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Abstract

In this paper we present a generative model and learn-
ing procedure for unsupervised video clustering into scenes.
The work addresses two important problems: realistic mod-
eling of the sources of variability in the video and fast trans-
formation invariant frame clustering. We suggest a solu-
tion to the problem of computationally intensive learning
in this model by combining the recursive model estimation,
fast inference, and on-line learning. Thus, we achieve real
time frame clustering performance. Novel aspects of this
method include an algorithm for the clustering of Gaussian
mixtures, and the fast computation of the KL divergence be-
tween two mixtures of Gaussians. The efficiency and the
performance of clustering and KL approximation methods
are demonstrated. We also present novel video browsing
tool based on the visualization of the variables in the gen-
erative model.

1. Introduction

The amount of video data available to an average con-
sumer has already become overwhelming. Still, there is a
lack of efficient general-purpose tools for navigating this
vast amount of information. We suggest that a successful
video browsing and summarization system has to accom-
plish two goals. First, it shall correctly model the sources
of vast information content in the video. Second, it shall
provide the user with an intuitive and fast video navigation
interface that is compatible, if not even jointly optimized
with the analysis algorithm. As a solution of the first prob-
lem we propose the clustering of related but non-sequential
frames into scenes. Clustering is based on the generative
model (Fig. 1) that builds on the model for translation in-
variant clustering [14]. Learning in the generative model
with multiple discrete variables faces considerable compu-
tational challenges. We utilize the properties of video sig-
nal to develop provably convergent recursive clustering al-
gorithm. To make the model more realistic, it assumes the

Figure 1. Left: Scene generative model. Pair c− z is a Gaussian mixture.
Observation x is obtained by scaling by Z, rotating by R, transforming
and cropping the latent image z by translation indexed by T . W is the
fixed cropping window that models frame x as the small part of the video
scene z. The effect of the composition WT is illustrated as the shaded
rectangle that indicates the position of x in z. Right: Nine typical frames
from the video are initially clustered into three clusters using only transla-
tion invariant clustering. Three so obtained distributions are clustered into
a single cluster using translation, scale and rotation invariant distribution
clustering (cf. Sec. 3).

video frame to be a portion of the video scene, which is
reminiscent of the panoramic scene representations. As a
solution of the second problem we propose a “video nav-
igation” tool based on the visualization of the variables in
the generative model, which ideally reflects all frames in the
video. The navigation tool serves as a visually meaningful
index into the video.

Video clustering and summarization is one of the most
difficult problems in the automatic video understanding. It
aims to produce short, yet representative, synopsis of the
video by extracting pertinent information or highlights that
would enable the viewer to quickly grasp the general story
or navigate to the specific segment. Two main approaches to
video summarization include static summarizations (includ-
ing shots, mosaics and storyboards), and dynamic summa-
rizations (video skimming). Numerous shot and key-frame
detection approaches are based on extracting and tracking
low level features over the time and detecting their abrupt
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changes. But, long lists of shots result in another informa-
tion flood rather than abstraction, while key frames only are
not sufficient for a user to judge the relevance of the con-
tent. Dynamic video summarization, often referred to as
skimming, consist of collecting representative or desirable
sub-clips from the video. The navigation tool we introduce
in this paper has the distinctive feature that it includes both
static and dynamic summary of the video.

Several shot-independent approaches for summarization
have been proposed recently, like the recursive key-frame
clustering [9, 10]. While promising, they lack robust sim-
ilarity measure and with the number of clusters above the
certain levels, visually different shots start to merge.

There have been many interesting approaches to video
browsing and summarization based on mosaicking. In this
paper we introduce probabilistic mosaic representation of
video that includes the invariance with respect to camera
motion, change in the scale and rotation. It assumes the
video scene to be much larger that the viewing field of the
camera. We should emphasize that our goal is not the build-
ing of perfect mosaics. Rather, it is the constructing of ro-
bust similarity measure that yields to the high likelihood of
the frame under the generative model.

Similar mosaicking representations [4, 5, 6, 7] were used
before, some of them based of generative models [8], but
were overly constrained with respect to the camera motions,
requirements that target scenes must be approximately pla-
nar and should not contain moving objects. For example, [5]
studied mosaics in the context of video browsing and a syn-
optic view of a scene. Video summaries work [6] uses mo-
saics for summarization, but ignores the foreground mo-
tion and relies on the background invariance for the scene
clustering together with ad-hoc scene similarity measure.
Our work is similar to the mosaicking work [7] on mosaic-
based representations of video sequences. There are a few
important differences. Our method, having video cluster-
ing and compact video presentation as the ultimate goals,
has a notion of variability of appearance (moving objects
in the scene and blemishes in the background are allowed
and treated as the noise), automatically estimates the num-
ber of parameters (eg. number of different scenes), explains
the cause of variability of the data, and recognizes the scene
that already appeared. Also, other methods were used in the
highly regimented cases (eg. aerial surveillance, “sitcoms”)
where our is intended for the general class of unconstrained
home videos.

Realistic graphical (generative) models may sometimes
face serious computational challenges. Similarly, naive
learning in this model is infeasible. Clustering of one hour
of video does not allow visiting each datum more than once.
This constraint suggests “one pass” over-clustering of the
frames, followed by iterative cluster grouping. Each of this
operations correspond to the re-estimation of the parame-

ters in the model. We derive the algorithm for recursive
estimation of this model based on the EM algorithm, thus
inheriting its convergence and optimality properties. Fast
inference methods and video navigation tool are the features
of this work.

2. Model

The video analysis algorithm we present is based on
a generative model Figure 1 (left) that assumes the video
scenes are generated by a set of normalized scenes that are
subjected to geometrical transforms and noise [3]. The ap-
pearance of the scene is modeled by a Gaussian appearance
map. The probability density of the vector of pixel values z

for the latent image corresponding to the cluster c is

p(z|c) = N (z; μc,Φc), (1)

where μc is the mean of the latent image z, and Φc is a diag-
onal covariance matrix that specifies the variability of each
pixel in the latent image. The variability Φc is necessary
to capture various causes not captured by the variability in
scene class and transformation, eg. slight blemishes in ap-
pearance or changes in lighting. We do not model the full
covariance matrix as there is never enough data to estimate
it form the data. It is possible, however to use a subspace
modeling technique to capture some correlations in this ma-
trix. The observable image is modeled as a cropped region
of the latent scene image. Before cropping, the latent image
undergoes a transformation, composed of a zoom, rotation
and translation. The motivation for this is that out of the
global camera motion types, zoom and pan are the most
frequent, while rotations are fairly rare. Leaving out more
complex motion, such as the ones produced by perspective
effects, several dominant motion vector fields, nonuniform
motion, etc., speeds up the algorithm (real time in our im-
plementation), but makes the above defined variance maps
a crucial part of the model, as they can capture the ex-
tra variability, although in a cruder manner. In addition,
the nonuniform variance map has to capture some other
causes of variability we left out, such as small illumination
changes, variable contrast, etc.

The probability density of the observable vector of pixel
values x for the image corresponding to the zoom Z, trans-
lation T, rotation R, latent image z and fixed cropping
transform W is

p(x|T,Z,R, z) = δ(x − WTZRz) (2)

where T, R and Z come from a finite set of possible trans-
formations. Similar affine generative model in conjunction
with Bayesian inference was proposed in [13]. We consider
only a few different levels of zoom and rotation. The com-
putational burden of searching over all integer translations
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is relieved by the use of Fast Fourier Transform (FFT) for
performing computations in the Fourier domain (Sec. 4).

While we can view this model as the model where the
composition WTZR is treated as a novel transformation,
it is an imperative to keep these transformations separate
in order to derive an efficient inference algorithm based on
the FFTs, which is several orders of magnitude faster than
the algorithm based on testing all possible transformations
jointly.

The joint likelihood of a single video frame x and latent
image z, given c and T is

p(x, z|c,T,Z,R) = δ(x − WTZRz)N (z; μc,Φc) (3)

Note that the distribution over z can be integrated out in the
closed form

p(x|c,T,Z,R)=N (x;WTZμc,WTZΦcR
′Z′T′W′) (4)

Under the assumption that each frame is independently gen-
erated in this fashion, the joint distribution over all variables
is

p({x, ct,Rt,Zt,Tt}T
t=1)=

∏
t

p(xt|ct,Rt,Zt,Tt)

p(ct)p(Tt,Zt) (5)

The model is parameterized by scene means μc, pixel vari-
ances stored on the diagonal of Φc and scene probabilities
πc = p(ct = c), and as such providing a summary of what is
common in the video. The hidden variables ct,Rt,Zt,Tt,
describe the main causes of variability in the video, and as
such vary from frame to frame. The prior distribution over
R,Z,T is assumed uniform.

3. Recursive model estimation

It is possible to derive the EM algorithm in the closed
form (Sec. 4) for the proposed model. However, the number
of scenes (components in the mixture) is unknown. Also,
the exhaustive computation of the posterior probabilities
over transformations and classes is intractable. We use the
variant of incremental EM algorithm [15, 16] to quickly
cluster the frames into the large number of clusters using,
at this stage, translation and cropping-invariant model only.
We dynamically update the number of classes, by adding a
new class whenever the model cannot explain the new data
well.

Given that a large number of frames xt have been clus-
tered (summarized) in this manner using a mixture model
p(x) =

∑
c p(x|c)p(c) with C clusters (components), each

described by the prior p(c) = πc, mean μc and a diagonal
covariance matrix Φc, we want to estimate another mixture
model p1 defined by a smaller number of clusters S with
parameters πs, μs,Φs on the same data. We will formally

derive the re-estimation algorithm using a Gaussian mixture
model as an example, with the understanding that the same
derivation is carried out for the more complex models that
includes transformations. Assuming that p summarizes the
data well, we can replace the real data {xi} with the similar
(“virtual”) data {yi}, i = 1 . . . N randomly generated from
the obtained mixture model, and estimate the parameters of
the model p1 using the virtual data {yt}. When the number
of virtual data (N ) grows infinitely, the distribution con-
verges in probability to the original data distribution. We
can fit the simpler distribution p1 to {yt} without actually
generating them, but rather by working only with the ex-
pectations under the model p. We optimize the expectation
of the likelihood of the generated data, 1

N

∑
i log p1(yi) for

large N , where yi is sampled from p(y) (in our example
the mixture model with parameters {πc, μc,Φc}).

1

N

N∑
i=1

log p1(yi)→E[log p1(y)]=

=

∫
y

p(y) log p1(y)=

∫
y

[ ∑
c

p(y|c)p(c)

]
log p1(y)

=
∑

c

p(c)

∫
y

p(y|c) log p1(y)

≥
∑

c

p(c)

∫
y

p(y|c)
∑

s

qc(s) log
p1(y|s)p1(s)

qc(s)
= −EF, (6)

where the inequality follows by the same convexity argu-
ment as in the case of the standard free energy [15]. Such
reparametrized model p1 can be recursively reparametrized,
giving the hierarchy of models of the decreasing complex-
ity. By doing this we resort to the original data exactly once
and avoid costly re-processing of hundreds of thousands of
video frames. The new bound on the free energy EF would
be tight if qc(s) were exactly equal to the posterior, i.e.,
qc(s) = p1(s|y). However, we assume that the posterior is
the same for all y once the class c is chosen, and we empha-
size this with the notation qc(s). Under this assumption the
bound further simplifies into

−EF =
∑

c

p(c)

{ ∑
s

qc(s)

[ ∫
y

p(y|c) log p1(y|s)
]

+

∑
s

qc(s)[log p1(s) − log qc(s)]

}

=
∑

c

p(c)
∑

s

qc(s)

[
− 1

2
(μs − μc)

T Φ−1
s (μs − μc)

−1

2
tr(Φ−1

s Φc) − 1

2
log |2πΦs|

]

+
∑

c

p(c)
∑

s

qc(s)[log p1(s) − log qc(s)] (7)
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Minimizing the free energy under the usual constraints,
e.g.,

∑
s qc(s) = 1 yields an iteration of an EM algorithm

that reparameterizes the model, e.g., for the plain mixture
model,

qc(s) ∝
p1(s)e−

1

2
(μ

s
−μ

c
)T Φ−1

s
(μ

s
−μ

c
)−1

2
tr(Φ−1

s
Φc)−

1

2
log |2πΦs|

(8)

μs =

∑
c p(c)qc(s)μc∑

c p(c)qc(s)

Φs =

∑
c p(c)qc(s)[(μs − μc)(μs − μc)

T + Φc]∑
c p(c)qc(s)

πs = p1(s) =

∑
c p(c)qc(s)∑

c p(c)
=

∑
c

p(c)qc(s) (9)

Similar reparametrization algorithm was intuitively pro-
posed in [1] for data clustering in the presence of uncertain-
ties. The idea of recursive density estimation is reminiscent
of [2]. The EM algorithm above will converge to a local
maximum and the quality of the results will depend on the
validity of the assumption that the posterior q(s) is shared
among all virtual data samples from the same class c. When
model p captures the original data with lots of narrow mod-
els p(y|c), and S � C, the approximation is reasonable
and reduces the computation by a factor of T/C in com-
parison with retraining directly on the original data. The
result of recursive model estimation is a hierarchy of mod-
els which can be elegantly presented to the user through an
appropriate user interface shown in the video submission.
Figure 1 (right) illustrates recursive clustering of three dis-
tributions into a single hyper-cluster, using both translation
and scale invariant clustering.

3.1. Computing the fast approximate KL diver-
gence between two mixtures

The optimization in Eq.(6) can be alternatively seen as
the minimization of the KL divergence between distribu-
tions p and p1. Thus, we can use the bound on the vari-
ational free energy for the re-estimation problem to obtain
tight upper bound on the KL divergence between two mix-
ture of Gaussians (MoGs) – a problem not tractable in the
closed form. Recently, efficient and accurate computation
of the KL divergence between the mixtures has attracted a
lot of attention [17, 18].

As the ground truth for the computation of the KL di-
vergence, we will use Monte Carlo simulation with large
number of particles as

KL(f ||g) =

∫
f log

f

g
≈ 1

n

n∑
t=1

log
f(xt)

g(xt)
(10)

While this method is asymptotically exact, it is painfully
slow. In [17] authors proposed a couple of approximations
on KL divergence based on counting the influence only of
nearest components in two mixtures (“weak interactions”).
They demonstrated that their approximation is better than
previous one published in [18]. The conclusion of their
work is that KL divergence based on unscented transfor-
mation [19] (also known as the “quadratic approximation”)
gives excellent results, with the slight computational over-
head. This method is based on the approximate computation
of the expectation of some function h under d dimensional
Gaussian f with the mean μ and covariance matrix Σ as

∫
f(x)h(x)dx ≈ 1

2d

2d∑
k=1

h(xk) (11)

where the set of 2d “sigma points” xkis defined as

xk = μ + (
√

dΣ)kk = 1, . . . , d

xd+k = μ − (
√

dΣ)kk = 1, . . . , d (12)

We will use this method as the current art to compare
against the variational method.

Given two mixtures p and p1 the KL divergence can be
separated into two terms

KL(p, p1) = H(p) −
∫

y

p(y) log p1(y) = (13)∫
y

p(y) log p(y) −
∫

y

p(y) log p1(y)

We note that optimization we performed in Eq.(6) is
the variational maximization of the lower bound of∫

y
p(y)p1(y). By substituting the S × C matrix q (read-

ily computed in Eq.(8)) into Eq.(7) the upper bound for
− ∫

y
p(y)p1(y) follows. In the same manner, the lower

bound on entropy H(p) of the Gaussian mixture p with pa-
rameters (πc, μc,Φc) can be approximated as

∑
c

{πc(−1

2
log det(2πΦc)) + log(πc)} < H(p) (14)

The summation of the lower and upper bound of two terms
in the KL divergence need not lead to the unambiguous con-
clusion on the nature of the approximation. Empirically, we
found that the entropy term negligibly contributes to the KL
divergence.

4. Inference of classes and transformations.
Learning the scenes in the model

Inference (posterior optimization). In this section we
will omit the rotation R by treating it as an identity trans-
formation in order to keep the derivations simple. For our
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model it is possible to derive exact EM algorithm that opti-
mizes the free energy [15] of the form

F =
∑

t

∑
ct,Zt,Tt

q(ct,Zt,Tt) log
p(xt|ct,Zt,Tt)πct

q(ct,Zt,Tt)

(15)
For given parameters, we can optimize the free en-
ergy with respect to the posterior q. We express the
posterior as q(ct,Zt)q(Tt|ct,Zt) and optimize F under
the normalization constraints

∑
ct,Zt

q(ct,Zt) = 1 and∑
Tt

q(Tt|ct,Zt) = 1, which results in the same result as
applying the Bayes rule,

q(Tt|ct,Zt) ∝ p(xt|ct,Zt,Tt), q(ct,Zt) ∝
p(ct)e

−q(ct|Zt,Tt) log p(xt|ct,Zt,Tt) (16)

Parameter optimization. Finding the derivatives of F
with respect to the cluster mean ct = k we get

T∑
t=1

∑
{Tt,ct}

q({ct,Tt})(WTtZt)
′(WTtZtΦkZ

′
tT

′
tW

′)−1×

(xt − WTtZtμk) = 0 (17)

It can be shown that

T′W′WTZΦ−1
c Z′T′W′xt = ZΦ−1

c Z′diag(T′Xt)

T′W′WTZΦ−1
c Z′T′W′WT = ZΦ−1

c Z′diag(T′m) (18)

where m � diag(W′W), is the binary mask that shows
the position of observable image within latent image (up-
per left corner), and where X � W′x is frame x zero
padded to the resolution of the latent image. Thus, assum-
ing that the zoom has small effect on inverse variances, i.e.,
(ZΦZ′)−1 ≈ (ZΦ−1Z′) 1 we obtain simple update rules,
e.g. for μ̃k∑T

t=1

∑
Zt

q(ct =k,Zt)Z
−1
t

∑
Tt

q(Tt|ct =k,Zt)(T
′Xt)∑T

t=1

∑
Zt

q(ct =k,Zt)Z
−1
t

∑
Tt

q(Tt|ct =k,Zt)(T′m)

(19)

where Z−1 is the pseudoinverse of matrix Z, or the inverse
zoom. In a similar fashion, we obtain the derivatives of F
with respect to other two types of model parameters Φk and
πk, and derive the update equations. It may seem at first that
zero padding of the original frame to the size of the latent
image constitutes the unjustified manipulation of the data.
But, taking into account that zero is neutral element for the
summation of the sufficient statistics in (19), it is actually
the mathematical convenience to treat all variables as be-
ing of the same dimensionality (resolution). The intuition

1To avoid degenerate solutions, the likelihood is scaled with the number
of pixel increase that the zoom causes.

behind (19) is that the mean latent (panoramic) image is
the weighted sum of the properly shifted and scaled frames,
normalized with the “counter” that keeps track how many
times each pixel was visited.

Speeding up inference and parameter optimization
using FFTs. Inference and update equations (16) and (17)
involve either testing all possible transformations or sum-
mations over all possible transformations T. If all possi-
ble integer shifts are considered (which is desirable since
one can handle arbitrary interframe shifts), then these op-
erations can be efficiently performed in the Fourier domain
by identifying them as either convolutions or correlations.
For example, (19) can be efficiently computed using two
dimensional FFT [11] as∑

T

q(T|c, Z)(T′X) =

IFFT2[conj(FFT2(q(T))) ◦ (FFT2(X))] (20)

where ◦ denotes point wise multiplication, and “conj” de-
notes complex conjugate. This is done for each combina-
tion of the class and scale variables, and a similar convo-
lution of the transformation posterior is also applied to the
mask m. Similarly, FFTs are used for inference to com-
pute Mahalanobis distance in (4). This reduces computa-
tional complexity of both inference and parameter update
from N2 to NlogN (N − number of pixels), allows us to
analyze video frames of higher resolution, and demonstrate
the benefits of keeping translation variable T and separate
from cropping W and zoom Z in the model. The compu-
tation is still proportional to the number of classes, as well
as the number of zoom levels we search and sum over in
the E and M steps, but the number of these configuration is
typically much smaller than the number of possible shifts in
the image.

On-line learning. The batch EM learning suffers from
two drawbacks: the need to preset the number of classes
C, and the need to iterate. The structure of realistic video
allows development of more efficient algorithms. Frames
in video typically come in bursts of a single class which
means that the algorithm does not need to test all classes
against all frames all the time. We use an on-line variant of
the EM algorithm with the incremental estimation of suffi-
cient statistics [15, 16]. The reestimation update equations
(Eq. (9)) are reformulated in the same manner.

In order to dynamically learn the number of scenes in the
on-line EM algorithm, we introduce the threshold on the
log-likelihood such that whenever the log-likelihood falls
under the threshold a new scene is introduced. The sensitiv-
ity due to the choice of the threshold is overcome by setting
high threshold that guarantees the likelihood of the dataset
remains high, but which may lead to over-clustering. The
problem of merging large number of clusters – still much
smaller than the number of frames – is addressed in Section
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3. When the number of clusters is reduced to the order of
100, we apply the full learning using the batch EM algo-
rithm with number of clusters determined by the MDL cri-
terion. Taking into account that camera/object shifts are by
far the most common transformations in the video, another
speed-up is to perform translation-only invariant clustering
in the first pass (by setting Z,R to identity matrices). This
approach reduces most of the variability in the data with
little computational cost. The overall performance of our
clustering is 35 frames per second on 3GHz PC.

5. Experiments

Computing the KL divergence between two mixtures.
We tested the performance of computing the upper bound
on the KL divergence between two Gaussians in the setup
similar to [17]. The mean of each Gaussian in the five di-
mensional space is randomly chosen according to N (0, 1),
whereas the covariance matrix is sampled from Wishart dis-
tribution. In order to avoid almost singular covariance ma-
trices that may arise in the random sampling, condition
number is set to be at least 20. Covariance matrix is pre-
multiplied with a small number ε that accounts for the width
of the Gaussians. Higher values of ε correspond to higher
overlap between the blobs. We tested four methods: Monte
Carlo simulation with 10,000 particles (MC10000) assumed
to be the golden standard; Monte Carlo simulation with 100
particles (MC100); method based on unscented transform;
and, our method (variational). We repeated each simulation
100 times and averaged the results. We present the results
in Table 1 and Fig. 2. The best results were obtained via the
unscented approximation, followed by our method, and the
MC100. The bottom row of Table 1 indicates the relative
processing time needed to compute KL divergence for each
method. While approximate, our method is by far the fastest
of the proposed methods. In Fig. 2 we illustrate the accu-
racy of the computation of the KL divergence for different
values of the parameter ε and the computational complexity
of our method for different dimensionality of the space. As
demonstrated, our method especially scales well in the the
high dimensional space.

Video clustering and navigation. We tested our sys-
tem on an 18 minutes long home video. In the first pass of
on-line learning, the video is summarized in 290 clusters,
many of them repeating. We reestimate this model until
we end up with roughly three dozen of classes. In all but
the first pass we search over all configurations of the zoom,
rotation and class variables. The complexity of the learn-
ing drops as we go higher and higher in the hierarchy (due
to the smaller number of clusters), and so we do not need
to be careful about the exact selection of the sequence of
thresholds or numbers of classes - we simply train a large
number of models, as the user can choose any one of them
quickly at the browsing time.

Figure 2. Computing KL divergence between two mixtures (12 and
8 components). Comparison of Monte-Carlo simulations, unscented
transform-based method and the method in this work. Top: KL divergence
is calculated between two MoGs in the 20-dimensional space. Horizontal
axis depicts the regularization parameter epsilon. Our method, as antici-
pated, is upper bound to the true KL divergence. Middle: KL divergence
as a function of the dimensionality of mixtures. Regularization parameter
is fixed to 0.4. Bottom: Computational time in seconds for our method
and unscented-based method as a function of space dimensionality. Monte
Carlo simulations are too slow to scale.

Fig. 3 (top) illustrates the time line and scene partitioning
using shot detectors and our method. On the left we hand-
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ε unscented MC10000 variational MC100
0.025 92.97 92.75 96.15 127.75
0.050 92.86 92.29 104.84 95.58
0.100 20.74 20.98 25.21 17.76
0.200 18.39 18.72 20.75 19.98
0.400 49.24 45.32 55.24 34.41
Time 0.125 5.219 0.016 0.062

Table 1. Values of the KL-divergence for four different methods
and different values of regularization parameter ε. MC10000 is
taken as the golden standard. Variational method is a reasonable
approximation and it is by far the fastest. As expected, for larger ε

all methods make large errors.

label ground truth (also indicating the repeating scenes). In
the middle we show shot detection results using commer-
cial shot detector largely on the color histogram (from Mi-
crosoft MovieMaker). On the right we show the clustering
results using our method, and indicate the cases where our
method over-segmented. The clustering fails in the cases
when scene variability is not explained by the model. Some
of the issues can be tackled by using the higher number of
scale levels in the model and increasing the scene size with
respect to the frame size.

But, the real benefit of this approach is in the
novel video navigation and browsing tool. Sup-
plemental video material (Fig. 3 bottom and
http://www.ifp.uiuc.edu/˜nemanja/Video1.wmv) demon-
strates the usefulness of this method. Cluster means are
visualized as the thumbnail images that represent the index
into the video. For each pixel in each frame in the video
there is a mapping into the thumbnail image. The user
browses the video by moving the mouse pointer over the
active panel. Instantly, frames within the cluster that are
located in the proximity of the cursor are retrieved and
marked in green on the time-line at the bottom of the inter-
face. The user can further double-click at each thumbnail
images and it will decompose into the “child” clusters that
were merged together in the re-estimation procedure. The
browsing may then be continued seamlessly at the different
level. Informally tested on 165 users, the system proved to
be very useful for the users to rapidly grasp the content of
the video not seen before.

6. Conclusions

In this work we presented a generative model for video
that proved useful for unsupervised video clustering. We
specifically addressed the problem of intractability of naive
learning for large scale problems by introducing the num-
ber of algorithmic techniques for rapid learning and infer-
ence. Our video analysis requires no hand-set parameters.
The burden of selecting the optimal number of scenes – it-

self highly subjective task – is shifted to the user to choose
among the hierarchy of the models. We believe that this
model and the accompanying intuitive user-interface will
prove useful for quick and seamless video retrieval. Addi-
tionally, we will further explore the benefits of the proposed
method for the rapid computation of the KL divergence, es-
pecially in the high dimensional space and for the massive
data-sets.
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