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Abstract: The physical locations of clients and access pointdient with the location of the AP that the client is asso-
in a wireless LAN may have a large impact on network perfociated with. Our data shows that in our network, 25% of
mance. However, today’s WLAN management tools do not practive clients do not associate with the nearest AP. Conse-
vide information about the location of clients apart from whicfjuently, these systems can not accurately characterize the
access point they associate with. In this paper, we describ#fiuence of location on client performance.
scalable and easy-to-deploy WLAN management system that in\We note that there has been a lot of research on accu-
cludes a self-configuring location estimation engine. Our sysite location estimation using WLAN technologies [7, 23,
tem has been in operation on one floor of our building for seg2 30, 17]. We believe that the primary reason that these
eral months. Using our system to observe WLAN usage in ogichnologies are not integrated with today’s WLAN mon-
building, we show that information about client locations is critoring systems is that the location estimation techniques
cial for understanding WLAN performance. Although WLANare generally not easy to deploy. Many location systems
location systems are a widely studied topic, the novel aspects@fjuire a mapping step whereby an administrator walks
our location system primarily relate to ease of deployment. Ttieroughout the area being covered by the location system
main contribution of this paper is to show thélity of office- to create a “profile” of the environment. Moreover, this
granularity locationin performing wireless management tasks. profile needs to be updated at regular intervals to ensure
. that it reflects the current environment.
1 Introduction We have designed and implemented a WLAN man-

Wireless LANs (WLANS) are an important part of todayiggement system with an integrated, self-configuring in-
enterprise networks. However, end users typically do rfifor location system. Our location system is accurate to
enjoy the same level of service from WLANSs that theShe gran_ularity of.individual offices and requires minimal
have come to expect from wired networks. Better tools fgfanual intervention to setup and operate.
managing WLANS are required for improving the reliabil- Our system is built upon the DAIR platform described
ity and the level of service provided by today’s WLANSs.in [6, 5]. The DAIR platform turns ordinary user desk-
Wireless networks are fundamentally different frorfPps into wireless monitors (AirMonitors) by attaching a
wired networks, in that the behavior of the network iireless USB dongle to each of them. The DAIR archi-
location-dependent. Due to the nature of wireless sigfi@gture allows us to create a dense deployment of WLAN
propagation, the physical location of both the transmitt&tonitors in a scalable and cost-effective manner.
and the receiver may have a large influence on the perThe dense deployment of AirMonitors has several ad-
formance observed by end-users. Specifically, the prolantages. In most cases, there is at least a single AirMoni-
ability of frame loss, and the data rate selected for frartar that can hear a majority of the packets flowing between
transmission can be impacted by the locations of the traaggiven client and its AP in a single direction (another Air-
mitter and the receiver. Monitor may hear most of the packets flowing between
The need for incorporating location information irihe client and the AP in the other direction). This allows
WLAN management tools is also reflected in the commats to sidestep the complex tasks of trace merging and fine-
questions asked by administrators of WLANS: Is the agrained time synchronization faced by other WLAN mon-
cess point (AP) placement adequate for serving the lo#g¥ing systems [26, 12]. The dense deployment also al-
tions from where my network is most actively used? Alews us to use very simple location estimation algorithms,
there areas in my network where clients consistently eget achieve office-level accuracy.
perience poor performance? How does the distance bewe have deployed this system in our building over the
tween an AP and a client affect client's performance? Akgst six months. Our current deployment consists of 59
there areas that have no coverage at all? With answergiidvionitors, and covers an entire floor. We have been us-
these questions, network administrators can take conciatgit to monitor the WLAN in our building. During this
steps to improve the reliability and performance of thetime, our system was able to answer many of the ques-
networks. tions we posed earlier. For example, we detected that
The WLAN management and monitoring systendients in one corner of our building received consistently
available today can not satisfactorily answer these qupsor performance. We were able to provide a fine-grained
tions. The reason is that many of them provide no icharacterization of the workload on our network: we no-
formation about client’s location at all [26, 12]. Othticed that clients located in people’s offices tend to down-
ers [8, 21, 18] simply approximate the location of thipad more data than clients located in various conference



usB Dongle , 802.11 frames, including those destined for other 802.11
[Air Monitor - Artvoniors [ Air Monitor stations and those with decoding errors.
ot I The AirMonitor service contains all of the user-level
code for monitoring. It enables packet logging at the
BT 1| i oo driver level, at which point all frames are delivered to the
J—— service. Within the service, the basic unit of extensibility
is a “filter’: each new application built to use the DAIR
system installs an application-specific filter that runs in-
Figure 1:The DAIR Architecture. side the AirMonitor service. Each frame from the driver is

rooms. We characterized the impact of distance on uplifiRlivered to all running filters. The filter's primary task is
and downlink transmission rates as well as loss ratestfr@nalyze the frames, summarize them in an application-
our environment. Much to the delight of system admigPecific manner, and then submit those summaries to the
istrators, we also located transmitters that were sendfi@jabase server.
malformed 802.11 packets. We discovered and reported 4 he intent is that filters do whatever summarization is
serious misconfiguration shortly after new APs were déensible to improve the scalability of the system without
ployed on our floor. These APs sent downlink traffic #P0osing an undue CPU burden on the AirMonitors —we
5.5Mbps, regardless of the location of the client. Thfion't want to submit every frame that each AirMonitor
problem has since been fixed. overhears to the database, yet we also don't want the Air-
In summary, the key contributions of our paper are: Monitors to do all of the complex data analysis, which
e To the best of our knowledge, we are the first to ins the responsibility of the inference engine. While the

tegrateofﬁce-|eve||ocation accuracy into a WLAN man-preCise definition of what constitutes undue burden varies
agement system. based on circumstances, parameters such as history of

e We show that correlating client locations with a variet(y"F\)/t/‘| and m'\j_mory Lf’?a%e all_restaken |2n(t)%5con5|derztlonb[l4].
of performance metrics yields new insights into WLAN e use Microsoft's SQ erver 20U as our atabase
behavior. server. We made no custom modifications to the database

server. The DAIR system is designed to scale to handle
o We de_monstrate th? usefulness of our system by US{y large enterprises. When the number of AirMonitors
itto monitor an operational WLAN. in the system exceeds the capacity of a single database
e We show that by using a dense deployment of wirelegsrver, one can simply deploy another database server.
sensors, one can significantly simplify the tasks of wirgtowever, AirMonitors should be assigned to servers in
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less monitoring and location estimation. a location-aware manner, to limit the number of queries
that must be performed across multiple database servers.
2 The DAIR Platform The computationally intensive analysis tasks are all

The design and the architecture of the DAIR system nagrformed by the inference engines. Inference engines are
been described in detail in [5]. Here, we provide a brigfand-alone programs that analyze the data gathered by
review of the system architecture. the AirMonitors. The inference engines learn about new

The DAIR system is designed for easy and inexpensi%ents by issuing periodic queries to the database server.

deployment in enterprise environments. Existing deskt :
machines serve double-duty as WLAN monitors. The I??p Management SyStem DeSIQn

department can mandate which desktops perform this darthis section, we describe the new infrastructure com-
vice, and they can also manage the process of deploypgumhents, beyond the original DAIR platform described in
the DAIR software on these systems. our previous work, that are utilized by all of our wireless
Figure 1 provides a high-level illustration of the thremanagement applications.
major components of the DAIR system: the AirMonitors; . .
the database server; and the inference engine. We usgatﬁ]e Location engine
term AirMonitor to refer to ordinary desktop computer§he goal of our location engine is to determine the loca-
in the enterprise that are equipped with inexpensive USBn of any 802.11-compatible transmitter (which includes
802.11 wireless cards and have two components of AN clients such as laptops and hand-held devices) on
DAIR software installed: (1) the AirMonitor service; andur office floor, and to communicate that location to the
(2) a custom device driver that works with USB wirelesest of the management system. Our design was guided
cards based on the Atheros chipset. The AirMonitor séxy the following set of requirements.
vice is user-level code that runs as a Windows service First, we require no cooperation from the clients: no
the equivalent of a daemon on Unix systems. The deviggecial software or hardware is needed, and the clients
driver customizations allow the wireless card to receive alked not communicate directly with the location system.



Second, the location system should provide “office-levetally determine the location of most of our AirMonitors.
accuracy: the error should be within 3 meters, approxi-The details of this procedure are clearly specific to our
mately the size of a typical office. Although other proparticular environment. Although we believe that many
posed location systems provide greater accuracy, this lexelerprise environments maintain similar types of infor-
is sufficient for our needs. Third, to ensure easy deplaywation, the specific applications and data formats may
ment, the system must be self-configuring — it canngiffer. Also, even in our environment these techniques are
require manual calibration. Finally, the location systemot completely general. For example, this procedure tends
must produce output in a way that is physically meaninget to work well for machines located in public spaces,
ful to the network administrators, which precludes havirgich as conference rooms and lounges, because the login
the system construct its own virtual coordinate space fistory on these machine does not tell us much. For such
Vivaldi does [13]. machines, we still must manually inform the system of the

The basic idea behind our location system is similar tdfice number to get the coordinates into our database.
that of many previous 802.11-based location systems. Th@®ur assumption that the AirMonitor location is in the
AirMonitors record the signal strengths of frames transenter of each office is another source of error. We do
mitted by a sender. This information is combined withot try to pinpoint the location of an AirMonitor within
the known AirMonitor locations to estimate the locatioan office because doing so would require significant man-
of the transmitter. The key distinguishing features of oual effort. This approximation is appropriate for us be-
location system are: 1) by deploying AirMonitors witltause we only require office-level accuracy. We assume
high density, we can avoid the manual profiling step rehat the physical location of AirMonitors does not change
quired by previous indoor 802.11 location systems [7, 1 dften. We determine the location of the AirMonitor when
and 2) we use external sources of information commome first deploy it and re-confirm it only infrequently.
available in enterprises environments to automatically de- . .
termine the Iocati?)n of most AirMonitors. g 9.1.2 Locating a Transmitter: StrongestAM

In the remainder of this section, we describe the bodduring the course of their normal operation, various Air-
strapping method for automatically determining the AiMonitors hear the frames sent by the transmitter, which
Monitor locations, followed by the three simple locatiowe identify by the sender MAC address. On a periodic ba-
estimation algorithms supported by the location enginesis, the AirMonitors submit summaries to the database of
the signal strength of those frames overheard. These sum-
maries contain start and end timestamps, the AirMonitor
To automatically determine the physical location of thgentifier, the sender MAC address, the channel on which
AirMonitors, we start by determining the number of ththe frames were heard, the number of frames sent by this
office that each AirMonitor is located in. Because thigansmitter, and the total RSSI of those frames.
DAIR system uses end-user desktops for the AirMonitors,When the inference engine wants to locate a client, it
we can analyze the login history of these machines to g¢eevides the start and end time and the sender MAC ad-
termine who the primary user is. In a typical enterprisdress to the location engine. The location engine com-
the occupant of an office is generally the primary user fputes the average signal strength seen by each AirMon-
the machines in that office. We examine the system eveti¥ during the specified time period for that transmitter.
log for user login and console unlock events, and extradien, it chooses the AirMonitor that saw the highest av-
the user identifier for these events. We ignore remote krage RSSI (i.e. strongest signal strength) during this pe-
gin events and non-console unlock events. We then detéd and reports this AirMonitor’s location as the location
mine the primary user by selecting the user with the magftthe client.
login and unlock events in a given time period. With this The StrongestAM algorithm is very simple, and is
information, we then consult a database of users and li€ely to give inaccurate results in many cases. One rea-
fice numbers (our implementation uses the Microsoft Asen is that even when a client is stationary, the RSSI seen
tive Directory service [27]) to determine the office numbdry the AirMonitors can fluctuate significantly. Some of
where the machine is likely located. these fluctuations are masked due to averaging over multi-

The final step uses online to-scale building maps, whipte packets. Yet, if two AirMonitors are reporting roughly
are available to us in Visio XML format. The map inequal signal strength, the fluctuations may make it impos-
cludes labels for the office numbers, which are centergiblle to pick the strongest AM without ambiguity.
within each office. We parse the XML, determine the However, if the AirMonitor density is high enough,
graphical coordinates of each label, and convert thesehis simple algorithm might suffice to provide office-level
the physical coordinates. This procedure gives us an egtianularity in most cases. As we will show later, this al-
mate of the center of each office. By combining this infogorithm works well primarily when the client is located in
mation with the user-to-office mapping, we can automatin office where we do have an AirMonitor.

3.1.1 Determining the AirMonitor Locations



3.1.3 Locating a Transmitter: Centroid o
# Exponential Fit -

The next algorithm we implemented, Centroid, is a vari- 50| L Powerlaw Fit ==~
ant on the StrongestAM: instead of selecting only the IR ;

strongest AirMonitor, we select all AirMonitors whose 3 30 L .

average RSSI is within 15% of the average RSSI of the 20 ' %r i

strongest AirMonitor. We then report the client location w0l \y‘,%%@ o

as the centroid of the set of selected AirMonitors. If there N . St
are no AMs within 15% of the strongest AM, the location 0 5 10 15 20 25 30 35 40
is just reported to be that of the strongest AM. Distance (meteres)

This algorithm has several attractive features, espe- ) ) )
cially in our deployment, where we have an AirMonitopﬁgure_ 2:Sample profile d_ata and t\.NO fitted curves. The
in about half of the offices on our floor. When the tran?—‘_qggggggg thi_i-:-xpr?nentlal _curve} 'i{SSI - ?7'72 *
mitter is in the same office with an AM, it is generally’ , while the equation of the power-law curve

— - 4—1.445
the case that this AM sees significantly higher RSSI vaf./t951 = 215.73 « Dist :

ues, compared to all other AMs. As a result, the office jge probe packets were sent and stored in the database.
correctly picked as the location of the transmitter, with- \we cyrrently consider linear, exponential, logarithmic,
out any adjustment. Also, the accuracy of this algorithgyy power law curves. Each of these curves can be fit-
is not affected by the moderate adjustments in transmily ysing variants of the least-squares fitting method. We
power that are seen when clients use transmit power CQB-not filter the raw data in any way; all points are con-
trol. If a packet is sent at a lower power level, all the AMgjgereqd while determining the fit. The goodness of fit is

will see a proportional decrease in the observed RSSI. yatermined by theR? (correlation coefficient) value. An
In addition, the Centroid algorithm is unaffected b¥xample is shown in Figure 2.

small fluctuations in the RSSI that various AirMonitors \yhen the location engine is asked to locate a client, it

report. The threshold implies that the set of AMs thgl,mpytes the average signal strength that each AirMoni-
we compute the centroid over does not change with small gpserved. It then calculates the initial estimate of the
fluctuations in reported signal strength. location using the Centroid algorithm. The estimate is the
The Centroid algorithm does have one drawback. If thgfineq using a Spring-and-ball algorithm as follows.
set of AirMonitors we compute the centroid over are all \ye select the most recent profile that matches the fre-
on one side of the actual client location, we could Se&fiency band of the channel on which the packets were
significant error. As it turns out, this is not a significarfegrq. Using the profile, we calculate the signal strength
problem in our deployment but it certainly could be ifhat each AirMonitorshouldhave seen had the transmit-
other environments. We discuss the issue more in SgG-peen at the estimated locatioWe then consider the
tion 5. To address this problem, we developed a third gference between the calculated signal strength and the
gorithm which we discuss next. signal strength that the AirMonitor actually observed.
3.1.4 Locating a Transmitter: Spring-and-ball The absolute value of the difference corresponds to the

Th . 0 lorithms d ¢ licitly take i tmagnitude of the force on the "spring” that connects the
€ previous two algonthms do nhot explicilly 1ake Q. \gmitter to the AirMonitor. The sign of the difference

X . - I
account thetracgo p:ﬁ_pggaltlon_tﬁharag:te_rlstlcs (;)fbth"e I.O %Iicates whether the spring is compressed or stretched.
environment. Our third algorithm, Spring-and-ball (ingo ;e ction of the force is along the line connecting the

fprlrtf%itli b},’ \]{';/r?ld' r[ls]i)r; ;ﬂ?rﬁiﬁes\/\t’rﬂ"il\ﬁ) riot()jlerr: by (;Js'n/girMonitor location to the estimated transmitter location.
pro es_ 0 . €area . chine s deploye . We then move the estimated location of the transmit-
A profile is an approximate, compact representation of

how the si | st th d d ith dist i th r a short distance in the direction of the cumulative
ow the signal strength degrades with distance In the .02 s reduces the magnitude of the error by a small

cal environment.. To generate a profile, each AirMonit Imount. This is the new estimated location of the client.
broad.casts ;peugl probe packetg "’?t regglar |n'tervals, trecalculate the forces at this new location, and repeat
contam_the |o_Ient|ty of the transmitting AirMonitor. Thethe process until one of the following is true: (i) 5000 it-
other AirMonitors record these probe packets and rePRiYtions have elapsed, (ii) the magnitude of the error falls

the average signal strength of packe@s heard from C8eow 0.1, or (iii) the force at the new location exceeds by
AirMonitor to the central database. Using the known d'i’O% the minimum force seen so far

tance between two AirMonitors and the observed average

RSSI between those AirMonitors, the inference engine fitsIf the calculated signal strength value is less than 0, it is assumed to

a set of simple curves to the combined observation dfﬂ%o' Similarly, if the calculated signal strength value exceeds 100, it is
. . . . assumed to be 100.

and picks the best fit as the profile of the environment. 2 ¢ either the X or the Y co-ordinate of the location falls outside the

The resulting profile is labeled with the channel on whidloundary of the floor, it is adjusted to be within the boundary.




The Spring-and-ball algorithm will converge to a globahinutes, it re-enters scanning mode and looks for the AP
minimum only when the magnitude of the force is linearlgn the other channels. While in scanning mode, packet
proportional to the distance [13]. This is not true in owelivery to all the filters is suspended.
setting, since the drop in signal strengths is not linearly
proportional to the distance. However, we have found t .
the algorithm works well in practice. h@% Address Matching

This algorithm overcomes the key limitation of th :
Centroid algorithm. If all the AirMonitors that hear :I'he frame format of the 802.11 standard is not fully self-

particular client are on one side, the Centroid algorithdescnbmg' One example of this is that there are two types

would pull the client to be in midst of those AirMonitors.m 802.11 frames, namely the CTS (clear-to-send) and

: . ) . ) CK (acknowledgment) frames, that do not contain the
The Spring-and-ball algorithm will realize that the S'gn."@lAC (address of%he dgvice that transmits those frames.

strengths reported by the AMs are too low to be cOM\is means that for devices using promiscuous mode to

EgrrpegtleSigintral location, and will push the client to th|ce)assively listen to 802.11 conversations, they cannot di-

The kev chall inimol tina the Sori d b%ﬁcny determine who sent those packets. Fortunately, if
€ key challenge In Impiementing the Spring-and-bay passive listener is capable of overhearing both direc-
algorithm is the generation of profiles. Questions th

fibns of the conversation, then it is possible to infer the
arise include: How often should profiles be generated (i ' P

do time-of-day effects create significant errors)? Whggdress of the transmitter of such frames.

type of curve should we use to fit the data? We have carOne component of the AirMonitor service is responsi-
ried out extensive experimental sensitivity analysis of tiée for inferring and then filling in both the transmitter and
Spring-and-ball algorithm. We have found that the timBSSID fields for both CTS and ACK frames. This infor-
of day effects do not significantly impact the accuracy. mation is filled in before the frame is handed off to any
fact, we only generate new profiles when we add new Ather filters that are running on the AirMonitor, and there-
Monitors to the system. We have also found that eithigire these filters can simply assume that this information
a log or power curve provides a good fit to the observéglavailable whenever matching was possible.

data. We do not describe the results of our study further o strategies we use to infer the transmitter are dif-

because we want to focus our results on tiseof the orent for ACK frames than for CTS frames. To deter-
location system for management applications. mine the transmitter of an ACK frame, we need to ana-
Some of the previous WLAN location estimation sygy;e packets that arrive back-to-back. If the first frame
tems proposed in the literature are more accurate than 8} is a Data or Management frame, then we remember
system. Our goal, however, was to design a location Sysa value of the Duration header for that frame. When the
tem that provided office-level accuracy, and that met gyt frame arrives, we determine if it is an ACK frame that
rather stringent requirements for ease of deployment. 55 arrived within the time period allocated by the previ-
3.2 AP Tracking ous frame. If so, then we k_now that the receiver of the first
frame must be the transmitter of the ACK frame. Further-
The corporate APs in our building are controlled by @ore, we use the ToDS and FromDS bits in the header
central server [3], which dynamically reconfigures whicf the previous frame to determine the correct BSSID to
channels the APs operate on. The frequency of charggibute to this ACK frame.
depends on a variety of factors, including traffic load.

We have observed some of our APs changing channel d usi imil h h . f
as many as six times in a 12 hour period. As a result using a similar strategy where the previous frame

this dynamic channel assignment, we can not assign 5 PU|d t,’e an RTS frﬁme. (I)—|owzfever, |rf1 our netwo“rk the
AirMonitors to listen to fixed channels. Instead, each Ajyast majority (more than 99%) of CTS frames are CT_S'
E_—self” frames that are used for 802.11g-mode protection.

Monitor is assigned to track the nearest AP — this confi - X
uration is shown in Figure 3. other words, there is no previous RTS frame to match
with. Fortunately, the convention for these g-mode protec-

The AirMonitor impl ts AP tracki tinu-. ) .
ou slyeloolLinznflo?rblgl?:g:;e;eit by tLaeCalsns(,gilg?{edcTP”]? ﬁé;n frames is that the Duration of the CTS frame covers

beacons are observed during a 10-second period, the I time perlpd when the gctual data frame will be sent,
Monitor goes into scanning mode, where it listens for be nd the receiver address in the CT.S frame should maich
cons for 150 ms on each of the 11 channels in the 2.4 GH transmitter address of the following frame.

band, until the assigned AP is heard from again. If scan-There is additional complexity in our system for match-
ning fails to find the assigned AP within two minutes, ihg packets where the Duration header is empty, as is the
goes back to the previous channel where it heard the ARse for Data Null frames. Due to space constraints, we
on the assumption that the AP may have failed. Every Btovide these details in [11].

;I’o infer the transmitter for CTS frames, we consid-



3.4 Time Synchronization Counter Description

) ) ] ] TotalCount Total number of frames.
The AirMonitors timestamp the data they submit to theTotalBytes Total number of bytes in all frames.
central database using their own local clock. We shall seigataCount LOtlfli'fnumbef of Data frames, excluding Data
. - . . ull Trames.
in Sections 4.1 and 4.2 that the inference engine SOm%_ataBytes Total number of bytes in Data frames, excluding

times needs to correlate the data submitted by various Air- Data Null frames.
Monitors. Hence, we need to synchronize the AirMonitprDataNuliCount | Total number of Data Null frames.
clocks. However, unlike [26, 12] we do not need to cor-PataNullBytes | Total number of bytes in Data Null frames.

. . gmtCount Total number of Management frames.
relate dat_a a.t packet. level granulanty. As giresult, tim gmtBytes Total number of bytes in Management frames.
synchronization provided by NTP [28] is sufficient for our ctricount Total number of Control frames.
purposes. CtrIBytes Total number of bytes in Control frames.
RetryCount Total number of frames where the Retry bit is set.
. H RetryBytes Total number of bytes in Retry frames.
4 Management Applications Lt L Y

In this section we explore three location-aware WLAN@PIE 1:Aggregate counters maintained by the client per-
management applications that our location engine dprmance filter on a per (transmitter, receiver) pair basis.
ables. The Client Performance Tracker application moni-
tors the data transfers between clients and APs, and coffeomplete list of these counters is shown in Figure 4.1.
lates client location with a variety of performance statidlote that for these counters, address matching has already
tics. The Connectivity Tracker monitors the associatigiecurred (see Section 3.3), so the counters include frames
behavior of clients, and correlates connectivity problerfy which the transmitter address was inferred. For those
with client location. Finally, the Bad Frame Tracker ddrames where the transmitter could not be inferred, the
tects and locates transmitters which send invalid 802.aaunters will not be incremented. We will see shortly how
frames. the inference engine of the client performance tracker at-
We implement each of these applications with two corfemMpts to compensate for this.

ponents: a filter that runs on each AirMonitor and sum- In addition to the basic usage statistics, the filter col-
marizes the overheard frames into the relevant data feets two additional kinds of information to allow anal-
that application, and an inference engine which querigsis of clients’ auto-rate and packet loss behavior. For
the central database to analyze the summarized data. auto-rate analysis the filter collects two histograms: one

) of the number of packets transmitted at each of the possi-
4.1 The Client Performance Tracker ble rates, and another of the number of bytes transmitted

The goal of the client performance tracker application is & €ach of the rates.
provide insight for the network administrator into where Understanding the packet loss behavior requires the fil-
the clients are using the wireless LAN, and to provide atpr to perform a significant amount of online analysis,
gregate statistics about the nature of their usage andwhgch we now summarize. The complete details of our
quality of service they obtain. With information abouloss estimation algorithm can be found in [11]. The tech-
client locations, this allows the administrator to look at th@ques we use to analyze uplink (client to AP) and down-
relationship between a variety of performance metrics alinik (AP to client) traffic differ. For downlink traffic, we
location. There are many different interesting questionse an approach very similar to the “nitwit” component of
one can answer with this application. For example: do dbe Wit system [26] to infer certain packets were transmit-
tive clients typically associate with the nearest AP? Whigid even though our AirMonitors did not directly observe
is the relationship between distance from the client to teem. For example, when we see a data frame with a se-
AP and the observed loss rates? How is transmission-ratence number that we have not seen before, and the retry
selection affected by the distance from the client to tiét is set on that data frame, then we know that an initial
AP? Where are the most heavily utilized locations in safata frame with that same sequence number was transmit-
vice area? Do the APs do a good job of covering thotsl, even though our AirMonitor did not observe it. Addi-
locations? tional information is provided by ACKs that travel in the
The Client Performance Filter: The client performance reverse direction, and the address matching code allows us
filter submits data summaries to the database using a riancorrectly attribute the transmitter of these ACKs. Our
domized interval between 30 and 60 seconds. The ramalysis provides us with twestimatedvalues: an esti-
domization is used to avoid having all the clients subninate of the combined number of management and data
in a synchronized manner, thus making the load on tfigmes transmitted, as well as an estimate of the loss rate.
database server more uniform. For the uplink traffic, in addition we also analyze gaps
For each (transmitter, receiver) pair, the client perfon the sequence number space to infer more about the
mance filter maintains a large set of aggregate counteansmber of frames transmitted, as was suggested as fu-



ture work in the Wit paper. Because stations operatiimpd data submission strategy used by the client perfor-
in infrastructure-mode only communicate with one acaance filter. In other words, we don’t want to always
cess point at a time, we can analyze gaps in the sequegrng up being biased toward choosing the AirMonitor that
number space to further infer traffic that our monitor hasibmitted data most recently. To avoid this problem, the
missed. This has to be done carefully, however. Clientderence engine must analyze the data over a timescale
periodically perform scanning: they change channelsttmat is significantly longer than the data submission inter-
search for other nearby access points. Fortunately, meat We typically use a 15 minute analysis interval for
clients send a Data Null frame to the AP with the powethe inference engine, versus a 30 to 60 second submission
save bit set just before switching channels, so that the Aerval for the filters. The impact of this design choice
will buffer any incoming data, and they send another Datathat the Client Performance Tracker application can-
Null with power-save bit cleared when they return fromot provide instantaneous information about performance
scanning. By analyzing these Data Nulls, we avoid giroblems to the network administrator, it can only provide
tributing these gaps as communication between the statimmmaries about moderately recent activity.
and AP that was missed by our AirMonitor. In Section 5.2, we demonstrate the utility of the Client
One additional issue arises with analyzing sequeneerformance Tracker by using it to analyze the operational
number gaps: suppose that during a single summarizatigreless LAN in our building, and by showing the results
period, a client begins by communicating with AP1, thefor our network to many of the questions raised at the be-
switches to AP2, and later switches back to AP1. The Aginning of this section.
Monitor may not see any of the communication with AP ..
because it may take place on a different channel. Tod a? The Connectivity Tracker
with this situation, we take a conservative approach: veg 802.11 client goes through a sequence of steps before
discard the inferred counters for any row where this “AfPcan connect to an AP. First, it first sends probes to dis-
flipping” behavior is detected, and we use the inferengever nearby APs, then it authenticates to a selected AP,
engine to detect this situation after the fact, by analyziagd finally it associates to that AP. Each of these steps in-
the client association data summarized by the Connecipgives a client request frame followed by an AP response
ity Tracker. frame. Once the client has associated, it can exchange
The Client Performance Inference Engine: As de- data with the AP.
scribed above, we may have many different AirMoni- The connectivity tracker monitors and summarizes this
tors observing and analyzing the same communication bgsociation process for all clients while tracking their lo-
tween a transmitter and a receiver, and many of the Agations. Analyzing this data helps a network administra-
Monitors will be performing their analysis based on irtor answer a number of key management questions, such
complete views of this communication. Therefore, thes: How many clients in a particular region were able to
key job of the inference engine is to select, during a partieennect to the WLAN, and for how long? Are there any
ular time interval, the two AirMonitors that were best ableegions with no RF coverage (i.e., RF holes)? Is connec-
to overhear each direction of the communication. In othgsn duration correlated with location (e.g., people in con-
words, we select the best AirMonitor for the uplink, anference rooms may have short lived connections, while
the best AirMonitor for the downlink, and these may ahose from offices may be long lived)? Are there specific
may not end up being the same AirMonitor. Typically, theegions where clients rapidly switch back and forth be-
Inference engine ends up selecting one of the AirMonitatseen APs? Understanding the location of clients is cru-
that is physically close to the transmitter. cial to answering these questions. Also, note that existing
We analyze each direction of the communication sepaP-based wireless management systems may never even
rately, but in order for our loss estimates to be accurakearn of the existence of those clients in an RF hole.
the AirMonitor analyzing frames flowing in one direction The Connectivity Filter:  This filter records the se-
still needs to be able to overhear the corresponding AGfence of association steps executed by each client. This
frames flowing in the opposite direction. Fortunately, wiaformation is recorded in local memory as the Connec-
never see ACKs transmitted at rates higher than 24 Mbfigity table, and this table is periodically flushed to the
which means that it is typically much easier for AirMonieentral database.
tors to overhear them than it is to overhear high data-rateThe connectivity table records this information as a se-
frames such as those sent at 48 or 54 Mbps. To decifince of association states, which are tuples containing
which AirMonitors to select during a given time interval(client, Bssid, state, NumFrames, NumAckaidng with
we simply use packet counts to figure out which AirMora start and end timestamp. The current association state
itor was best able to overhear the particular conversatidor each client represents the last non-probe management
Using the AirMonitor selection metric of most packpacket that was exchanged between the client and the AP
ets overheard is potentially in conflict with the randonwith the corresponding BSSID. The filter checks every in-



coming packet to see if it changes the current associat@mmpliant 802.11 frames. Unlike other filters which sum-
state of the client, and if so, the filter generates a new romarize the data, the Bad Frame filter simply submits the
in the Connectivity table. raw contents of bad frames to the database, as long as the
Note that certain events may appear in different sigame checksum is correct. The corresponding inference
guences than the one described above. For examplegine attempts to localize these packets, and generates
clients may perform an active scan which involves senports for our system administrators.
ing and receiving probes even while maintaining their cur-As one example, on our network we observed ap-
rent association with an AP. Similarly, clients may peproximately 10 to 20 frames per day, heard by multiple
form pre-authentication with another AP while assochirMonitors, that all followed the same pattern. These
ated [19]. frames carried a valid Frame Type (Control), but an in-
The above table only contains information about clientglid SubType. The FromDS and ToDS bits in the frame
that send or receive at least one packet. It does not hhgader were both set to 1, which is disallowed by the
any information about idle clients, or clients that are di§02.11 standard. At first glance, the frame payload of-
connected and have given up trying to associate to dayed few clues about their origin. Using our location en-
AP. The latter situation is particularly interesting, and maine we were able to calculate an estimated location for
arise when clients are in an RF hole. To address this, ggeh frame, and we found that the estimated locations
connectivity filter periodically sends out beacons pretendere always near two of the six APs on our floor. On
ing to be a valid AP, in an attempt to induce any cliengdoser inspection of the frame payloads, we realized that
in an RF hole to initiate the association process. Weset of 8 bytes in the frame was a nibble-wise rearrange-
mark these special beacons using an Information Elemar&nt of the MAC address of the AP near the estimated
(IE) so that the other AirMonitor filters can ignore thes@cation. We contacted our IT administrators with this in-
frames, but real clients will not. formation, and the AP vendor is currently investigating
The Connectivity Inference Engine: The inference this problem.
engine queries the central database and aggregates all tAdis example illustrates that our location engine is able
information submitted by the connectivity filters on thto accurately calculate estimated locations with just a few
AirMonitors. This complete view of all association eventsamples. Without the location information, we would
seen by our system is then sorted by timestamp. We th@ye been unlikely to realize that our APs were the ori-
take advantage of the time synchronization across A@in of these malformed frames.
Monitors to coalesce the same event seen by multiple Air- .
Monitors. This step is similar to trace merging [26, 12}; Experlmental Results

but at a coarser granularity. Finally, we perform a pospyr system is deployed on one floor of a fairly typical
processing sanity check over the coalesced sequencgifife building. Our building has rooms with floor-to-

events using our knowledge of the 802.11 association pggiling walls and solid wood doors. There is a corporate
cedure, similar in spirit to the analysis that WIT does fQjjreless LAN with six 802.11 a/b/g access points operat-
data transfers. ing on our floor. The six corporate APs offer service in
We use this final sequence of events to do detailed ansdth the 2.4GHz and the 5Ghz band. There is little traffic
ysis of client connectivity from various locations. We argn the 5GHz band in our building, so for the purpose of
able to characterize RF Holes even when communicatigfis paper we only monitored the 2.4GHz band. Our cur-
is possible in only one direction. We can also infer th@nt DAIR system deployment consists of 59 AirMonitors
duration of client associations to an AP, and we can detggtshown in Figure 3, and a single database server. The
regions where clients cannot maintain stable associationgmonitors testbed consists of various types of desktop
and therefore switch rapidly between APs. PCs. Each AirMonitor is equipped with either a Netgear
4.3 The Bad Frame Tracker WG111U or a Dlink DWL-AG132 USB wireless dongle.

One common problem facing the administrators of Iar&el System Validation

corporate WLAN networks is to locate non-complianiVe validate our system design in three ways. First, we
transmitters. A transmitter may send non-compliashow that our monitoring software and hardware, together
802.11 frames for many reasons, such as errors in hakith our channel assignment is capable of observing most
ware and/or driver software bugs. We see several exgmackets. We also show that the strategy used by the Client
ples of such malformed frames in our network. Althougherformance Tracker of selecting the best AirMonitor to
it is rare, such malformed frames may cause problems éserhear a particular conversation between a client and
certain receivers. Locating the source of such frames Gan AP does not result in excessive loss of information.
be helpful in debugging the underlying problem. Second, we evaluate the accuracy of our location system.

We have built a Bad Frame filter that logs only the noifrinally, we validate the efficacy of RF hole detection.



Figure 3:Floor map. The floor is 98 meters long and 32 meters wide. Numbered circles denote the locations of the six
corporate APs. Smaller circles mark the center of rooms containing our AirMonitors. The pattern of an AirMonitor
circle’s shading matches that of the AP it is configured to track. The shaded rooms are the 21 locations where a client
was temporarily placed during the validation experiment.

5.1.1 Frame Capture Validation the server, to establish the ground truth: the number of IP

To validate our strategy for capturing frames, we need Qgckets sent by the client and the server. These packets

show that we can successfully capture most of the trgppearas 802.11 Data frames on the air.
fic between clients located on our floor and the corpo-For the duration of the test, all the AirMonitors ran with
rate APs that they use. In particular, we must show tH3P tracking enabled, and they also ran a special debug-
at least one AirMonitor is able to hear most of the dafdnd filter that logs every 802.11 frame it overhears into
packets sent in the uplink direction, and at least one Aft-local file. We post-processed the AirMonitor 802.11
Monitor is able to hear most of the data packets sentf[@me logs to count the number of data frames overheard
the downlink direction. These AirMonitors need not by each AirMonitor that belonged to our TCP transfers
the same, since the Client Performance Tracker selects3fé that did not have the retry bit set, and selected the
best AirMonitor separately for uplink and downlink trafAirMonitor with the largest frame count. The reason we
fic. In our validation experiments, we focus on data pacjecused only on frames that did not have the retry bit set
ets, because management packets (e.g. beacons, prot Recause it is very difficult to know exactly how many
quests/response) and control packets (ACKs, RTS, CT&ly frames are sent on the air. It may have been possible
are generally smaller than data packets, and are serfPhtS t0 instrument the client device driver to count the
lower data rates compared to the data packets. Theref8tgTber of retry frames sent, but it was not possible for us
it is generally easier to overhear these packets. to instrument the APs to count retries. On the other hand,
To carry out the validation, we began by selecting 21 |ysing packet trgces on the client and server machines al-
cations on our floor. We chose one location in the pubffews Us to precisely count the number of frames that are
lounge on our floor, which does not have an AirMonitct€nt without the retry bit set.
in it. We chose ten office locations at random from amongFor each transfer, we calculate the percentage of missed
the set of offices thahavean AirMonitor in them, and packets by: comparing the frame count from the best up-
we chose ten more at random from the set of offices tiik AirMonitor with the packet count from the client
did not havean AirMonitor in them. Our tests were confacket trace; and comparing the frame count from the
ducted in the evening to allow us to enter offices withol&st downlink AirMonitor with the packet count from the
disturbing the occupants. server packet trace. The results of these experiments are
The experiment we performed at each location is as f§own in Table 2 for all 21 locations. This data shows
lows. We placed a laptop equipped with an 802.11g cdhtt the highest percentage of missed packets for any up-
in the location, and we performed a 2 MB TCP uplodink transfer was only 7%, and the highest percentage of
and a 2 MB TCP download over the corporate wirele§¥ssed packets for any downlink transfer was only 3.5%.
network. The other end of the TCP connection wasPievious work has shown [26] that one needs only an 80%
server attached to the corporate wired network. We dkapture rate to fully reconstruct the traffic pattern.
served that the vast majority of data packets sent on thé&siven that our system experiences such low packet loss
air in both directions were sent at the 54 Mbps rate. Natate even for short bursts of very high data-rate traffic, we
that in each location, the client associated with whichevaglieve that in normal operation, we lose very little traffic
AP it deemed best; we made no attempt to control tHrem the clients that are located on our floor. The robust-
selection. We collected packet traces on both client anelss of our deployment, due to the density of AirMoni-



S S Ui”;!‘AMS — Framefo";fg:{”:Ms o cation of the client and which AP the client chooses to
missed | saw> 90% missed | saw> 90% associate with.
(%) frames (%) frames Note that for this experiment, the AirMonitors record

1 2.7 4 14 4 the RSSI of any packet they can attribute as sent by the

g g'g i 8'2 i client. For example, before starting the data transfer, the

4 33 3 35 4 client may perform an active scan to select an AP by send-

5 3.8 4 2.2 4 ing probe requests on various channels. If an AirMonitor

f7‘> ig 2 ;g g overhears any of these probe requests, it will include them

8 39 4 07 14 in its RSSI galculatlons. _ _

9 6.4 ) 0.3 16 We submit these RSSI values to the location engine to

10 1.9 1 1.4 5 produce an estimate of the client location using each of the

11 2.0 3 19 5 three local algorithms. For the spring-and-ball algorithm,

E ig i g-i g we need to use a profile. This profile was generated on a

14 38 > 14 5 normal weekday between 2 to 3 PM, three days before the

15 1.8 3 1.3 2 location experiment was conducted.

16 4.6 2 3.1 4 To calculate the location error, we need to calculate

1; %:(5) g ;:3 g the distance between the estimated location and the actual

19 59 3 23 14 client location, which means that we need to know the ac-

20 1.8 3 0.4 4 tual client location. When we conducted the experiment,
[Lounge| 52 | 2 [ 20 | 4 |  we usually placed the laptop on the occupant’s office desk.

) ~ Because there is no easy way for us to determine this ac-
Table 2:Baseline Data Frame Loss Results. The first 105 jocation, we simply assume that the client was placed

offices have AirMonitors in them, the next 10 offices @@ the center of each office. We call this the “assumed
not. The lounge does not have an AirMonitor. actual” (AA) location of the client. This assumption is
Offices With AM | Offices Without AM consis_tent with the assumption we m_ade during the boot-
Algorithm Min T Med | Max | Min 1 Med | Max | Strapping process when we automatically determined the
StrongestAM | 0 0 65 | 29 | 35 | 104 |AirMonitor locations. Because our target for the location
Centroid 0 0 32 | 0.2 | 25 | 5.9 |systemisonly office-level accuracy, this assumption is ad-
Spring and ball| 0 0 3 09 | 19 | 6.1 |equate for our purposes.
] . ] Table 3 lists the summary of the results of this experi-
Table 3: Comparison of three location algorithms. Numment, Our criteria for “office-level” accuracy is less than
bers report error in meters. 3 meters, since our offices are roughly 10 ft by 10 ft. We

tors, is evident from the fact that for most locations multi€€ that the StrongestAM algorithm works well only for
ple AirMonitors can see more than 90% of the uplink arfgose offices which contain an AirMonitor, which is as
downlink frames. There were 4 locations where only @pected. When there is no AirMonitor at the location,
AirMonitor captured more than 90% of the frames sent [R€ strongest AM is usually in one of the neighboring of-
uplink direction. All these locations are at the south ediges, and we will estimate the client location to be in the

of our floor, where the AirMonitor density is less than &énter of that office. As a result, the minimum error will
the north end. be roughly equal to the size of one office, which is what

we see from these results. In a few cases, we even see that
the StrongestAM algorithm reports a non-zero error when
In this section, we evaluate the accuracy in our depldjrere is an AM in the same location as the client — this
ment of the three simple location estimation algorithnfgppens when an AM in another room reports a higher
described in Section 3.1. To perform this validation, waignal strength.

use the same data collected for the frame capture validawe also see that the Centroid algorithm performs quite
tion experiment. Along with the debugging filter that loge/ell, and provides office-level accuracy in most cases. We
every 802.11 frame, the AirMonitors also ran another fiddso see that the performance of the Centroid and Spring-
ter that kept track of the average RSSI of the packets santl-ball algorithms is generally similar, as one would ex-
by the client during the experiment. At the end of the epect from our deployment. The Centroid algorithm will
periment the AirMonitors submitted these average RS&ily generate a large error if the AirMonitors that hear
values to the database. Note that for each client locatipackets from the client at high signal strength are all on
only a subset of the AirMonitors hear packets sent by thae side of the actual client location, and this rarely hap-
client. The number of AirMonitors that hear at least orgens in our deployment, for a couple of reasons. First,
packet depends on a number of factors including the ldients tend to associate with APs that are near their lo-

5.1.2 Accuracy of the Location Engine

10



cation, and because each AirMonitor tracks the AP it is
closest to, clients are generally surrounded by AirMoni-

tors that are all listening on the same channel the clien %@ 5
is transmitting on. In addition, most clients tend to ro g :

tinely scan on all channels, sending probe requests to | [;[ - T ;
cover nearby APs. These probes are overheard by { | s E‘ - :
ferent groups of AirMonitors tracking different APs, an (1t E Lﬁ 5 k © Good Connection

. . 1 »Bad C i
this helps solve the boundary problem. Given the ge o omeson

|
: . | . ,,,,,,, | © No Connection
erally good performance of the Centroid algorithm, the

Spring-and-ball algorithm can not provide significant if-'gure 4:RthOI$] vahd:gc;n expr:arlmhen;. :jNeﬁz'attemprtheddto
provement in our environment. connect to the shown rom the shaded offices. The dots

- show the estimated client locations, and the classification
We can, however, show specific examples of the bounq- .
each location.

ary problem in our environment. When our laptop cliefit

was in the p“*?“c Ioun_ge, we estimated its location uﬁéctivity Tracker’s classification and location estimate for
ing the Centroid algorithm and found the error was 3 ch test location

meters. The Spring-and-ball algorithm, however, has theFinaIIy, we also checked for RF holes on the opera-

advantage of the profile information. It correctly realizeg o1 WLAN in our building. The Connectivity Tracker
that the client is far away from all the AirMonitors that callig not find any clients that appeared to have difficultly

hear it, and moves the client to minimize the error. AS@nnecting for more than 3 minutes, indicating that all ar-
result, the error reported by the Spring-and-ball algorlthgés of our floor have at least some WLAN coverage.
is only 0.6 meters in this case.

We have evaluated the Spring-and-ball algorithm exted-2 Deployment on a Operational Network

sively under various conditions, and we found that, in Oy this section, we demonstrate the utility of our system by
environment, the improvement it offers over the Centrojgking it to monitor the corporate WLAN on our floor. We
algorithm is small. Because the Spring-and-ball algorithflesent results generated by both the Client Performance
requires generation of profiles, we use the Centroid alggacker and the Connectivity Tracker. Unless mentioned
rithm for estimating location for the rest of this paper. otherwise, the results described in this section are calcu-
While the above validation experiments were carriggted over a period of one work-week; Monday, October
out at night, we have also extensively validated our sy®ad through Friday, October 6th, 2006. We only report ac-
tem at various other times of the day. We found that thigity between 8am and 8pm each day, since there is very
accuracy of the location system is unaffected by factaigle traffic on the network outside of these hours. There
such as the presence of people in their offices and othgis one 23 minute period of down-time on October 3rd
traffic on the WLAN. due to a database misconfiguration.
513 Validation of RF Hole Detection _ Because our building has four floors and our testbed
is only deployed on one of them, we need to filter out
The Connectivity Tracker is designed to detect areasalients who are located on other floors of our building.
poor RF coverage, from which clients persistently fail tohis is because we cannot report accurate locations for
connect to the corporate WLAN. We validated our alg@hose clients, and because we cannot overhear any of their
rithm and implementation in two ways. First, we removeltigh data-rate transmissions. We performed experiments
the antenna of a wireless card so that its transmissighere we carried a laptop to the floors above and below
range was severely restricted. This card was unableoigr own, and we devised the following threshold based
communicate with the AP, but because of the high desn those experiments: we consider a client to be located
sity of AirMonitors, we were able to hear its packets, ansh our floor during a particular 15 minute interval if at
the Connectivity inference engine located and flagged tleast four AirMonitors overhear that client, and at least
client as in an RF hole. one of them reports a mean RSSI for transmissions from
For our second experiment, we set up a test AP in otiat client of at least -75 dBm.
office, and used a laptop to test the connectivity to the tesFigures 5 and 6 provide a high-level view of the amount
AP from 12 locations on our floor, as shown in Figure #f activity on our WLAN. Figure 5 shows both the aver-
From 4 of these locations, the laptop had good connegie and the maximum number of active clients on a per-
tivity; from 2 of these locations the Connectivity TrackeAP basis for the six APs on our floor. The averages are
flagged a high number of AP switches, indicating unstahtalculated over 15 minute intervals, and “active” simply
connectivity; and from 6 of these locations the Connectimneans that the client exchanged at least one frame with
ity Tracker detected an RF hole and successfully locatixg AP. The number of clients associated with an AP can
each of them. This Figure shows the results of the Cdre as high as 12, although the average is lower. Figure 6
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60 seconds. centile, median and0‘" percentile). downlink traffic. (G clients only).

shows the average uplink and downlink traffic (in kilodue to poor AP placement. This AP is supposed to serve
bytes), measured over 15 minute intervals. As expectéte south end of our building, yet due to the presence of a
downlink traffic volume is substantially higher than th&arge lab facility the offices at the far end of the building

uplink traffic volume. are too far away from this AP (and they are even further

Next, we look at client association patterns. Figuredway from all other APs).
shows the CDF of the distance between clients and théVe also study the impact of client location on connec-
APs theyattemptto associate with. Not all these assoction quality. We use two metrics to evaluate connection
ation attempts are successful. However, it is interestiggality: byte-averaged transmission rate, and packet loss
to see 40% of the clients attempt to associate with an A&te. For this evaluation, we only consider those clients
that is over 20 meters away. This is surprising because that transmit at least 50 Data frames on either the uplink
average distance to the nearest AP from any location arthe downlink.

our floor is Only 10.4 meters. While some of this diSCfep' Figures 10 and 11 show the impact of the distance be-
ancy may be due to RF propagation effects, we belieNgeen clients and APs on both uplink and downlink trans-
that poor AP selection policies implemented in certajjission rates. For these two graphs we only considered
Wi-Fi drivers also play a role. While clients do attempijients that were operating in 802.11g mode. The filter-
to associate with far-away APs, they generally do not stgyy is necessary because the maximum transmission rate
associated with them for long. In Figure 8 we look at thgr 802.11b is only 11 Mbps. These graphs illustrate two
connections that lasted for more than 60 seconds. We gfi€resting points. First, we see that the distance between
that When a Client iS further than 20 meters from an Aa,ients and APs haS a Significant impact on both upiink
the probability that it will have a long-lived connectioryng downlink transmission rates. When a client is more
with that AP is small. than 20 meters away from an AP, the median data rate on
We also use client association behavior to evaluate thath the uplink and the downlink is less than 10 Mbps.
effectiveness of the AP placement on our floor. In Fig¥e also see that for a given distance, the uplink rates are
ure 9, we take a closer look at client distance from tlyenerally higher than the downlink rates. We believe that
perspective of the 6 APs on our floor. We find that for Afhis is due to two reasons. First, we measured that the
3, the median distance of associated clients is larger thPs on our floor use lower transmission power levels than
that of the other APs, and 90% of the clients that assoost client Wi-Fi cards, and this is likely done to mini-
ciate with this AP are more than 15 meters away. Thisnsize interference. Second, the chosen rate is heavily in-
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Figure 11: Impact of the distance beFigure 12: Impact of the distance beFigure 13: Impact of the distance be-
tween clients and APs on transmissitmeen clients and APs on the loss ratetefeen clients and APs on the loss rate of
rate of uplink traffic. (G Clients only). downlink traffic. uplink traffic.

fluenced by the frame loss rate, and as we will see shortly,
the downlink loss rates are noticeably higher than the up-
link ones.

We also looked at similar graphs for clients that appear
to operate only in 802.11b mode. The impact of distance
on the transmission rate is much less pronounced for these
clients. This is because the maximum transmission rate is
capped at 11 Mbps, and the lowest data rates (1 and 2
Mbps) are rarely used even at moderate distances.

Next, we look at the impact of distance on frame IO‘rli‘—igure 14:Region of poor performance. The circles indi-

rates. Figures 12 gnd 13 show the downlln_k and Upll%ate locations where clients connected to at least 5 APs.
loss rates, respectively. We see that downlink loss rates

are significantly higher than uplink loss rates. The me-

dian downlink loss rate for clients within 20 meters of thQiOﬂS. One area stood out as worse than the others, and is
AP is 20%, while the median uplink loss rate is only 3%ighlighted in Figure 14. The median downlink loss rate
Mahajan et. al. have reported comparable results in [2@]r clients in this area was 49%, which is substantially
Furthermore, distance seems to have a much bigger fiisher compared to clients in other regions. In addition,
pact on downlink loss rates than it has on uplink loss rat@se median byte-averaged downlink transmission rates for
The median downlink loss rate for clients that are motgients in this area is only 7.3 Mbps. We also noticed that
than 20 meters away from APs is almost 50%. Note th@kny clients in this area tend to associate with multiple
this is the MAC-layer frame loss rate. A 50% MAC layepPs, some on other floors. The circles in Figure 14 indi-
loss rate, with 4 retransmissions which is typical for moghte locations from which the clients connected to at least
802.11 devices, would translate into a 6.25% loss ratesaficcess points. In most other regions, the clients tend to
the network layer if losses were independent. associate with one or two APs. This indicates that poor
The high downlink loss rate may be the result of aggre&P placement is one potential cause of clients’ poor per-
sive rate adaptation algorithms on the AP. As mention&afmance in this area.
earlier, our APs transmit at lower power levels than most .
clients. An aggressive rate adaptation algorithm can cagsg’ Effects of Density
a high frame loss rate at low transmit power. We investjve investigate the effects of AirMonitor density on our re-
gated in detail those cases when the reported downliikts by randomly selecting subsets of our 59 AirMonitors
loss rate was higher than 80%. In some of these cag@g eliminating the data collected by those AirMonitors
none of the AirMonitors heard any of the ACK packetgom our analysis. We then recalculate the graphs shown
sent by the client, resulting in incorrect loss estimatiom the previous section for three different densities: 25%,
and the total number of frames transmitted was smalo, and 75%. Reducing the number of AirMonitors re-
These cases account for less than 2% of the samples. duces the amount of traffic observed, and also reduces the
We also considered whether there are any regionsamturacy of the location results. At 25% density, the to-
our floor where clients see consistently poor performantal amount of traffic observed during the entire one week
We divided the area of our floor into 14 by 16 meter regpberiod is reduced to 78% of the original total, and at 50%
angles. We looked at the median loss rate and the medi@nsity it is reduced to 95% of the original. We believe
transmission rate of clients who were located in each that many of the frames that are lost in the lower density
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Figure 15:Each figure shows the impact of the distance between clients and APs on downlink transmission rates. The three figures
are calculated using AirMonitor densities of 25%, 50%, and 75%, respectively.

configurations are those frames sent at higher transnsigring that only nearby AirMonitors hear a strong signal
sion rates, and we are currently investigating this furthefrom a given transmitter. In other settings (e.g. cubicles),
For many of the performance statistics, we see qualitaany more AirMonitors may receive a strong signal from
tive differences in the results at densities of 25% and 5086given transmitter. This may degrade the accuracy of the
whereas the 75% density results tend to look quite simif@entroid algorithm.
to the 100% results. For example, in Figure 15, the three Our system currently requires that each AirMonitor
side-by-side graphs show the relationship between dovirack the channel of nearest the AP. This strategy is ap-
link transmission rates and the distance between clieptspriate for the management applications described in
and the APs to which they are associated. The leftmdisis paper, as clients in the region near an AP are also
graph shows the results for 25% AirMonitor density, théely to associate that AP, and therefore operate on the
middle graph shows the results for 50% density, and riglsme channel as our AirMonitors. Other channel assign-
most graph shows the 75% results. For comparison, thent strategies may be appropriate for other applications.
100% density results are shown in the previous sectionFior example, for wireless security applications, it is de-

Figure 10. sirable to monitor as much of the spectrum as possible
) ] in each area. This can be accomplished by having each
6 Discussion AirMonitor randomly cycle through all channels, spend-

) ] ] ] ) ing some time on each. We are also considering signal-

In this section, we discuss various issues related to gl?ength based channel assignment.
performance and effecyveness ofour system. ) e Because scalability is an important design goal, we
» Our system determines the locations of the AirMOfjefly summarize measurements of our system’s scala-
itors by guessing the primary user of the machine, agfi," puring the full work week of operation, the size
then reading the building map. We repeat this process Bey|| our database tables grew by just under 10 GB. Each
riodically to ensure accuracy of the AirMonitor locationsajyponitor generated less than 11 Kbps of traffic on the

If @ machine is moved without its location being Upyired network submitting summaries to the database. We
dated, the client locations that relied on observations fragbnitored the additional CPU load we placed on the Air-
the moved AirMonitor may be in error. So far, we havgonitors, and this load rarely exceeds 3%.
not had any problems with unannounced machine movgs.goh the Ioss rate and the transmission rate statistics

We note that we can automatically detect when a machjng. jated by the Client Performance Tracker asi-

is moved far away from its original location. Each Airgate For transmission rates, AirMonitors are less likely

Monitor is aware of its neighbors, and if the neighbor sg§ ,erhear high transmission rate frames, so it is likely
changes significantly, the system administrator can be jos; \ve are underestimating the true rates. We may over-
tified. However, if the AirMonitor is moved only & shorlygtimate oss rates if no AirMonitor overhears many of
distance (say to the next office), we may not be ablet% Data packets sent without the retry bit set. However,

automatically detect such a move. In such cases, the effl g its of our validation experiment in Table 2 give us
introduced in the estimated client locations is also likely)1tiqence that this is unlikely.

to be small.

e We have not studied the accuracy of our location sYF- Related work

tem in settings other than our office floor. It is likely

that the accuracy of the location system, and specificallycation Estimation: Many researchers have built
that of the Centroid algorithm, is helped by the fact thaystems for location estimation in WiFi networks.
our offices have full-height walls and solid wood door&RADAR [7] uses pattern matching of received signal
The radio signal fades rapidly in such an environment estrength at a client from various landmarks, such as APs,
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to locate a Wi-Fi client. Further refinements of the idéag nodes whereas we add off-the-shelf USB wireless
appear in several subsequent papers [23, 22, 30, 10, &dppters to end-user desktops. Jigsaw generates full
These schemes include a manual profiling phase, whimdcket traces at every monitoring node and performs a
requires the network operator to collect RF fingerprintgntralized merge of these traces, whereas our monitors
from a large number of locations. Many of these schemgsnerate application-specific traffic summaries, and we at-
are designed to allow WiFi clients to locate themselvesempt to select the “best” monitor for hearing a particu-
not for the system to determine where the client is. V& communication to avoid having to merge observations
note that some of the techniques described in these paen® multiple monitors. With full packet traces, Jigsaw
can be used to enhance the accuracy of our system as walh provide a detailed look at low-level network effects

ActiveCampus [9] uses a hill-climbing algorithm to apsuch as interference, that DAIR can only guess at.
proximate the location of a mobile user using samplesin [15], the authors describe a simple packet cap-
from multiple APs. The accuracy can be further enhancite utility and how they used it for intrusion detection.
by using feedback from mobile users. WIT [26] is a toolkit for analyzing the MAC-level behav-

The Placelab project [24] incorporates a self-mappitff Of WLANS using traces captured from multiple van-
nodes. This system is geared towards outdoor enviréhation tool. We have discussed the relationship between

ments and the average location error is 31 meters. ~ WIT and our approach throughout the paper.

Location estimation has also been studied for wireless" [4]: the authors present a system for diagnosing

sensor networks. Systems like MoteTrack [25] are didults in Wi-Fi networks. They study some of the same
signed for emergency management environments, andf@Plems that we do, and their techniques for locating
quire extensive prior manual profiling. Sextant [16] usgésconngcted cI|en.ts are some\_/vhat similar to ours. How-
a small number of landmark nodes to determine the &Y€l their system is based entirely on observations made

gion of a sensor node. It works by formulating geograpl"ﬁ’é’ mobile clients. It requires installation of special soft-

constraints on the location of the node. A key idea pare on clients. Furthermore, the accuracy of their loca-

hind Sextant is to use information about which nodas tion ;ystem is significantly worse than ours: they report a
nothear each other. In our system, we can not be certgifdian error of 9.7 meters.

about the transmit power of the clients. Therefore we cgffmmercial wireless network monitoring systems:
not directly use Sextant’s model. Currently, a few commercial systems are available for

Location systems that use non-RF technologies sucl'ma\rseless netwo;k monitoring gnd_ dlagn05|sr.] M‘Zny Of.
ultrasound [29] are outside the scope of this work. ese systems 1ocus on secunty ISSUes such as etecting
rogue APs, which was the subject of our previous pa-
Research wireless network monitoring systemsSev- per [5].
eral researchers have studied mobility and traffic patterndJnlike research systems, only a few selective details are
in enterprise wireless networks. In [8], the authors chasublicly available about the performance of commercial
acterize wireless traffic and user mobility in a large cosystems. Below, we present a summary comparison of
porate environment using SNMP traces. They can not BiAIR with two commercial monitoring systems, using the
rectly observe either user location or phenomena suchctsims they make in their marketing literature and white
MAC-layer retransmissions. In [21, 18], the authors stughapers available on their websites.
traffic and usage patterns in an academic wireless netAirTight Networks [2] sells a system called Spectra-
work. In [20], the authors study usage patterns of WLASuard, which has many features similar to DAIR. Spectra-
at at IETF meeting. In these studies, the user locationgisard, however, requires the use of special sensor nodes
characterized by the AP that the users are associated wfifit have to be manually placed in various places within
Our results show that users sometimes associate with AR area to be monitored. It also requires special software
that are far away. to be installed on the clients. The system is focused on
Jigsaw [12] is a WLAN monitoring system that usegetecting threats such as rogue access points. Spectra-
multiple monitors and trace combining to generate a coguard also provides RF coverage maps and some perfor-
prehensive view of network events. There are two k&yance diagnostics, although the details are not available
differences between Jigsaw and our system. First, Jigthe published data sheets. Spectraguard includes a lo-
saw does not include a location engine and hence whation subsystem. However, details about how it works,
it is used to detect performance problems it cannot p@ad what accuracy it provides are unavailable.
vide specific information about the location(s) of the AirDefense [1] also sells a system for monitoring of
client(s) experiencing those problems. Second, Jigsewrporate wireless networks. Like SpectraGuard, this
is architecturally is very different from our system. Jigeroduct also focuses on wireless security problems. It also
saw uses dedicated, custom-built, multi-radio monitarequires use of special wireless sensors, and installation
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of special software on end systems. The key differenti1] R. Chandra, J. Padhye, A. Wolman, and B.Zill. A Location-Based

ating feature of this product is called “RF Rewind”. The Management System for Enterprise Wireless LANs. Microsoft Re-
. _ search Technical Report MSR-TR-2007-16. February 2007.

S,ensors CO,”eCt Uptq 270 measurements per wireless [g_ Y.-C. Cheng, J. Bellardo, P. Benko, A. Snoeren, G. Voelker, and

vice per m|nute. ThIS da.ta can be |a.ter Used fOI’ fOI‘enSIC S. Savage. J|gsaw So|v|ng the puzz|e of enterprise 802.11 ana|y_

investigations. The product includes some location de- sis. INSIGCOMM 2006.

termination features, although the details are not publidh?! F- Dabek, R. Cox, F. Kaashoek, and R. Moris. Vivaldi: A decen-

. . . . tralized network coordinate system. $iGCOMM 2004.
available. It is not clear what performance diagnostic 041 3. R. Douceur and W. J. Bolosky. Progress-based regulation of

formation is pI’OVided by AirDefense. low-importance processes. 8DSP1999.
. [15] S. Felis, J. Quittek, and L. Eggert. Measurement based wireless
8 ConCIUS|On LAN troubleshooting. InWinMeg 2005.

[16] S. Guha, R. Murty, and E. G. Sirer. Sextant: A unified node and
We have built a scalable, and easy-to-deploy WLAN man- eventlocalization framework using non-convex constraintsldn

agement system that incorporates a self-configuring loca- PiHoc 2005.

fi . Usi t itored 1 A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach,
Ion engine. Using our system, we monitored an opera-" 4| g kavraki. Practical robust localization over large-scale

tional WLAN network. Our results show the importance  802.11 wireless networks. MOBICOM, 2004.
of knowing the locations of WLAN clients in understandH8] T. Henderson, D. Kotz, and I. Abyzov. The changing usage of a
ing their performance. Therefore, we have demonstra}re% mature campus-wide wireless network.MIOBICOM, 2004.

h df | . . . . b . 19| IEEE802.11b/D3.0. Wireless LAN Medium Access Con-
the need for a location estimation engine to be an integra trol(MAC) and Physical (PHY) Layer Specification: High Speed

part of any WLAN management system. We have also Physical Layer Extensions in the 2.4 GHz Band, 1999.
demonstrated that by using a dense deployment of witeg¥ A.Jardosh, K. Ramachandran, K. C. Almeroth, and E. M. Belding-

less sensors, one can use simple algorithms to estimate Eg?’g I;’I"Jgrsztggg'”g congestion in IEEE 802.11b wireless net-
client location and performance. Finally, we showed thagt; p_kotz and K. Essien. Analysis of a campus-wide wireless net-

a dense deployment of wireless monitors can be achieved work. InMOBICOM, 2002.
in a cost-effective manner using the DAIR p|atform' [22] J. Krumm and E. Horvitz. Locadio: Inferring motion and location

: : from WiFi signal strengths. IMobiquitous 2004.
Although the focus of this paper has been on usi ] A. M. Ladd, K. E. Bekris, A. Rudys, G. Marceau, L. E. Kavraki,

location to improye the .performance and re"abi!ity Of  and D. S. Wallach. Robotics-based location sensing using wireless
WLANSs, the location engine we have built is also directly  ethernet. Ir'MOBICOM, 2002.
applicable to the wireless security management appli¢3 A- LaMarca, J. Hightower, 1. Smith, and S. Consolvo.  Self-

. . mapping in 802.11 location systems. Uihicomp 2005.
tions that were the focus of our previous DAIR paper [5][‘25] K. Lorincz and M. Welsh. Motetrack: A robust, decentralized

approach to RF-based location tracking LiCA 2005.
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