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ABSTRACT 

Global linear registration is a necessary first step for many different tasks in medical image 

analysis. Comparing longitudinal studies
1
, cross-modality fusion

2
, and many other 

applications depend heavily on the success of the automatic registration. The robustness and 

efficiency of this step is crucial as it affects all subsequent operations. Most common 

techniques cast the linear registration problem as the minimization of a global energy 

function based on the image intensities. Although these algorithms have proved useful, their 

robustness in fully automated scenarios is still an open question. In fact, the optimization step 

often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain 

the space of registration parameters by exploiting implicit or explicit organ segmentations, 

thus increasing robustness
4,5

. In this work we propose a novel robust algorithm for automatic 

global linear image registration. Our method uses random regression forests to estimate 

posterior probability distributions for the locations of anatomical structures – represented as 

axis aligned bounding boxes
6
. These posterior distributions are later integrated in a global 

linear registration algorithm. The biggest advantage of our algorithm is that it does not 

require pre-defined segmentations or regions. Yet it yields robust registration results. We 

compare the robustness of our algorithm with that of the state of the art Elastix toolbox
7
. 

Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT 

images. We show that our method decreases the “failure” rate of the global linear registration 

from 12.5% (Elastix) to only 1.9%. 

Keywords: Registration, CT images, Random Forests, Mutual Information, Kullback-

Leibler, Regression 

 

1. INTRODUCTION 

Global linear registration of medical images is an important step in almost every analysis involving more than a 

single image. Due to its importance in many different applications, the automatic image registration problem has 

received much attention in the literature
5,12

. Guaranteeing high levels of robustness for diverse images is critical for 

registration’s clinical use. This work focuses on improving the robustness of automatic registration by marrying modern 

object recognition algorithms with efficient linear registration techniques.  

The biggest challenge in the linear registration problem is the existence of local minima in the energy functions. 

Depending on the initialization of the registration algorithm the optimization methods can get trapped in local minima 

yielding unsatisfactory alignment. This problem is usually avoided by manual interaction. Here we wish to construct a 

fully automatic yet robust algorithm.  

 



Leveraging knowledge about labelled regions either via explicit/implicit segmentation or semantic labelling to 

aid registration is a new development
3,4,5,10,11

. The key motivation is to constrain the search space of the registration 

parameters and thus reduce the chances of local minima entrapment. Most of the works taking this approach use pre-

defined (manual) segmentations of critical organs. These segmentations are then used for constructing the energy 

function whose optimum point corresponds to “good” alignment of images. Works taking this approach have 

successfully demonstrated increased robustness over other approaches using only the image intensity information for 

image registration
4,5

. However, these methods demand user assisted guidance. Recent algorithms
6
 proposed by our group 

provide efficient and fully automated probabilistic localization of anatomical structures (organ posteriors). Here, we wish 

to use these probabilistic localizations to alleviate the need for user guidance and achieve robust registration.  

 

Our contribution is two-fold: i) we integrate automatically estimated organ posteriors into an efficient linear 

registration framework, and ii) show significant improvement in terms of robustness in the alignment of CT images. The 

proposed method does not require pre-defined label maps and its execution speed is similar to that of algorithms based 

on image intensities alone, e.g. Elastix, MedINRIA. We validate the proposed method by comparing it to the state of the 

art registration method provided in the Elastix package
7
. Validation is performed via 1464 pair-wise registrations in a 

database of very diverse 3D CT scans. We show that the proposed methods “failure” rate, 1.9%, is substantially lower 

than the one of Elastix, 12.5%.  

 

2. METHOD 

Our method consists of two steps. The first one is the computation of the posterior distributions for the locations 

of bounding boxes around specific organs such as the heart, the liver, the kidneys, the spleen, the lungs and the pelvis
6
. 

The main contribution of this article is in the second step where we integrate these posteriors into a robust registration 

process. For completeness first we describe the organ recognition process. Then we discuss the registration energy model 

and its minimization.  

2.1 Organ Localization with Random Regression Forests 

The random regression forest (RRF) algorithm
6
 automatically estimates locations of bounding boxes around 

organs in a given 3D CT scan. Each bounding box is defined by 6 faces and the problem is to estimate the real valued 

coordinates of these faces, i.e. 2-x, 2-y and 2-z values for each organ of interest. A regression forest is an ensemble of 

regression trees trained to predict such coordinate values for all desired anatomical structures simultaneously. Training is 

done on a pre-defined set of CT images with associated ground truth bounding boxes. The trees cluster voxels together 

based on their appearance, their spatial context and, above all, their confidence in bounding box predictions. During 

testing, all voxels of a previously unseen image are fed into the forest and posterior distributions on the locations of the 

bounding boxes around selected organs are estimated. Thanks to the algorithm’s parallel structure, the testing process 

only takes a few hundred milliseconds on a 256
3
 image. Please see [6] for details. 

2.2 From Bounding Box Posteriors to Voxel Probabilities 

As we have stated in the introduction the robustness of registration algorithms can be improved using other 

information sources than only the image itself. One of the most successful approaches is to use pre-defined 

segmentations of anatomical structures for aligning the images
3,4,5

.  The methods proposed so far have used voxel-based 

segmentations that are defined either through manual or automatic segmentation algorithms. This is a source of problem 

since manual segmentations require extensive user interaction and automatic segmentation algorithms have robustness 

issues themselves. The RRF algorithm, in contrast to other approaches, provides low level semantic information on the 

image intensity. This type of low level information can be robustly and efficiently constructed
6
, providing a suitable 

additional information source for a fully automatic and robust registration algorithm.  

The RRF algorithm gives us the estimated coordinate values for the faces of the bounding boxes along with the 

associated uncertainties. In order to be able to couple these posterior probability distributions of face coordinates with the 

image information we need to construct a probabilistic map over the individual image voxels. This probabilistic map 



assigns each voxel a discrete probability distribution describing which organ that voxel might belong to. We define this 

distribution by using sigmoid functions as follows: 
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where Bi represents the i
th

 bounding box, x=(x1,x2,x3) denotes voxel position, ui
j
 and li

j
 are the upper and lower faces of 

Bi in the j direction and σi
u
 and σi

l
 are the standard deviations for these coordinates as estimated by the RRF algorithm. 

Using (1) we obtain for each voxel the probability of it being inside a given organ’s bounding box. Figure 1 shows 

examples of these maps on an abdominal CT image for different structures. Having defined the probabilistic map over 

the image voxels next we can couple this with appearance information coming from the image intensities and formulate 

the registration energy. 

    
a b c d 

Figure 1. The input CT image (a) and the voxel-wise probability maps for the liver (b), right kidney (c) and the 

left pelvis (d). The probability maps are obtained using Equation 1. Bright corresponds to P=1 and dark is P=0. 

Images show 2D slices of 3D volumes.  

2.3 Robust Registration with Organ Location Posteriors 

 In the previous section we defined the voxel-wise posterior probability maps. Among different ways of 

combining this with the image intensity information we choose to use a statistical energy term and formulate the 

registration problem as an energy minimization task as follows 

           ( )           ( )     ( ( )  ( ( )))    ( ( )  ( ( ))),                           (2) 

where I and J are the two images, T is the spatial transformation (rigid-similitude-affine), MI is the mutual information 

defining the appearance term and KL is the Kullback-Leibler divergence acting on the anatomical location probabilities. 

Next we detail these terms.  

2.3.1 Appearance Term.  

 The first term in (2) is quite conventional and it focuses on maximizing the mutual information
8
 between the 

intensities of the two images. The mutual information between an image I and the transformed image J is: 
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where H is the entropy. The joint entropy H(u,v) is written as 
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where p is the probability density function of image intensities (not to be confused with organ probabilities).  In contrast 

to other intensity-based similarities, such as sum of square distances, this formulation assumes statistical dependency 



between the values of image voxels. This relaxed hypothesis has allowed mutual information to be successfully applied 

in registering both multi-modal images and images with very large appearance differences
12

, such as CT images with 

different levels of injected contrast agent. 

 

2.3.2 Anatomical Location Posterior Term 

 

 The second term in Equation (2) is a function of the anatomical location posterior term, which is based on the 

voxel-based discrete probability distribution derived from the probabilistic output of regression forests as described in 

Section 2.2. We use the probability distributions defined in Equation (1) as 
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where the point probability distribution p(x) is assumed uniform over the image domain Ω. We note that this formulation 

is similar to the one used in [4] but without the requirement of pre-defined segmentations. The combination of the 

appearance and anatomical location prior terms gives us a better behaved minimization surface with fewer or no local 

minima. In Figure 2 we show cross sections of an example minimization surface demonstrating the improvement 

obtained by integrating the organ location posteriors. For the registration problem given in Figure 4 we computed the 

energy defined in Equation 2 and the negative mutual information for different translations in the x-direction (Fig. 2.a), 

in the y-direction (Fig. 2.b.) and in the z-direction (Fig. 2.c.). We observe that the minimization surface is much better 

behaved and easier to optimize. Next we provide details on the optimization scheme we use to solve Equation (2). 

 

Figure 2. The optimization of the registration problem is prone to local extrema. These graphs are obtained for the 

registration problem given in Figure 4. In the graphs we plot the 1D cross sections of the energy function defined 

in Eqn 2 (in solid line) and the negative mutual information alone (in dashed line) on x-,y-, and z-translations. We 

see that the full energy model is less prone to local extrema. The minimum found for this problem is marked by 

solid vertical lines. The different registration results obtained for this problem are given in Figure 4 c (Elastix tool 

using only the mutual information) and 4 d (proposed method).  

2.4 Optimization 

The optimization of the energy function is an essential part of any registration algorithm. Considering the 

existence of local extrema in the optimization surface the choice of the algorithm is crucial. However, introducing the 

posterior distributions of organ locations in the registration algorithm makes the optimization surface well behaved. 

Therefore, the specific choice of the minimization algorithm becomes less critical. In order to demonstrate this point we 

implemented two versions of the proposed method: i) one using gradient-free global optimization scheme BOBYQA as 

detailed in [9] and ii) another one using a stochastic gradient descent scheme as explained in [13]. The BOBYQA 

algorithm is a gradient free optimization scheme which constructs successive quadratic approximations to the energy 

function. The optimum point is achieved through minimizing the quadratic approximations rather than the energy 

function itself. The second optimization scheme we have implemented is a stochastic gradient descent scheme which 



uses 2
nd

 order statistics to obtain a better descent direction at each iteration. These two optimization schemes have 

different characteristics and usually work well in different sets of problems.  

So far we have described the proposed registration algorithm by defining the energy function and the 

optimization schemes. In the next section we perform thorough evaluation of the proposed algorithm and compare its 

registration accuracy with that of a state-of-the-art method.  

3. RESULTS 

The proposed algorithm has been evaluated quantitatively by running a large number of pair-wise image 

registrations and comparing the results with those obtained for the same image pairs via the publicly available Elastix 

toolbox
*7

. The MedINRIA registration tools
†
 were also tested. However, they produced worse results than Elastix and in 

the interest of space those results are not reported.  

We applied the two tools to a database of varying CT images. The database includes 180 thorax, abdominal, 

pelvis and full-body CT and CTA images acquired in different institutions and with different acquisition parameters. The 

high variability of this database provides a challenging test-bed (see Figure 4 for an example). In each image, bounding 

boxes around 9 structures (heart-liver-spleen-kidneys (l/r)-lungs (l/r)-pelvis (l\r)) were drawn by an expert and these 

boxes were used to train the RRF algorithm (not in testing though) and also to compute the registration errors. The RRF 

algorithm was trained on 130 images and the remaining 50 images were used for testing both registration methods. Each 

of these 50 test images was registered to the remaining 49 via a similarity transformation (7-DOF: 3 rotations, 3 

translations and 1 scaling) using the proposed method (with both optimization schemes explained in Section 2.4) and 

also the Elastix tool. The parameter settings for the Elastix tool were optimized to obtain the best possible registration 

results. Image pairs which did not have at least one organ in common were discarded from the experiment. The 

computation times for both algorithms were similar despite the fact that our technique also incorporates semantic 

information. It took 30 seconds in average to register two 256
3
 images for both methods in a multi core Intel Xeon 

®
 

machine with 6 GB of RAM.  

Registration errors were computed (on the test set only) as the Euclidean distances between the ground-truth 

bounding boxes of the target image and those (appropriately transformed) of the transformed image. If the distance 

exceeded a fixed threshold that case is declared to be a “fail” for the registration. Figure 3 shows the percentage of failed 

cases for different thresholds. Table 1 provides numerical values for four selected thresholds (marked in figure).  

  
 

Figure 3. Percentage of failed pair-wise image registrations for different error thresholds. Left: Comparison of 

Elastix with the proposed method implemented using the BOBYQA optimization method, Right: Comparison of 

Elastix with the proposed method using Stochastic Gradient Descent. 

                                                      
* http://elastix.isi.uu.nl/index.php 
† http://www-sop.inria.fr/asclepios/software/MedINRIA/ 



% (#) failed 

cases 
Elastix 

Proposed Method 

with BOBYQA 

Proposed Method with 

Stochastic Gradient 

A 12.5% (183) 1.9% (28) 1.4% (20) 

B 8.8% (129) 1.2% (18) 0.9% (13) 

C 6.9% (101) 0.5% (7) 0.8% (12) 

D 5.3% (78) 0.3% (4) 0.5% (7) 
 

Table 1. Specific values from the plots in Figure 4. The thresholds are drawn in the images as vertical lines.. 

 The results given in Figure 3 and Table 1 show the improved robustness of the proposed method. We see that 

the percentage of failed cases is substantially reduced, from 12.5% to 1.9 – 1.4 %. We also notice that the proposed 

method whether implemented using a global optimization scheme or a local gradient descent algorithm produces good 

results and remains robust. This shows that the optimization problem given in Equation 2 is well behaved and has very 

few or no local extrema. The improved robustness of the proposed method arises from the integration of the organ 

location posteriors in the energy. 

 
A. MOVING IMAGE  

 
B. TARGET IMAGE  

 
C. REGISTRATION RESULT 

WITH ELASTIX  

 
D. REGISTRATION RESULTS WITH 

PROPOSED METHOD (ST. GRAD) 

Figure 4. Example showing the robustness introduced using the posterior distributions for organ locations in the 

registration process. For this problem we registered image A to image B using similitude transformation ( 7 

degrees of freedom). C: Methods using only the appearance information might not find the “right” alignment in 

patient images. D: The proposed method improves the robustness of the alignment process. Notice that image D 

is closer to image B compared to C. 



 

 In Figure 4 we show an example registration problem from our validation study to provide insights on why 

models based on only intensity information might fail while the proposed method succeeds in finding the “correct” 

alignment. Figure 4.A shows the moving image and B shows the target image, which is an extreme example but 

clinically possible. We see in Figure 4.C. that the Elastix tool fails in aligning these images using the similitude 

transformation while the proposed method can overcome the local extrema introduced by the amputated leg, (Figure 

4.D).  

4. CONCLUSIONS 

We have presented a robust and fully automatic linear registration algorithm which combines semantic organ 

recognition and global registration. The results show that including automatically computed posterior distributions for 

organ locations significantly improves the robustness of linear registration while maintaining its computational 

efficiency. The key advantages of the proposed method are: i) it does not require pre-defined labels (segmentation maps) 

and ii) the execution time remains the same (30 sec for 256^3 image volume) as the registration algorithms which only 

uses intensity information
7
 and iii) it is more robust than any automatic state-of-the-art algorithm. This makes for a 

practical and reliable tool. 

Our future work is focused on two different directions. Firstly we would like to validate the presented results on 

multi-modal registration problems. Second, we would like to integrate the organ recognition within a non-linear 

registration framework. Such an integration would allow us to define organ specific priors on the deformation field 

yielding realistic-“organ preserving”- deformations for intra and inter-subject registration. 
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