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Dense stereo is a well studied problem in computer vision. Generally dense stereo

algorithms provide only a single estimate of disparity, ignoring uncertainty in the dis-

parity map. Here however, we present a new, linear-time, exact method for recovering

entire distributions for disparity at all pixels. This is accomplished by using a recent

extension, due to Durbin et al., of the well-known forward-backward algorithm to

work with two unsynchronised input streams, rather than just one as in the conven-

tional case. The two input streams, in the stereo context are simply two corresponding

epipolar lines, one from each stereo image. Specifically we consider the problem of

view interpolation. The availability of a distribution over disparity is particularly ap-

pealing here. In that case, disparities themselves are not the required end product, but

merely an intermediate representation. It is therefore unnecessary to estimate a unique

disparity map. Instead, the image intensity at each cyclopean pixel can be estimated as

a mean of predicted intensities for all possible disparities. These principles are illus-

trated for a teleconferencing application: enabling eye contact by positioning a virtual

camera at the centre of a display screen used in a two-way conference. We show that

the new approach can significantly improve the quality of the interpolated cyclopean

image, compared with using unique estimated disparities.
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1 Introduction

It is well known that stereo image matching is a hard problem, and much progress has been made

over the past 25 years or so. The variety of algorithms for dense stereo matching is too extensive to

list here but has recently been comprehensively documented and evaluated [14]. None of the algo-

rithms reported and investigated there deal with uncertainty in disparity. However, representation

of uncertainty is of critical importance for robust estimation and data fusion.

According to the evaluation of stereo algorithms [14], two of the most powerful algorithms use

respectively graph cuts [12, 7] and loopy propagation [15] but these approaches are currently too

computationally intensive for real time applications. Conversely, Epipolar line Dynamic Program-

ming [8, 4] is efficient and offers the best hope for real time applications. For this reason, we focus

on epipolar line algorithms, and seek a generalisation that represents the uncertainty in disparities.

We illustrate the new approach with the synthesis of the cyclopean view [6], the view from a

virtual camera placed symmetrically, midway between the (calibrated) cameras of a physical stereo

pair. Previously proposed solutions to this problem can be broadly categorized as model-based or

stereo-based. One model-based approach is to use a detailed head model and reproject it into the

cyclopean view; whilst this can be successful [16, 17], it is limited to imaging heads, and would

not, for example, deal with a hand in front of the face. A more general approach therefore is to use

low level stereo matching.

Given left and right images
�������

and � ����� , over the image domain
�	��

� ��� , the cyclopean

image � ����� cannot be generated by any simple pointwise interpolation of
�

and � . In the absence

of occlusion, one can think of the right image and left images as symmetrically warped forms of

the cyclopean image, so that

� ������� ��� ������������ ����������� � �! "���� �������!# (1)

in which case the cyclopean image could be generated from the left or right image using an estimate

of the disparity field � . This requires the disparity field � to be known, for example by dense

pointwise matching (under epipolar constraints) of corresponding points in
�

and � . However,

three-dimensional occlusion of surface points means that � ����� cannot necessarily be defined for

all pixels
�"�$


, which is a problem for cyclopean reconstruction. An elegant account of the

stereo matching problem, in a cyclopean frame and with occlusion, is given by Belhumeur [1]. It

is of course impossible to reconstruct, entirely accurately, the cyclopean view of a patch that is

occluded in one or other physical camera; all that can be done is to apply a default assumption

about the shape of such a patch.



It has also been noted by others [13] that a good reconstruction of the cyclopean view can often

be achieved, even when the underlying disparities are ambiguous. This is acknowledged in the

approach taken here: its aim is to improve the robustness of reconstruction by treating the disparity

field � as a first-class random variable, rather than merely as a fixed (unknown) parameter.

If � were taken to be a parameter, then estimation of the cyclopean image would proceed in two

stages. First the estimation of the warp field, for example by MAP estimation [1]:�� � �������	��
��
 � ����� ������� � � � �$� � # � � # (2)

followed by deterministic reconstruction of cyclopean intensities:�� � � � �� # � ��� (3)

Instead, treating � as a random variable, there is no need for premature commitment to a specific

value of � . Then the aim of inference is to estimate a posterior distribution 
 � ����� � . The cyclopean

image can be estimated robustly as
�� , the posterior mean over the disparity distribution:�� ��� � � � �"! ����#%$ � �'& ( � � � � # �"!*) � (4)

Bayesian estimate of cyclopean intensity

Given the observation � � � � # � � , and knowing the observer model 
 � �+� � # � � , it is required to

estimate the cyclopean image
�� , via the posterior 
 � �,�"� � for disparity. The full solution has the

following steps.

1. Marginalise over � to get 
 � �	� � � ; for Gaussian noise processes this can be done analytically

[1]

2. Bayes: 
 � ����� �.- 
 � ��� � � 
 � � �
3. Bayes: 
 � � � � # � �%- 
 � �/� � # � � 
 � � �
4. Marginalise over � : 
 � � ��� �.-10 � 
 � � � � # � � 
 � ���2� �
5. Compute expectations, as above (4), to obtain

�� .
Of these, the substantial step is the second one. This is where, if only the mode of 
 � �3�4� �
were required, the Viterbi algorithm along epipolar lines could be used [1]. To obtain the full

distribution, a variation of message passing [9] or Forward-Backward inference [11] is used, and

details follow.



2 Notation and framework

The framework used from here onward, is based on matching pairs of epipolar lines. Intensity

functions
�

and � will now refer to corresponding epipolar lines from left and right images respec-

tively. The objective is to infer the intensity function � for the corresponding line in the cyclopean

image.

Images and disparities The intensity function in the left epipolar line is� ������� #��
��� #������ #
	��

and in the right it is � ����
�� #�� ��� #������ #
	�� �
The cyclopean epipolar line is � ������� #�� ��� #������ # � 	�� #
doubly oversampled, for reasons that will become apparent. Stereo disparity is a vector � ������ #�� ��� #������ # � 	��

with components expressed in cyclopean coordinates. Stereo disparity � in

turn induces a vector � ����� � #�� �!� #������ # � 	��
of image warps from cyclopean coordinates into

the coordinates of the left and right images:

�"�����#���$� � #%� �$� � � � � �� �$� �&��� � # �� �$�  '��� ���
(5)

and conversely, stereo disparity can be expressed as the coordinate difference
�"� �(� �)�

— see

figure 1. The cyclopean coordinate
�

corresponding to left and right coordinates
��#%�

is simply� �*�
 ��
. The warp function � associates image intensities at locations

� #%���$� � #%� �$� �
in the

cyclopean, left and right images. The precise nature of this association, which is probabilistic, is

described later.

Even and odd warps When
�  '�+�

is even,
�#���$� � #%� �$� � �

are integers, so that
� �

warps directly

onto the left and right coordinate grids. In this case the warp is termed to be even. For odd warps

however, there is no such direct mapping, so odd warps in the cyclopean image are deemed to be

transitory states, and this is made clearer below.

Disparity process The space of matches between images is constrained and conditioned by a

probability distribution , �-�+� � ���/. 0 � specifying a random process for disparities at successive lo-

cations on the cyclopean epipolar line. It is assumed that, a priori,
�1�

depends directly on the

immediately preceding disparity
�2�/. 0

.
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Figure 1: Disparity and the cyclopean image The diagram shows left and right epipolar lines with pixel

coordinates ����� , cyclopean coordinates
�

and disparity vectors � as displacements orthogoal to the cyclo-

pean coordinate axis.

Observations The data � from which cyclopean image inference is made consists of the left and

right scan lines, ie � ��� � # � ��� (6)

Each image typically contains color pixels, i.e.
� � ����	

. (In a more general setting they could be

other features
��� �
���

derived from filtering a group of pixels, for example to obtain improved

invariance to illumination variations or nonuniform camera sensitivity.) Left/right pixels are as-

sumed to have been generated by adding noise to the value of the corresponding cyclopean pixel,

so ��� �����  �
 � ��
�� 
�� � ���  �� � #
(7)

where

 �

and
� �

are noise random variables, assumed i.i.d. and Gaussian across all
��#%�

(and

isotropic if pixels are color values).

Observation density The joint likelihood for observations is denoted 
 � � � � # � � and can be de-

composed into a product over pixels and pixel pairs using the independence of

 �

and
� �

. Details

are given later.



Observation history The history of observations “preceding” the match
� �

is denoted

������� � ��0 #������ #
� ��� �
	 #

 0 #������ #

 ��� �
	
�
(8)

and the complementary set of (future) observations is denoted

� ��� � � � ��� �
	�� 0 #������ #
��� #

 ��� �
	�� 0 #������ #

�� � �
(9)

Image prior The marginal prior distribution for cyclopean image values is denoted 
�� �#� � � � and

useful special cases include the stationary case 
�� �#� � � � � 
�� �#� � and the uniform case 
�� �#� � � ����� ,

where � is the volume of color-space. Prior 
�� could be modelled as a Gaussian or mixture of

Gaussians learned from patches in appropriate neighbourhoods of the left and right images. In any

case, all pixels in the cyclopean image are taken to have mutually independent prior distributions.

3 Process and observation models

Process model The process model specifies the distribution of disparity gradients1 � ������� � ���/. 0
[2, 10]. Varying degrees of subtlety can be incorporated; here we take the simplest reasonable

model, restricting � � � ��� � (ordering constraint) and penalising the occlusion case � � � � � � . This

gives a process distribution

,�� �-��� � ���/. 0 � �! """#
"""$
� ��% �"�/. 0 �'&)( ��� ��
�� � �����
* ��% �"�/. 0 �'& ��+"� 
 ��
�� � � � � � �� � � * ��% �"�/. 0 �'& ��+"� 
 ��
�� � ����� (10)

with some appropriate occlusion probability *-, ���/. . The oddness condition forces odd warps to

be treated correctly, as a transitory condition resolved by an immediate step to an even warp.

Observation model The observation density 
 � � � � � is defined as a marginalisation of the full

conditional density with respect to intensity:


 � � � � � �10 # 
 � � � � # � � 
�� �#� � (11)

and decomposes (it can be shown) as a product:


 � � � � ���32 �54 � ��6 ��� #
���/. 0 � (12)

1In [10] disparity gradient is defined to be 798
: , giving a limiting gradient of ; 8<:�;�=>7 in the occluding case.



where the observation function 4 is defined

4 � ��6 ��� #
���/. 0 ���
 # $

 � � ����������������� ! � ��� #
���/. 0 � ��% �"� �'& ��+"� 

� (�� ��� � � �'& � (13)

(where � denotes set difference). In the case of odd warps,
� � ��������������� ! ���

, and hence the obser-

vation function must be defined to be unity. It can be shown that, for the observation model above,4 has the form2

4 � ��6 ��� #
���/. 0 ���
 """"""#
""""""$

��	

 ����
 � ����� �����/� ��� �
	 �)
 ��� �
	 � � �"����+"� 
 # � � ���

�� �-� ��� �
	 � �"����+"� 
 # � � � � �

�� �-
���� �
	 � �"����+"� 
 # � � � �� �"� ( ��� �

where � � � for monochrome observations and � � . for color.

4 Forward-backward algorithm

The conventional forward-backward algorithm [11] has been generalised to matching problems,

initially for matching genome sequences, by Durbin et al. [5], and is used here to deal with the

stereo problem. Conventionally, the history of observations corresponding to the
�����

step would

depend only on
�
, having the form � 0 #������ # � � for some appropriately defined observations

�
. In the

stereo problem this has to be generalised to a history � ��� (8) which depends not only on the “time”�
, but also on the value

�+�
of the inferred quantity at time

�
. A forward-backward algorithm for

this generalised setting follows (with a derivation in the appendix).

Forward algorithm Define forward probabilities

� � �-��� � � , �-��� � ����� ��� (14)

They are generated iteratively (see appendix for derivation) as

� � �-��� �.-��� ����� � �/. 0 �-���/. 0 � 
 �-��� � ���/. 0 � 4 � ��6 ��� #
���/. 0 � (15)

2In fact the equation given here is an approximation, in the interests of simplicity, for the case that the prior for  
is weak.



and note that sparsity (10) of 
 �-�+� � ���/. 0 � means that the sum is evaluated over at most 3 values of���/. 0
.

Backward algorithm Backward probabilities are defined to be

� � �-��� � � 
 � � ��� � ��� � (16)

and propagated as

� � �-��� �%- �� ����� � �
� 0 �-���
� 0 � 
 �-���
� 0 � ��� � 4 � ��6 ���
� 0 #
��� ��� (17)

Posterior distributions Finally, forward and backward variables could be combined convention-

ally [11] to compute the posterior marginal distributions of disparity

� � �-��� � � 
 �-��� �2� ��� ��
� �-��� �

� � � ��
� �-��� � (18)

where

��
� �-��� ��� � � �-��� � � � �-��� ��� (19)

However, this is not enough to estimate cyclopean intensity, because of the need to allow for

occlusion. We need not only the marginal density, but the joint density of the disparity
�"�

with

the disparity gradient � � . This joint density , �-�+� #
���/. 0 � � � is also available [11] from forward and

backward probabilities, yielding:

� � �-��� # � � � � 
 �-��� # � � �2� ��� �� � �-��� # � � �
� � ��� � � �� � �-��� # � � � (20)

where

�� � �-��� # � � � (21)� � �/. 0 �-��� � � � � ,�� �-��� � ��� � � � � � � �-��� � 4 � ��6 ��� #
���/. 0 ���
5 Estimation of cyclopean image intensity

Having obtained the probability distribution for disparities, 
 �-�1� # � � � � � , this can now be used

to estimate cyclopean image intensities. At cyclopean pixel
�

we estimate the intensity
���

as

an expectation, first over the observation noise variables, then over the posterior distribution for



disparity. The expectation over noise variables is denoted ���� �-��� # � � � and in the simplest case of

uniform intensity prior 
�� �#� � is given by

���� �-��� # � � � � � � ��� � �"� ! �
 """#
"""$

0
� � ����� �
	  '
���� �
	 � ��% � �����
����� �
	 ��% � ��� � �
 ��� �
	 ��% � ���  � # (22)

where the three conditions cover the cases of: no occlusion, right occlusion, left occlusion. There

are variations in these formulae for the case of Gaussian priors. The formula is defined strictly

only when the warp is even (so
��#%�

are integers). This gives two options: either cyclopean

intensities must be estimated from the even warps only, or left/right intensities must be interpolated

for fractional indices, for example:

��� � 0 
 � � ���� '��� � 0� �
(23)

Finally, cyclopean intensity is estimated as the posterior expectation (4), so that the estimated

cyclopean intensity at site
�

is:���� � ��� � � 	�� ���� �-��� # � � � ! � �� ��� � � ���� �-��� # � � � � � �-��� # � � ��� (24)

As this sum includes odd warps, interpolated left/right intensities (23) must be used where needed.

6 Application and results

Dynamic programming (DP) stereo [4], which has previously been demonstrated for cyclopean

view interpolation [3] in video, nowadays runs at around 10 frames/sec on a 2 GHz Pentium com-

puter. To obtain that speed, observations consist of single, monochrome pixels, and the consequent

quality of reconstruction is not consistently satisfactory for teleconferencing, as figure 2 shows.

Two kinds of error are clearly visible: (i) artefacts produced by mismatches, and (ii) defects intro-

duced where the background is occluded in one or other view. The Forward-Backward algorithm

is capable of alleviating errors of the first kind, as we will demonstrate.

In this section comparisons are made between cyclopean intensity images computed from

DP: the Dynamic Programming algorithm3 of [3, 4], and

3Our realisation of the DP algorithm implements the same model as described here for FB, including the strategy

of (22) for rendering occluded areas.



FB: the forward-backward algorithm proposed here ,

using exactly the same model and parameters * #�� in each case. Note that whereas the behaviour

of FB depends on both * and
�

, the behaviour of DP depends only on the single parameter4

� � �� ��� ("� � � � � � * � � * ������ � ("� � ������ (25)

This reflects the fact that all posterior distributions for � with a given value of � � * #�� � share the

same posterior mode even though other properties of those posterior distributions differ. (One

view of the additional parameter is that it controls the degree to which the probability density for

disparity spreads about its mode.)

The performance of both algorithms is considerably improved by replacing the pixelwise square-

difference measure
�/� ��� �
	 �)
 ��� �
	 � � by an average square-difference

�	 � �/����� �
	��)
���� �
	 � � �����
over a square window, and for this study we have settled on a window of size

	 �
	
. There are

of course further useful elaborations that can be made to the measure, for example using color

and various normalisations, and possibly a larger window still, at increased computational cost.

However, the purpose of this study is to compare algorithms, so it is the comparison of FB with

DP that is of paramount interest, more than the absolute performance of either.

Note that the computational costs of DP and FB are closely comparable. The forward pass of

FB has a similar structure to the forward pass of DP (Viterbi). The backward pass of DP consists

of pointer following and so has negligible cost. The backward pass (17) of FB would appear to

have a cost similar to the forward pass, but in fact the likelihood 4 � ����� � terms in (17) can be cached

and re-used from the forward pass, so the backward pass has negligible cost for FB also.

Comparisons of FB with DP are given in figures 3 and 4. For practical convenience, in place of�
we specify a noise parameter � in gray-level units, so that:

�!� �� � � � � 	�	 � � (26)

It is clear from inspection that artefacts of reconstruction in the DP algorithm are partly suppressed

by the FB algorithm. The mechanism by which this is done is illustrated in figure 6 showing how

ambiguity of disparity is represented as a probability distribution. Note the bifurcation of paths in

4In [4] 
 is referred to in the pseudo-code as the constant Occlusion.



Left Virtual Cyclopean (DP, � ��� � � � 	
) Right

Figure 2: Fast cyclopean view synthesis by dynamic programming Left, right and typical estimated

cyclopean image using dynamic programming with single pixel, monochrome observations. Note that gaze

is correct in the cyclopean view. The algorithm runs at near real-time rate, but can produce artefacts in the

cyclopean image — in this case texture is broken up at the top of the head, and in the background to the

right of the head. (See later for explanation of occlusion constant � .)

* ��� � � � # � � 	 * ��� � � # � ��� * ��� � . # � ���

Figure 3: Forward-Backward cyclopean interpolation for the data of figure 2. The three sets of ��� �	��

parameters used here all correspond to occlusion parameter �
����� ����� as used for DP in figure 2. Note that

i) performance of FB appears superior to that of DP in that artefacts are reduced, and ii) performance of FB

appears relatively insensitive to changing parameters.

the disparity distribution, typical in the presence of ghost matches. Such bifurcation could further

be used to signal failures in stereo matching.

Finally, figure 5 shows a comparison with ground truth, using the “Tsukuba” calibrated motion

sequence of [13]. The first and last images of the sequence are used to provide the baseline, and

the centre image gives cyclopean ground truth. This is even so when the window size is reduced to��� � pixels as here. Note that FB peforms consistently better than DP on values of the � parameter



DP: � ��� � � � 	
DP: � ��� � � �

FB: � ��� � � � 	
( * ��� � � # � � �

) FB: c=0.01 ( * ��� � � # � � �
)

Figure 4: Forward-Backward cyclopean interpolation The first and second row show comparable results

for cyclopean images from FB and DP, for two different settings of parameter � . FB appears to perform better

than DP, to some extent for �
� ��� ��� and to a substantial extent for � � ��� ����� .

tested. However, this data, along with all 4 ground truth sequences in [13], rank as very easy tests

compared with the our teleconferencing data, so both FB and DP obtain good reconstructions. This

is because the range of disparities is about 10 times greater in the teleconference data. At the time

of writing, there is no publically available ground truth data for this much more difficult problem

setting
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Figure 5: Testing against cyclopean ground truth. Testing ground truth with the “Tsukuba” data (see

text for details) shows a consistent improvement for FB over DP, and reduced sensitivity to the value of

parameter � .

7 Conclusion

This paper describes an algorithm for estimating uncertainty in dense disparity from corresponding

epipolar lines in stereo images. The algorithm allows ambiguity of disparity to be represented

explicitly, as a probability distribution. This has been achieved by using an extension due to [5]

of the forward backward algorithm to deal with two unsynchronised input streams, rather than just

the usual single stream. The use of the forward backward algorithm allows for uncertainty to be

computed efficiently, with effort comparable to conventional matching by dynamic programming.

One application of the new algorithm is to the problem of view interpolation, replacing dynamic

programming with forward-backward inference. Some practical evidence has been presented that

this can reduce the severity of artefacts in the reconstructed cyclopean image. The new framework

is particularly striking where ambiguity in matching is severe. In such locations, the uncertain

representation can even pick out ambiguous and bifurcating paths in the disparity space. Other

possible applications include i) detecting failures in stereo matching as heavy-tailed or multimodal

distributions and ii) data fusion in robot navigation, combining uncertainty in observations with

uncertainty in disparity.
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A Derivation of forward algorithm

A derivation of the iterative formula (15) for forward probabilities follows here. Note that � � �-��� �
in (14) has the property that

� � �-��� �.- 
 �-��� # ����� � # (27)

the constant of proportionality 
 � � ��� � being independent of
�+�

. Then, the right hand side of (15)

can be expressed, using (14) and (13), as

����� -
(28)

�� ����� 
 �-���/. 0 # ��������� � ,�� �-��� � ���/. 0 � 
 � � ����������������� ! � ��� #
���/. 0 � �
It follows from the assumed independence of the disparity process that

,�� �-��� � ���/. 0 ��� ,�� �-��� � ���/. 0 # ��������� � (29)

so that


 �-���/. 0 # ��������� � ,�� �-��� � ���/. 0 ��� 
 �-��� #
���/. 0 # ��������� ��� (30)

Using the mutual independence of observations,


 � � ����� ����������� ! � ��� #
���/. 0 � � 
 � � ����������������� ! � ��� #
���/. 0 # ��������� � # (31)

so now

������ �� ����� 
 �-��� #
���/. 0 # ��������� � 
 � � ����������������� ! � ��� #
���/. 0 # ��������� �� �� ����� 

� � ����������������� ! # ��������� #
��� #
���/. 0 �� �� ����� 
 � ����� #
��� #
���/. 0 �� 
 � ����� #
��� � #

which is proportional to � � �-��� � in (14), as required.
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Figure 6: Forward-Backward disparity distributions for the data of figures 2 and 3. Disparity distribu-

tions are given for the two scan lines shown. Note that there is appreciable ambiguity of disparity, visible as

vertical spreading in the diagrams, and this is what distinguished FB from DP.


