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Abstract

Human-aided computing proposes using information
measured directly from the human brain in order to per-
form useful tasks. In this paper, we extend this idea by fus-
ing computer vision-based processing and processing done
by the human brain in order to build more effective object
categorization systems. Specifically, we use an electroen-
cephalograph (EEG) device to measure the subconscious
cognitive processing that occurs in the brain as users see
images, even when they are not trying to explicitly clas-
sify them. We present a novel framework that combines a
discriminative visual category recognition system based on
the Pyramid Match Kernel (PMK) with information derived
from EEG measurements as users view images. We propose
a fast convex kernel alignment algorithm to effectively com-
bine the two sources of information. Our approach is val-
idated with experiments using real-world data, where we
show significant gains in classification accuracy. We an-
alyze the properties of this information fusion method by
examining the relative contributions of the two modalities,
the errors arising from each source, and the stability of the
combination in repeated experiments.

1. Introduction
Visual category recognition is a challenging problem and

techniques based on computer vision often require human
involvement to learn good object category models. The
most basic level of human involvement is providing labeled
data that the system can use to learn visual categories. Since
this labeling process is often very expensive, much recent
work has focused on ways to reduce the number of labeled
examples required to learn accurate models [5, 12, 23].
These systems aim to maximally utilize the human effort in-
volved in labeling examples. Other ingenious solutions for
the labeling problem include embedding the labeling task in
popular games [39, 40], and asking users to provide finer-
grained information by selecting and labeling specific ob-
jects within images [1].

This paper explores a new form of human involvement
by directly measuring a user’s brain signals so as to pro-
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Figure 1. The proposed framework to combine vision computa-
tions with human-brain processing for visual category recognition.

vide information to the machine with little conscious ef-
fort. This approach is built on the realization that the hu-
man brain subconsciously processes different images in dif-
ferent ways measurable by certain brain-sensing technolo-
gies, even when the user is not trying to categorize images.
The advantages of fusing this information with traditional
computer vision-based techniques are several-fold. First,
by observing how human brain processes help boost tradi-
tional vision-based methods we hope to gain insight into
aspects of images and categories that are currently unmod-
eled by computer vision algorithms. This can help us build
systems that match the robustness and flexibility of the hu-
man visual system. Second, even with explicit human in-
volvement, gathering labels for building visual categoriza-
tion systems is an expensive process. It is well known that
informative brain responses are observed even when im-
ages are displayed for only 40ms [15]. By exploiting the
implicit processing in the human brain with rapid presenta-
tion of images, we can significantly speed up the labeling
process and reduce the amount of labeled training data we
need to collect. Finally, since computers process images
very differently from our brains, the two modalities pro-
vide complementary information and should lead to more
effective classifiers. Techniques based on computer vision
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Figure 2. The figure shows the across-subject average EEG re-
sponse to images containing animals, faces and inanimate objects
respectively. The x-axis is time in seconds where each image is
presented at time 0. Also shown are the spatial distribution of the
signal at three specific time instants for each of the three classes
(red corresponds to positive values, and blue corresponds to neg-
ative values). The difference in responses is sufficient to build an
object categorization system based on EEG.

focus on various imaging transformations and intra-class
variations and are often motivated by the specific vision-
centric tasks. However, human brain processes tend to be
fairly task-invariant and show characteristic responses that
are more likely due to contextual or semantic associations.

In this work, we focus on the advantages of effectively
combining the two different processing modes to build bet-
ter visual categorization models. Specifically, the two main
contributions of this paper are 1) a system that learns vi-
sual categories by combining information from visual im-
age features with the information measured from a human
brain processing images and 2) a kernel alignment based
fusion scheme that combines the two modalities in a prin-
cipled and efficient manner. We show, using data from hu-
man users, that such a combined system can significantly
improve visual category classification.

Figure 1 depicts our overall framework for image cat-
egorization. The computer vision component of our sys-
tem is based on the Pyramid Match Kernel (PMK) [16], a
local feature correspondence kernel for object categoriza-
tion. Object recognition based on local features has been
shown to have several important advantages, including in-
variance to various translational, rotational, affine and pho-
tometric transformations and robustness to partial occlu-
sions [27, 28]. The second component of our system is the
brain-process module that measures EEG data from single
or multiple users. This module complements the visual fea-
tures with activations in a human brain as images are pre-
sented to multiple subjects. Our system combines these two
modalities using a fast convex kernel alignment criterion
and learns visual category models that are superior to the
ones trained on only one of the modules. In the following
sections, we present background on object categorization
and EEG, describe the technical details of the framework,
and then present our validation experiment and results.

2. Background
2.1. Object Categorization with Pyramid Match

Kernel
Object category recognition has long been a topic of ac-

tive interest in computer vision research. Many popular
methods are based on local feature descriptors (c.f. [27, 28])
and have been shown to offer invariance across a range of
geometric and photometric conditions. Early models cap-
tured appearance and shape variation in a generative prob-
abilistic framework [13], but more recent techniques have
typically exploited methods based on SVMs or Nearest
Neighbor methods [10, 30, 36, 42]. In our work, we adopt
Grauman and Darrell’s Pyramid Match Kernel [16] and
express vision-based similarity between images in terms
of partial match correspondences. We chose this method
largely for its efficient linear-time approximation of the op-
timal partial-match correspondence.

Sets of local features provide a useful image representa-
tion for object categorization, as they often show tolerance
to partial occlusions, object pose variation, and illumina-
tion changes. Generally an image is decomposed into local
regions or patches, possibly according to an interest opera-
tor, and then a local descriptor is extracted to describe the
shape or appearance of these patches. The matching or cor-
respondence between two such sets can often reveal their
overall similarity and localize highly distinctive object fea-
tures. Recent research has produced several specialized set-
correspondence kernels to exploit this property for object
recognition [16, 26, 41, 42].

The Pyramid Match Kernel approximates the partial
match similarity between sets of unordered feature vec-
tors. Given a set of feature vectors, S = {s1, . . . , s|S|}
where all si ∈ <d, an L-level multi-resolution histogram
Ψ(S) = [H0(S), . . . ,HL−1(S)] is computed. This pyramid
bins the features in such a way that an implicit hierarchical
matching between S1 and another set S2 can be read off in
time linear in max(|S1|, |S2|). The pyramid match kernel
(PMK) value between two input sets S1 and S2 is defined as
the weighted sum of the number of feature matches found
at each level of their pyramids [16]:

K∆ (Ψ(S1), Ψ(S2)) =

L−1∑
i=0

wi

(
I (Hi(S1), Hi(S2))− I(Hi−1(S1), Hi−1(S2))

)
where I denotes histogram intersection, and the differ-

ence in intersections across levels serves to count the num-
ber of new matches formed at level i, which were not al-
ready counted at any finer resolution level. The weights are
set to be inversely proportional to the size of the bins, in
order to reflect the maximal distance two matched points
could be from one another. As long as wi ≥ wi+1, the
kernel is Mercer.

The matching is partial in that some features may not
have good matches but are not penalized in the matching



Figure 3. The figure shows a standardized layout for electrode
placement in a 32-electrode EEG measurement system [21], pic-
tured from the top, with nose and ears shown for orientation. Also
marked in red are the electrodes used for analysis in this paper.

score, and thus some clutter and background features is tol-
erated. The linear-time PMK offers a computationally ap-
pealing alternative to the cubic-time optimal matching. This
is useful in our application since densely sampled local fea-
tures are known to often yield better accuracy on category-
level recognition problems [20, 26]. In addition, since PMK
is a Mercer kernel, we can train an SVM based on a pool
of labeled images using K∆ [16], thus using the unordered
sets of interest points in each image to determine visual sim-
ilarity between images.

2.2. Brain Computer Interface
We use an electroencephalograph (EEG) device to ob-

serve cognitive activity as the images are being presented to
a human subject. Electroencephalography or EEG, is a neu-
rophysiological measurement of brain activity using elec-
trodes placed on the surface of the scalp (see e.g. [14]). Re-
searchers often examine behavioral correlates in EEG sig-
nals by measuring the event-related potential (ERP), which
represents the spatiotemporal shape of brain measurements
in response to a discrete stimulus. By averaging this re-
sponse across multiple presentations of stimuli and multiple
subjects, researchers can learn about aggregate differences
in response between different classes of stimuli [18, 22]. As
an example, the presentation of a human face is commonly
connected with a pronounced negative drop in signal am-
plitude in certain channels approximately 170ms following
stimulus presentation [33].

For example, Figure 2 depicts brain responses as images
with three different labels are shown to human subjects from
the data we use in our work. In this figure, responses are
averaged across multiple image presentations and each line
represents the measurement of one of the channels from the
EEG device in the first 0.5s following stimulus presenta-

tion. For visualization purposes, scalp maps of the elec-
trode readings for three time points are shown, highlight-
ing the spatiotemporal difference in the EEG response to
each category of images. Note that the responses are signif-
icantly different for the three categories and there is enough
discriminatory signal to train a classifier, indicating the dis-
criminative power that may exist in this signal.

Related to this research is the study of brain-computer
interfaces (BCI), which aim to allow users to communicate
with the external world using brain signals alone [4]. Many
BCIs are based on a “recognition response” called a P3001

that is evoked by stimuli of interest to the user. By detecting
which of a series of stimuli (e.g., images, menu options, let-
ters) generate this response, such systems can decode the
user’s intent or attention, and establish a communication
channel such as a spelling device [11].

Gerson and colleagues [15] exploit this P300 response
in their system for “cortically coupled computer vision”,
in which the user intentionally performs visual search on
a sequence of rapidly presented images, looking for a des-
ignated target image. The system can detect target images
using the brain response alone, in certain cases faster than
possible by manual identification using button presses. This
system requires the user’s explicit intent in searching for a
single target or category of targets, and is a “target detec-
tor” system, rather than a detector for a specific category of
objects. As a result, the study did not use computer vision
algorithms to enhance the EEG-based results.

We base our work on that done by Shenoy and Tan [35],
who propose a complementary system for “human-aided
computing”, in which the user is passively viewing im-
ages while performing a distracter task that does not consist
of explicitly labeling or recognizing the images. The dis-
tracter task serves only to capture visual attention and cog-
nitive processing. Their results showed that passive EEG
responses can be used to label images with one of 3 cate-
gory labels, namely human faces, animals, and inanimate
objects, with average accuracy of 55.3% using only a sin-
gle presentation of an image. They further showed that the
accuracy could be boosted by using multiple presentations
to one or multiple users. With up to 10 presentations, they
raised the average labeling accuracy to 73.5%. This system
demonstrated that EEG signals could in principle be used as
a new modality for extracting features from images for use
in an object recognition system. Our work extends this [35]
and explores a method for combining the information from
EEG responses with the state-of-the-art vision algorithms
for object recognition. Our work is significantly different as
we focus on the vision algorithms based on correspondence
kernels with local features and show that there is a signifi-
cant gain obtained by incorporating EEG information. This
suggests that there exists a set of complementary features in
EEG that are not yet captured by vision-based methods.

1named for the positive amplitude change seen in certain EEG channels
roughly 300ms after stimulus presentation



3. Combining BCI with Visual Features
Much recent research has focused on the general prob-

lem of combining information from multiple sources. Many
feature fusion methods, including Boosting [34] and Bag-
ging [6], concatenate features extracted from all the modal-
ities to form a single representation, and train a classifier
using this joint feature representation. Since the visual cat-
egory algorithm based on the Pyramid Match Kernel oper-
ates at the kernel level where instead of features the Pyramid
Match criterion provides us with a similarity (K∆) between
any two given images, it is nontrivial to use such feature-
fusion methods in our framework.

An alternative is to use decision-level fusion [24], with
many possibilities for combining decisions from multiple
modalities, including majority vote, sum, product, maxi-
mum, and minimum. However, it is difficult to predict
which of these fixed rules would perform best. There are
also methods that adaptively weigh and fuse the decisions in
an expert-critic framework [19, 29, 31, 37]. Unfortunately,
these methods require a large amount of training data.

Our solution is to fuse modalities at the kernel level, al-
lowing us to seamlessly combine the visual category recog-
nition algorithms based on local feature correspondence
kernels. Specifically, assuming that we have similarities
(kernels) from vision features and the EEG responses, our
aim is to additively combine the kernel matrices such that
the resulting kernel is “ideal” for classification. Our for-
mulation of the kernel combination is a convex program
and can naturally handle multiple classes. Kernel alignment
techniques have been explored in the past [9, 25] and more
recently kernel learning techniques have been used in vision
[38]. Our method of kernel combination is most similar
to [25] and [38], however, their formulation is a semidefi-
nite program and a second order cone program respectively
and it is non-trivial to extend them to the multi-class case
besides formulating the classification as either 1-vs-all or a
series of pairwise classification formulations.

3.1. Kernel Alignment for Fusion

Given a set of training images and corresponding EEG
responses from k different users, we start with kernels that
determine the similarity of the images in the visual as well
as the EEG signal space. The kernel K∆ that describes
the visual similarity between example images is computed
via the Pyramid Match as described in section 2.1. Further,
given EEG responses from a user i we assume that we can
compute the kernel Kξi that depicts similarity in the ERP
space (we defer the details of EEG kernels to section 4.1.1).

Given the kernels K∆,Kξ1 , · · · ,Kξk
we seek a linear

combination of these base kernels such that the resulting
kernel K is well-aligned with an ideal kernel A. We define
an ideal kernel A such that the entry Aij = 1, if and only
if the ith and the jth image have the same visual category
label, otherwise Aij = 0. This definition is different from

the target kernel used for alignment in earlier approaches
[9, 25]. However, those approaches focus on binary clas-
sification problems and it is non-trivial to optimize kernels
simultaneously when the number of classes are more than
two. Since the proposed target kernel A assigns a value of
0 when the examples belong to different classes, it assumes
no similarity between them irrespective of their true labels;
thus, allowing the measure to be invariant to the number of
classes. Formally, we have

K = α0K∆ +
k∑

i=1

αiKξi (1)

Here, α = {α0, .., αk} are the parameters that we wish to
optimize for. The objective L(α) that we minimize is the
squared Frobenius norm of the difference between K and
A:

arg min
α

||K−A||2F
subject to: αi ≥ 0 for i ∈ {0, .., k}

The non-negativity constraints on α ensure that the result-
ing K is positive-semidefinite and can be used in an SVM
formulation (or other kernel-based methods). The proposed
objective is a convex function, which can be easily seen
by considering K as a linear combination of vectors con-
structed by unfolding the basis matrices. With the linear
non-negativity constraints, the resulting optimization prob-
lem is a convex program and has a unique minimum. Sim-
ilar criteria has been proposed in the context of Gaussian
Processes [32] and Geostatistics [8]. In a manner similar to
the alignment measure used by [9, 25], it can be shown the
measure defined by the Frobenius norm is also consistent
[32].

The proposed convex program can be solved using any
gradient-descent based procedure and in our implementa-
tion we use a gradient descent procedure based on projected
BFGS method that uses a simple line search. The gradients
of the objective are simple to compute and can be written as:
δL(α)

δαi
= 2 · sum(Kξi

◦ (K−A)), where sum(·) denotes
summation over all the elements of the matrix and the ‘◦’
operator denotes the Hadamard product, which is simply the
product of corresponding entries in the matrices. Once the
parameters α are found, then the resulting linear combina-
tion of kernel (K) can be used in any kernel-based learning
procedure.

4. Experiments
We performed experiments with real-world data to (1)

show the advantage of the combined approach, (2) analyze
strengths and weaknesses of the two modalities and (3) ex-
amine the stability of the combined visual categorization
system.



4.1. Description of Experimental Data

The EEG data for our experiments are taken from [35].
The EEG signals were originally captured using a Biosemi
system [3]) at 2 kHz from 32 channels. In the Biosemi
system, users wear a cap of electrodes placed in the 10-
20 standard electrode layout [21] (see Figure 3). Electrodes
measure the electrical activity on the scalp (typically in the
microvolt range) and represent a noisy stream of neural ac-
tivity occurring in the brain.

The images used in the study were taken both from the
Caltech-256 dataset and from the web. For the Animals
class, random images from multiple categories of the Cal-
tech 256 dataset were chosen. For the Inanimate and Face
classes, the authors [35] used keyword search on the web
using the keywords “Face” and “Object”. They then had
independent people rank the collected images according to
relevance to the particular category, and used the top ranked
images as stimuli for these classes. EEG responses were
recorded from 14 users as they viewed the animal, face
and inanimate images while performing a “distracter task,”
which consisted of counting images that contained butter-
flies in them. Users were not told of the classification task
and were not explicitly trying to perform classification.

The data set consisted of two groups of images drawn
from the three categories. The first group (group-1) con-
sisted of 60 images per class shown to each of the subjects
only once, whereas the second group (group-2) consisted of
20 images per class presented 10 times each to the subject
in a block randomized fashion.

4.1.1 Kernel Computation

Computing Pyramid Match Kernel: For experiments de-
scribed in this paper, we used the libpmk package[2] that
used SIFT descriptors extracted at salient points in the im-
age, where each descriptor was concatenated with the nor-
malized image position. For computing PMK values, we
used data-dependent partitions [17]. The SIFT features
were clustered to create a vocabulary tree of depth 4 and
branch factor 10. Using this tree, we built pyramids for
each feature set, and computed the match kernel between
each pair of images.
EEG Measurement and Processing: We down-sampled
the data to 100Hz and filtered it using a butterworth fil-
ter in the range 0.5-30Hz. We restricted the data to in-
clude only the time window 100-500ms following stimu-
lus presentation. These processing steps are identical to
those used in [35] and are typical of EEG studies in the
literature. Also, in our analysis we used only data from 12
electrodes of interest (CP5, CP6, P3, Pz, P4, P7, P8, PO3,
PO4, O1, O2, Oz), the channels expected to most closely
measure human visual processing activity. We concatenated
the chosen time window of measurements for the channels
of interest to form a single vector representing the “EEG
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Figure 4. Performance of different modalities on the held-out set
as the number of labeled examples are varied. Non-overlapping
error bars, which are standard error scaled by 1.64, signify 95%
confidence in performance difference. The combined classifica-
tion significantly outperforms the individual modalities.

feature” for the image. We converted these responses into
a similarity measure (a kernel) by using a gaussian kernel
k(xi,xj) = exp(−β||xi − xj ||2), where the scaling factor
β = 10−5 was chosen empirically and kept constant across
all experiments and subjects.

4.2. Results

All the experiments in this paper were carried out us-
ing the libsvm package [7]. Also, we fix C = 106 which
worked well; we experimented with other values but found
that classification with SVM was fairly insensitive to the
choice of C.
Benefits of the combination: First we examine the gains
obtained by combining EEG signals with PMK. For this ex-
periment, we follow the standard testing protocol in object
recognition, where a given number (say 25) of training im-
ages are taken from each class at random, and the rest of
the data is used for testing. The mean recognition rate is
used as a metric of performance. We repeated this process
100 times on the group-1 images. Figure 4 shows the mean
performance for different modalities and the combination,
along with the performance of the best and worst of the EEG
users. The errorbars correspond to standard error scaled by
1.64 and non-overlapping errorbars signify 95% confidence
in performance difference. We see that significant gains
are obtained by combining BCI with vision features. Al-
though the vision features consistently outperform the EEG
features, the combination performs better than both, sug-
gesting complementary properties between the modalities.
Contribution of the modalities: Next, we look at the dis-
criminative power of the different modalities. Specifically,
we are interested in the relative weight α0 of the Pyramid
Match Kernel in the kernel combination, characterized as:



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60

R
e

la
ti

ve
 W

e
ig

h
ts

 in
 K

e
rn

e
l C

o
m

b
in

at
io

n

Number of Training Examples per Class

Relative Weights in Combination

γ(PMK)

γ(EEG)

Figure 5. Comparison of relatives weights of the different modali-
ties as we vary the number of labeled examples per class.

γ(PMK) = α0
α0+

∑k
i=1 αi

. Similarly, the relative weight for

EEG can be written as: γ(EEG) = 1 − γ(PMK). By look-
ing at the statistics of these quantities we can form estimates
about the relative contribution of each modality. Figure 5
shows these relatives weights averaged over 100 different
runs (error bars are standard deviation) on group-1 for var-
ious amounts of training data. We can see that the vision
modality has higher discriminative power, however, note
that the weight of the EEG modality is highly significant
and leads to significant gains in accuracy as shown above.
Further, the relative contribution of EEG signal increases
with data suggesting that better gains can be expected with
more training data.
Analysis of the errors: We also look at the distribution of
errors being made by the different channels and their com-
binations. To this end, we do a leave-one-out analysis on
group-1 images where we train the system on all the images
except a held-out test image. This process is repeated for
all the images in the data and we log the errors that were
made by the system when classifying the test image. We
do this analysis for the combined system, the PMK-only
system and a system that uses only EEG data from all the
users. Figure 6 shows the distribution of errors, where we
see that the combined system consistently reduces the num-
ber of errors being made across all the classes. Interestingly
when compared to EEG, the PMK modality performs better
on the face and the inanimate categories, while performing
slightly worse on the animal one. This might be due to the
fact that the face category has enough visual information for
a vision-only classifier to work well. The animal images on
the other hand usually have inanimate objects as well in the
background that might confuse a vision-only system. The
EEG modality on the other hand is more influenced by the
semantic association of the image; hence, can distinguish
classes even when the low-level visual features are confus-
ing. Although this observation is made on a small data set
and needs further study, we see that the combination does
indeed benefit from individual strengths of both modalities

0

5

10

15

20

25

30

Animal Face Inanimate

N
u

m
b

e
r 

o
f 

Er
ro

rs

Distribution of Leave-One-Out Errors

PMK

EEG

PMK+EEG

Figure 6. Comparison of relatives weights of the different modali-
ties as we vary the number of labeled examples per class.

to increase the recognition performance on all the classes.
Stability of the system: Since the human brain con-
currently handles multiple tasks and may show significant
“background activity”, we expect significant variations in
measured EEG responses, and thus variations in recogni-
tion accuracy. We explored the stability of the combined
system in the face of these variations. Here we look at clas-
sification results on group-2 images that were presented to
the subjects 10 times each. We trained the classification
system on the 180 images from group-1 and tested the clas-
sification performance with each round of presentation to
all the users. We found that in terms of behavior the clas-
sification performance was similar for all the runs, with the
combined system outperforming the individual modalities 9
out of the 10 times. Figure 7 shows the performance of dif-
ferent modalities for the very first presentation, where we
see that the performance is similar to the one obtained with
group-1 images. We obtained similar curves for the rest of
the presentations as well, which we do not reproduce due
to the space constraints. However, note that we can further
boost the classification accuracy by voting (EEG+PMK vot-
ing) among the presentations and choosing the class label
for a test image based on classification agreement across
different presentations. This agrees with the phenomenon
observed in earlier studies based only on EEG [35], where
it is reported that multiple presentations improve accuracy.
Sensitivity to the number of subjects: We also examined
how many human-brains are required to get a significant
boost and how the performance scales as we increase the
number of subjects. Again, we used group-2 as the test set
for the classifiers trained with the images in group-1. Figure
8 shows the performance as we vary the number of users,
and compares it with the baseline performance of the PMK
classifier. Each point was generated by averaging over 15
runs, with subjects randomly selected from the group. As
before, the error bars signify 95% confidence intervals. We
can see that a significant boost is achieved with as few as 2
users and the performance increases almost linearly as EEG
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Figure 7. Performance of different modalities on the validation set
as the number of labeled examples are varied for a single presenta-
tion to the subject. The combined classification based on EEG and
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ing the same image multiple times to the subject and voting among
those classification outcomes further improves the accuracy.
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Figure 8. Performance of different modalities on the validation set
as the number of subjects are varied. The EEG response helps
boost the classification accuracy even with a low number of users.
Presenting images multiple times further improves accuracy.

data from more subjects is incorporated. Note that the EEG
and EEG+PMK curves are shown only for a single presen-
tation to each user. If we consider all the 10 presentations
and vote among the classifications as we did before, then
the performance further improves (EEG+PMK voting). We
can see that there is a significant gain for EEG+PMK voting
even with a single user.

Table 1 summarizes the accuracies obtained on the
group-2 images (test set) obtained by classifiers trained on
group-1 images. The combination with single presenta-
tion outperforms each individual channel with an accuracy
of 86.67%. Further improvement is achieved by present-
ing images to the subjects 10 times and then voting among

Method Accuracy
PMK 81.67%
EEG 68.33%
PMK + EEG 86.67%
PMK + EEG (Voting) 91.67%

Table 1. Classification accuracies on the validation when trained
with 60 labeled examples per class.

Recognized Class

True Class Animals Faces Inanimate
Animals 19 0 1
Faces 1 19 0
Inanimate 1 2 17

Table 2. Confusion matrix obtained on the validation data with the
combination of EEG and PMK. (60 labeled images per class, mean
accuracy over all the classes = 91.67%)

the outcomes of 10 combined classifiers. Figure 9 ana-
lyzes different kinds of errors that were made by the dif-
ferent modalities. All of the errors, except the ones high-
lighted by the thick red double-lined border were corrected
in the combined system. Further, there were not any addi-
tional errors made in the fused system. Interestingly, the
chimps were misclassified as faces by the EEG modality.
This is not surprising as objects that look similar to faces
are known to elicit “face-like” responses in specific areas of
brain. Table 2 shows the confusion matrix obtained by the
EEG+PMK voting strategy on the group-2 images, which
shows a tremendous boost over the vision only classifier
with an accuracy of 91.67%.

5. Conclusion and Future Work
We have presented a framework for combining

computer-vision algorithms with brain-computer interfaces
for the purpose of visual category recognition. Our SVM
based discriminative framework combines correspondence-
based notion of similarity between sets of local image fea-
tures with EEG data using a fast convex kernel alignment
criterion. The EEG data we used was collected from users
who were not even explicitly trying to perform image classi-
fication. Our empirical results demonstrate that such a com-
bination between vision and the human-brain processing
can yield significant gains in accuracy for the task of object
categorization. This suggests a set of complementary prop-
erties between local feature based vision algorithms and the
way a human-brain processes the image.

As future work, we plan to extend the framework to in-
corporate other local feature based kernels and explore al-
ternate kernel combination techniques (such as [38]). By
incorporating other vision algorithms we should be able to
further improve classification performance. We also plan to
explore the possibility of using the EEG signal as a weak la-
bel and incorporating those weak labels in active and semi-
supervised learning formulations. Finally, we also aim to
extend and test this system on larger, more varied data sets.



Examples misclassified by EEG channel

Misclassified as Animal Misclassified as Face Misclassified as Inanimate

Examples misclassified by Pyramid Match Kernel

Misclassified as Animal Misclassified as Face Misclassified as Inanimate

Figure 9. The classification errors made by the classifier based on EEG and the vision features (PMK). All of these errors were corrected
by the combination (EEG+PMK) except for the ones that have the red double-lined bounding box around them.
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