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Abstract—A new algorithm is proposed for removing large objects from
digital images. The challenge is to fill in the hole that is left behind in a
visually plausible way.

In the past, this problem has been addressed by two classes of algo-
rithms: (i) “texture synthesis” algorithms for generating large image re-
gions from sample textures, and (ii) “inpainting” techniques for filling in
smallimage gaps. The former has been demonstrated for “textures” — re-
peating two-dimensional patterns with some stochasticity; the latter focus
on linear “structures” which can be thought of as one-dimensional patterns,
such as lines and object contours.

This paper presents a novel and efficient algorithm that combines the
advantages of these two approaches. We first note that exemplar-based tex-
ture synthesis contains the essential process required to replicate both tex-
ture and structure; the success of structure propagation, however, is highly
dependent on theorderin which the filling proceeds. We propose a best-first
algorithm in which the confidencen the synthesized pixel values is propa-
gated in a manner similar to the propagation of information in inpainting.

The actual colour values are computed using exemplar-based synthesis.  Fig. 1. Removing large objects from images(a) Original photograph. (b) The

In this paper the simultaneous propagation of texture and structure in- region corresponding to the foreground person (covering atfafdtof the
formation is achieved by asingle efficient algorithm. Computational effi- image) has been manually selected and then automatically removed. Notice
ciency is achieved by a block-based sampling process. that the horizontal structures of the fountain have been synthesized in the

A number of examples on real and synthetic images demonstrate the  occluded area together with the water, grass and rock textures.
effectiveness of our algorithm in removing large occluding objects as well

as thin scratches. Robustness with respect to the shape of the manually
selected target region is also demonstrated. Our results compare favorably

to those obtained by existing techniques. posite textures multiple textures interacting spatially [26]. The
Keywords— Object Removal, Image Inpainting, Texture Synthesis, Si- main problem is that boundaries between image regions are a
multaneous Texture and Structure Propagation. complex product of mutual influences between different tex-
tures. In constrast to the two-dimensional nature of pure tex-
I. INTRODUCTION tures, these boundaries form what might be considered more

This paper presents a novel algorithm for removing large Og[le-dlmensmnal, or linear, image structures.
jects from digital photographs and replacing them with visually A number of algorithms specifically address the image fill-
plausible backgrounds. Figure 1 shows an example of this ta€}g] issue for the task of image restoration, where speckles,
where the foreground person (manually selected adatyet Scratches, and overlaid text are removed [2], [3], [4], [7], [23].
region) is automatically replaced by data sampled from the réheseéimage inpaintingechniques fill holes in images by prop-
mainder of the image. The algorithm effectively hallucinatedgating linear structures (callésbphotesin the inpainting lit-
new colour values for the target region in a way that looks “re§ature) into the target region via diffusion. They are inspired
sonable” to the human eye. This paper builds upon and extefysthe partial differential equations of physical heat flow, and
the work in [8], with a more detailed description of the algorithi#/0rk convincingly as restoration algorithms. Their drawback is
and extensive comparisons with the state of the art. that the diffusion process introduces some blur, which becomes

In previous work, several researchers have considered textipéiceable when filling larger regions.
synthesis as a way to fill large image regions with “pure” tex- The technique presented here combines the strengths of both
tures — repetitive two-dimensional textural patterns with mo@pproaches into a single, efficient algorithm. As with inpainting,
erate stochasticity. This is based on a large body of textuie pay special attention to linear structures. But, linear struc-
synthesis research, which seeks to replicate textdiafinitum tures abutting the target region only influence the fill order of
given a small source sample of pure texture [1], [9], [11], [12}vhat is at core an exemplar-based texture synthesis algorithm.
[13], [14], [16], [17], [18], [22], [25]. Of particular interest are The result is an algorithm that has the efficiency and qualita-
exemplar-based techniquegich cheaply and effectively gen-tive performance of exemplar-based texture synthesis, but which
erate new texture by sampling and copying colour values frolg0 respects the image constraints imposed by surrounding lin-
the source [1], [11], [12], [13], [17]. ear structures.

As effective as these techniques are in replicating consistentThe algorithm we propose in this paper builds on very recent
texture, they have difficulty filling holes in photographs of reakesearch along similar lines. The work in [5] decomposes the
world scenes, which often consist of linear structures@md- original image into two components; one of which is processed
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by inpainting and the other by texture synthesis. The output ir i ,
age is the sum of the two processed components. This appro (D ,Source region Cb
still remains limited to the removal of small image gaps, how
ever, as the diffusion process continues to blur the filled regi

(cf.[5], fig.5 top right). The automatic switching between “pure. 60 \\\ . ?)Q'
§

texture-" and “pure structure-mode” of [24] is also avoided.
Similar to [5] is the work in [10], where the authors de-

scribe an algorithm that interleaves a smooth approximati \ \U \\Q

with example-based detail synthesis for image completion. LiIQ Taraet reaion P

the work in [5] also the algorithm in [10] is extremely slow (as 4 g g Q

reported processing may take betw&8rand158 minutes on a

384 x 256 image) and it may introduce blur artefact$. €ig.8b, a b

last row of fig.13 and fig. 16c in [10]). In this paper we present \U . . /!

simpler and faster region filling algorithm which does not suffe q: ]

from blur artefacts. \U -

One of the first attempts to use exemplar-based synthe =l SO ]/ L
specifically for object removal was by Harrison [15]. There, th ~ \ ...... Lot q
order in which a pixel in the target region is filled was dictate ¥
by the level of “texturedness” of the pixel's neighborhbodl- ]
though the intuition is so_und, strong I_|near structures were oft w \\4 W |
overruled by nearby noise, minimizing the value of the extr P
computation. A related technique drove the fill order by th Q) )
local shape of the target region, but did not seek to explicitl
propagate linear structures [6]. ¢ d

Recently Jiset al. [19] have presented a technique for fillig. 2. structure propagation by exemplar-based texture synthesis.(a)
ing image regions based on a texture-segmentation step an@riginal image, with thearget region(2, its contours(2, and thesource
a tensor-voting algorithm for the smooth linking of structures egion ® clearly marked. (b) We want to synthesize the area delimited by

. . .. . the patch¥, centred on the poinp € §Q. (c) The most likely candi-
across holes. Their approach has a clear advantage in that it I3ate matches fob, lie along the boundary between the two textures in the
designed to connect curved structures by the explicit generationsource regiore.g, ¥,/ and¥ . (d) The best matching patch in the candi-
of subjective contours, over which textural structures are propa-dates set has been copied into the position occupiedifythus achieving
gated. On the other hand, their algorithm requires () an expen-Fare g o . Notce iat bt et and sucure (e separating
sive segmentation step, and (ii) a hard decision about what conmow, shrank and its frort has assumed a different shape.
stitutes a boundary between two textures. Our approach avoids
both issues through the use of a continuous parameter based
on local gradient strength only. A careful fusion of these aproaches perform well for two-dimensional textures [1], [11],
proaches may result in a superior algorithm, but results suggist]. But, we note in addition that exemplar-based texture syn-
that both approaches already achieve a reasonable measutbesis is sufficient for propagating extended linear image struc-
visual credibility in filling holes. tures, as wellj.e, a separate synthesis mechanism is not re-

Finally, Zalesnyet al.[26] describe an algorithm for the par-quired for handling isophotes.
allel synthesis of composite textures. They devise a specialFigure 2 illustrates this point. For ease of comparison, we
purpose solution for synthesizing the interface between twidopt notation similar to that used in the inpainting literature.
“knitted” textures. In this paper we show that, in fact, only on€he region to be filledi.e., thetargetregion is indicated by,
mechanism is sufficient for the synthesis of both pure and coand its contour is denoteif2. The contour evolves inward as
posite textures. the algorithm progresses, and so we also refer to it as the “fill
Paper outline. Section Il presents the two key observationgont”. The sourceregion,®, which remains fixed throughout
which form the basis of our algorithm. The details of the prahe algorithm, provides samples used in the filling process.
posed algorithm are described in sect. Ill. Finally, a large gallerywe now focus on a single iteration of the algorithm to show
of results on both synthetic images and real-scene photograpb® structure and texture are adequately handled by exemplar-
is presented in sect. IV. Whenever possible our results are cdmsed synthesis. Suppose that the square tempjate 2 cen-

pared to those obtained by state of the art techniques. tred at the poinp (fig. 2b), is to be filled. The best-match sam-
ple from the source region comes from the pal¢he ®, which
Il. KEY OBSERVATIONS is most similar to those parts that are already filledjn In the
A. Exemp|ar_based Synthesis suffices example in flg 2b, we see that ‘Hp lies on the continuation

h f laorithm i i<o0h . . of an image edge, the most likely best matches will lie along
T e core of our algorithm is an isop ote-driven imagpe same (or a similarly coloured) edged, ¥ and ¥y~ in
sampling process. It is well-understood that exemplar-based ﬁB— 2¢)

LAn implementation of Harrison’s algorithm is available from .A” that is required to propagate the isophote inwards is a
www.csse.monash.edu.au/  ~pfhiresynthesizer/ simple transfer of the pattern from the best-match source patch
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Thefilling process

i -
s

Fig. 3. The importance of the filling order when dealing with concave target regions.(a) A diagram showing an image and a selected target region (in
white). The remainder of the image is the source. (b,c,d) Different stages in the concentric-layer filling of the target region. (d) The onion-peel approach
produces artefacts in the synthesized horizontal structure. (b’,c’,d’) Filling the target region by an edge-driven filling order achieves the desired artefact-free
reconstruction. (d’) The final edge-driven reconstruction, where the boundary between the two background image regions has been reconstructed correctly.

Onion peel

Desiderata

(fig. 2d). Notice that isophote orientation is automatically pre- Therefore, filling order is crucial to non-parametric texture
served. In the figure, despite the fact that the original edge is sghthesis [1], [6], [12], [15]. To our knowledge, however, de-
orthogonal to the target contodf?, the propagated structure hasigning a fill order which explicitly encourages propagation of
maintained the same orientation as in the source region. linear structure (together with texture) has never been explored,
In this work we focus on a patch-based filling approach (@#d thus far, the default favourite has been the “onion peel” strat-
opposed to pixel-based ones as in [11]) because, as noted in [28Y;
this improves execution speed. Furthermore, we note that patchAnother desired property of a good filling algorithm is that of
based filling improves the accuracy of the propagated structuragoiding “over-shooting” artefacts that occur when image edges
are allowed to grow indefinitely. The goal here is finding a good
B. Filling order is critical balance between the propagation of structured regions and that
. . of textured regions (fig. 3b’,c’,d’), without employing two ad-
i _The previous section has shown .hOW careful exemplar-baii%i strategies. As demonstrated in the next section, the algo-
f||||ng may b? capable of propagatmg both texture and s_truH- m we propose achieves such a balance by combining the
ture mformgtlon. This seqthn d.emor)strates that the quality ucture “push” with a confidence term that tends to reduce
the output image synthesis is highly influenced by the Orderéﬂarp in-shooting appendices in the contour of the target region.

which the filling process proceeds. Furthermore, we listanum-, . . . . :
ber of desired properties of the “ideal” filling algorithm. As it will be demonstrated, the filling algorithm proposed in

I'g' 3't F'g!”es _3b,c,d Sr:.OV\; thlf progressive f'”'lngt m;mcavi ness to changes in shape of the target region, (iii) balanced si-
arget region via an anti-clockwise onion-peel strategy. AS |, 1aneous structure and texture propagation, all in a single, ef-

can be observed, this ordering of the filled patches produces1ti Bant algorithm. We now proceed with the details of our algo-
horizontal boundary between the background image regionsriiiﬂm

be unexpectedly reconstructed as a curve.

A better filling algorithm would be one that gives higher pri-
ority of synthesis to those regions of the target area which lie on
the continuation of image structures, as shown in figs. 3b’,c’,d’. First, given an input image, the user selects a target refjion,
Together with the property of correct propagation of linear strute be removed and filled. The source regi®nmay be defined
tures, the latter algorithm would also be more robust towards the entire image minus the target regién£ 7 — ), as
variations in the shape of the target regions. a dilated band around the target region, or it may be manually

A concentric-layer ordering, coupled with a patch-based filspecified by the user.
ing may produce further artefactsf(fig. 4). Next, as with all exemplar-based texture synthesis [12], the

IIl. OUR REGION-FILLING ALGORITHM
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Fig. 5. Notation diagram. Given the patchlp, np, is the normal to the contour
59 of the target regio2 andV I is the isophote (direction and intensity)
at pointp. The entire image is (fenoted with

they are defined as follows:

quq;pm(z_ﬂ) C(a) D(p) = |VIIJ>' ‘|

b c
Clp) = ;
() “I’p| «

Fig. 4. The importance of the filling order in patch-based filling. (a) The

target region is shown in white. (b) Part of the outmost layer in the target . . o
region has been synthesized by an onion-peel algorithm proceeding in cloddiere| W, | is the area off',, o is a normalization factore(g,

wise order. (c) At a further stage of the filling process, the remainder of = 255 for a typical grey-level image);p is a unit vector or-

the outmost layer has been filled by this clock-wise onion-peel filling. T ; : _
concentric-layer filling has produced artefacts in the reconstruction of tﬁoQonal to the frond(2 in the pointp and.L denotes the orthog

diagonal image edge. A filling algorithm whose priority is guided by th@nal operator. The priority’(p) is Comp_Uted for every border
image edges would fix this problem. patch, with distinct patches for each pixel on the boundary of

the target region.
During initialization, the functiorC(p) is set toC(p) = 0
size of the template window must be specified. We provide avp € Q, andC(p) =1 Vp e Z — Q.
default window size o) x 9 pixels, but in practice require the The confidence terr¥'(p) may be thought of as a measure of
user to set it to be slightly larger than the largest distinguishalttee amount of reliable information surrounding the pigelThe

texture element, or “texel”, in the source region. intention is to fill first those patches which have more of their
Once these parameters are determined, the region-filling ppé<els already filled, with additional preference given to pixels
ceeds automatically. that were filled early on (or that were never part of the target

region).
As it will be illustrated in fig. 6a, this automatically incor-
Jprates preference towards certain shapes of the fill front. For

once a pixel has been filled. During the course of the algorithﬁ?fample’ _patches that includ_e corners and thin tendrils of the
patches along the fill front are also given a temporariprity target region will tend to b_e _flllet_j first, as they are surround_ed
value, which determines the order in which they are filled. TheW more pixels from the original image. These patches provide

our algorithm iterates the following three steps until all pixel&'°'® reliable lnform?t|on_ agalns”t which to match. Conversely,
have been filled: patches at the tip of “peninsulas” of filled pixels jutting into the

target region will tend to be set aside until more of the surround-
ing pixels are filled in.

1. Computing patch priorities. Our algorithm performs the .
synthesis task through a best-first filling strategy that deper}tdét a coarse level, the tem(p) of (1) approximately en-

entirely on the priority values that are assigned to each patch 8H:es_the desirable concentric fill orde_r. AS. filling proceeds,
the fill front. The priority computation is biased toward thosB/X€!S in the outer layers of the target region will tend to be char-

patches which: (i) are on the continuation of strong edges sAcferized by greater confidence values, and therefore be filled
(ii) are surrounded by high-confidence pixels. earlier; pixels in the centre of the target region will have lesser

Given a patchl, centred at the poir for somep € 62 (see confidence values.
' R Th is a functi f th h of isoph
fig. 5), we define its priority?(p) as the product of two terms: e data temD(p) is a function of the strength of isophotes

hitting the fronté(2 at each iteration. This term boosts the pri-
ority of a patch that an isophote “flows” into. This factor is of
P(p) =C(p)D(p). (1) fundamental importance in our algorithm because it encourages
linear structures to be synthesized first, and, therefore propa-
We callC(p) theconfidenceerm andD(p) thedataterm, and gated securely into the target region. Broken lines tend to con-

In our algorithm, each pixel maintains alour value (or
“empty”, if the pixel is unfilled) and &onfidencevalue, which
reflects our confidence in the pixel value, and which is froz



A.CRIMINISI, P. FEREZ AND K. TOYAMA: OBJECT REMOVAL BY EXEMPLAR-BASED INPAINTING 5

nect, thus realizing the “Connectivity Principle” of vision psy-
chology [7], [20] cf. fig. 7, fig. 11f", fig. 13b and fig. 20f’).

2. Propagating texture and structure information. Once alll
priorities on the fill front have been computed, the paigh
with highest priority is found. We then fill it with data extracted
from the source regiofb.

In traditional inpainting techniques, pixel-value information
is propagated via diffusion. As noted previously, diffusion nec-
essarily leads to image smoothing, which results in blurry fill-in,
especially of large regions (see fig. 15f). a

On the contrary, we propagate image texture by direct sam-
pling of the source region. Similar to [12], we search in the
source region for that patch which is most similartItQ.2 For-
mally,

Uy = arg \Ignler}b d(Tp,¥q) (2)
where the distancé(V,, ¥, ) between two generic patchas,
and Uy, is simply defined as the sum of squared differences
(SSD) of the already filled pixels in the two patches. Pixel
colours are represented in tG#E Lab colour space [21] be-
cause of its property of perceptual uniforndity b
Having found the sourcexemplarVy, the value of each iy g effects of data and confidence terms(a) Theconfidence termassigns

pixel-to-be-filled,p’ [p’ € W¥pnq, is copied from its corre- high filling priority to out-pointing appendices (in green) and low priority to
sponding pOSitiOh insid@q_ in-pointing ones (in red), thus trying to achieve a smooth and roughly cir-
; ; ; : cular target boundary. (b) Thdata termgives high priority to pixels on the

This suffices to achieve the propagation of both structure and i iion of image structures (in green) and has the effect of favouring

texture information from the source to the target regiois2, in-pointing appendices in the direction of incoming structures. The com-

one patch at a timec{,, fig. 2d). In fact, we note that any further  bination of the two terms in Eq. (1) produces the desired organic balance

manipulation of the pixel valuese(g adding noise smoothing between the two effects, where the inwards growth of image structures is

. ’ ] enforced with moderation.

etc.) that does not explicitly depend upon statistics of the source

region, is more likely to degrade visual similarity between the

filled region and the source region, than to improve it.

« Extract the manually selected initial frof@2°.
3. Updating confidence valuesAfter the patch¥y has been |, Repeat until done:
filled with new pixel values, the confiden€gp) is updated in | 1a. Identify the fill front6Qt. If Qf = @, exit.

the area delimited by, as follows: 1b. Compute priorities?(p) Vp € 60"
. 2a. Find the patchlp with the maximum priority,
Cp)=C(p) VpeYpn. i.e, p = argmaxpesor P(p).

. _ _2b. Find the exemplaWy € ® that minimizesi(Vy, Uyq).
This simple update rule allows us to measure the relative corfl-ZC_ Copy image data frorrg to U, ¥p € W N Q.

dence of patches on the fill front, without image-specific param-4 UpdateC(p) Vp € ¥, N Q

eters. As filling proceeds, confidence values decay, indicating P

that we are less sure of the colour values of pixels near the cen- TABLE |

tre of the target region. Region filling algorithm.
A pseudo-code description of the algorithmic steps is shown

in table I. The superscrigtindicates the current iteration.

But, as mentioned, the pixels of the target region in the proxim-
Some properties of our region-filling algorithm. Asillustrated ity of those appendices are surrounded by little confidence (most
in fig. 6a, the effect of the confidence term is that of smoothingighbouring pixels are un-filled), and therefore, the “push” due
the contour of the target region by removing sharp appendiaesimage edges is mitigated by the confidence term. As pre-
and making the target contour close to circular. Also, in fig. 6agented in the results section, this achieves a graceful and auto-
can be noticed that inwards-pointing appendices are discouragegtic balance of effects and an organic synthesis of the target
by the confidence term (red corresponds to low priority pixelsjegion via the mechanism of a single priority computation for
Unlike previous approaches, the presence of the data termaihpatches on the fill front. Notice that (1) only dictates the or-
the priority function (1) tends to favour inwards-growing apperter in which filling happens. The use of image patches for the
dices in the places where structures hit the contour (green pixtual filling achieves texture synthesis [11].
els in fig. 6b), thus achieving the desired structure propagationgyrthermore, since the fill order of the target region is dic-
2Valid patches must be entirely containediin tated solely by the priority functio(p), we avoid having to

3Euclidean distances in Lab colour space are more meaningful than in R@Bedeﬁne an arbitrary fill Orfjer as 0!0”6‘ in .eXiStiljlg patCh'based
space. approaches [11], [22]. Our fill order is function of image proper-
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risk of “broken-structure” artefacts (as in fig. 11f). Furthermore,
since the gradient-based guidance tends to propagate strong
edges, blocky and mis-alignment artefacts are reduced (though
not completely eliminated), without a patch-cutting (quilting)
step [11] or a blur-inducing blending step [22].

It must be stressed that our algorithm does not use explicit nor
implicit segmentation at any stage. For instance, the gradient
operator in (1) is never thresholded and real valued numbers are
employed.

ties, resulting in an organic synthesis process that eliminates the e ,
/ \

Implemetation details. In our implementation the contout?

of the target region is modelled as a dense list of image point
locations. These points are interactively selected by the user via
a simple drawing interface. Given a poipt € 452, the nor-

mal directionn,, is computed as follows: i) the positions of the
“control” points of (2 are filtered via a bi-dimensional Gaussian
kernel and, ii)n, is estimated as the unit vector orthogonal to
the line through the preceding and the successive points in the
list. Alternative implementation may make use of curve model
fitting. The gradienV I, is computed as the maximum value of
the image gradient it N 1. Robust filtering techniques may
also be employed here. Finally, pixels are classified as belong-
ing to the target regiof, the source regio® or the remainder

of the image by assigning different values to their alpha compo-
nent. The image alpha channel is, therefore, updated (locally) at

d e
each iteration of the filling algorithm. /\ /\
' \‘\\ ’ \‘\*.
IV. RESULTS AND COMPARISONS .‘_, A,, \ . ‘, \ .

Here we apply our algorithm to a variety of images, ranging

from purely synthetic images to full-colour photographs that in-

clude complex textures. Where possible, we make side-by-side . .
comparisons to previously proposed methods. In other cases,
we hope the reader will refer to the original source of our test f g

images (many are t?'ken from previous literature OI'1 Inpainti . 7. Realization of the “Connectivity Principle” on a synthetic example.
and texture synthesis) and compare these results with the resultg) original image, the “Kanizsa triangle” with random noise added. (b) The
of earlier work. occluding white triangle in the original image has been manually selected as

- . the target region24% of total image area) and marked with a red boundary.
In all of the experiments, the patch size was set to be greater(c. ..f) Different stages of the filling process. (d) Notice that strong edges

than the largest texel or the thickest structwg( edges) in the are pushed inside the target region first and that sharp appendigeshe
source region. Furthermore, unless otherwise stated the sourceertices of the selected triangle) are rapidly smoothed. (f) When no struc-

region has been set to Be= 7 — 2. All experiments were run tures hit the fron®$2 the target region evolves in a roughly circular shape.
' (g) The output image where the target region has been filled the oc-

on a 2.5GHz Pentium IV with 1GB of RAM. cluding triangle removed. Little imperfections are present in the curvature

The Kani tri | d the C tivity Principle. Wi of the circles in the reconstructed areas, while the sides of the internal trian-
e amzsa. nangie f"m e Lonnectvity ”nCIp_e' e. gle have been correctly connected. The blur typical of diffusion techniques
perform our first experiment on the well-known Kanizsa trian- is completely avoided. See figs. 11, 13, 20 for further examples of structural
gle [20] to show how the algorithm works on a structure-rich continuation.
synthetic image.

As shown in fig. 7, our algorithm deforms the fill froff2

under the action of two forces: isophote continuation (the d

As described above, the confidence is propagated in a man-
digr similar to the front-propagation algorithms used in inpaint-
term, D and the “pressure” from surrounding filled pixelg"'9" We stress, however, that unlike inpainting, it is the con-

(p)) p g P idence values that are propagated along the front (and which

(the confidence tern@(p)). termine fill ord t col | th | hich
The sharp linear structures of the incomplete green trian glermine il or er), not co our values themselves, which are
ampled from the source region.

are grown into the target region. But also, no single struc-"_. . .
tural element dominates all of the others. This balance amon .lnally, we note t_hat c_iesplte.the Iarg.e size of the removed
competing isophotes is achieved through the naturally decay on, edges and Ime_s In the f|IIe_d region are as sharp as any
confidence values (fig 10 will illustrate the large-scale artefa _nq in the source regiong, there is no d|ffu5|on-rela'Fed blur.
which arise when this balance is missing). Figures 7e,f al is is a property of exemplar-based texture synthesis.

show the effect of the confidence term in smoothing sharp apemparing different filling orders. Figures 8, 9 and 11
pendices such as the vertices of the target region. demonstrate the effect of different filling strategies.
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B3 p>

f

Fig. 8. Effect of filling order on a synthetic image. (a) The original image;
(b) The target region has been selected and marked with a red boundary;
(c) Filling the target region in raster-scan order; (d) Filling by concentric
layers; (e) The result of applying Harrison’s technique which t26ki5 //;
(f) Filling with our algorithm which tooks /. Notice that even though the
triangle upper vertex is not complete our technique performs better than the S f

others. Fig. 9. Effect of filling order on an aerial photograph. (a) The original

image, an aerial view of London. (b) The target region has been selected and
) . ) ) marked with a red boundary; Notice that it straddles two different textures;
Figure 8f shows how our filling algorithm achieves the best (c) Filling with raster-scan order; (d) Filling by concentric layers; (e) The

structural continuation in a simple, synthetic image. Our syn- result of applying Harrison's technique (performedi”); (f) Filling with
thesis algorithm has been compared with three other exis:tingOur algorithm (performed i@ 7). See text for details.
techniques.

Also, as stated previously, in the case only the edge term is
used, then the overshoot artefact may arise, as demonstrated in
fig 10.

Figure 9 further demonstrates the validity of our algorithm
on an aerial photograph. Thi#® x 40-pixel target region has
been selected to straddle two different textures (fig. 9b). Thg. 10. The “overshoot” artefact. The use of the data term only in the priority

remainder of th€00 x 200 image in fig. 9a was used as source function may lead to undesired edge “over-shoot” artefacts. This is due to
for all the experiments in fig 9 the fact that some edges may grow indiscriminately. A balance between
e structure and texture synthesis is highly desirable and achieved in this paper.

With raster-scan synthesis (fig. 9¢c) not only does the top re- cf.fig sf.

gion (the river) grow into the bottom one (the city area), but

visible seams also appear at the bottom of the target region.

This problem is only partially addressed by a concentric filling Figure 11 shows yet another comparison between the con-

(fig 9d). Similarly, in fig. 9e the sophisticated ordering proposegkntric filling strategy and the proposed algorithm. In the pres-

by Harrison [15] only moderately succeeds in preventing thésce of concave target regions, the “onion peel” filling may lead

phenomenon. to visible artefacts such as unrealistically broken structures (see
In all of these cases, the primary difficulty is that since thiéae pole in fig. 11f). Conversely, the presence of the data term

(eventual) texture boundary is the most constrained part of 1) encourages the edges of the pole to grow “first” inside the

target region, it should be filled first. But, unless this is explidarget region and thus correctly reconstruct the complete pole

itly addressed in determining the fill order, the texture boundaffjg. 11f’). This example demonstrates the robustness of the pro-

is often the last part to be filled. The algorithm proposed in thised algorithm with respect to the shape of the selected target

paper is designed to address this problem, and thus more naggion.

rally extends the contour between the two textures as well as th@igure 12 shows a visualization of the priority function re-

vertical grey road in the figure. lated to the example in fig 11c’,...,f’. Notice that due to the
In the example in fig. 9, our algorithm synthesizes the targgata term of (1) the pixels belonging to the reconstructed pole

region in only2 seconds. Harrison’s resynthesizer [15], whichre characterized by larger (brighter) valuesdp). Similarly,

is the nearest in quality, requires approximaté&lyseconds. pixels on thin appendices (larger confidence) of the target region
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Fig. 11. Onion peel vs. structure-guided filling. (a) Original image. (b) The
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a b

Fig. 12. Priority function for the example in fig 11f". (a) The priorities
associated to the target region in fig 11 are initialized as O inside (dark
pixels) and 1 outside (bright pixels). (b) The final priorities at the end of
the filling process. Notice that larger values of the priority functi®fp)
are associated with pixels on the continuation of strong edgeglte pole)
and on thin outward-pointing appendices.

)00

a b

Fig. 13. Comparison with traditional structure inpainting. (a) Original
image from [4]. The target region is the white ellipse in the centre. (b)
Object removal and structure recovery via our algorithm.

bilities of their algorithm. Our results are visually identical to
those obtained by inpaintingf( fig.4 in [4]).

We now compare results of the restoration of an hand-drawn
image. In fig. 14 the aim is to remove the foreground text. Our
results (fig. 14b) are mostly indistinguishable with those ob-
tained by traditional inpainting. This example demonstrates
the effectiveness of both techniques in image restoration appli-
cations.

It is in real photographs with large objects to remove, how-
ever, that the real advantages of our approach become apparent.
Figure 15 shows an example on a real photograph, of a bungee
jumper in mid-jump (from [4], fig.8). In the original work, the
thin bungee cord is removed from the image via inpainting. In
order to prove the capabilities of our algorithm we removed the
entire person (fig. 15e). Structures such as the shore line and the
edge of the house have been automatically propagated into the

target region has been selected and marked with a red boundary. (C'dt%fbet region along with plausible textures of shrubbery, water

Results of filling by concentric layers. (c’,d’,e’,f") Results of filling with
our algorithm. Thanks to théata termin (1) the sign pole is reconstructed
correctly by our algorithm.

tend to have large priority values associated with them.
Comparisons with diffusion-based inpainting. We now turn

and roof tiles; and all this with na priori model of anything
specific to this image.

For comparison, figure 15f shows the result of filling the same
target region (fig. 15b) by image inpaintihgConsiderable blur
is introduced into the target region because of inpainting’s use of
diffusion to propagate colour values. Moreover, high-frequency

to some examples from the inpainting literature. The first twigxtural information is entirely absent.
examples show that our approach works at least as well as inFigure 16 compares our algorithm to the recent “texture and

painting.

structure inpainting” technique described in [5]. The original

The first (fig. 13) is a synthetic image of two ellipses [4]. Thénage in fig. 16a and fig. 16b are from [5]. Figure 16¢ shows the
occluding white torus is removed from the input image and ttiesult of our filling algorithm and it demonstrates that also our

two dark background ellipses reconstructed via our algorithm

www.ece.umn.edu/users/marcelo/restoration4.html

(fig. 13b)_. Th.is .example was chosen by authors of th.e original 5000 iterations were run using the implementation in
work on inpainting to illustrate the structure propagation capaww.bantha.org/  ~ajlinpainting/
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Fig. 14. Image restoration example. (a) Original image. The text occupies
9% of the total image area. (b) Result of text removal via our algorithm. (c)
Detail of (a). (e) Result of filling the “S” via traditional image-inpainting.
(d) Result of filling the “S” via our algorithm. We also achieve structure
propagation.

technique accomplishes the simultaneous propagation of struc-
ture and texture inside the selected target region. Moreover,
the lack of diffusion step in our method avoids blurring prop-
agated structures (see the vertical edge in the encircled region)
and makes the algorithm more computationally efficient.

Comparison with Drori et al. “Fragment-based Image Com-
pletion”. Figure 17 shows the results of our region-filling al-
gorithm on one of the examples used in [10]. As it can be no-
ticed by comparing fig. 17d and the last image in fig.13 of [10],
our algorithm does not introduce the edge blur that character-
izes the latter figure. In fig. 17d the sharpness of the table edge
is retained since no smoothing is introduced at any stage of our
filling algorithm. e f

Comparison with Jia et al. “Image Repairing”. Figure 18 Fig. 15. Removing large objects from photographs(a) Original image from

il ; ; [4], 205 x 307piz. (b) The target region (in white with red boundary)
compares the results of our region-filling algorithm with those covers12% of the total image area. (c,d) Different stages of the filling

optained by Jiet _al- in_ [19] The _imag_e in fig. 18¢c _has been ob-  process. Notice how the isophotes hitting the boundary of the target region
tained by the region-filling algorithm in [19], and fig. 18d shows are propagated inwards while thin appendieeg,(the arms) in the target

the result of our algorithm. Notice that our algorithm succeedes region tend to disappear quickly. (e) The final image where the bungee

in fillina the taraet region without implicit or explicit seamenta- jumper has been completely removed and the occluded region reconstructed
g g g p p g by our automatic algorithm (performed i8 ”/, to be compared with0 ’

tion. of Harrison’s resynthesizer). (f) The result of region filling by traditional

.. . . image inpainting. Notice the blur introduced by the diffusion process and
Synthesizing composite texturedrig. 19 demonstrates thatour  he complete lack of texture in the synthesized area.

algorithm behaves well also at the boundary between two differ-

ent textures, such as the ones analyzed in [26]. The original

image in fig. 19a is one of the examples used in [26]. The tatay, similar to the concentric-layer approach. This is achieved

get region selected in fig. 19c straddles two different texturegitomatically through the priority equation (1).

The quality of the “knitting” in the contour reconstructed via

our approach (fig. 19d) is similar to the original image and fourther examples on photographs We show more examples

the results obtained in the original work (fig. 19b), but agai@n photographs of real scenes.

this has been accomplished without complicated texture model$-igure 20 demonstrates, again, the advantage of the proposed

or a separate boundary-specific texture synthesis algorithm. approach in preventing structural artefacts. While the onion-
It must be stressed that in cases such as that of fig. 19¢c whgeel approach produces a deformed horizon (fig. 20f), our algo-

the band around the target region does not present dominant gtam reconstructs the boundary between sky and sea as a con-

dient directions the filling process proceeds in a roughly uniformincing straight line (fig. 20f"). During the filling process the
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Fig. 16. Comparison with “texture and structure inpainting” [5]. (a) Orig-

inal image. The target regions are marked in white. (b) Region filling via
“Simultaneous Structure and Texture Propagation”. Notice the blur of the
edge in the circled regio_n. (c) The result pf our algorithm. Bo_th structurg, 1g. Comparison with Jia et al. “Image Repairing” [20]. (a)Moor, orig-

_and tex_ture have_ be(_en n|ge|y propagated inside the target region. The elﬁ8eina| input image. (b) The manually selected target region. (c) The resulting
in the circled region is noticeably sharper. region-filling achieved bylia et al.. (d) The result of our region-filling
algorithm. The missing portion of rainbow is reconstructed convincingly.
Figures (c) and (d) are of comparable quality, but our algorithm avoids the
image segmentation step with considerable increase in speed.

R & a
c d
Fig. 17. Comparison with “Fragment-Based Image Completion” [11]. (a)

A photo of the ail painting “Still Life with Apples”, P. €zanne, c. 1890,
The Hermitage, St. Petersburg. (b) The manually selected target region. (c
The result of our automatic region-filling algorithm. (d) The data which has
been used to fill the target region. Notice the sharply reconstructed table c d

edge, see text for details. Fig. 19. Comparison with “Parallel Composite Texture Synthesis” [27].(a)
Original image, the fur of a zebra. (b) The result of the synthesis algorithm
described in “Parallel Composite Texture Synthesis”. (c) Original image

topological changes of the target region are handled effortlessly. with the target region marked with a red bounda2g% of total image
In fig. 21, the foreground person has been manua”y se- size). (d) The target region has been filledviaouralg_orithm. The “knitting”
. . . . . effect along the boundary between the two textures is correctly reproduced
lected and the corresponding region filled in automatically. The 550 by our technique.
synthesized region in the output image convincingly mimics
the complex background texture with no prominent artefacts
(fig. 21f). ble background that mimics the appearance of the source region.
Finally, figs 22... 27 present a gallery of further examples of oyr approach employs an exemplar-based texture synthesis
object removal and region filling from real photographs. Thoggchnique modulated by a unified scheme for determininglthe
results demonstrate the power and versatility of our algorithmgger of the target region. Pixels maintain a confidence value,
which together with image isophotes, influence their fill priority.
The technique is capable of propagating both linear structure
This paper has presented a novel algorithm for remoléirge  and two-dimensional texture into the target region with a single,
objects from digital photographs. The result is an image 8imple algorithm. Comparative experiments show that a simple
which the selected object has been replaced by a visually plawgsitection of the fill order is necessasnd sufficient to handle

V. CONCLUSION AND FUTURE WORK
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f

Fig. 21. Removing large objects from photographs. (a) Original image.
(b) The target region10% of the total image area) has been blanked out.
(c.. .e) Intermediate stages of the filling process. (f) The target region has
been completely filled and the selected object removed. The source region
has been automatically selected as a band around the target region. The
edges of the stones have been nicely propagated inside the target region
together with the water texture.

e

f f

Fig. 20. Concentric-layer filling vs. the proposed guided filling algorithm.
(a) Original image. (b) The manually selected target regiti¥q of the
total image area) has been marked in white with a red boundary. (c,d,e,f)
Intermediate stages in the concentric-layer filling. The deformation of the
horizon is caused by the fact that in the concentric-layer filling sky and sea
grow inwards at uniform speed. Thus, the reconstructed sky-sea boundary
tends to follow theskeletorof the selected target region. (c',d’,e’,f’) Inter-
mediate stages in the filling by the proposed algorithm, where the horizon
is correctly reconstructed as a straight line.

this task.

Our method performs at least as well as previous techniques
designed for the restoration sinallscratches, and, in instances b
in whichlarger objects are removed, it dramatically outperforms

earlier work in terms of both perceptual quality and comput&ig. 22. Removing an object on a highly textured background.(a) Original
; s photograph. (b) One of the two people has been removed. This demon-
tional efficiency. : i
. strates that our algorithm works correctly also for the (simpler) case of
Moreover, robustness towards changes in shape and topology‘pure” texture.
of the target region has been demonstrated, together with other

advantageous properties such as: (i) preservation of edge sharp-
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c

Fig. 23. Region-filling on an image of a text.(a) Original photo of typewritten
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text, a favourite example of texture synthesis researchers. (b) A portion of
the image (marked with a red boundary) has been removed. (c) The result
of our filling algorithm. (d) As in (c) with just the text synthesized in the
target region highlighted. Even though the generated text does not make
much sense it still looks plausible. This example further demonstrates the
correct behaviour of our algorithm in the case of pure texture synthesis.

d

Fig. 25. Removing multiple objects from photographs. (a) Original photo-
graph of Kirkland (WA). (b,c,d) Several objects are sequentially removed.
Notice how well the shore line and other structures have been reconstructed.

ness, (ii) no dependency on image segmentation and (iii) bal-
anced region filling to avoid over-shooting artefacts.

Also, patch-based filling helps achieve: (i) speed efficiency,
(i) accuracy in the synthesis of texture (less garbage growing),

c

Fig. 24. Removing several objects from a photograph(a) Original image, a and finally (iii) accurate propagation of linear structures.

photograph from Ghana. Courtesy of P. Anandan. (b,c) The crowd of peo-, . . . f hni - (i) th hesis of .
ple and other objects are gradually removed by our algorithm. The sourcel-iMitations of our technique are: (i) the synthesis of regions

regions have been selected as dilated bands around the target regions. Hatkwhich similar patches do not exist does not produce reason-

ground texture and structure have seamlessly replaced the original chaggste results (a problem common to [10], [19]); (ii) the algo-

ters. rithm is not designed to handle curved structures, (iii) finally,
like in [10], [19], our algorithm does not handle depth ambigui-
ties (.e, what is in front of what in the occluded area?).
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