Computer Graphics Proceedings, Annual Conference Series, 2007

Photo Clip Art

Jean-Francois Lalonde =~ Derek Hoiem
Carnegie Mellon University

Alexei A. Efros

Carsten Rother John Winn Antonio Criminisi
Microsoft Research Cambridge

Figure 1: Starting with a present day photograph of the famous Abbey Road in London (left), a person using our system was easily able to
make the scene much more lively. There are 4 extra objects in the middle image, and 17 extra in the right image. Can you spot them all?

Abstract

We present a system for inserting new objects into existing pho-
tographs by querying a vast image-based object library, pre-
computed using a publicly available Internet object database. The
central goal is to shield the user from all of the arduous tasks typi-
cally involved in image compositing. The user is only asked to do
two simple things: 1) pick a 3D location in the scene to place a
new object; 2) select an object to insert using a hierarchical menu.
We pose the problem of object insertion as a data-driven, 3D-based,
context-sensitive object retrieval task. Instead of trying to manipu-
late the object to change its orientation, color distribution, etc. to fit
the new image, we simply retrieve an object of a specified class that
has all the required properties (camera pose, lighting, resolution,
etc) from our large object library. We present new automatic algo-
rithms for improving object segmentation and blending, estimating
true 3D object size and orientation, and estimating scene lighting
conditions. We also present an intuitive user interface that makes
object insertion fast and simple even for the artistically challenged.

Keywords: image databases, object insertion, blending and com-
positing, 3D scene reasoning, computational photography

1 Introduction

One of the biggest achievements of photography has been in bring-
ing the joy of visual expression to the general public. The ability to
depict the world, once the exclusive domain of artists, is now avail-
able to anyone with a camera. The sheer number of photographs
being taken every day, as evidenced by the explosive growth of

Project Web Page: http://graphics.cs.cmu.edu/projects/photoclipart/

From the ACM SIGGRAPH 2007 conference proceedings.

Copyright(© 2007 by the Association for Computing Machinery, Inc. Permis-
sion to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Abstracting with credit
is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

ACM SIGGRAPH 2007, San Diego, CA

websites like Flickr, attests to people’s need to express themselves
visually. However, the creation of novel visual content is still the
monopoly of a small select group: painters, computer graphics
professionals, and Photoshop artists. One of the “Grand Goals”
of computer graphics is to make the creation and manipulation of
novel photo-realistic imagery as simple and effortless as using a
word-processor to create beautifully typeset text is today.

However, there are a number of formidable challenges on the
way toward this ambitious goal. For “traditional” computer graph-
ics, the main problem is not the lack of good algorithms —recent ad-
vances in global illumination, material modeling, and lighting have
allowed for synthesis of beautifully realistic and detailed imagery.
Instead, the biggest obstacle is the sheer richness and complexity of
our visual world. Every object to be rendered requires painstaking
work by a skilled artist to specify detailed geometry and surface
properties. And while there are a few databases of pre-made ob-
ject models, typically the number of objects is quite small and the
quality is far from photo-realistic. Various image-based approaches
can also be used to acquire object models, but the data acquisition
process is not straightforward and is typically not suitable for rela-
tively large, outdoor, potentially moving objects (cars, pedestrians,
etc). In this paper, we are particularly interested in being able to
insert new objects into existing images (e.g. creating a movie sto-
ryboard or adding street life to a newly built city-block). While it is
possible to add synthetic objects into real scenes [Debevec 1998],
this requires estimating camera orientation and capturing environ-
ment maps — tasks too difficult for a casual user.

In this work, we advocate an alternative approach for creating
novel visual content — by leveraging the enormous amount of pho-
tographs that has already been captured. A number of recent pa-
pers, such as Interactive Digital Photomontage [Agarwala et al.
2004], have demonstrated the power of using stacks of registered
photographs to create novel images combining information from
the entire stack. Last year’s Photo Tourism work [Snavely et al.
2006] showed how hundreds of photographs acquired from the In-
ternet can be used as a novel way to explore famous architectural
landmarks in space as well as in time. However, these are all ex-
amples of using images taken at the same physical location — a nec-
essarily limited set. What about exploiting all the available visual
data in the world, no matter where it was captured, to build a univer-
sal photo clip art library that can be used for manipulating visual

ACM SIGGRAPH 2007, San Diego, CA, August, 5-9, 2007

content “on the fly”? While this is a very ambitious goal, the re-
cent emergence of large, peer-labeled object datasets [Russell et al.
2005; von Ahn et al. 2006], as well as advances in geometric scene
understanding [Hoiem et al. 2005; Hoiem et al. 2006] suggest that
efforts in this direction are very timely.

2 Overview

In this paper we propose a system for inserting new objects into ex-
isting photographs by querying a vast image-based object library,
pre-computed using publicly available Internet object datasets. The
central goal is to shield the user from all of the arduous tasks typi-
cally involved in image compositing — searching for a good object
to cut out, manual cropping and resizing, color adjustment, edge
blending, etc. The user is only asked to do two simple things: 1)
pick a 3D location in the scene to place a new object; 2) select an
object to insert using a hierarchical menu.

Two critical elements form the cornerstone of our approach to
solving this challenging task:

Data-driven Object Placement. The difficulty in placing an
image of an object (object sprite) into another image is that the
camera orientation with respect to the object as well as the light-
ing conditions must match between the two images. One simple
but key intuition is that while placing a particular object (e.g. my
brown Volvo seen from the side) into a given image is a very diffi-
cult task, finding some instance of an object class (e.g. a car) that
fits well is much easier. The idea, then, is to pose the problem of
object insertion as a data-driven, context-sensitive object retrieval
task. Instead of attempting to manipulate the object to change its
orientation and/or color distribution, we simply retrieve an object of
a specified class that has all the required properties (camera pose,
lighting, resolution, etc) from our large object library. This turns
an impossibly hard problem into a solvable one, with the results
steadily improving as more and more data becomes available.

3D Scene-based Representation: One of the major weaknesses
of most current image compositing approaches is that they treat it
as a 2D Photoshop-like problem. We believe that any image ma-
nipulation must be done in the 3D space of the scene, not in the 2D
space of the image. This does not mean that a complete 3D depth
representation of a scene is required — only some rough qualitative
information about surfaces and their orientations with respect to the
camera, plus basic depth ordering. First, this allows the user some
intuitive 3D control of the object placement process — placing the
car further down the road will automatically make it smaller. More
importantly, the 3D information is needed to build the photo clip art
library. Each object in the library must be annotated with relative
camera pose, whether it’s occluded by other objects, whether it’s on
the ground plane, etc. In the current version, due to the limitations
of the object dataset, all of our objects are assumed to reside on the
ground plane. Finally, a coarse 3D layout of a scene appears suffi-
cient to characterize its main illumination properties, which we use
for matching the object lighting conditions.

2.1 Prior work

A number of papers have dealt with issues involved in compositing
an object into an image in a visually pleasing way [Porter and Duff
1984; Perez et al. 2003; Jia et al. 2006; Wang and Cohen 2006].
However, they all assume that the user has already chosen the ob-
ject that would be a good fit (geometrically and photometrically)
for the target image. For instance, most blending techniques [Perez
et al. 2003; Jia et al. 2006] rely on the assumption that the area
surrounding the object in the source and target images are similar.
Playing with these methods, one quickly realizes how very impor-
tant the selection of a good source object is to the quality of the
result and how difficult it is to get it right if one is not artistically
gifted.

The work closest to our own and one of the main inspirations
for this project is Semantic Photo Synthesis [Johnson et al. 2006]
(which itself has been inspired by [Diakopoulos et al. 2004]). This
paper develops a very ambitious approach for letting the user “de-
sign a new photograph” using textual and sketch queries into a
database of real, automatically annotated images. Graphcut opti-
mization [Boykov et al. 2001] is used to stitch together parts of dif-
ferent retrieved photographs to get the final resulting image. While
this work is very sophisticated technically and loaded with good,
novel ideas, unfortunately, the visual results are not very com-
pelling. We believe that the reasons for this are three-fold: 1) the
synthesis process is done purely in the 2D image plane, without re-
gard to scene geometry; 2) the image parts being stitched together
are often not well defined, i.e. not corresponding to physical ob-
jects; 3) there is no attempt to match illumination conditions be-
tween image parts. Our present work addresses all of the above is-
sues. We employ a more incremental approach to image synthesis.
Instead of starting from scratch and hoping to get a photo-realistic
picture in the end, we begin with an image that is already real and
try to alter it in ways that change the content without breaking this
“realness”.

2.2 Key Challenges

The main challenge of our proposed system is to make the result-
ing images look as real as possible. Here we highlight the issues
that are critical for the success of this endeavor and summarize our
approach for addressing them.

e Rich Object Library: The data-driven nature of our approach
requires a library with very large number of labeled objects. Af-
ter examining a number of available on-line object datasets, we
have chosen LabelMe [Russell et al. 2005] as providing a good
mix of object classes, large numbers of objects in each class,
and reasonably good initial object segmentations. After post-
processing and filtering the data, we end up with an object library
currently containing 18 categories of objects with over 13,000
object instances.

e Object Segmentation: Getting clean object boundaries is crit-
ical for seamless object insertion. While the object dataset we
use provides rough polygonal object outlines, this is rarely good
enough for compositing. To address this problem, we have
developed an automatic segmentation and blending approach.
We extend the popular graph-cut/Poisson blending framework
by introducing a new shape-sensitive prior, adding a crucial lo-
cal context-matching term for blending, detecting shadows, and
modifying the blending process to prevent severe discoloration.

o Estimating true Object Size and Orientation: A 2D object
boundary tells us nothing about the size of the object in the world
or its orientation to the viewer. For example, given an outline of
a person, we cannot tell if it’s a tall man standing far away, or a
small boy standing nearby; or whether we are viewing him from
street level or from a third-story balcony. But without this in-
formation one cannot hope for realistic object insertion. We have
developed an automatic algorithm that uses all the objects labeled
in the dataset to estimate the camera height and pose with respect
to the ground plane in each of the images. For objects resting on
the ground (our focus in this paper), these two parameters are
enough to compute object size and orientation.

o Estimating Lighting Conditions: Consistency in lighting is an-
other important cue for realistic compositing. A picture of a car
taken at sunset will most likely not look right when placed into
a midday scene. Unfortunately, we do not have enough informa-
tion to compute a full environment map for each object. How-
ever, such accuracy might not be necessary. It is well-known
that painters can often get away with substantially inconsistent
lighting [Cavanagh 2005], and in graphics applications simple

Computer Graphics Proceedings, Annual Conference Series, 2007

Figure 2: Automatic object height estimation. Objects taken from a typical image in LabelMe dataset (left) are first shown in their original
pixel size (center), and after being resized according to their automatically estimated 3D heights (right).

approximations have been shown to perform well [Khan et al.
2006]. In this paper, we propose a simple illumination model
based on automatically computing color distributions of major
surfaces (e.g. ground, vertical planes, sky) in the scene.

o Intuitive User Interface: While not the central focus of this
paper, a good Ul is critical for achieving the goal of making our
system simple and intuitive. We have designed and implemented
a full-functioning GUI that allows for easy browsing of the object
library and lets users insert objects with a single click.

The remainder of the paper is devoted to describing each of these
components in more detail. We first discuss our approach for cre-
ating the photo clip art object library (Section 3). We then present
our system for inserting objects into existing user photographs (Sec-
tion 4). Finally, we demonstrate some results (Section 5).

3 Creating the Photo Clip Art Library

The first issue in creating a photographic clip art library is finding a
large dataset of labeled images of objects. Fortunately, the growth
of the Internet and the need for large object recognition testbeds for
computer vision research have produced a large number of freely
available object datasets that we can choose from.

Most datasets (such as Caltech-101 [Fei-Fei et al. 2004],
MSRC [Shotton et al. 2006], and PASCAL [Everingham et al.
2006]) have been collected and annotated by small groups of re-
searchers and are therefore limited in size and/or annotation detail
(most lack segmentations). Recently, there appeared a new breed
of peer-labeled datasets. The most famous example is Flickr, where
people can submit photographs and annotate them with semantic
image and region tags. A creative approach is presented in an on-
line game called Peekaboom [von Ahn et al. 2006], where humans
communicate with each other by segmenting objects in images. Fi-
nally, LabelMe [Russell et al. 2005] provides as on-line tool for
vision researchers to submit, share, and label images.

After experimenting with all these datasets, we decided that La-
belMe is the best-suited for our purposes. Its advantages include a
large number of images (over 30,000 at present), containing many
different objects (over 2,000 object classes) as well as reasonably
good segmentations. Also important for us is that most photographs
are not close-ups of one individual object but depict scenes contain-
ing multiple objects, which enables us to estimate camera orienta-
tion. Finally, since this dataset is very popular in the vision com-
munity, it is constantly growing in size. At the same time, vision re-
searchers are developing automatic methods for supervised recog-
nition (e.g. [Shotton et al. 2006]) and object discovery (e.g. [Rus-
sell et al. 2006]) that should, some day, take over the labeling chore.
Success has already been reported on specialized tasks (e.g. an au-
tomatically collected database of celebrity faces [Berg et al. 2004]),
but further research is needed for more general domains.

The main downside of LabelMe is substantial variation between
individual labeling styles as well as semantic tags. Some people
include cast shadows, others don’t; some people include occluded
parts of an object, others don’t. Since a semantic tag can be any text
string, the same object could be labeled as: “person”, “human”,
“pedestrian”, “man smiling”, etc. Therefore, one of our tasks in
processing the dataset was to deal with such inconsistencies. Addi-
tionally, for every object in our library, we need to estimate its size
and orientation in the real world as well as its illumination. We will
now describe each of these steps in detail.

3.1 Estimating object size and orientation

To match and scale objects in our database to the background scene
provided by the user, we need to know the true size of the objects
in the world and the pose of the camera. As shown by [Crimin-
isi et al. 2000], if we know the vanishing line of the ground plane,
we can determine the relative heights of objects that rest on the
ground plane. To annotate our database using this method, how-
ever, would require painstaking (and often inaccurate) annotation
of vanishing lines in thousands of images. Instead, we provide a
simple method to gradually infer camera pose and object heights
across our database when provided with only the height distribu-
tion for one object class.

Let y; be the 3D height of an object with a 2D height of 4; and
a vertical position of v; (measured from the bottom of the image).
The camera pose is denoted by y. and vy, which correspond roughly
to the camera height and the horizon position. Following Hoiem et
al. [2006], our inference is based on the relationship y; = Vf)”f‘;,i,
assuming that objects stand on the ground and that ground is not
tilted from side to side and roughly orthogonal to the image plane.
Thus, given the position and height of two objects of known type in
the image, we can estimate the camera pose without heavily relying
on a prior distribution and use it to compute the 3D height of other
objects in the scene. If we know the prior distribution over camera
pose, we can provide a good estimate of it, even if only one instance
of a known object is present [Hoiem et al. 2006].

Our procedure is as follows. We first compute the most likely
camera pose for images that contain at least two known objects (in-
stances of an object class with a known height distribution). From
these, we estimate a prior distribution over camera pose. Using this
distribution, we infer the likely camera pose for images that contain
only one known object. Finally, we compute heights of objects in
the images for which camera pose is known and estimate the height
distributions of new classes of objects. We then iterate this process.
As the height distributions of new object classes are discovered,
they can be used to estimate the camera pose in additional images,
which, in turn, allow the discovery of new objects.

We initialize by specifying that the height of people is normally
distributed with a mean of 1.7 meters and a standard deviation
of 0.085. We also initialize a loose prior of camera pose with

ACM SIGGRAPH 2007, San Diego, CA, August, 5-9, 2007

(a) Input image

(b) with well matched objects

(c) with poorly matched objects

(d) Car source images

Figure 3: Lighting plays crucial role in object insertion. Given an input image (a), objects that are similarly illuminated fit seamlessly into
the scene (b), while these with substantially different illumination appear out of place (c). By considering the source image from which an
object was taken (d) in relation to the input image (a), our algorithm can predict which objects will likely make a realistic composite.

mean horizon of mid-image and mean camera height of 1.6 meters
(roughly eye level), with a diagonal covariance of 1. Once we esti-
mate the camera pose for images containing at least two people, we
use those poses to model the prior with a Gaussian mixture model
(with three full-covariance components). When we can infer the
height of at least fifteen instances of an object class, we estimate
the normal distribution of heights for that object. To avoid being
confused by poorly segmented objects and other outliers, we ignore
objects that are measured as more than twice as large or twice as
small as the median height for their classes.

After several iterations, we infer the camera pose of about 5,000
images containing over 13,000 object instances, for which the 3D
height can now be computed. As by-products, we also have a good
estimate of the camera pose prior, as well as the height distributions
of roughly fifty object classes ranging from cars to fire hydrants to
horses. The accuracy of our estimates are confirmed by manual
measurements of camera pose on a subset of images, as well as by
the inferred mean object heights (e.g., 1.67m for “women”, 1.80m
for “men”, 1.37m for “parkingmeter”, which are all within two cm
of their true values). Figure 2 shows an example of automatically
estimate 3D heights for various objects from the same image.

3.2 Estimating lighting conditions

The appearance of an object is determined by the combination of
its reflectance properties and the illumination from the surrounding
environment. Therefore, an object taken from one image and in-
serted into another will look “wrong” if the two scenes have large
differences in illumination (see Figure 3). The standard solution of
measuring the incident illumination by capturing the object envi-
ronment map (typically using a mirrored sphere at the object loca-
tion [Debevec 1998]), is not possible here since we only have access
to a single photograph of the object. However, it has been shown
by Khan et al. [2006] that a usable environment map approximation
can be obtained from the image itself, in their case, by extracting a
disk around the object, making it into a hemisphere and mirroring.

We propose to use scene understanding techniques to compute
a very coarsely sampled environment map given a single image as
input. The basic idea is to come up with a rough 3D structure of
the depicted scene and use it to collect lighting information from
the three major zenith angle directions: from above, from below,
and from the sides (azimuth direction is not used since there is not
enough data in a single image). Our implementation uses the ge-
ometric context of [Hoiem et al. 2005] to automatically estimate 3
major surface types: ground plane, vertical planes, and the sky. The
distribution of illuminations within each surface type is computed
as a joint 3D histogram of pixel colors in the CIE L*a*b* space, for
a total of 3 histograms to form our scene illumination context. It is
important to note that while [Khan et al. 2006] use high dynamic
range images, we only have access to regular low dynamic range
photographs so cannot capture true luminance. But since we don’t

use the illumination context to relight a new object, only to compare
lighting conditions between images, this has not been a problem.

The illumination context is too global and cannot encode
location-specific lighting within the scene, i.e. whether a given ob-
ject is in shadow. Therefore, for each object we also compute a
local appearance context — a simple color template of its outline
(30% of object diameter outward from the boundary, and 5% in-
ward). The local context is used as an additional cue for object
placement.

3.3 Filtering and grouping objects

While the LabelMe dataset has a rich collection of objects and ob-
ject classes, many are simply not useful for our purposes. A lot of
the labeled objects are occluded or are actually object parts (e.g. a
wheel, a car window, a head), while others are amorphous (e.g. sky,
forest, pavement). The types of objects best suited for a clip art li-
brary are semantically whole, spatially compact, with well-defined
contact points (i.e. sitting on the ground plane). We attempt to filter
out the unsuitable objects from the dataset in a semi-automatic way.

As a first step, we try to remove all non-whole objects by

searching the tag strings for words “part”, “occlude”, “region”, and
“crop”. We also remove any objects that have a boundary right
at the image border (likely occluded). Second, we estimate the
3D heights of all objects using the iterative procedure outlined in
Section 3.1. As a by-product, this gives us a list of object classes
that have been found useful for camera pose estimation (i.e. hav-
ing relatively tight height distributions): “bench”, “bicycle”, “bus”,
“car” (various orientations), “chair”, “cone”, “fence”, “fire hy-
drant”, “man”, “motorcycle”, “parking meter”, “person”, “sofa”,
“table”, “trash can”, “truck”, “van”, “wheel”, “woman”. Of these,
we discard small or unsuitable classes (e.g. “wheel”), and merge
others (e.g. “man”, “woman”, and “person”) into consistent groups.
We also manually add a few fun classes that were either too small
or not very consistent: “plant”, “flowers”, “tree”, and “manhole”.
Note that most of the recovered classes are of outdoor objects. This
mainly reflects the bias in the dataset toward outdoor scenes, but
also due to ground-based objects mostly appearing outdoors.

In most cases the variance between objects within the same ob-
ject class is still too high to make it a useful way to browse our
clip art collection. While a few of the object classes have hand-
annotated subclass labels (e.g. cars are labeled with their orienta-
tion), most do not. In these cases, clustering is used to automatically
find visually similar subclasses for each object class. First, all ob-
jects are rescaled to their world 3D height (as calculated earlier),
so that, for instance, a tree and a bush don’t get clustered together.
Next, k-means clustering using L2 norm is performed on the binary
object outlines. This is done so that object will cluster solely based
on shape, and not on their (lighting dependent) appearance. Results
show successful subclasses being formed for most of the objects
(e.g. see Figure 4).

Computer Graphics Proceedings, Annual Conference Series, 2007

X Photo Clip Art

TN N

[[worizon| Random

G= e S e | e

Figure 4: User Interface for our system. The two-level menu on
the top panel allows users to navigate between different classes and
subclasses of the photo clip art library. The side panel on the right
shows the top matched objects that can be inserted into the scene.

4 Object Insertion

Now that we have built our photo clip art object library, we can
describe how to insert objects into user photographs. Given a new
photograph, the first task is to establish its camera orientation with
respect to the ground plane. To do this, the user is asked to pick
the location of the horizon with a simple line interface. Other rel-
evant camera parameters (camera height, focal length, pixel size)
are set to their most likely values, or extracted from the EXIF tag,
if available. Alternatively, the user can specify the height of one or
more known objects in the scene, from which the camera param-
eters can be estimated as in Section 3.1. It is also possible to let
the user resize a known “reference object”, such as a person, placed
at different locations in the image, to compute the camera pose and
height, although we haven’t found this necessary. In addition, light-
ing conditions must be estimated for the new scene, which is done
in the same way as described in Section 3.2. With the critical pa-
rameters of the new photograph successfully estimated, we are now
ready for object insertion.

4.1 User Interface

First, we will briefly describe the design of our User Interface. Its
job is to let the user 1) easily navigate the entire photo clip art li-
brary, and 2) paste an object of choice into the photograph with a
single click.

The screen-shot of our Ul is depicted on Figure 4. The user pho-
tograph is loaded in the central panel. The top row of icons shows
all the object classes available in the library. The second row of
icons shows all object subclasses for a chosen class. The subclasses
are generated either from the object annotations, if available, or by
automatic clustering (as described previously). The subclass icons
are average images of all the objects in the subclass, a technique in-
spired by [Torralba and Oliva 2003]. The right-hand-side panel dis-
plays the object instances. Initially it contains all the objects in the
library, but as the user picks a class of objects, only these instances
remain in the panel. The same happens for a subclass. Moreover,
the objects in the panel are sorted by how well they match this par-
ticular scene.

To insert an object into the scene, the user first chooses an ob-
ject class (and optionally a subclass), and then picks one of the top
matches from the object panel. Now, as the user moves the mouse
around the photograph, the outline of the picked object is shown,
becoming bigger and smaller according to the correct perspective.

A single click pastes the object at the current mouse position, and
full segmentation and blending is performed on the fly. Alterna-
tively, the user can first pick a location to paste an object, and then
choose among the objects that best fit that particular location. Note
that all inserted objects (as well as any labeled ones in the image)
preserve their 3D depth information and are rendered back-to-front
to accurately account for known occlusions.

4.2 Matching Criteria

Given a scene, we need to order all the objects in the library by how
natural they would look if inserted into that scene. This way, a user
picking an object from near the top of the list would be pretty con-
fident that the compositing operation would produce good results.
The ordering is accomplished as a weighted linear combination of
several matching criteria, dealing with different aspects of object
appearance.

Camera Orientation: The camera orientation with respect to
the object’s supporting surface has been pre-computed for every
object in the library. We also have the estimate for the ground
plane orientation for the user’s photograph. Geometrically, an ob-
ject would fit well into the scene if these camera orientation angles
are close, and poorly otherwise. If the object placement location
is not specified explicitly by the user, a simple difference between
the vanishing line heights of the ground planes of the source and
destination scenes is used instead.

Global Lighting Conditions: Each object in the library has
an associated scene illumination context that was computed from
the object’s original source image. An object is most likely to ap-
pear photometrically consistent with the new scene if its original
scene illumination context match that of the new scene. The dis-
tance between the illumination contexts is computed as a weighted
linear combination of y2-distances between the L*a*b* histograms
for sky, vertical, and ground. Experimenting with the weights, we
have found (unsurprisingly) that the sky portion of the context is
the most important, followed by the ground portion. Vertical por-
tion seems to have little effect.

Local Context: If a user has also specified the location where
he wants the object to be placed, local appearance context around
(and under) the placement area can also be used as a matching cri-
terion. The context is matched to the corresponding pixels at the
placement area using SSD measure. This cue is used primarily as
an aid to blending difficult objects, as described in Section 4.3, and
for matching locally-varying lighting effects.

Resolution: Again, if the placement location in the image is
given, it is easy to compute the desired pixel resolution for the ob-
ject so as to minimize resizing.

Segmentation Quality: The initial segmentation quality of ob-
jects in our library is highly variable. Various approaches can be
used to try separating the good ones from the bad (e.g. alignment
with brightness edges, curvature, internal coherence, etc). In this
implementation, we use a very simple but effective technique, or-
dering objects by the number of vertices (i.e. labeling clicks) in
their boundary representation.

4.3 Object Segmentation and Blending

Once the user picks an object to insert into a given scene, the most
important task to insure a quality composite is object matting. Un-
fortunately, automatic alpha-matting without a user in the loop is
not guaranteed to work reliably for all scenarios, despite a lot of
recent advances in this field e.g. [Levin et al. 2006]. On the other
hand, blending techniques [Perez et al. 2003; Jia et al. 2006] have
shown that impressive results can be achieved without an accurate
extraction of the object, assuming that the material surrounding the
object and the new background are very similar (e.g. a sheep on a
lawn can be pasted onto another lawn, but not on asphalt).

Very recently, the idea of combining the advantages of blending

ACM SIGGRAPH 2007, San Diego, CA, August, 5-9, 2007

(b) GrabCut
[Rother et al ‘04]

(c) Poisson Editing
[Perez et al ‘03]

(a) Input image

(d) Blending Mask -
Our Method

(e) Our Method

[Agarwala et al ‘04] [Jia et al ‘06]

Figure 6: Example of image compositing: Source input image (a) and compositing results with different approaches (b,c,e-g), where red

arrows point out problems. See text for full explanation.

(a) (b) (c) (d)
Figure 5: Object Extraction: Given an image (a), the task is to im-
prove the crude polygon-shaped LabelMe segmentation (b). Stan-
dard GrabCut (restricted to a red band in (b)) suffers from a ’shrink-
ing” bias (c). This can be overcome by introducing flux, a shape-
sensitive prior, into the GrabCut framework (d).

and alpha-matting have been introduced to hide matting artifacts
as much as possible [Wang and Cohen 2006; Jia et al. 2006]. The
key advantage of our system is that the local context criteria (intro-
duced above) has already retrieved appropriate objects which match
to some degree the given background, so blending and segmenta-
tion have a good chance of supporting each other.

Our compositing method runs, as in [Jia et al. 2006], in three
steps: first object extraction, then blending mask computation, and
finally Poisson image blending. The novel ideas over existing ap-
proaches are: a crucial shape prior for segmentation, a new context-
matching term for blending mask extraction, and a way to prevent
severe discoloration during blending.

4.3.1 Object Segmentation with a shape prior

Object segmentations provided in the LabelMe dataset have only
crude, polygonal boundaries. The task is to find a more faithful
outline of the object along with a good alpha mask. For this we ex-
tend the popular graph-cut based segmentation approaches [Rother
et al. 2004; Li et al. 2004] with a prior for the given shape. Figure
5 gives an example, where the cut is restricted to lie in a small band
(red in fig. 5(b)) around the prior polygon shape. Applying Grab-
Cut without shape prior results in fig. 5(c). The tree outline looks
convincing, however the tree trunk is lost. This happens because a
short expensive boundary has a lower cost than a very long cheap
one, sometimes called the shrinking” bias. To overcome this prob-
lem different forms of shape priors, such as shape-based distance
transform [Boykov et al. 2006], have been suggested in the past.
We use the flux shape prior as introduced recently in the theoreti-
cal work of [Kolmogorov and Boykov 2005]. The main advantage
over other methods is that it overcomes the shrinking bias while not
over-smoothing the whole segmentation. The key idea is that the
gradient of the computed contour is similar to the gradient of the
given shape. To achieve this, we add an additional unary term to eq.
2in [Rother et al. 2004] of the form w f;,,div(F), i.e. the divergence
of the vector field F, with the weight w ¢y, = 25. The vector field
is a weighted gradient field of the distance transform of the shape
mask. Precisely, F = VD (exp(—|D|/0)), where 6 = 3, and D is

the distance transform of the given contour, with positive distance
inside and negative outside. The weighting of F' by the magnitude
of D is important to favor contours close to the given one. Also,
before computing the divergence of F, we smooth the vector field '
with a Gaussian (variance 1.5) which essentially smooths the initial
polygon shape. The result in fig. 5(d) shows that with flux the tree
trunk is recovered nicely.

Finally, in order to recover the full alpha matte of the foreground
object we use the border matting system introduced in [Rother et al.
2004]. It is conservative in the sense that it is insensitive to image
noise, however, is limited to recovering only simple alpha mattes
along the boundary of sharp but not fuzzy edges. The later lim-
itation can be, to some extent, overcome by our context-sensitive
blending procedure introduced below.

4.3.2 Context-sensitive Blending

Consider the image compositing task in fig. 6. Given the input im-
age (a), GrabCut (based on a rough polygonal outline around the
object) produced an alpha matte which is used to paste the ob-
ject onto a new background (b). Here conservative border mat-
ting [Rother et al. 2004] was not able to extract the hair perfectly.
On the other hand, standard Poisson image blending [Perez et al.
2003] (with the boundary constraint applied at the green line in
(d) — a dilation of the GrabCut result) blends the hair correctly
(c). However, it produces two artifacts: a severe discoloration due
to large differences at the boundary constraint, and a blurry halo
around the object where foreground and background textures do
not match. The key idea is to find a binary blending mask which
either blends in the background color or leaves the segmentation
unaltered. Figure 6(d) shows the blending mask computed by our
technique. In places where the mask coincides with the object (red
line) no blending is performed and when the mask is outside the ob-
ject (at the hair) it blends in the background. This gives a visually
pleasing result (e). To achieve this we extend the approach of [Jia
et al. 2006] by adding an additional regional term that measures
the similarity of foreground and background statistics (see [Rother
2007] for details). This allows the white mask (d) to grow outside
the red mask at places with high similarity. In comparison, results
using digital photomontage [Agarwala et al. 2004] and drag-and-
drop pasting [Jia et al. 2006] (both using our implementation) show
more artifacts as seen on Figure 6(f-g). For [Agarwala et al. 2004],
we used their Poisson blending technique, which switches off high
gradients along the boundary. Note that their result cuts off the hair
since the sky in the foreground and background images are differ-
ently colored and it has a bias toward short boundaries.

Finally, we modify the standard Poisson image blending [Perez
et al. 2003] to prevent severe discoloration. This is desirable since
the scene lighting criterion, introduced above, retrieved objects
which are already photometrically consistent with the background
scene. Poisson blending is expressed as an optimization over the
constructed image u that matches its gradient Vi most closely to
the foreground gradient VI, subject to matching the background

(f) Digital Photomontage (g) Drag-and-Drop Pasting

Computer Graphics Proceedings, Annual Conference Series, 2007

Figure 7: Shadow Transfer. On the top row, we show the source
image (left) for a car with initial (center) and final (right) shadow
estimates. Our initial estimate, simply based on intensity relative to
surrounding area, is refined by enforcing that the shadow is darker
closer to the contact points (red "+’). On the bottom row, we show
the background patch with the object (left), with the matted shadow
(center), and the combination (right), before blending.

image IZ on the boundary of the blending mask s. Let us instead
optimize the following function, inspired by [Rother et al. 2006]:

E(u):x/(u—IF)2+/WS(VIF)HVM—WFnz 1)

where WS(VIF) = l+yexpf%||V1F||2, with gg = <HVIFH2>S.
Here < - > denotes a mean value over the domain s; and we set
A =0.05,7 =800, = 2.5. The first integral forces the object to
retain its original color, controlled by the weight A. The weighting
ws is low when the gradient | VIF || is very high, which reduces the
possibility of severe discoloring.

The blending mask and fractional object mask might intersect in
some places (e.g. person’s shoulders in fig. 6). We use the approach
of [Jia et al. 2006] to handle this case by incorporating the alpha
mask in the guidance field for Poisson blending. This means that
if the blending mask coincides with the object mask the boundary
conditions are perfectly met and no discoloring occurs.

4.4 Transferring Shadows

While psychologists have shown that humans are not very sensitive
to incorrect cast shadow direction [Cavanagh 2005], the mere pres-
ence of a shadow is a critical cue for object/surface contact [Ker-
sten et al. 1996]. Without it, objects appear to be floating in space.
Shadow extraction is a very challenging task and most existing
work either requires controlled lighting conditions, e.g. [Chuang
et al. 2003], or makes restrictive assumptions about camera, light-
ing, and shadow properties (e.g. [Finlayson et al. 2006]).

Because we do not know the 3D structure of our objects, synthet-
ically generated shadows rarely look convincing. Instead, we take
an image-based approach, transferring plausible shadows from the
source image to the background image (illustrated in Figure 7). We
consider the ground to be a mostly homogeneous surface, with the
object blocking some percentage of the light from reaching an area
of that surface. Our goal is to determine the percentage intensity
drop at each image position due to the object’s shadow.

Our method relies on the tendency of shadows to be darker
than the surrounding area and to attenuate with distance from
object-ground contact points. Our initial shadow estimate is sim-
ply the pixel intensity divided by the non-shadowed ground inten-
sity (with a maximum value of one). We approximate the non-
shadowed ground intensity on each row as the median intensity of
pixels within a margin (one-quarter object width) around the ob-
ject, excluding pixels within and directly beneath the object re-
gion. Our initial estimate will typically contain errors due to non-
homogeneity of the ground surface or shadows that are cast from
other objects.

We can reduce these errors by enforcing that the shadow be-
comes monotonically weaker with distance from the ground contact

points. To allow such reasoning, our system automatically classi-
fies each point on the polygon of an object as contact (touching the
ground) or not. Such classification is very difficult based on 2D im-
age positions and shapes alone. Our insight is to project each point
of the polygon onto the ground plane, providing additional cues for
contact point detection. For instance, if a ground-projected point
is at a much greater depth than the base of the object, the point is
not likely to contact the ground. Our classifier cues include: 2D
position relative to the bounding box; 3D position relative to min-
imum object depth and object width; slope to neighboring points
(both 2D and 3D); and whether the point lies on the convex hull of
the object region. We labeled the contact points of 200 objects and
trained a decision tree classifier [Quinlan 1993], which achieves
cross-validation accuracy of 96%.

Finally, to avoid artifacts caused by surrounding objects and their
shadows, we limit the shadow darkness to the 90th percentile of
darkness over all shadows of an object class in our database, which
is computed for each object class using the method described above,
relative to the position in the bounding box. We mat the shadow
onto the background image by darkening the area around the object
by the same percentage as in the source, which is then used in the
blending process described above.

5 Results and Discussion

Figures 8, 9 and 10 show more object insertion results that a user
was able to create with our system. One needs to look very carefully
to notice all the objects that have been added — there are several that
are quite difficult to spot. As can be seen, the system handles input
images with wide variation in scene geometry as well as lighting
conditions. In addition to photographs, our approach can success-
fully be applied to paintings (Figure 8, bottom center) and CG ren-
derings (Figure 10). The important thing to note is that all these
examples were produced in a few minutes by users who are not at
all artistically skilled.

In this paper, we have argued for a philosophically different way
of thinking about image compositing. In many situations, it is not
important which particular instance of an object class is pasted into
the image (e.g. when generating realistic architectural renderings
as shown on Figure 10). In such cases, what is desirable is a kind
of photo-realistic clip art library. Of course, regular clip art is a
simple 2D iconic drawing, whereas the real 3D world-based clip
art is necessarily more complex. However, we have shown that
with the right approach, and a lot of data, this complexity could be
successfully hidden from the end user, making it seem as simple
and intuitive as regular clip art.

The paper presents a complete system, from database prepro-
cessing to cutting and blending to the graphical user interface.
Along the way, we had to solve many difficult issues, resulting
in a number of novel algorithms and techniques. Since this is a
complex system, failures can occur in several stages of processing.
Figure 11 illustrates the three most common causes of encountered
failures. First, input scenes with unusual illumination are not sim-
ilar to any of the images in our library. Therefore, even the best-
matched objects will look unrealistic. Second, blending and auto-
matic segmentation errors may occur when objects are porous or
of complex shape (e.g. trees and bicycles). These objects contain
holes through which their original background is visible. Finally,
the shadow transfer algorithm may fail when the object/ground con-
tact points are not estimated correctly, or when something else in
the scene is casting a shadow onto the object. Since most of these
issues are data-related, it is reasonable to believe that as the under-
lying image datasets improve, so will our system. This, once again,
underscores the main theme of this paper: that the use of large-scale
image databases is a promising way to tackle some of the really dif-
ficult problems in computer graphics.

ACM SIGGRAPH 2007, San Diego, CA, August, 5-9, 2007

i . B ;
Figure 8: Some example images that were created by a user with our system. Can you find all the inserted objects?

Computer Graphics Proceedings, Annual Conference Series, 2007

P o

Figure 9: Our system can handle a variety of input lighting conditions, from midday (left) to sunset (middle), and can even work on

g

black&white photographs (right). In the latter case the objects have been converted to grayscale after insertion.

Figure 10: Application to architectural renderings. Here, a rendered view of the future Gates Center at CMU (left) is made to look more
natural using our system (right). Note that the photo clip art people look much better than the white cutout people of the original rendering.
[image credit: Mack Scogin Merrill Elam Architects]

6 Acknowledgments

This work would not have been possible without the efforts of
Bryan Russell, Antonio Torralba and the rest of the LabelMe
team in designing the labeling tool and maintaining the database.
Yue (Annie) Zhao (HCI Institute, CMU) has been instrumental
in helping us design and implement the GUL. We also like to
thank Victor Lempitsky, Vladimir Kolmogorov, and Yuri Boykov
for sharing their insights on using flux for image segmentation.
We thank our photo contributers: Antonio Torralba, Robert Ki-
tay, and the Flickr users who placed their work under Creative
Commons License: Dey Alexander, M. Caimary, Dan Johans-
son, and slightly-less-random. We also thank Chris Cook
(www.chriscookartist.com) for letting us use his painting Blue
Liquor Store. And special thanks to Henry Rowley of Google Inc.
for finding our needle in their haystack. This work has been par-
tially supported by NSF grants CCF-0541230 and CAREER IIS-
0546547, and a generous gift from the Microsoft Corp.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. ACM Trans. Graph.

(SIGGRAPH 04) 23, 3, 294-302.

BERG, T. L., BERG, A. C., EDWARDS, J., MAIRE, M., WHITE,
R., TEH, Y.-W., LEARNED-MILLER, E., AND FORSYTH,
D. A. 2004. Names and faces in the news. In IEEE Computer
Vision and Pattern Recognition (CVPR).

Boykov, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approx-
imate energy minimization via graph cuts. /IEEE Trans. Pattern
Analysis and Machine Intelligence 23, 11.

Boykov, Y., KOLMOGOROV, V., CREMERS, D., AND DELONG,
A. 2006. An integral solution to surface evolution PDEs via
Geo-Cuts. In European Conf. on Computer Vision (ECCV).

CAVANAGH, P. 2005. The artist as neuroscientist. Nature 434
(March), 301-307.

CHUANG, Y.-Y., GOLDMAN, D. B., CURLESS, B., SALESIN,
D. H., AND SZELISKI, R. 2003. Shadow matting and com-
positing. ACM Transactions on Graphics (SIGGRAPH 03) 22, 3
(July), 494-500.

ACM SIGGRAPH 2007, San Diego, CA, August, 5-9, 2007

Figure 11: Typical failure modes of our system. For input scenes with unusual illumination, the object library may not contain illumination
conditions that are similar enough, making even the best-matched objects look wrong (left). Additionally, our blending algorithm may fail to
blend complex and porous objects (e.g. tree and bicycle, right). Shadow transfer may also yield undesirable results (e.g. car, right).

CRIMINISI, A., REID, 1., AND ZISSERMAN, A. 2000. Single
view metrology. International Journal of Computer Vision 40,
2,123-148.

DEBEVEC, P. 1998. Rendering synthetic objects into real scenes:
Bridging traditional and image-based graphics with global illu-
mination and high dynamic range photography. In Proceedings
of SIGGRAPH 98, 189-198.

DIAKOPOULOS, N., EssA, I., AND JAIN, R. 2004. Content based

image synthesis. In Conference on Image and Video Retrieval
(CIVR).

EVERINGHAM, M., ZISSERMAN, A., WILLIAMS, C., AND
GooL, L. V. 2006. The pascal visual object classes challenge
2006 results. Tech. rep., Oxford University.

FEI-FEIL L., FERGUS, R., AND PERONA, P. 2004. Learning gen-
erative visual models from few training examples: An incremen-
tal bayesian approach tested on 101 object categories. In IEEE
CVPR Workshop of Generative Model Based Vision.

FINLAYSON, G. D., HORDLEY, S. D., LU, C., AND DREW, M. S.
2006. On the removal of shadows from images. IEEE Trans.
Pattern Analysis and Machine Intelligence 28, 1, 59-68.

HoIEM, D., EFROS, A. A., AND HEBERT, M. 2005. Geometric
context from a single image. In International Conference on
Computer Vision (ICCV).

HolieMm, D., EFROS, A. A., AND HEBERT, M. 2006. Putting
objects in perspective. In IEEE Computer Vision and Pattern
Recognition (CVPR).

J1A, J., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2006. Drag-
and-drop pasting. ACM Transactions on Graphics (SIGGRAPH
06) 25, 3 (July), 631-637.

JOHNSON, M., BROSTOW, G. J., SHOTTON, J., ARANDJELOVIC,
0., KWATRA, V., AND CIPOLLA, R. 2006. Semantic photo
synthesis. Computer Graphics Forum (Proc. Eurographics) 25,
3,407-413.

KERSTEN, D., KNILL, D., MAMASSIAN, P., AND BULTHOFF, I.
1996. lusory motion from shadows. Nature 379, 6560, 31-31.

KuHAN, E. A., REINHARD, E., FLEMING, R. W., AND
BULTHOFF, H. H. 2006. Image-based material editing. ACM
Transactions on Graphics (SIGGRAPH 06) 25, 3 (July), 654—
663.

KOLMOGOROV, V., AND Boykov, Y. 2005. What metrics
can be approximated by Geo-Cuts, or global optimization of
length/area and flux. In International Conference on Computer
Vision (ICCV).

10

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2006. A closed
form solution to natural image matting. In Proc IEEE Computer
Vision and Pattern Recognition (extended Tech. Rep.).

LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy
snapping. ACM Transactions on Graphics (SIGGRAPH 04) 23,
3 (Aug.), 303-308.

PEREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Trans. Graph. (SIGGRAPH 03) 22, 3, 313-318.

PORTER, T., AND DUFF, T. 1984. Compositing digital images. In
Computer Graphics (Proceedings of SIGGRAPH 84), 253-259.

QUINLAN, J. 1993. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers, Inc.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. Grab-
Cut: interactive foreground extraction using iterated graph cuts.
ACM Transactions on Graphics (SIGGRAPH 04) 23, 3 (Aug.),
309-314.

ROTHER, C., BORDEAUX, L., HAMADI, Y., AND BLAKE, A.
2006. Autocollage. ACM Transactions on Graphics (SIG-
GRAPH 06) 25, 3 (July), 847-852.

ROTHER, C. 2007. Cut-and-paste for photo clip art. Tech. Rep.
MSR-TR-2007-45, Microsoft Research.

RUSSELL, B. C., TORRALBA, A., MURPHY, K. P., AND FREE-
MAN, W. T. 2005. LabelMe: a database and web-based tool for
image annotation. Tech. rep., MIT.

RUSSELL, B. C., EFROS, A. A., SIVIC, J., FREEMAN, W. T.,
AND ZISSERMAN, A. 2006. Using multiple segmentations to
discover objects and their extent in image collections. In IEEE
Computer Vision and Pattern Recognition (CVPR).

SHOTTON, J., WINN, J., ROTHER, C., AND CRIMINISI, A. 2006.
Textonboost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In European
Conf. on Computer Vision (ECCV).

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: exploring photo collections in 3D. ACM Trans. Graph.
(SIGGRAPH 06) 25, 3, 835-846.

TORRALBA, A., AND OLIVA, A. 2003. Statistics of natural im-
age categories. Network: Computation in Neural Systems 14, 3
(August), 391-412.

VON AHN, L., L1U, R., AND BLUM, M. 2006. Peekaboom: A
game for locating objects in images. In ACM CHI.

WANG, J., AND COHEN, M. 2006. Simultaneous matting and
compositing. Tech. Rep. MSR-TR-2006-63.

