
connect to the WLAN, and for how long? Are there any
regions with no RF coverage (i.e., RF holes)? Is connec-
tion duration correlated with location (e.g., people in con-
ference rooms may have short lived connections, while
those from offices may be long lived)? Are there specific
regions where clients rapidly switch back and forth be-
tween APs? Understanding the location of clients is cru-
cial to answering these questions. Also, note that existing
AP-based wireless management systems may never even
learn of the existence of those clients in an RF hole.

The Connectivity Filter: This filter records the se-
quence of association steps executed by each client. This
information is recorded in local memory as the Connec-
tivity table, and this table is periodically flushed to the
central database.

The connectivity table records this information as a se-
quence of association states, which are tuples containing
(client, Bssid, state, NumFrames, NumAcked)along with
a start and end timestamp. The current association state
for each client represents the last non-probe management
packet that was exchanged between the client and the AP
with the corresponding BSSID. The filter checks every in-
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coming packet to see if it changes the current association
state of the client, and if so, the filter generates a new row
in the Connectivity table.

Note that certain events may appear in different se-
quences than the one described above. For example,
clients may perform an active scan which involves send-
ing and receiving probes even while maintaining their cur-
rent association with an AP. Similarly, clients may per-
form pre-authentication with another AP while associ-
ated [19].

The above table only contains information about clients
that send or receive at least one packet. It does not have
any information about idle clients, or clients that are dis-
connected and have given up trying to associate to any
AP. The latter situation is particularly interesting, and may
arise when clients are in an RF hole. To address this, the
connectivity filter periodically sends out beacons pretend-
ing to be a valid AP, in an attempt to induce any clients
in an RF hole to initiate the association process. We
mark these special beacons using an Information Element
(IE) so that the other AirMonitor filters can ignore these
frames, but real clients will not.

The Connectivity Inference Engine: The inference
engine queries the central database and aggregates all the
information submitted by the connectivity filters on the
AirMonitors. This complete view of all association events
seen by our system is then sorted by timestamp. We then
take advantage of the time synchronization across Air-
Monitors to coalesce the same event seen by multiple Air-
Monitors. This step is similar to trace merging [26, 12],
but at a coarser granularity. Finally, we perform a post-
processing sanity check over the coalesced sequence of
events using our knowledge of the 802.11 association pro-
cedure, similar in spirit to the analysis that WIT does for
data transfers.

We use this final sequence of events to do detailed anal-
ysis of client connectivity from various locations. We are
able to characterize RF Holes even when communication
is possible in only one direction. We can also infer the
duration of client associations to an AP, and we can detect
regions where clients cannot maintain stable associations,
and therefore switch rapidly between APs.

4.3 The Bad Frame Tracker
One common problem facing the administrators of large
corporate WLAN networks is to locate non-compliant
transmitters. A transmitter may send non-compliant
802.11 frames for many reasons, such as errors in hard-
ware and/or driver software bugs. We see several exam-
ples of such malformed frames in our network. Although
it is rare, such malformed frames may cause problems for
certain receivers. Locating the source of such frames can
be helpful in debugging the underlying problem.

We have built a Bad Frame filter that logs only the non-

compliant 802.11 frames. Unlike other filters which sum-
marize the data, the Bad Frame filter simply submits the
raw contents of bad frames to the database, as long as the
frame checksum is correct. The corresponding inference
engine attempts to localize these packets, and generates
reports for our system administrators.

As one example, on our network we observed ap-
proximately 10 to 20 frames per day, heard by multiple
AirMonitors, that all followed the same pattern. These
frames carried a valid Frame Type (Control), but an in-
valid SubType. The FromDS and ToDS bits in the frame
header were both set to 1, which is disallowed by the
802.11 standard. At first glance, the frame payload of-
fered few clues about their origin. Using our location en-
gine we were able to calculate an estimated location for
each frame, and we found that the estimated locations
were always near two of the six APs on our floor. On
closer inspection of the frame payloads, we realized that
a set of 8 bytes in the frame was a nibble-wise rearrange-
ment of the MAC address of the AP near the estimated
location. We contacted our IT administrators with this in-
formation, and the AP vendor is currently investigating
this problem.

This example illustrates that our location engine is able
to accurately calculate estimated locations with just a few
samples. Without the location information, we would
have been unlikely to realize that our APs were the ori-
gin of these malformed frames.

5 Experimental Results
Our system is deployed on one floor of a fairly typical
office building. Our building has rooms with floor-to-
ceiling walls and solid wood doors. There is a corporate
wireless LAN with six 802.11 a/b/g access points operat-
ing on our floor. The six corporate APs offer service in
both the 2.4GHz and the 5Ghz band. There is little traffic
on the 5GHz band in our building, so for the purpose of
this paper we only monitored the 2.4GHz band. Our cur-
rent DAIR system deployment consists of 59 AirMonitors
as shown in Figure 3, and a single database server. The
AirMonitors testbed consists of various types of desktop
PCs. Each AirMonitor is equipped with either a Netgear
WG111U or a Dlink DWL-AG132 USB wireless dongle.

5.1 System Validation
We validate our system design in three ways. First, we
show that our monitoring software and hardware, together
with our channel assignment is capable of observing most
packets. We also show that the strategy used by the Client
Performance Tracker of selecting the best AirMonitor to
overhear a particular conversation between a client and
an AP does not result in excessive loss of information.
Second, we evaluate the accuracy of our location system.
Finally, we validate the efficacy of RF hole detection.
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Figure 3:Floor map. The floor is 98 meters long and 32 meters wide. Numbered circles denote the locations of the six
corporate APs. Smaller circles mark the center of rooms containing our AirMonitors. The pattern of an AirMonitor
circle’s shading matches that of the AP it is configured to track. The shaded rooms are the 21 locations where a client
was temporarily placed during the validation experiment.

5.1.1 Frame Capture Validation

To validate our strategy for capturing frames, we need to
show that we can successfully capture most of the traf-
fic between clients located on our floor and the corpo-
rate APs that they use. In particular, we must show that
at least one AirMonitor is able to hear most of the data
packets sent in the uplink direction, and at least one Air-
Monitor is able to hear most of the data packets sent in
the downlink direction. These AirMonitors need not be
the same, since the Client Performance Tracker selects the
best AirMonitor separately for uplink and downlink traf-
fic. In our validation experiments, we focus on data pack-
ets, because management packets (e.g. beacons, probe re-
quests/response) and control packets (ACKs, RTS, CTS)
are generally smaller than data packets, and are sent at
lower data rates compared to the data packets. Therefore,
it is generally easier to overhear these packets.

To carry out the validation, we began by selecting 21 lo-
cations on our floor. We chose one location in the public
lounge on our floor, which does not have an AirMonitor
in it. We chose ten office locations at random from among
the set of offices thathavean AirMonitor in them, and
we chose ten more at random from the set of offices that
did not havean AirMonitor in them. Our tests were con-
ducted in the evening to allow us to enter offices without
disturbing the occupants.

The experiment we performed at each location is as fol-
lows. We placed a laptop equipped with an 802.11g card
in the location, and we performed a 2 MB TCP upload
and a 2 MB TCP download over the corporate wireless
network. The other end of the TCP connection was a
server attached to the corporate wired network. We ob-
served that the vast majority of data packets sent on the
air in both directions were sent at the 54 Mbps rate. Note
that in each location, the client associated with whichever
AP it deemed best; we made no attempt to control this
selection. We collected packet traces on both client and

the server, to establish the ground truth: the number of IP
packets sent by the client and the server. These packets
appear as 802.11 Data frames on the air.

For the duration of the test, all the AirMonitors ran with
AP tracking enabled, and they also ran a special debug-
ging filter that logs every 802.11 frame it overhears into
a local file. We post-processed the AirMonitor 802.11
frame logs to count the number of data frames overheard
by each AirMonitor that belonged to our TCP transfers
and that did not have the retry bit set, and selected the
AirMonitor with the largest frame count. The reason we
focused only on frames that did not have the retry bit set
is because it is very difficult to know exactly how many
retry frames are sent on the air. It may have been possible
for us to instrument the client device driver to count the
number of retry frames sent, but it was not possible for us
to instrument the APs to count retries. On the other hand,
using packet traces on the client and server machines al-
lows us to precisely count the number of frames that are
sent without the retry bit set.

For each transfer, we calculate the percentage of missed
packets by: comparing the frame count from the best up-
link AirMonitor with the packet count from the client
packet trace; and comparing the frame count from the
best downlink AirMonitor with the packet count from the
server packet trace. The results of these experiments are
shown in Table 2 for all 21 locations. This data shows
that the highest percentage of missed packets for any up-
link transfer was only 7%, and the highest percentage of
missed packets for any downlink transfer was only 3.5%.
Previous work has shown [26] that one needs only an 80%
capture rate to fully reconstruct the traffic pattern.

Given that our system experiences such low packet loss
rate even for short bursts of very high data-rate traffic, we
believe that in normal operation, we lose very little traffic
from the clients that are located on our floor. The robust-
ness of our deployment, due to the density of AirMoni-
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Uplink Downlink
Office Frames # of AMs that Frames # of AMs that

missed saw> 90% missed saw> 90%
(%) frames (%) frames

1 2.7 4 1.4 4
2 0.8 1 0.6 5
3 5.6 1 0.6 4
4 3.3 3 3.5 4
5 3.8 4 2.2 4
6 1.3 3 2.6 3
7 1.8 3 2.2 3
8 3.9 4 0.7 14
9 6.4 8 0.3 16
10 1.9 1 1.4 5

11 2.0 3 1.9 5
12 1.5 5 0.8 4
13 1.8 1 1.4 3
14 3.8 2 1.4 5
15 1.8 3 1.3 2
16 4.6 2 3.1 4
17 1.5 4 1.4 3
18 7.0 3 3.4 9
19 5.9 3 2.3 14
20 1.8 3 0.4 4

Lounge 5.2 2 2.0 4

Table 2:Baseline Data Frame Loss Results. The first 10
offices have AirMonitors in them, the next 10 offices do
not. The lounge does not have an AirMonitor.

Offices With AM Offices Without AM
Algorithm Min Med Max Min Med Max

Strongest AM 0 0 6.5 2.9 3.5 10.4
Centroid 0 0 3.2 0.2 2.5 5.9

Spring and ball 0 0 3 0.9 1.9 6.1

Table 3:Comparison of three location algorithms. Num-
bers report error in meters.

tors, is evident from the fact that for most locations multi-
ple AirMonitors can see more than 90% of the uplink and
downlink frames. There were 4 locations where only 1
AirMonitor captured more than 90% of the frames sent in
uplink direction. All these locations are at the south end
of our floor, where the AirMonitor density is less than at
the north end.

5.1.2 Accuracy of the Location Engine

In this section, we evaluate the accuracy in our deploy-
ment of the three simple location estimation algorithms
described in Section 3.1. To perform this validation, we
use the same data collected for the frame capture valida-
tion experiment. Along with the debugging filter that logs
every 802.11 frame, the AirMonitors also ran another fil-
ter that kept track of the average RSSI of the packets sent
by the client during the experiment. At the end of the ex-
periment the AirMonitors submitted these average RSSI
values to the database. Note that for each client location,
only a subset of the AirMonitors hear packets sent by the
client. The number of AirMonitors that hear at least one
packet depends on a number of factors including the lo-

cation of the client and which AP the client chooses to
associate with.

Note that for this experiment, the AirMonitors record
the RSSI of any packet they can attribute as sent by the
client. For example, before starting the data transfer, the
client may perform an active scan to select an AP by send-
ing probe requests on various channels. If an AirMonitor
overhears any of these probe requests, it will include them
in its RSSI calculations.

We submit these RSSI values to the location engine to
produce an estimate of the client location using each of the
three local algorithms. For the spring-and-ball algorithm,
we need to use a profile. This profile was generated on a
normal weekday between 2 to 3 PM, three days before the
location experiment was conducted.

To calculate the location error, we need to calculate
the distance between the estimated location and the actual
client location, which means that we need to know the ac-
tual client location. When we conducted the experiment,
we usually placed the laptop on the occupant’s office desk.
Because there is no easy way for us to determine this ac-
tual location, we simply assume that the client was placed
at the center of each office. We call this the “assumed
actual” (AA) location of the client. This assumption is
consistent with the assumption we made during the boot-
strapping process when we automatically determined the
AirMonitor locations. Because our target for the location
system is only office-level accuracy, this assumption is ad-
equate for our purposes.

Table 3 lists the summary of the results of this experi-
ment. Our criteria for “office-level” accuracy is less than
3 meters, since our offices are roughly 10 ft by 10 ft. We
see that the StrongestAM algorithm works well only for
those offices which contain an AirMonitor, which is as
expected. When there is no AirMonitor at the location,
the strongest AM is usually in one of the neighboring of-
fices, and we will estimate the client location to be in the
center of that office. As a result, the minimum error will
be roughly equal to the size of one office, which is what
we see from these results. In a few cases, we even see that
the StrongestAM algorithm reports a non-zero error when
there is an AM in the same location as the client – this
happens when an AM in another room reports a higher
signal strength.

We also see that the Centroid algorithm performs quite
well, and provides office-level accuracy in most cases. We
also see that the performance of the Centroid and Spring-
and-ball algorithms is generally similar, as one would ex-
pect from our deployment. The Centroid algorithm will
only generate a large error if the AirMonitors that hear
packets from the client at high signal strength are all on
one side of the actual client location, and this rarely hap-
pens in our deployment, for a couple of reasons. First,
clients tend to associate with APs that are near their lo-
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cation, and because each AirMonitor tracks the AP it is
closest to, clients are generally surrounded by AirMoni-
tors that are all listening on the same channel the client
is transmitting on. In addition, most clients tend to rou-
tinely scan on all channels, sending probe requests to dis-
cover nearby APs. These probes are overheard by dif-
ferent groups of AirMonitors tracking different APs, and
this helps solve the boundary problem. Given the gen-
erally good performance of the Centroid algorithm, the
Spring-and-ball algorithm can not provide significant im-
provement in our environment.

We can, however, show specific examples of the bound-
ary problem in our environment. When our laptop client
was in the public lounge, we estimated its location us-
ing the Centroid algorithm and found the error was 3.6
meters. The Spring-and-ball algorithm, however, has the
advantage of the profile information. It correctly realizes
that the client is far away from all the AirMonitors that can
hear it, and moves the client to minimize the error. As a
result, the error reported by the Spring-and-ball algorithm
is only 0.6 meters in this case.

We have evaluated the Spring-and-ball algorithm exten-
sively under various conditions, and we found that, in our
environment, the improvement it offers over the Centroid
algorithm is small. Because the Spring-and-ball algorithm
requires generation of profiles, we use the Centroid algo-
rithm for estimating location for the rest of this paper.

While the above validation experiments were carried
out at night, we have also extensively validated our sys-
tem at various other times of the day. We found that the
accuracy of the location system is unaffected by factors
such as the presence of people in their offices and other
traffic on the WLAN.

5.1.3 Validation of RF Hole Detection

The Connectivity Tracker is designed to detect areas of
poor RF coverage, from which clients persistently fail to
connect to the corporate WLAN. We validated our algo-
rithm and implementation in two ways. First, we removed
the antenna of a wireless card so that its transmission
range was severely restricted. This card was unable to
communicate with the AP, but because of the high den-
sity of AirMonitors, we were able to hear its packets, and
the Connectivity inference engine located and flagged the
client as in an RF hole.

For our second experiment, we set up a test AP in one
office, and used a laptop to test the connectivity to the test
AP from 12 locations on our floor, as shown in Figure 4.
From 4 of these locations, the laptop had good connec-
tivity; from 2 of these locations the Connectivity Tracker
flagged a high number of AP switches, indicating unstable
connectivity; and from 6 of these locations the Connectiv-
ity Tracker detected an RF hole and successfully located
each of them. This Figure shows the results of the Con-
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Figure 4:RF hole validation experiment. We attempted to
connect to the shown AP from the shaded offices. The dots
show the estimated client locations, and the classification
of each location.

nectivity Tracker’s classification and location estimate for
each test location.

Finally, we also checked for RF holes on the opera-
tional WLAN in our building. The Connectivity Tracker
did not find any clients that appeared to have difficultly
connecting for more than 3 minutes, indicating that all ar-
eas of our floor have at least some WLAN coverage.

5.2 Deployment on a Operational Network
In this section, we demonstrate the utility of our system by
using it to monitor the corporate WLAN on our floor. We
present results generated by both the Client Performance
Tracker and the Connectivity Tracker. Unless mentioned
otherwise, the results described in this section are calcu-
lated over a period of one work-week; Monday, October
2nd through Friday, October 6th, 2006. We only report ac-
tivity between 8am and 8pm each day, since there is very
little traffic on the network outside of these hours. There
was one 23 minute period of down-time on October 3rd
due to a database misconfiguration.

Because our building has four floors and our testbed
is only deployed on one of them, we need to filter out
clients who are located on other floors of our building.
This is because we cannot report accurate locations for
those clients, and because we cannot overhear any of their
high data-rate transmissions. We performed experiments
where we carried a laptop to the floors above and below
our own, and we devised the following threshold based
on those experiments: we consider a client to be located
on our floor during a particular 15 minute interval if at
least four AirMonitors overhear that client, and at least
one of them reports a mean RSSI for transmissions from
that client of at least -75 dBm.

Figures 5 and 6 provide a high-level view of the amount
of activity on our WLAN. Figure 5 shows both the aver-
age and the maximum number of active clients on a per-
AP basis for the six APs on our floor. The averages are
calculated over 15 minute intervals, and “active” simply
means that the client exchanged at least one frame with
the AP. The number of clients associated with an AP can
be as high as 12, although the average is lower. Figure 6
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Figure 5: Number of active clients per
AP (15 minute interval)
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Figure 6: UpLink and DownLink traffic
per AP (15 minute interval)
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Figure 7: Distance between clients and
the APs they attempt to associate with.
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Figure 8: Distance between APs and
clients, when the session lasts longer than
60 seconds.
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Figure 9:Distance between active clients
and APs: per-AP statistics (10th per-
centile, median and90th percentile).
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Figure 10: Impact of distance between
clients and APs on transmission rate of
downlink traffic. (G clients only).

shows the average uplink and downlink traffic (in kilo-
bytes), measured over 15 minute intervals. As expected,
downlink traffic volume is substantially higher than the
uplink traffic volume.

Next, we look at client association patterns. Figure 7
shows the CDF of the distance between clients and the
APs theyattemptto associate with. Not all these associ-
ation attempts are successful. However, it is interesting
to see 40% of the clients attempt to associate with an AP
that is over 20 meters away. This is surprising because the
average distance to the nearest AP from any location on
our floor is only 10.4 meters. While some of this discrep-
ancy may be due to RF propagation effects, we believe
that poor AP selection policies implemented in certain
Wi-Fi drivers also play a role. While clients do attempt
to associate with far-away APs, they generally do not stay
associated with them for long. In Figure 8 we look at the
connections that lasted for more than 60 seconds. We see
that when a client is further than 20 meters from an AP,
the probability that it will have a long-lived connection
with that AP is small.

We also use client association behavior to evaluate the
effectiveness of the AP placement on our floor. In Fig-
ure 9, we take a closer look at client distance from the
perspective of the 6 APs on our floor. We find that for AP
3, the median distance of associated clients is larger than
that of the other APs, and 90% of the clients that asso-
ciate with this AP are more than 15 meters away. This is

due to poor AP placement. This AP is supposed to serve
the south end of our building, yet due to the presence of a
large lab facility the offices at the far end of the building
are too far away from this AP (and they are even further
away from all other APs).

We also study the impact of client location on connec-
tion quality. We use two metrics to evaluate connection
quality: byte-averaged transmission rate, and packet loss
rate. For this evaluation, we only consider those clients
that transmit at least 50 Data frames on either the uplink
or the downlink.

Figures 10 and 11 show the impact of the distance be-
tween clients and APs on both uplink and downlink trans-
mission rates. For these two graphs we only considered
clients that were operating in 802.11g mode. The filter-
ing is necessary because the maximum transmission rate
for 802.11b is only 11 Mbps. These graphs illustrate two
interesting points. First, we see that the distance between
clients and APs has a significant impact on both uplink
and downlink transmission rates. When a client is more
than 20 meters away from an AP, the median data rate on
both the uplink and the downlink is less than 10 Mbps.
We also see that for a given distance, the uplink rates are
generally higher than the downlink rates. We believe that
this is due to two reasons. First, we measured that the
APs on our floor use lower transmission power levels than
most client Wi-Fi cards, and this is likely done to mini-
mize interference. Second, the chosen rate is heavily in-
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Figure 11: Impact of the distance be-
tween clients and APs on transmission
rate of uplink traffic. (G Clients only).
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Figure 12: Impact of the distance be-
tween clients and APs on the loss rate of
downlink traffic.
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Figure 13: Impact of the distance be-
tween clients and APs on the loss rate of
uplink traffic.

fluenced by the frame loss rate, and as we will see shortly,
the downlink loss rates are noticeably higher than the up-
link ones.

We also looked at similar graphs for clients that appear
to operate only in 802.11b mode. The impact of distance
on the transmission rate is much less pronounced for these
clients. This is because the maximum transmission rate is
capped at 11 Mbps, and the lowest data rates (1 and 2
Mbps) are rarely used even at moderate distances.

Next, we look at the impact of distance on frame loss
rates. Figures 12 and 13 show the downlink and uplink
loss rates, respectively. We see that downlink loss rates
are significantly higher than uplink loss rates. The me-
dian downlink loss rate for clients within 20 meters of the
AP is 20%, while the median uplink loss rate is only 3%.
Mahajan et. al. have reported comparable results in [26].
Furthermore, distance seems to have a much bigger im-
pact on downlink loss rates than it has on uplink loss rates.
The median downlink loss rate for clients that are more
than 20 meters away from APs is almost 50%. Note that
this is the MAC-layer frame loss rate. A 50% MAC layer
loss rate, with 4 retransmissions which is typical for most
802.11 devices, would translate into a 6.25% loss rate at
the network layer if losses were independent.

The high downlink loss rate may be the result of aggres-
sive rate adaptation algorithms on the AP. As mentioned
earlier, our APs transmit at lower power levels than most
clients. An aggressive rate adaptation algorithm can cause
a high frame loss rate at low transmit power. We investi-
gated in detail those cases when the reported downlink
loss rate was higher than 80%. In some of these cases
none of the AirMonitors heard any of the ACK packets
sent by the client, resulting in incorrect loss estimation,
and the total number of frames transmitted was small.
These cases account for less than 2% of the samples.

We also considered whether there are any regions on
our floor where clients see consistently poor performance.
We divided the area of our floor into 14 by 16 meter rect-
angles. We looked at the median loss rate and the median
transmission rate of clients who were located in each re-

Figure 14:Region of poor performance. The circles indi-
cate locations where clients connected to at least 5 APs.

gions. One area stood out as worse than the others, and is
highlighted in Figure 14. The median downlink loss rate
for clients in this area was 49%, which is substantially
higher compared to clients in other regions. In addition,
the median byte-averaged downlink transmission rates for
clients in this area is only 7.3 Mbps. We also noticed that
many clients in this area tend to associate with multiple
APs, some on other floors. The circles in Figure 14 indi-
cate locations from which the clients connected to at least
5 access points. In most other regions, the clients tend to
associate with one or two APs. This indicates that poor
AP placement is one potential cause of clients’ poor per-
formance in this area.

5.3 Effects of Density

We investigate the effects of AirMonitor density on our re-
sults by randomly selecting subsets of our 59 AirMonitors
and eliminating the data collected by those AirMonitors
from our analysis. We then recalculate the graphs shown
in the previous section for three different densities: 25%,
50%, and 75%. Reducing the number of AirMonitors re-
duces the amount of traffic observed, and also reduces the
accuracy of the location results. At 25% density, the to-
tal amount of traffic observed during the entire one week
period is reduced to 78% of the original total, and at 50%
density it is reduced to 95% of the original. We believe
that many of the frames that are lost in the lower density
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Figure 15:Each figure shows the impact of the distance between clients and APs on downlink transmission rates. The three figures
are calculated using AirMonitor densities of 25%, 50%, and 75%, respectively.

configurations are those frames sent at higher transmis-
sion rates, and we are currently investigating this further.

For many of the performance statistics, we see qualita-
tive differences in the results at densities of 25% and 50%,
whereas the 75% density results tend to look quite similar
to the 100% results. For example, in Figure 15, the three
side-by-side graphs show the relationship between down-
link transmission rates and the distance between clients
and the APs to which they are associated. The leftmost
graph shows the results for 25% AirMonitor density, the
middle graph shows the results for 50% density, and right-
most graph shows the 75% results. For comparison, the
100% density results are shown in the previous section in
Figure 10.

6 Discussion
In this section, we discuss various issues related to the
performance and effectiveness of our system.
• Our system determines the locations of the AirMon-
itors by guessing the primary user of the machine, and
then reading the building map. We repeat this process pe-
riodically to ensure accuracy of the AirMonitor locations.

If a machine is moved without its location being up-
dated, the client locations that relied on observations from
the moved AirMonitor may be in error. So far, we have
not had any problems with unannounced machine moves.
We note that we can automatically detect when a machine
is moved far away from its original location. Each Air-
Monitor is aware of its neighbors, and if the neighbor set
changes significantly, the system administrator can be no-
tified. However, if the AirMonitor is moved only a short
distance (say to the next office), we may not be able to
automatically detect such a move. In such cases, the error
introduced in the estimated client locations is also likely
to be small.
• We have not studied the accuracy of our location sys-
tem in settings other than our office floor. It is likely
that the accuracy of the location system, and specifically,
that of the Centroid algorithm, is helped by the fact that
our offices have full-height walls and solid wood doors.
The radio signal fades rapidly in such an environment en-

suring that only nearby AirMonitors hear a strong signal
from a given transmitter. In other settings (e.g. cubicles),
many more AirMonitors may receive a strong signal from
a given transmitter. This may degrade the accuracy of the
Centroid algorithm.
• Our system currently requires that each AirMonitor
track the channel of nearest the AP. This strategy is ap-
propriate for the management applications described in
this paper, as clients in the region near an AP are also
likely to associate that AP, and therefore operate on the
same channel as our AirMonitors. Other channel assign-
ment strategies may be appropriate for other applications.
For example, for wireless security applications, it is de-
sirable to monitor as much of the spectrum as possible
in each area. This can be accomplished by having each
AirMonitor randomly cycle through all channels, spend-
ing some time on each. We are also considering signal-
strength based channel assignment.
• Because scalability is an important design goal, we
briefly summarize measurements of our system’s scala-
bility. During the full work week of operation, the size
of all our database tables grew by just under 10 GB. Each
AirMonitor generated less than 11 Kbps of traffic on the
wired network submitting summaries to the database. We
monitored the additional CPU load we placed on the Air-
Monitors, and this load rarely exceeds 3%.
• Both the loss rate and the transmission rate statistics
calculated by the Client Performance Tracker areesti-
mates. For transmission rates, AirMonitors are less likely
to overhear high transmission rate frames, so it is likely
that we are underestimating the true rates. We may over-
estimate loss rates if no AirMonitor overhears many of
the Data packets sent without the retry bit set. However,
the results of our validation experiment in Table 2 give us
confidence that this is unlikely.

7 Related work
Location Estimation: Many researchers have built
systems for location estimation in WiFi networks.
RADAR [7] uses pattern matching of received signal
strength at a client from various landmarks, such as APs,
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to locate a Wi-Fi client. Further refinements of the idea
appear in several subsequent papers [23, 22, 30, 10, 17].
These schemes include a manual profiling phase, which
requires the network operator to collect RF fingerprints
from a large number of locations. Many of these schemes
are designed to allow WiFi clients to locate themselves -
not for the system to determine where the client is. We
note that some of the techniques described in these papers
can be used to enhance the accuracy of our system as well.

ActiveCampus [9] uses a hill-climbing algorithm to ap-
proximate the location of a mobile user using samples
from multiple APs. The accuracy can be further enhanced
by using feedback from mobile users.

The Placelab project [24] incorporates a self-mapping
system that requires knowledge of only a few anchor
nodes. This system is geared towards outdoor environ-
ments and the average location error is 31 meters.

Location estimation has also been studied for wireless
sensor networks. Systems like MoteTrack [25] are de-
signed for emergency management environments, and re-
quire extensive prior manual profiling. Sextant [16] uses
a small number of landmark nodes to determine the re-
gion of a sensor node. It works by formulating geographic
constraints on the location of the node. A key idea be-
hind Sextant is to use information about which nodescan
not hear each other. In our system, we can not be certain
about the transmit power of the clients. Therefore we can
not directly use Sextant’s model.

Location systems that use non-RF technologies such as
ultrasound [29] are outside the scope of this work.

Research wireless network monitoring systems:Sev-
eral researchers have studied mobility and traffic patterns
in enterprise wireless networks. In [8], the authors char-
acterize wireless traffic and user mobility in a large cor-
porate environment using SNMP traces. They can not di-
rectly observe either user location or phenomena such as
MAC-layer retransmissions. In [21, 18], the authors study
traffic and usage patterns in an academic wireless net-
work. In [20], the authors study usage patterns of WLAN
at at IETF meeting. In these studies, the user location is
characterized by the AP that the users are associated with.
Our results show that users sometimes associate with APs
that are far away.

Jigsaw [12] is a WLAN monitoring system that uses
multiple monitors and trace combining to generate a com-
prehensive view of network events. There are two key
differences between Jigsaw and our system. First, Jig-
saw does not include a location engine and hence when
it is used to detect performance problems it cannot pro-
vide specific information about the location(s) of the
client(s) experiencing those problems. Second, Jigsaw
is architecturally is very different from our system. Jig-
saw uses dedicated, custom-built, multi-radio monitor-

ing nodes whereas we add off-the-shelf USB wireless
adapters to end-user desktops. Jigsaw generates full
packet traces at every monitoring node and performs a
centralized merge of these traces, whereas our monitors
generate application-specific traffic summaries, and we at-
tempt to select the “best” monitor for hearing a particu-
lar communication to avoid having to merge observations
from multiple monitors. With full packet traces, Jigsaw
can provide a detailed look at low-level network effects
such as interference, that DAIR can only guess at.

In [15], the authors describe a simple packet cap-
ture utility and how they used it for intrusion detection.
WIT [26] is a toolkit for analyzing the MAC-level behav-
ior of WLANs using traces captured from multiple van-
tage points. The toolkit does not include a location esti-
mation tool. We have discussed the relationship between
WIT and our approach throughout the paper.

In [4], the authors present a system for diagnosing
faults in Wi-Fi networks. They study some of the same
problems that we do, and their techniques for locating
disconnected clients are somewhat similar to ours. How-
ever, their system is based entirely on observations made
by mobile clients. It requires installation of special soft-
ware on clients. Furthermore, the accuracy of their loca-
tion system is significantly worse than ours: they report a
median error of 9.7 meters.
Commercial wireless network monitoring systems:
Currently, a few commercial systems are available for
wireless network monitoring and diagnosis. Many of
these systems focus on security issues such as detecting
rogue APs, which was the subject of our previous pa-
per [5].

Unlike research systems, only a few selective details are
publicly available about the performance of commercial
systems. Below, we present a summary comparison of
DAIR with two commercial monitoring systems, using the
claims they make in their marketing literature and white
papers available on their websites.

AirTight Networks [2] sells a system called Spectra-
Guard, which has many features similar to DAIR. Spectra-
guard, however, requires the use of special sensor nodes
that have to be manually placed in various places within
the area to be monitored. It also requires special software
to be installed on the clients. The system is focused on
detecting threats such as rogue access points. Spectra-
guard also provides RF coverage maps and some perfor-
mance diagnostics, although the details are not available
in the published data sheets. Spectraguard includes a lo-
cation subsystem. However, details about how it works,
and what accuracy it provides are unavailable.

AirDefense [1] also sells a system for monitoring of
corporate wireless networks. Like SpectraGuard, this
product also focuses on wireless security problems. It also
requires use of special wireless sensors, and installation
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of special software on end systems. The key differenti-
ating feature of this product is called “RF Rewind”. The
sensors collect upto 270 measurements per wireless de-
vice per minute. This data can be later used for forensic
investigations. The product includes some location de-
termination features, although the details are not publicly
available. It is not clear what performance diagnostic in-
formation is provided by AirDefense.

8 Conclusion
We have built a scalable, and easy-to-deploy WLAN man-
agement system that incorporates a self-configuring loca-
tion engine. Using our system, we monitored an opera-
tional WLAN network. Our results show the importance
of knowing the locations of WLAN clients in understand-
ing their performance. Therefore, we have demonstrated
the need for a location estimation engine to be an integral
part of any WLAN management system. We have also
demonstrated that by using a dense deployment of wire-
less sensors, one can use simple algorithms to estimate
client location and performance. Finally, we showed that
a dense deployment of wireless monitors can be achieved
in a cost-effective manner using the DAIR platform.

Although the focus of this paper has been on using
location to improve the performance and reliability of
WLANs, the location engine we have built is also directly
applicable to the wireless security management applica-
tions that were the focus of our previous DAIR paper [5].
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