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Abstract

The emerging paradigm for using the wireless spectrum
more efficiently is based on enabling secondary users to ex-
ploit white-space frequencies that are not occupied by pri-
mary users. A key enabling technology for forming net-
works over white spaces is distributed spectrum measure-
ments to identify and assess the quality of unused channels.
This spectrum availability data is often aggregated at a cen-
tral base station or database to govern the usage of spec-
trum. This process is vulnerable to integrity violations if
the devices are malicious and misreport spectrum sensing
results. In this paper we propose CUSP, a new technique
based on machine learning that uses a trusted initial set of
signal propagation data in a region as input to build a clas-
sifier using Support Vector Machines. The classifier is sub-
sequently used to detect integrity violations. Using classifi-
cation eliminates the need for arbitrary assumptions about
signal propagation models and parameters or thresholds in
favor of direct training data. Extensive evaluations using
TV transmitter data from the FCC, terrain data from NASA,
and house density data from the US Census Bureau for ar-
eas in Illinois and Pennsylvania show that our technique is
effective against attackers of varying sophistication, while
accommodating for regional terrain and shadowing diver-
sity. 1

1 Introduction

The proliferation of smartphones, and a subsequent de-
mand for wireless Internet services, has highlighted the
scarcity of spectrum for data communications. CTIA,
which includes AT&T and Verizon, recently requested the
FCC to grant an additional 800 MHz of spectrum for data
communications by 2015 [8]. However, nearly all the spec-
trum that is ideal for long-range data communications, i.e.

1In the Proceedings of the 18th Annual Network and Distributed Sys-
tem Security Symposium (NDSS ’11), San Diego, CA, Feb 2011.

between 300 MHz and 3 GHz, has been allocated to various
primary users.

The FCC white space ruling, which allows unlicensed
devices to operate in unused TV spectrum is a significant
step towards alleviating this spectrum crunch.2 Devices de-
termine if a TV channel is not in use at their location be-
fore using it to send and receive data. This ruling has met
with excitement from industry, academia, and policy mak-
ers. The key reason for this excitement is two-fold. White
spaces not only provide additional spectrum, they also en-
able long-range communication since they are in the lower
frequencies (below 700 MHz).

An important functionality when forming networks over
white spaces is the aggregation of spectrum availability
data from multiple white space devices. The need for ag-
gregation arises in several contexts. First, nearly all exist-
ing standards or proposals for white space networks, i.e.
CogNeA, IEEE 802.22, IEEE 802.11af and WhiteFi [1, 4,
11], require the white space base station to receive spectrum
availability reports from clients and operate on TV channels
that are available at all nodes in the network. The spec-
trum reports from clients can be very diverse, since white
space networks are expected to span a radius of up to 100
km [44]. Second, it has been shown that aggregating spec-
trum sensing data from other devices (also called collab-
orative sensing) enables white space devices to sense at a
higher threshold than when sensing alone. This is very use-
ful since sensing at low thresholds is extremely challeng-
ing [22, 48]. Finally, aggregation of spectrum sensing data
from white space devices can be used to build a nationwide
database of spectrum availability across locations [19]. This
is similar to Wi-Fi wardriving data, and can be used for sev-
eral purposes, for example to improve the accuracy of the
white space geo-location database that is being mandated
by the FCC [2, 3].

However, a threat to aggregating spectrum sensing re-
ports is that some nodes may maliciously report inaccurate

2White spaces refer to portions of spectrum that have been allocated to
licensed users but are not in use at that time.



data. There may be nodes that seek to exploit a spectrum in
a given region by falsely reporting that a primary signal is
present, or, dually, nodes that seek to vandalize a primary by
reporting that its signal is not present thereby encouraging
interference from secondaries. The first attack denies the
legitimate users’ access to the spectrum and provides exclu-
sive access to attackers, whereas the second attack creates
chaos and interference for primary and secondary users.

Countermeasures to prevent mischief are a key enabling
technology for white space networks. Existing strategies
have focused on an instance of this problem – in the con-
text of collaborative sensing – for the detection of malicious
nodes by identifying them as abnormal or outlier nodes
within a small ‘cell’ [27, 37]. If one divides a service re-
gion into cells of sufficiently small size, then nodes within
a given cell can be expected to give similar readings. If a
preponderance of nodes in a given cell provide a reading
in a common range, then other readings may be discarded
as outliers. Ideally this will prevent malicious nodes from
being effective. Unfortunately, this strategy suffers from
several drawbacks. First, there is the possibility that a given
cell will have a preponderance of malicious nodes. Second,
countermeasures that aim to address this key limitation are
based on unrealistic assumptions about the distribution of
the signal propagation data that are not supported by sys-
tematic evidence from the data itself and therefore have lim-
ited performance. Third, such countermeasures must typi-
cally be tuned by hand, a strategy that is error prone and not
easily scalable [19].

This paper presents a new approach called CUSP (for
Classification Using Signal Propagation) using which a cen-
tral aggregation server – a base station or spectrum avail-
ability database – can protect against malicious reports of
spectrum availability. The key idea is to let the data speak
for itself. CUSP uses natural signal propagation data in a
region to learn a classifier that effectively understands the
patterns of signal propagation in the region. It can then use
the learned classifier to efficiently filter out the malicious
spectrum reports as they often represent unnatural propaga-
tion patterns. We consider adversaries in three categories:
non-collaborating adversaries who act individually, collab-
orating adversaries who act as a group, and omniscient ad-
versaries who act as a group and possess complete knowl-
edge of the defense mechanism and sensor data, including
the data of non-adversaries. CUSP is able to counter mali-
cious reports for all three classes of adversaries by learning
classifiers with Support Vector Machines (SVM).

We evaluate the performance of CUSP in detail. We
drive our evaluation on predicted propagation data derived
from registered digital TV stations and terrain data from the
FCC and NASA, as well as house density data from the
US Census Bureau. We compute the signal strengths from
the TV stations for two regions in the states of Illinois and

Pennsylvania. We find that our techniques are quite effec-
tive with all three types of attacks, but regional variations
have a significant impact that must be properly addressed
to assure consistent quality of detection. In particular, ar-
eas with hilly terrain and urban activity must be treated in
smaller cells. The resulting approach is practical and effec-
tive for application in all areas and avoids arbitrary assump-
tions about models, parameters, and thresholds in favor of
direct training data.

More specifically, we make the following contributions.

• We identify and formulate a key threat to white space
networks. More specifically, we address attacks in
which powerful and coordinated attackers report false
spectrum sensing results in order to obtain exclusive
spectrum access or create chaos.

• We introduce a novel method to build classifiers from
location-tagged signal propagation data. This obviates
the need for relying on closed-form formulas, mod-
els, parameters, and thresholds when analyzing signal
propagation data. Our technique, CUSP, detects mis-
reporting attacks in the process of centrally aggregat-
ing spectrum sensing data by building SVM classifiers.

• We present a novel way to evaluate white-space appli-
cations using real-world transmitter and terrain data.
We show our approach is effective against malicious
misreporting attacks and outperforms the state of the
art.

2 Formulating the Problem

In this section we present some background on white
space networks, followed by our assumptions and the at-
tacker model.

2.1 Background

On November 4, 2008 (and subsequently on September
23, 2010) the FCC made historic rulings that allowed unli-
censed devices to operate over the licensed TV bands. The
white space devices may operate on a TV channel as long as
it is available at that location. To learn about spectrum avail-
ability, the white space devices, also called Cognitive Ra-
dios (CRs), may sense the spectrum to detect signals from
primary transmitters. The FCC’s September 2010 ruling
eliminates spectrum sensing as a requirement for devices
that have geo-location capabilities and can access a new TV
band (geo-location) database [2, 3]. However, we believe
that spectrum sensing or its variants can be used to improve
the performance of white space networks. First, the ruling
still supports the operation of sensing-only devices that can-
not or do not access the database. Second, the database is



envisioned to be built from propagation models, which are
very conservative and are likely to declare many channels
(at locations away from the TV transmitters) as occupied
even though they are effectively empty; spectrum sensing
can provide a more accurate view of spectrum availability.
Third, in the case of multiple available channels, the details
of spectrum sensing results assist in selecting higher quality
channels for operation.

Energy detection is the most popular approach for sig-
nal detection. This is often attributed to its simplicity and
small sensing time (less than 1ms). An energy detector mea-
sures the signal power on a target frequency and compares it
against a detection threshold λ to determine whether a pri-
mary is present. For example, in the case of primary digital
TV (DTV) transmitters, FCC has mandated -114 dBm as
the detection threshold [2]. If a specific signature of a signal
such as pilot, field sync, or segment sync is known, the more
sophisticated feature detectors may be employed to detect
primary signals. Feature detectors are often more accurate,
but are more complex to implement, and require additional
information and sensing time (up to 24ms) [22, 29].

Several scenarios in white space networks require the ag-
gregation of spectrum sensing data. For example:

• In order to form a network over the white spaces, the
CRs need to periodically report sensing results to a
base station. The base station is in charge of collect-
ing the readings from the CRs and determining the ar-
eas of primary presence. This centralized approach
has been endorsed by the IEEE 802.22 WRAN stan-
dard draft [4], CogNeA [1] and recent research publi-
cations [11].

• Collaborative sensing refers to the process of combin-
ing spectrum sensing results from cognitive radios for
the purpose of primary detection. The main benefit
of this approach is the mitigation of multi-path fading
and shadowing effects, which improves the detection
accuracy in highly shadowed environments [22]. In
addition, it allows for relaxation of sensitivity require-
ments at individual CRs [48].

• Crowdsourcing of spectrum reports from white space
devices can be used to build a nationwide database of
spectrum availability. Such a database can be used to
augment the white space geo-location database man-
dated by the FCC [2] or to learn spectrum usage as part
of the recently passed Spectrum Inventory Bill [6].

We use the third scenario for purposes of explanation in the
rest of the paper, but CUSP will work without much modi-
fications for the other two scenarios as well.

At a fine-grained level, there exist two broad classes of
strategies for combining individual spectrum sensing re-
ports. Soft-combining techniques combine raw signal power

measurements from CRs, whereas hard-combining tech-
niques combine binary decisions from CRs. Note that di-
rectly combining individual results happens only within
small cells where nodes are expected to provide simi-
lar readings. One of the most popular methods for soft-
combining is Equal Gain Combining (EGC). In EGC, each
node Ni of the m nodes inside a small area periodically
provides its signal power measurement pi to the central
server. Assuming a vector of received power observations
(p1, p2, . . . , pm), and a nominal Gaussian model for shad-
owing and multi-path distribution, EGC is the maximum
likelihood detector. It simply averages the power measure-
ments of individual nodes and compares it to a detection
threshold λ. That is, the primary is present if Pavg =
1
m

∑m
i=1 pi ≥ λ. The threshold λ is determined based on

the power of the transmitter and the radius around it, r, that
needs to be protected. This is done such that the probability
of missed detection stays below a threshold (e.g. .95), while
the probability of false alerts are minimized [46]. EGC is
known to have near-optimal performance in a diverse set of
fading channels with more realistic assumptions [37, 45].

2.2 Model & Assumptions

We consider a large network of CRs, each equipped with
energy detectors. The choice of energy detection is due to
its widespread acceptance and ease of implementation and
analysis [9, 29, 44]. For each frequency channel, the out-
come of spectrum sensing by node Ni is represented by pi,
which is the received signal power at Ni. The primary sig-
nal faces path loss and shadow fading due to irregular ter-
rain and obstacles such as trees, buildings, walls, and win-
dows. As it will be explained later, the proposed approach
does not use or depend on any particular human-formulated
signal propagation model as it is designed to only use sam-
ples of real propagation data obtained through wardriving
or other alternatives (see Section 3.4).

We consider a centralized model for aggregating spec-
trum sensing reports in which received signal powers from
cognitive radios are reported to the central aggregation
server, which divides the area to a grid of small cells to
facilitate combining individual sensing results. As we will
further elaborate, some cognitive radios may be unreliable,
malicious, or compromised insider attackers. However, we
assume that each node maintains a secure link to the base
station for sending spectrum sensing results and that at-
tackers are unable to fabricate nodes or identities arbitrar-
ily (“Sybil” attacks [40]). The secure links can easily be
realized using pre-shared keys or a PKI. We also assume
that the locations of nodes are reliably known through GPS
or other localization techniques and nodes do not misre-
port their locations. This assumptions is easily achievable
in two of the most popular proposed applications of white



space networking that assume fixed nodes with known lo-
cations: (1) Internet access for consumer premises using
IEEE 802.22 wireless regional area networks [44], and (2)
advanced meter infrastructure (AMI) communications [18].
In cases where the network contains untrustworthy mobile
devices, secure localization techniques may be employed
to assure nodes’ locations are not forged [32, 33]. In addi-
tion, for our most important attack scenario (exploitation),
attackers do not gain any tangible benefit from misreporting
their location.

The above assumptions are common for the type of anal-
ysis we perform here [15, 19, 37]; if they are violated then
additional protective measures are required.

2.3 Problem Statement & Attacker Model

We address the problem of detecting malicious reports
of spectrum availability in white-space networks. The de-
tection occurs at a central aggregation server. The attacker
nodes may act in cooperation to perform a malicious false
reporting attack in a cell. A cell is a small area (e.g. 500m
× 500m) that is the unit of combining individual sensing
results for primary detection. In principle, the combination
can be in the form of taking the average or median of power
measurements, majority value of boolean 0/1 decisions, or
any other function. We focus on detecting cells in which
attackers have either a strong (e.g. majority) presence, or
regardless of their count are able to ‘dominate’ the cell and
flip the detection outcome. The domination in each of the
above combination techniques may take a different form.
For example for the EGC rule this involves changing the
average signal power from a status indicating primary ab-
sence to one indicating primary presence, or vice versa. We
call these attacks exploitation and vandalism, respectively.
In exploitation, the attackers aim to deceive the network to
abandon the channel to exclusively use it for themselves,
whereas in vandalism the main goal is creating chaos on
interference for the primaries (and legitimate secondaries).
Our goal is to detect such attacker-dominated (or compro-
mised) cells without necessarily focusing on detecting indi-
vidual attacker nodes inside them. Without loss of general-
ity, in the rest of this paper we consider the EGC rule as the
combining method. Our methods and analysis, however, are
easily applicable to other combining methods as well. We
also do not consider the sufficiently addressed complemen-
tary problem of primary signal emulation attacks in which
attackers transmit primary-like signals.

Throughout the paper, we mainly instantiate our ap-
proach to the particular case of high-power primary trans-
mitters such as digital TV transmitters with signals span-
ning up to 150 kilometers. Such signals are often much
stronger outside of buildings and to assure non-interference
to the primary network, the secondary network must rely on

sensing data from outdoor sensors. This is in-line with the
envisioned scenarios for 802.22 service providers and AMI.
We also briefly discuss the case of low-power primary trans-
mitters such as wireless microphones in Section 5.2.

Attacker Model. We consider the following attacker
models in this paper. Note that the attackers’ behavior
should be considered through the lens of a particular cell
that the attackers aim to dominate.

1. Un-coordinated attackers do not have precise infor-
mation on the number and power measurements of other
legitimate or attacker nodes in the cell. Each attacker node
aims to dominate the cell without cooperation with other
attackers, if any. This may be due to lack of information,
unavailability of communication channels, or to reduce the
likelihood of being detected as a result of communicating
with peers. In this case, a compromised node that senses
a signal power below (above) the detection threshold may
falsely report a value such that the average power in the cell
changes to a value below (above) the detection threshold.
The attacker may use rough estimates of the number and
measurements of other nodes for this purpose (for example,
for the latter it would be a close value to the attacker’s true
measurement).

2. Coordinated attackers do not know the number and
power measurements of the legitimate nodes in the cell, but
may roughly estimate them. They do, however, know their
own number and measurements, and act according to a co-
ordinated strategy; they collude and use the estimates to cal-
culate the value that each of them should report so that they
can dominate the cell and change the detection outcome to
a value above (or below) threshold.

3. Omniscient attackers are coordinated attackers that
know the exact number and measurements of other legit-
imate users. Therefore, they can simply calculate the ex-
act power levels they should report to change the average
power level to a value slightly above (or below) threshold,
e.g. 1dB. This is to reduce the chances of being detected.

4. Mimicry-capable Omniscient attackers are omni-
scient attackers that have the (non-trivial) resources to build
a classifier similar to that used in our detection technique.
However, we can hide (or simply randomize) the schedule,
frequencies, and locations in which we enable the detection
scheme. Therefore, before any misreporting attempt the at-
tackers can predict whether our classifier can catch them if
it is enabled at that particular time, location, and frequency.
In the small percentage of cases that they know it cannot de-
tect them (even if enabled), they will misreport according to
the omniscient strategy above. Otherwise, they may choose
to misreport based on their risk appetite. In any case, if they
choose not to misreport, we have achieved our goal of pre-
venting attackers from manipulating the detection outcome.
Otherwise, we will detect them as we would have detected



omniscient attackers. Therefore, we do not report separate
results for this class of attacks and rely on results for omni-
scient attackers.

3 CUSP: Motivation and Approach

The two problems of detecting individual maliciously
false reporting nodes [27,37] and that of detecting attacker-
dominated cells [19] have been mainly formulated as abnor-
mality or outlier detection problems. Despite moderate de-
grees of success, these approaches suffer from several tech-
nical and practical issues. First, they often involve unrealis-
tic assumptions about the models and parameters of signal
propagation. Second, the performance of almost all of these
methods highly depend on detection threshold parameters
which are usually tuned by hand, or depend on the parame-
ters of the signal propagation model. This is impractical, be-
cause it requires too much ‘conjecturing’ and ‘manual tun-
ing’ for each given region and frequency band of interest.
In addition, outlier detection techniques are often very con-
servative and are not designed for detecting nimble manip-
ulations of data by sophisticated attackers. This limitation
is particularly important in the context of spectrum sensing
in which there exist natural variations in signal power due
to factors such as fading and noise [46].

As an illustrative example consider Figure 1 to be a sub-
set of the area of interest. Each cell is the unit for averaging
signal power measurements from sensors to determine pri-
mary presence. The average power from the nodes inside a
cell are represented by a number (in dBm) in that cell, and
the primary detection threshold is -114dBm. Cells A and
B are normal, whereas C is dominated by attacker nodes.
Therefore, the attacker nodes are able to decrease the aver-
age power to -115, which, if undetected, results in a success-
ful vandalism attack. It is tempting to devise heuristics or
simple outlier detection techniques based on approximate
signal propagation formulas to catch cells like C. For ex-
ample one may claim the difference between B’s average
power and its neighbors looks normal since its average is
smaller than a threshold α, but this is not true for C, there-
fore C is compromised. But ‘why is comparing the average
distance to α is a good idea?’ Why is C suspicious, but A
is not? Many other questions may still linger; for example
‘how do we know we chose the right threshold’, ‘how do we
know we are not mistaking an attacker-dominated cell with
one behind a hill’, ‘how do we make sure we have taken all
the factors into account’, or ‘can we do better’?

We believe that we should directly use signal propaga-
tion data for this purpose. Leveraging patterns latent in the
data will lead to more practical, robust and accurate solu-
tions. The key intuition is to learn the propagation behavior
of the signal from the observed signal propagation data (we
will discuss the practicality of obtaining data later). There

Figure 1. Sample grid with normal and attacker-
dominated cells.

are patterns in which the signal propagates. We can extract
these ‘patterns’ and utilize them to predict how we expect
the signal to behave in the (often large) region of interest.
Naturally, the actual behavior of the signal should be sim-
ilar to what we can predict from the observed propagation
patterns. This is mainly because we learn to predict the pat-
terns of propagation from the signal itself. We claim that
if the propagation of signal in a given location within the
region of interest is not similar to patterns of signal prop-
agation extracted from the same or ‘similar’ signals in the
region of interest, the location should be considered sus-
picious or un-natural. As a simplistic example, assume we
somehow learn that in a particular flat desert, digital TV sig-
nals weaker than -70dBm attenuate by at most 5dB every 5
kilometers. Then, a 10dB decrease or an 8dB increase over
a three kilometer distance may be considered suspicious, or
at least unusual.

We believe that we can spot unnatural propagation of sig-
nal in local neighborhoods of adjacent cells by carefully an-
alyzing samples from the actual signals in the same and sev-
eral different neighborhoods (within the region of interest)
in the past. For a given neighborhood, we are now con-
cerned with a new type of question. Is the propagation of
the signal natural in this neighborhood? Before answering
this question, we must define and show how to represent the
pattern of signal behavior in a neighborhood of cells. So,
we first address the following question. How to represent
the pattern of signal propagation in neighborhoods?

3.1 Representation of Signal Propagation

In order to better understand the patterns by which
the signal propagates, we need to define a way to rep-
resent them. We start by a simple representation as fol-
lows. We consider the local neighborhood of any cell A



to contain A and its 8 neighboring cells. For example,
in Figure 1 the local neighborhood for A, B, and C are
shown and referred to as NA, NB , and NC respectively.
Using this definition for a local neighborhood, we repre-
sent a cell A by a 9-element tuple containing the power
level in A, and the difference in power between A and
the rest of the neighbors in a pre-specified order. For
example the neighborhood for cell A, is represented as
〈−97.5,−.5, 3.5, 7.5, 8.5, 6.5, 1.5, 4.5,−1.5〉. We call this
the neighborhood representation of A. Note that the rep-
resentation can be expanded to include, for example, the
neighbors of neighbors of A as well to provide additional
context for learning patterns. However, as we will show
later, the 9-tuple representation is sufficient for our pur-
poses. This representation provides us with a way to encode
the pattern by which the data propagates in this neighbor-
hood. Using this definition for the neighborhood of a cell,
our original question can be re-phrased as: For a given cell,
is the propagation of the signal natural in its local neigh-
borhood?

3.2 Using Patterns of Signal Propagation

Let us assume that we have access to reliable power mea-
surements in all of the region of interest. An example for a
region would be a 50km by 50km area with a roughly uni-
form (flat, hilly, etc.) terrain. It is easy to see that the data
can be used to create one neighborhood representation for
each cell in the region. We refer to each of such representa-
tions as an ‘example.’ Therefore, we can assume access to
a large number of such examples representing the ‘natural’
propagation of signal in local neighborhoods. Also, for now
assume that we are magically provided with the neighbor-
hood representation for a sufficiently large and diverse set
of ‘un-natural’ (attacker-dominated) cells.

Having access to representations for patterns of signal
propagation as natural and un-natural examples, we believe
the best way of approaching our question is to learn the
common characteristics in each group and use it to dif-
ferentiate between natural and un-natural examples. This
means that by discovering the key characteristics of sig-
nal propagation patterns, we can superimpose a boundary
in our space of representations. This boundary works as
the decision making module. For a new example, we need
to check which side of the boundary the example lies; the
natural side or the un-natural side. This is a classic clas-
sification problem. We have now reduced our problem to
a more specific question: How to cast the problem of de-
tecting attacker-dominated cells as a classification problem.
Before answering this question, we provide an analogy and
the background on classification.

A useful analogy to this problem is that of spam detec-
tion in email systems: given a set of emails each marked as

spam or normal, the goal is to learn the common character-
istics among the normal emails, the common characteristics
among the spam emails, and characteristics that differenti-
ate between the two groups. Going back to our problem,
we would like to discover a model that best describes the
behavior of signal, and use it to make predictions about the
normalcy of signal propagation in subsequent examples.

3.3 Background on Classification

Classification is one of the mainstreams of machine
learning and has been widely adopted in many domains
ranging from spam email detection [23] and unauthorized
spectrum usage [35] to fraud detection [28], object detec-
tion [20], and speech recognition [43].

In a binary classification problem we are given a set of
training examples with their corresponding labels, (−→xi , yi)
where −→xi is the representation of the ith example in the fea-
ture space and yi ∈ {1,−1} (yes or no?) is the correspond-
ing binary label. Each example is described by a vector of
its attributes which is often called the feature vector. For ex-
ample, in detecting if a person has a significant risk of heart
attack, the features can be the blood pressure, cholesterol
level, and body mass index. The goal is to predict a binary
label for an example for which we do not know the label
(a.k.a. a test example) using the training examples [12]. In
the heart attack example, we want to predict whether a per-
son is under a certain risk of heart attack, given her feature
vector. We do this by learning the patterns in the features
of several different persons with and without the risk of the
heart attack.

Looking underneath the surface, a classifier tries to par-
tition the input feature space into regions where positive
examples lie versus regions where negative examples lie.
The boundary between regions for positive and negative ex-
amples is called the decision boundary. Training involves
learning the decision boundary and classification involves
determining on which side of the decision boundary a test
example lies. In the simplest case, it is assumed that the de-
cision boundary is a linear function of the input feature vec-
tor −→x . Later, we relax this assumption and consider more
complex decision boundaries. This linear function usually
takes the form of

y(−→x ) = −→w .−→x + w0 (1)

where −→w is the weight vector and w0 is the bias [12].
One might think about the decision boundary as a (N −
1)-dimensional hyperplane in the N -dimensional feature
space. The classification is done by determining the side
of the hyperplane on which each point in the feature space
lies. If y(−→x ) ≥ 0 then −→x gets the label 1 and if y(−→x ) < 0
it gets the label −1.



3.4 Casting Attacker-dominated Cell Detection as
a Classification Problem

We need to learn a classifier to predict whether a cell
seems natural or not. To that end, we represent signal prop-
agation in a local neighborhood of a cell, by the power av-
erage in the cell, as well as the 8 numbers representing the
difference between the power averages of the cell with its
neighbors. We denote these features by −→x . To automat-
ically discover these patterns we search for parameters −→w
and w0 that best explain the training data and provide reli-
able generalization properties. To be more specific, we are
optimizing for−→w andw0 that, if used for classification, pro-
vide the best prediction accuracy over the training data set
while not overfit to it. More formally, the prediction of train
set label y, which takes the form of −→w .−→x + w0 should be
similar to the actual train set label y. At the same time, to
avoid too much fine tuning to the train set examples, the size
(norm) of the weight vector −→w should be controlled. One
drawback of this model is the assumption of linear separa-
bility. Our predictions are linear in the feature space, thus
form a linear decision boundary. To be able to model non-
linear decision boundaries, we project the data −→x to higher
dimensional spaces where the decision boundaries are lin-
ear on that higher dimensional space. Our new predictions
take the form of

−→
W.Φ(−→x ) + W0 where Φ is a mapping

to the higher dimensional feature space. We postulate that
the decision boundaries in the feature space can be modeled
more reliably by quadratic functions, thus modeling Φ by
a quadratic kernel. To be more specific, we are solving the
following optimization problem:

min
1

2
‖
−→
W‖2 + γ

N∑
i=1

ξi (2)

subject to yi(
−→
W.Φ(−→x ) +W0) ≥ 1− ξi ∀i

where N is the number of training examples, ξi is a col-
lection of non-negative slack variables that account for pos-
sible misclassifications and γ is the tradeoff factor between
the slack variables and the regularization on the norm of
the weight vector

−→
W . The constraint in this minimization

implies that we want our predictions,
−→
W.Φ(−→x ) + W0, to

be similar to labels yi ∈ {1,−1}. The objective function
works as a regularizer to avoid overfitting to the training
data set. We solve this optimization by quadratic program-
ming in dual. This is an example of SVMs [17].

The only parameter that needs to be estimated is γ. We
estimate the γ by cross validating it in the validation set, a
part of train set which set aside for parameter estimation.
This parameter is set using the data itself and there is no
need of any assumption about data distribution.

Given a
−→
W ∗ and

−→
W ∗

0, which are the outputs of the Op-
timization 2, we can predict whether a cell is natural or not

by looking at the sign of
−→
W ∗.Φ(−→x ) +W ∗

0 .

Data Collection. The main remaining question is how to
obtain the training examples needed to build the classifier.
We argue that normal (negative) instances can be obtained
in a practical one-time process based on a trusted sensor
grid. By one-time we mean that in a particular region, we
only need to collect signal propagation data once to build
the classifier for that region. Once the classifier is built, it
can be used forever (or until there is a significant environ-
mental change in the region). A typical strategy for collect-
ing this data is war-driving where a sensor is moved though
the region collecting training data as it goes. This data can
also be extrapolated by signal propagation models such as
Longley-Rice, but our approach does not require the use of
any such model. War-driving for collecting spectrum data
is similar to the current practice of taking images for street-
view capabilities of online map applications in Google and
Bing.

An alternative may be realized in the context of 802.22
internet service for residences, as well as the envisioned ap-
plication of white-spaces for advanced meter communica-
tions [18]. In this case, the (one-time) measurements may
be collected at the time of deploying radios (meters) at each
house by the operator. They may also be collected by a tem-
porary sensor network developed for this purpose alongside
the main CR network [42].

Once negative instances are collected, we use a method-
ology to inject attacker-dominated (positive) training in-
stances to incorporate attacker-dominated cells containing
attackers of varying degrees of sophistication. For further
details please refer to Section 4.1.

3.5 A Unified Classifier for each Region

At this point, provided with labeled training examples
for a transmitter, we are able to build a classifier that can
predict if a cell is attacker-dominated or not. This is still
far from practical for the following reasons. First, it re-
quires training and maintaining a classifier for each trans-
mitter. Second, as it will be concretely shown in Section 4,
each transmitter may only provide a particular distribution
of power levels in the region of interest. This leads to in-
sufficient or non-existent training examples for some power
levels, which can lead to low classification accuracy. Given
enough training examples for a frequency range (e.g. 620-
698 MHz for DTVs), we argue that our classifiers are capa-
ble of discovering decision boundaries in the feature space
which are independent of the transmitter. This is due to the
fact that signal propagation is mainly a function of power,
propagation environment, and the frequency of transmis-
sion. From a practical perspective, this means that we do
not need to learn a separate classifier for each transmitter in



the same frequency range. We show this property in Table 3
in the context of six DTV transmitters in Illinois.

We introduce the concept of Unified Classifiers that are
trained by pooling data from multiple transmitters in such a
way that there exist sufficient number of training examples
at any power level in the power range of interest. For exam-
ple for DTV transmitters this range will be between 90 dBm
(maximum DTV transmission power) and -130 dBm (weak-
est signals considered). The new question we are facing
is which transmitters to select so that we can ensure suffi-
cient number of examples at any power level; the ‘transmit-
ter selection problem.’ This problem can be reduced to the
set covering problem, which is a well-known NP-Complete
problem [47]. We divide the larger power spectrum of inter-
est to a number of smaller power ranges and aim to enforce
a lower bound on the number of examples per power range.
Our goal is to select the minimum number of transmitters so
that we are guaranteed to have at least a fixed number of ex-
amples per power range. We greedily select the transmitter
that covers the largest number of uncovered power ranges at
each stage. This is known to have an approximation ratio of
ln(n)+1 where n is the number of power ranges [47]. Hav-
ing selected transmitters that cover the entire power range,
we can now learn a classifier from the data from all selected
transmitters. This is our unified classifier. We show that
we can detect attacker-dominated cells for transmitters we
never observe during training. This is of practical signifi-
cance as one does not need to be concerned with providing
information from all the transmitters in a frequency range,
or those that may start transmission in future.

Another practical property of our unified classifier is its
relative independence to the frequency. We later show that
the unified classifier is not considerably sensitive to the fre-
quency change in DTV transmitters in the UHF channels
14-51 (470 − 698MHz). This means that our unified clas-
sifier is capable of detecting attacker-dominated cells when
trained with data from transmitters in different frequency
ranges. Therefore, as we will show with evaluations for
both Illinois and Pennsylvania, it is sufficient to build one
classifier for the entire 470-698 MHz range.

Once the unified classifier detects a cell as compromised,
the detection outcome in that cell should be reversed to
cancel the attackers’ misreporting effect. In cases where
the actual power level is important, the power level should
be replaced by the average powers reported by the major-
ity of its neighboring cells. This strategy, which is mo-
tivated from image smoothing techniques in vision appli-
cations, has been validated in the context of white space
networks [19]. This strategy, when combined with a multi-
resolution deployment of CUSP enables nullifying the af-
fect of attackers at different granularity levels, as well as
those that are able to dominate multiple adjacent cells. Al-
ternatively, in the case of using white-spaces for AMI com-

munications, or 802.22 Internet, the firmware for the suspi-
cious devices may be (physically or remotely) examined by
the utility or 802.22 service provider.

4 Instantiating CUSP

In this section we show how CUSP can be instantiated
in a region to provide protection against attacker-dominated
cells when aggregating spectrum sensing reports at a central
server. To that end, we provide general guidelines as well
as specific details for an illustrative environment, namely
East-central Illinois. Since it was not practical for us to
do wardriving through this region we instead rely on the
FCC and NASA databases and the Longley-Rice empirical
outdoor signal propagation model to generate sensor data
(see [5, 39] for more details). Longley-Rice is endorsed by
FCC for determining propagation contours in the TV spec-
trum and takes into account the effects of terrain as well as
transmitter’s location, height, and power. For the purpose
of these experiments we treat these models as the ground
truth provided by sensors and use this to test our method.
Note, however, that our method does not rely on any specific
choice of a model. Hence if these models have some inaccu-
racies then we believe that accurate training data and proper
application of CUSP will achieve the necessary foundation
for integrity protections. We defer the experiments in which
we account for additional variations and uncertainties in sig-
nal propagation to Section 5.

4.1 Environment and Data Collection

We start by considering a 160km × 160km square area
in the flat Midwest area in the US. The following points in
(latitude, longitude) format define the boundaries of the re-
gion: 〈 (39.56, -89.4), (41, -89.4), (41, -87.5), (39.56, -87.5)
〉. The area is located in East-central Illinois and mainly
consists of rural farmlands and a few small cities with pop-
ulations under 100,000. Figure 2 depicts this area. We use
registered DTV transmitter data from the FCC databases as
well terrain data from the NASA database to build our grid-
based crowdsourcing data. For any given location we can
retrieve the list of nearby DTV transmitters as well as their
properties such as channel (frequency), transmission power,
and antenna height. We then combine this data with terrain
data and use the Longley-Rice propagation model to esti-
mate signal power from each of the DTV transmitters at
that location.

Cell Size and Density. An important factor when using
CUSP in any environment is the cell size and density of
sensors (or wardriving samples). To make an informed de-
cision about the cell size and sensor density, the following
factors should be taken into consideration. First, the cell



Figure 2. Initial evaluation area and the first set of con-
sidered DTV transmitters in East-central Illinois.

size must be large enough that about 10 to 20 sensors ex-
ist in each cell. Mishra et al. [38] show that this many
independent sensors provide as much collaborative gain as
many more correlated sensors whose collaborative gain is
limited by geographical correlation in shadowing. Second,
the variation of average signal power in a cell must not be
significant (e.g. less than 5dB) in order for combining in-
dividual reports to be meaningful. Using a similar criteria,
Kim et al. [29] proposed a maximum radius of 5.6 km for
a circular cell for detecting the TV transmitters at the edges
of their contours. Third, collaborative sensing often works
best when there exists independence in the (shadow) fading
among different sensors. Using Godmunson’s exponential
shadow correlation decay model, it is shown that the max-
imum sensor density of 3.2 sensors/km2 ensures indepen-
dence between individual reports [29]. This factor, how-
ever, is more a recommendation than a requirement.

Considering an application such as advanced meter com-
munications or 802.22 Internet, one may use the estimate of
one sensor per house for spectrum sensing. To that end,
we studied house density per square kilometer of the 102
counties in the state of Illinois from the US Census Bu-
reau data [7]. The results show that the least dense county
(Pope county) contains 2.5 houses/km2. The 5th percentile
of the data is 3.5 and median is 8.5 houses/km2. In view
of the discussion above, we opt for the following parame-
ters. We consider base cells of size 2km×2km with the av-
erage density of 3.2 sensors per km2. We consider nodes
to be uniformly distributed at random. It is known that
the actual distribution of the sensors (houses in this case)
may not be uniform in real-world, however, for the follow-
ing reasons we argue that this assumption is reasonable for
the evaluations. First, since we take conservative estimates
for sensor density, it is likely that in most areas there ex-

ist more than the assumed 3.2 sensors per km2. In such
cases, the central server can choose from the existing nodes
in order to create a relatively uniform distribution. Second,
in the rare cases (given the conservative choice of density)
that some cells contain less number of sensors, or sensors
are closely clustered, the service provider may deploy ad-
ditional sensing units. For each selected cell, we include
the value of the cell’s average power (e.g. -65) as well the
difference of this cell with its immediate neighbors as the
features for a normal example. Therefore, a normal exam-
ple takes the form 〈−65, 5,−2.5, 0.6,−3, 3, 2,−3,−1.2〉.
Generating attacker instances is a non-trivial problem. The
instances have to be general enough to train the classifier in
such a way that it is able to detect attacks mounted using un-
known strategies with varying fractions of attackers inside
the cell. We opt for a randomized approach for generat-
ing attacker data in order to provide substantial variations
in the training data. For uncoordinated attackers, we re-
place the actual power in the cell with Rand(λ+ 1, λ+ 10)
for exploitation attacks and with Rand(λ − 1, λ − 10) for
vandalism attacks, where Rand(a, b) returns a random num-
ber between a and b and λ = −114 is the primary detec-
tion threshold. Similarly, we use Rand(λ + 1, λ + 5), or
Rand(λ−1, λ−5) for coordinated attackers. For omniscient
attackers, we simply replace the value with λ + 1 or λ − 1
for exploitation and vandalism attacks respectively. These
attackers are knowledgeable and coordinated, and therefore
they can only move the average exactly as much as needed
to flip the detection outcome (1dB is the unit of measure-
ments). This minimizes the attacker’s chance of being de-
tected.

4.2 Initial Evaluation

Of the tens of DTV transmitters in this area, we initially
choose six DTV transmitters listed in Table 1 as a repre-
sentative set. These transmitters are identified in Figure 2
as green antennas. This choice aims to serve two purposes;
first, geographical diversity, and second, obtaining a wide
range of received power levels across the area. Figure 3
represents the distribution of received signal powers from
each of the six transmitters in the area. Later, we use the
lessens learned in this section to perform a comprehensive
analysis on other transmitters in the area of interest in Illi-
nois, as well as all the transmitters that affect the area of
interest in Pennsylvania.

In our first set of experiments, we consider each trans-
mitter separately. For the labeled data for each transmitter,
we perform ‘K-fold cross validation,’ which is a commonly
used technique to evaluate the performance of classifiers.
We randomly partition the data into K subsamples. Of the
K subsamples, a single subsample is retained as the test
data for testing the model, and the remainingK - 1 subsam-
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Figure 3. Distribution of received signal powers from six DTV transmitters in Illinois.

Table 1. Initially-selected DTV transmitters.

Call Sign Chan. Fq. (MHz) Tx Pow. (kW)
WAOE (MyN) 39 620-626 151

WCIA (CBS) 48 674-680 1000

WEIU-TV (PBS) 50 686-692 255

WICS (ABC) 42 638-644 954

WQAD-TV (ABC) 38 614-620 1000

KTVI (Fox) 43 644-650 1000

ples are used as training data. The cross-validation process
is then repeated K times (the folds), with each of the K
subsamples used exactly once as the validation data. The K
results from the folds then are averaged to produce a single
estimation. The advantage of this method over repeated ran-
dom sub-sampling is that all observations are used for both
training and validation, and each observation is used for val-
idation exactly once. In our experiments we set K = 10.
The results are summarized in Table 2. Note that these re-
sults are obtained with an equal mix among the three at-
tacker models. We will provide further breakdown based
on the attack-type later in this section.

4.3 Building a Unified Classifier

The results in Table 2 are obtained by considering each
transmitter separately. From a practical perspective, it is
ideal to use just one classifier. Such a classifier is trained by
pooling data from multiple transmitters in a way that there
exist sufficient number of training examples at any power
level. According to CUSP’s greedy method for transmitter
selection (Section 3.5), we pick the data from WEIU-TV
and KTVI for training the classifier. We test the classifier
on the data from the other four transmitters. Table 3 sum-
marizes the performance of the unified classifier. The im-
portant outcome is that the unified classifier trained with
data from only two transmitters can perform very well on
data from four other transmitters.

It is well-known that signal path loss is directly propor-
tional to the logarithm of frequency [41]. However, the
approach of considering a unified classifier appears to ig-
nore the difference in path loss between different frequency
channels. We argue that in practice, for the limited fre-
quency ranges of our interest, this factor can be ignored in
favor of other dominating factors such as the environment
and terrain. We show this here and later when we consider
a hilly urban/suburban area in Pennsylvania. The success
of the unified classifier in detecting attackers in frequen-
cies that differ from its training data (Table 3) only validates
this assumption for DTVs in the channels 38-50 (614 - 692
MHz). Ideally it is best to have a unified classifier for up to
100 MHz of spectrum. For example, for the current UHF
DTV channels in the US (Channel 14-50; 470-698 MHz),
one may consider building three classifiers; one for approxi-
mately each 75 MHz of spectrum. However, due to practical
considerations such as insufficient data or increased com-
plexity, we argue in favor of building only one classifier for
the entire 470-698 MHz range. To study this idea, we eval-
uate the effectiveness of our classifier, which is trained on
data from the last third of the UHF DTV spectrum, for de-
tecting attackers operating in frequencies near the first third
of the spectrum. For this purpose, we consider the few DTV
transmitters in this range in Table 4.

Table 4. Three DTV transmitters in the 400 MHz UHF
channels.

Call Sign Chan. Fq. (MHz) Tx Power (kW)
KNLC (IND) 14 470-476 891

WAND (NBC) 18 494 - 500 347

WYIN (PBS) 17 488-494 301

The performance of the unified classifier on this data is
represented in Table 5. The results approve our statements
about the unified classifier.



Table 2. Detection accuracy (D.A.) and false positive (F.P.) for six DTV transmitters in Illinois.

WAOE WCIA WEIU-TV WICS WQAD-TV KTVI
D.A. (%) F.P. (%) D.A. F.P. D.A. F.P. D.A. F.P. D.A. F.P. D.A. F.P.

P > −65 100 0 100 0 100 0 100 0 - - - -
−65 ≥ P > −85 100 0 100 0 100 0 100 0 99 0 - -
−85 ≥ P > −105 100 0 100 0 100 0 100 0 99.8 0 100 0
−105 ≥ P > −114 99.1 2.2 - - 99.8 4.8 99.7 2 99.8 1.5 98.7 2.9

−114 ≥ P 95.3 8.7 - - 87.8 15 87.1 8.6 95.5 11.9 99.2 2.3

Overall 98.9 2 100 0 99 3 99.5 1 99.4 2.1 99 2.5

Table 3. Unified classifier’s performance; detection accuracy (D.A.) and false positive (F.P.) for four DTV transmitter using the
unified classifier trained with WEIU-TV and KTVI data.

WAOE WCIA WICS WQAD-TV
D.A. (%) F.P. (%) D.A. F.P. D.A. F.P. D.A. F.P.

P > −65 100 0 99.8 0 100 0 - -
−65 ≥ P > −85 100 0 100 0 99.7 0 100 0

−85 ≥ P > −105 100 0 100 0 99.9 0 100 0

−105 ≥ P > −114 99.1 .9 - - 99.7 1.6 99.6 .8

−114 ≥ P 97.3 3.2 - - 97 2.4 95.1 7.6

Overall 99.3 .8 99.9 0 99.7 .5 99.3 1.3

Table 5. Unified classifier’s performance; detection accu-
racy (DA) and false positive (FP) for three DTV transmitters
in the 400 MHz UHF channels.

KNLC WAND WYIN
DA FP DA FP DA FP

P > −65 - - 100 0 100 0

−65 ≥ P > −85 - - 100 0 100 0

−85 ≥ P > −105 100 0 100 0 99.9 0

−105 ≥ P > −114 98.8 3.4 100 1.2 98.3 9

−114 ≥ P 98.6 3.1 - - 99.3 2.5

Overall 98.7 3.2 100 .1 99.2 3.3

Effect of Attack-type. In order to evaluate the effect of
attack-type on the performance of our detection scheme,
we create test datasets that only include normal examples
and attacker examples of one type. We next evaluate these
datasets using the unified classifier. We studied the four
transmitters in Table 3. The results for WCIA were iden-
tical to the results reported earlier for all three attackers.
This can be attributed to the fact that the data from this
transmitter are mostly far away from λ and mostly in the
first three power brackets, where detection is very accu-
rate and robust. For the other 3 transmitters, we observed
that the results in the first two brackets (P > −65 and
−65 ≥ P > −85), are identical to the results in the third
bracket ( −85 ≥ P > −105 ). Therefore, we only report
the results in the last three brackets for WAOE, WICS, and
WQAD-TV. Figures 4 and 5 report detection accuracy and
false positive rates for these transmitters. The results show
decreased detection accuracy and increased false positive
rates as the attackers gain more sophistication. Overall, the
results show that our scheme performs well even against

omniscient attackers.

5 Stress Test and Comparison

In this section, we extend the initial evaluations in the
relatively flat and detection-favorable Illinois environment,
to a particularly unfavorable one, i.e. urban/suburban areas
in hilly Southwest Pennsylvania. To account for additional
shadow fading and signal variations in urban/suburban envi-
ronments (not represented by Longley-Rice), we probabilis-
tically add extra variations to the predicted signal powers.
In a subset of our evaluations, where we simulate wireless
microphones to compare our work to the state-of-the art,
we use the log-distance path loss and log-normal shadow-
fading [41] to model signal propagation.

5.1 Hilly Urban/Suburban Area: Southwest
Pennsylvania

In this section we evaluate the performance of CUSP
when instantiated to a hilly urban/suburban area near Pitts-
burgh in Southwest Pennsylvania. We focus on signal from
all DTV transmitters within 150 mile radius of this 20km
by 20km area with estimated received powers higher than
-130dBm. This results in a list of 37 DTV transmitters. As
before, we use the Longley-Rice model to take into consid-
eration the effect of terrain in signal propagation. In addi-
tion, in order to represent un-accounted fading and signal
variations in urban/suburban environments, we supplement
the data with Gaussian variations mean zero and standard
deviation σ (dB-spread) of up to 6dB. This is in line with
the log-normal distribution model commonly used in this
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Figure 4. Detection accuracy classified by attacker-type for WAOE (left), WICS (center), and WQAD-TV (right).
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Figure 5. False positive rates classified by attacker-type for WAOE (left), WICS (center), and WQAD-TV (right).

context [46]. Figure 6(a) depicts the majority of transmit-
ters affecting this area.

We pool the data from different frequencies to obtain a
sufficiently large set of training and testing examples across
all power levels. To evaluate the performance of CUSP in
cases that it is not practical to use the algorithm in Sec-
tion 3.5 to carefully choose the training data, we randomly
divide the set of transmitters to subsets of size 29 and 8,
for training and testing respectively. We call these 29-DTV
and 8-DTV data. We train a unified classifier from the 29-
DTV data, and test it on the 8-DTV data. The distribution of
the received signal powers for training and testing data are
provided in Figure 6(b). The cell sizes are 500m by 500m,
resulting in a 40 × 40 grid of cells. The area is assumed
to be populated with sensors at the density of 20 per km2,
which is achievable in suburban/urban areas. In particular,
this is well below the average house density the Pittsburgh
area [7]. The results before adding any additional variations
are illustrated in the first column of Table 6.

Training and Testing Under Different Conditions. To
test the classifier in an extremely unfavorable setting, we
add Gaussian variations with mean 0 and standard devia-
tion σ to each power measurement in the test data. The
classifier, however, remains trained with the data with no
added signal variations. Table 6 summarizes the results. It
can be seen that despite the significant amount of variation
we added to signal propagation data, the classifier still per-

forms reasonably well. As expected, the gradual degrada-
tion of performance is explained by the difference of exam-
ples that the classifier is trained with and those on which it is
being tested. In particular, the relatively high false positive
rates at high variation levels reflect the case that some of the
variations seem ‘too much’ to the classifier, and therefore it
mistakenly classifies them as malicious.

In general, the effectiveness of our approach can be re-
duced in environments with considerable natural variations
in signal power within short distances. The reduced ef-
fectiveness presents itself as lower detection accuracy and
higher false positive rates compared to environments in
which signal propagation is ‘smoother.’ This is attributed
to the descriptive power of our choice of features; there
might be neighborhoods in which the classifier has diffi-
culty differentiating between significant natural variations
and an unusual signal propagation pattern created by the
false reports of attackers. At a high-level, a remedy would
entail modifying the feature space to increase its descriptive
power. As an item of future work, we consider adding el-
evation data to the feature space to improve the classifier’s
performance (see Section 7). In addition, the cell-size may
be optimized for maximized classifier performance.

Effect of Attack-Type. Table 6 provides results for an
equal mix of the three attack-types (note that we assume
each cell is occupied by attackers of one type only). Here,
we break the results by the type of attack. Since the false



Figure 6. (a) Transmitters in parts of Southwest Pennsylvania / East Ohio. (b) Distribution of received signal for the training and
testing data in Southwest Pennsylvania.

Table 6. Detection accuracy (D.A.) and false positive (F.P.) percentages when variations with dB-spread of σ is added to test data
from 8 DTVs. The classifier is trained with data from a disjoint set of 29 DTVs with no added variations.

Standard Deviation of Added Variations in Test Data
σ = 0 σ = 2 σ = 4 σ = 6

D.A. F.P. D.A. F.P. D.A. F.P. D.A. F.P.

P > −65 100 0 100 0 100 0 100 0
−65 ≥ P > −85 100 0 100 0 100 0 100 0
−85 ≥ P > −105 99.8 .5 99.9 .5 99.8 .8 99.8 1.5
−105 ≥ P > −114 92.7 6.8 92.2 8.3 91 12 89.2 17

−114 ≥ P 92.1 9 92.5 9.8 92.4 15 91 21

Overall 97.2 2.9 97.1 3.4 96.5 5.2 96.3 7.3

positive results are similar to those of Table 6, we only pro-
vide results for detection accuracy. The results are summa-
rized in Table 7. It can be seen that the classifier provides
respectable detection accuracies, even for the most difficult
scenarios, that is defending against omniscient attacks in a
hilly area with added variations of up to 6dB.

5.2 Comparison to State-of-the-Art

The closest piece of related work requires knowledge of
the parameters of the log-normal shadowing model in order
to detect compromised cells [19]. We are not able to evalu-
ate that approach in our evaluation environment, since their
approach only works with the assumption using the log-
distance path loss and log-normal shadow-fading. In order
to provide a fair comparison, we evaluate our approach in an
environment similar to that of the related work. The signal
power at node Ni is written as pi = pt− (10 log10 r

α
i +Si)

where pt is the transmit power of the primary, ri is the
distance from Ni to the primary transmitter, 10 log10 r

α
i

represents the path loss with exponent α (typically 2 <
α < 4), and Si ∼ N(µs, σ

2) is the loss due to shadow-
fading. µs is often considered to be 0, and the dB-spread

σ independent of the distance to the transmitter (typically
2 ≤ σ ≤ 6). Therefore we have pi ∼ N(µ(r), σ2), where
µ(r) = pt − (10 log10 r

α
i + µs).

Please note that the simulation setup and parameters are
chosen based on the related work and we simply replicate
them here on a larger scale. The simulation environment
is an 8192m × 8192m area in which secondary users are
deployed uniformly at random with the density of 0.0008
per square meter. The area is divided into 64 × 64 = 4096
square cells of size 128m × 128m each. Therefore, the ex-
pected number of nodes per cell is about 13. Depending on
the scenario, primary transmitters with power ranging from
17dBm to 20dBm are placed at different locations in this
area to represent wireless microphone primaries. The de-
tection threshold is λ = −74dBm, α = 3 and the standard
deviation for the fading and shadowing process, σ = 3 (in
dB scale).

The results are summarized in Table 8. It can be seen
that our approach outperforms the outlier-based approach
in terms of detection accuracy, however this comes at the
cost of moderate false positive rates. Note that our ap-
proach does not use any information about the nature or
specification of signal propagation model, whereas the out-



Table 7. Breakdown by attacker type; detection accuracy (D.A.) when variations with dB-spread of σ is added to the test data from
8 DTVs. The classifier is trained with data from a disjoint set of 29 DTVs with no added variations. Uncoordinated, coordinated,
and omniscient attacks are represented by UC, CO, and OM.

Standard Deviation of Added Variations in Test Data
σ = 0 σ = 2 σ = 4 σ = 6

Type of Attacker
UC CO OM UC CO OM UC CO OM UC CO OM

P > −65 100 100 100 100 100 100 100 100 100 100 100 100
−65 ≥ P > −85 100 100 100 100 100 100 100 100 100 100 100 100
−85 ≥ P > −105 100 100 100 100 100 100 100 100 99 100 100 99
−105 ≥ P > −114 97 93 88 97 93 88 95 91 88 93 89 87

−114 ≥ P 92 87 84 92 87 84 91 85 84 89 85 84

Overall 98 96 95 98 96 95 97 96 95 97 95 94

lier detection approach requires knowledge of λ, α, and pri-
mary powers. In addition, the related work requires setting
two thresholds, which we set according to the authors’ sug-
gested values. In other words, we outperform that approach
in a setting in which it had been designed and tuned.

Table 8. Outlier vs Non-linear SVM.

Fraction Outlier Non-Linear
of Cells SVM

D.A. F.P. D.A. F.P.

P > −55 .02 81 0 100 0
−55 ≥ P > −65 .04 95 0 100 0
−65 ≥ P > −74 .14 67 0 95 7.4
−74 ≥ P > −80 .29 85 0 96.7 7.6
−80 ≥ P > −85 .30 99 0 100 0

−85 ≥ P .19 100 0 100 0

Overall 1 89.0 0 98.3 3.5

6 Related Work

Most prior work in the context of white space networks
considers identifying individual attackers within a cell as
part of collaborative sensing. Such approaches are not capa-
ble of detecting cells that are dominated by attackers. Min et
al. [37] group sensors in a neighborhood to clusters (cells),
and exclude or minimize the effect of abnormal sensor re-
ports using shadow fading correlation-based filters. How-
ever, it fails to detect attackers that constitute more than
1/3 of the population of the nodes in a cell. Kaligineedi
et al. [27] address a similar problem by pre-filtering out-
lying sensing data, and a strategy to assign trust factors to
nodes for weighting measurements and potentially omitting
some nodes. In addition to the general problems enumer-
ated with outlier-detection techniques, the attacker model is
too simplistic and falls short in cases where attackers con-
stitute a large fraction of nodes in a cell, or employ sophis-
ticated misreporting strategies. Chen et al. [15] propose a
weighted, reputation-based data fusion technique based on
the sequential probability ratio test. Their approach only

considers hard 0/1 decisions from each node, requires prior
knowledge about the false positive and false negative ratios
at each node, and cannot detect attacker-dominated regions.

The problem considered by Fatemieh et al. [19] is simi-
lar to ours. They start by identifying outlier measurements
inside each cell and ‘punishing’ them. The punishment is in
the form of exclusion or a low weight assignment in the pro-
posed weighted aggregation process. Subsequently, their
mechanism entails corroboration and merging of neighbor-
ing cells in a hierarchical structure to identify cells with out-
lier aggregates. Their solution, however, requires fairly ac-
curate knowledge about the signal propagation formula and
parameters. In addition, the paper does not introduce any
systematic approach to tuning some of the detection thresh-
olds for the distance-based outlier detection, and therefore
it requires manual tuning.

Chen et al. [16] consider primary user emulation at-
tacks in which an attacker may modify the air interface of
a radio to mimic a primary transmitter signal’s character-
istics, thereby causing legitimate secondary users to erro-
neously identify the attacker as a primary user. They pro-
pose LocDef, which utilizes both signal characteristics and
location of the transmitter to verify primary transmitter sig-
nals. An alternative is using cryptographic and wireless link
signatures to authenticate primary users’ signal in presence
of attackers that may mimic the same signal. Liu et al. [36]
achieve this by using a helper node close to a primary user
to enable a secondary user to verify cryptographic signa-
tures carried by the helper node’s signals and then obtain
the helper node’s authentic link signatures to verify the pri-
mary users signals. We consider this problem to be comple-
mentary to the problem we address.

There exists a rich body of related work on this topic in
the sensor network security literature. We consider the fol-
lowing to be the most relevant ones. Wagner introduced re-
silient aggregation [49], where he studies resilience of var-
ious aggregators to malicious nodes in an analytical frame-
work based on statistical estimation theory and robust statis-
tics. However, his work is limited to small regions and does
not consider attacker detection as we do. Zhang et al. [50]



propose a framework that identifies readings not statistically
consistent with the distribution of readings in a cluster of
nearby sensors. Their proposal, however, is local, that is
only works for a small region. For example, it is not able
to handle situations where attacker can compromise a large
fraction of the nodes in a cluster. It also assumes the data
comes from a distribution in the time domain, which in not
a valid assumption in our domain. Hur et al. [26] propose a
trust-based framework in a grid in which each sensor builds
trust values for neighbors and reports them to the local ag-
gregator. Our work is similar to this work in that it is based
on a grid. Their solution, however, does not provide a global
view for a centralized aggregator, and also cannot identify
compromised ‘regions.’ They also do not consider uncer-
tainties in the data. An avid reader may refer to following
list for additional resources in the related are of secure data
aggregation in wireless sensor networks [10, 14, 21, 24].

Insider attacker detection in wireless networks is another
area of related work. This problem has been explored in a
general setting [13,25,51] as well as more specific contexts
such as insider jammers [31]. As an illustrative example
in the general context of sensor networks, Liu et al. [34]
propose a solution in which each node builds a distribution
of the observed measurements around it and flags deviating
neighbors as insider attackers. This work is again local and
peer to peer and does not work in areas with more than 25%
attackers. Krishnamachari et al. [30] consider fault tolerant
event region detection in sensor networks using a Bayesian
framework. This work differs from our work in that it only
considers faulty nodes that are not necessarily malicious,
the faulty nodes are assumed to be uniformly spread, and
the nodes itself participates in the detection process.

7 Conclusions

Aggregation of spectrum sensing data at base stations or
spectrum availability databases plays a key enabling role
in the deployment and success of white-space networks.
This approach opens avenues for attacks in which devices
falsely declare an occupied spectrum as available or vice
versa. In this paper we presented CUSP, a new technique
for detecting such attacks while aggregating spectrum sens-
ing data from white space devices spanned over large re-
gions. Our approach uses classification techniques based
on SVMs with quadratic kernels to learn to differentiate
between natural and un-natural signal propagation patterns
in the region of interest. We evaluated the performance of
CUSP using real-world transmitter, terrain, and sensor den-
sity data from two regions in the US. We showed that CUSP
can achieve high detection accuracies even in the most un-
favorable situations, i.e. hilly urban/suurban areas with sig-
nificant amounts of additional signal uncertainty.

Multi-Resolution Analysis. In the future, we will

enhance the approach to detect attacker-dominated cells at
different resolutions. A high-resolution view entails divid-
ing existing cells to smaller cells, whereas a low-resolution
view allows for considering a set of neighboring cells as one
cell. This enables detecting attackers at a fine level, coarse
level, or those that are able to dominate multiple adjacent
cells.

Elevation Data as Features. We will add elevation
data as features to the training and testing data. This will
provide the classifier with more information to learn and
decide whether an observed signal propagation pattern is
natural. Our preliminary experiments with this approach
show improvements of performance in areas with irregular
and hilly terrain.
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