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Abstract. There has been considerable debate about the perspec-
tival/optical bases of the naturalism pioneered by Robert Campin
and Jan van Eyck. Their paintings feature brilliantly rendered con-
vex mirrors, which have been the subject of much comment, espe-
cially iconographical. David Hockney has recently argued that the
Netherlandish painters exploited the image-forming capacities of
concave mirrors. However, the secrets of the images within the
painted mirrors have yet to be revealed. By means of novel, rigor-
ous techniques to analyze the geometric accuracy of the mirrors,
unexpected findings emerge, which radically affect our perception
of the way in which the paintings have been generated. The
authors focus on Jan van Eyck’s Arnolfini Portrait, and the Hein-
rich von Werl Triptych, here reattributed to Robert Campin. The
accuracy of the images in the convex mirrors depicted in these
paintings is assessed by applying mathematical techniques drawn
from computer vision. The proposed algorithms also allow the
viewer to “rectify” the image in the mirror so that it becomes a
central projection, thus providing a second view from the back of
the painted room. The plausibility of the painters’ renderings of
space in the convex mirrors can then be assessed. The rectified
images can be used for purposes of three-dimensional reconstruc-
tion as well as for measuring accurate dimensions of objects and
people. The surprising results presented in this article cast a new
light on the understanding of the artists’ techniques and their opti-
cal imitation of seen things and potentially require a rethinking of
the foundations of Netherlandish naturalism. The results also sug-
gest that the von Werl panels should be reinstated as autograph
works by Campin. Additionally, this research represents a further
attempt to build a constructive dialogue between two very differ-
ent disciplines: computer science and art history. Despite their fun-
damental differences, the two disciplines can learn from and be
enriched by each other.

Keywords: accuracy of paintings, machine vision, opticality the-
ory, projective geometry

he advent of the astonishing and largely unprece-
dented naturalism of paintings by the van Eyck
brothers, Hubert and Jan, and of the artist called the

Master of Flémalle (now generally identified with the docu-
mented painter Robert Campin), has always been recognized

as one of the most remarkable episodes in the history of
Western art. Various explanatory modes have been developed
to explain the basis of the new naturalism and its roles in the
religious and secular societies of the Netherlands in the early
fifteenth century. Among the new technical factors, the per-
fection and innovative use of the oil medium are clearly sem-
inal. In terms of meaning, the naturalistic integration of
objects within coherent spaces allowed a profusion of sym-
bolic references to be “concealed” within what seems to be
the normal ensemble of a domestic or ecclesiastical interior.
It has also been long recognized that the coherence of the
spaces in Netherlandish painting did not rely upon any dog-
matic rule (e.g., the convergence of orthogonals to the “cen-
tric,” or vanishing point) that provided the basis for Italian
perspective in the wake of Brunelleschi (see fig. 1). The
straight edges of forms perpendicular to the plane of the pic-
ture converge in a broadly systematic manner but are not sub-
ject to precise optical geometry. We concentrate on two paint-
ings, the so-called Arnolfini Portrait by Jan van Eyck (figs.
2a, b) and the St. John the Baptist with a Donor from the
Heinrich von Werl Triptych (figs. 2c, d), both of which
demonstrate how convincing spaces could have been created
by imprecise means.

The effects and meaning of the new naturalism have been
the subject of more attention than the questions of the visual
or optical resources used to compile the images and how such
revolutionary naturalism could be forged in the face of resis-
tant conventions. The English artist David Hockney (2001)
has argued that optical projections provide the key. Initially
disposed to argue that the artist relied very directly on images
projected onto white surfaces by lenses or concave mirrors,
Hockney now places more emphasis on the projected image
as the key breakthrough in revealing what a three-dimension-
al, or 3-D, array looks like when flattened by projection. In
any event, he rapidly came to see that an image such as Jan
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van Eyck’s would not have been projected as a whole for lit-
eral imitation, not least because the overall perspective of the
paintings is consistently inconsistent. Rather, Hockney advo-
cated that the components in the image were studied sepa-
rately in optical devices, to be collaged together in what he has
called a “many windows” technique. The arguments between
Hockney and his detractors have become increasingly bogged
down in personalized polemic that dogmatically uses varieties
of technical evidence in the service of predetermined stances,
without much sense of improvisatory procedures that typify
artists’ uses of the tools at their disposal.

Our intention is to inquire about Netherlandish naturalism
along a different route. Here, we undertake a close analysis of
the remarkable convex mirrors in the two paintings, using
techniques of computer vision to “rectify” the curved images
in the mirrors. We want to know what the rectified images tell
us about the spaces that the painter has portrayed—looking,
as it were, into the interiors from the other end—and what
implications emerge for our understanding of how the
painters composed their images. We find unavoidable impli-
cations for their approach to stage-managing their ensembles
of figures and objects. Along the way, we suggest that the
position of the von Werl Triptych in relation to Campin’s oeu-
vre and the works of his followers needs to be reassessed.
Our conclusions will have a bearing on the Hockney hypoth-
esis, though in a permissive rather than conclusive manner.

First, we want to introduce the two paintings that will be
serving as our witnesses.

The Arnolfini Portrait

The painting by Jan van Eyck in the National Gallery,
London, executed in oil on an oak panel, is generally

(though not universally) identified as portraying Giovanni
di Niccolò Arnolfini and Giovanna Cenami. Arnolfini was a
successful merchant from Lucca and a representative of the
Medici bank in Bruges, who satisfied Philip the Good’s
eager demands for large quantities of silk and velvet. The
double portrait has reasonably been identified as represent-
ing an event, namely, Giovanni and Giovanna’s marriage or,
more probably, their betrothal, as witnessed by the two men
reflected in the mirror. Jan himself appears to have been one
of the witnesses, because a beautifully inscribed graffito on
the back wall records the date, 1434, and the fact that
“Johannes de eyck fuit hic” (Jan van Eyck was here).

The St. John Panel

The other painting, the St. John with a Donor in the Museo
del Prado, Madrid, uses the oil medium no less brilliantly
than does van Eyck. It is one of the two surviving wings of
an altarpiece commissioned, as the inscription tells us, by
Heinrich von Werl in 1438. Von Werl was a Franciscan 
theologian from Cologne who became head of the Minorite
Order (a Conventual branch of the Franciscans). The right
wing depicts St. Barbara in an interior within which light
effects are rendered with notable virtuosity. The main panel,
probably containing the Virgin and Child with saints (one of
whom would almost certainly have been St. Francis), is no
longer traceable. It is likely that von Werl had chosen St. John
as his personal saint, to act the intercessor who grants him the
privilege of witnessing the Virgin through the door that opens
to the sacred realm of the central panel. Two Franciscans,
visible in the painted mirror, witness the scene. The play of
domestic and sacred space would have been crucial in the
reading of the triptych’s meaning and in signaling the donor’s
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FIGURE 1. Convergence of Orthogonals in Paintings: (a) Masaccio, Trinity, c. 1426, Santa Maria Novella, Florence. (b) The
dominant orthogonals converge at a single vanishing point. (c) J. van Eyck, Madonna in the Church, 1437–1439, Staatliche
Museen zu Berlin, Gemäldegalerie, Berlin. (d) The orthogonals (marked) do not converge at a single vanishing point.
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hoped-for translation to the heavenly dwelling of the Virgin
and saints after his death. 

In the following discussion, we provide a geometric
analysis of the two painted mirrors on the basis of the optics
of curved mirrors and transform the images into normalized
rectilinear views of the painted interiors. The rectified
images are subject to accuracy analysis, and the artists’ pos-
sible manipulation of the effects is considered. Finally, we
spell out the surprising and radical implications that emerge
from the study of two such apparently subsidiary aspects of
the complex images.

GEOMETRIC ANALYSIS OF PAINTED CONVEX
MIRRORS

In this section, we present some simple but rigorous tech-
niques for the analysis of the geometric accuracy of convex
mirrors in paintings. The algorithms used here build upon
the vast computer vision literature, with specific reference
to the field of compound image formation, termed cata-
dioptric imaging (Benosman and Kang 2001; Nayar 1997).
A catadioptric system uses a camera and a combination of
lenses and mirrors. 

The Basic Mirror-Camera Model

Given a painting of a convex mirror (e.g., figs. 2b, d), we
model the combination mirror-panel (or, similarly, mirror-
canvas) as a catadioptric acquisition system comprising a mir-
ror and an orthographic camera as illustrated in figures 3a, b. 

It is well known that curved mirrors produce distorted
reflections of their environment (see figs. 3c, d). For instance,
straight scene lines become curved (see the window frames in
figs. 2b, d). However, if the shape of the mirror is known,
then the reflected image can be transformed (warped) in such
a way as to produce a perspectively corrected image—that is,

an image as would be formed by a camera with optical cen-
ter in the center of the mirror.1 Whereas this is true for real
mirrors, the case of painted mirrors is more complicated. In
fact, one should not forget that a painting is not a photograph
but rather the product of the hand of a skilled artist; even
when it appears to be correct, its geometry may differ from
that produced by a real camera. 

In this article, we propose novel techniques for (a) assess-
ing the geometric accuracy of a painted mirror and (b) pro-
ducing rectified perspective images from the viewpoint of
the mirror itself.

The basic algorithm may be described in general terms as
follows:

1. Hypothesizing the shape of the convex mirror from direct
analysis of the distortions in the original images.

2. Rectifying the input image (distorted) to produce the cor-
responding perspective (corrected) image.

3. Measuring the discrepancy between the rectified image
and the “perspectively correct” image to assess the accu-
racy of the painted mirror.

As will subsequently be clarified, these basic geometric
tools will help us cast a new light on the analyzed paintings
and their artists. To proceed, we need to make some explicit
assumptions about the shape of the mirror. We explore three
different rectification assumptions:

• Assumption 1: The mirror has a parabolic shape.

• Assumption 2: The mirror has a spherical shape.

• Assumption 3: The geometric distortion shown in the 
reflected image can be modeled as a generic radial-distortion
process.

For each of those three basic assumptions, from the direct
analysis of the image data alone, our algorithm estimates
the best geometric transformations that can “remove” the

FIGURE 2. Original Paintings Analyzed in Text: (a) J. van Eyck, Arnolfini Portrait, panel, 1434, National Gallery, London.
(b) Enlarged view of the convex mirror in (a). (c) R. Campin, St. John with a Donor, panel, 1438, Museo del Prado, Madrid.
(d) Enlarged view of the convex mirror in (c).
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distortion in the reflected image and rectify it into a per-
spective image. A detailed discussion of the geometry of
mirrors and the rectification algorithm appears in the
appendix.

It must be noted, though, that from a historical point of
view the parabolic mirror shape can be discarded because
the standard convex mirror of the time was cut from a blown
glass sphere. However, the parabolic mirror remains useful
as a model in the following analyses.

Rectification Results

Results of the rectification of Campin and van Eyck’s mir-
rors are illustrated in figure 4 and figure 5, respectively. An
initial observation is that the three different mirror-shape
assumptions lead to very similar (but not identical) rectifica-
tions, which can be explained if one considers the fact that
the central portions of the parabolic and spherical mirrors
are very similar in shape. In fact, it is conventional in optics
to make parabolic assumptions for lenses and mirrors when
small portions of their spherical surface are being consid-
ered. When the visible parts of the mirrors are limited cen-
tral portions, as in these two cases, it is not surprising that
the rectification results are quite similar. Furthermore, the
fact that both the spherical assumption and the parabolic one
yield such similar rectification results validates the assump-
tion of substantial distances between the 3-D scene points
and the mirror, an assumption that needs to be made in the
case of the spherical mirror. The comparison between the
rectifications obtained by the parabolic and spherical
assumptions is an indirect way of assessing the validity of
the rectification approach we have undertaken.

Note that horizontal flipping of the rectified images in
figures 4b, c, d and figures 5b, c, d would produce the per-
spective images that an observer would see if he or she

stood in the place of the mirror in the depicted scene (e.g.,
the large window would be on the right-hand side).

The rectification process produces novel perspective
images from a different vantage point than that of the
artist, thus, in effect, giving rise to stereo views of the
depicted scene. Given two views of the same scene from
two different viewing positions, it is conceivable to apply
standard 3-D computer vision techniques (Faugeras 1993;
Hartley and Zisserman 2000) to reconstruct complete vir-
tual models of the depicted environment. Alternatively,
single-view reconstruction (Criminisi 2001) may be
applied twice: to the image from the front (the painting
itself) and to the image from the back (the rectified mirror
reflection), with the two resulting 3-D reconstructions
merged together to create a single complete shoebox-like
virtual model of the scene.

Comparing Mirror Protrusions

As described in the appendix, in the case of the spherical-
mirror assumption, to rectify the input (reflection) images it
is necessary to compute the radius r of the spherical mirror
itself (see table A1 in the appendix). 

Because we are working directly on the image plane with
no additional assumptions on absolute scene measurements,
it is not possible to measure radii in absolute metric terms
but rather only as relative measurements. For instance, we
can measure the ratio between the radius r and the radius of
the disk, the visible part of a spherical mirror on the image
plane, in each painting (see fig. 6a). 

Figure 6a shows a cross-section of a spherical mirror pro-
truding from a wall with the disk radius clearly marked.
Figure 6b shows a comparison between two spherical mir-
rors with the second mirror (mirror 2) bulgier than the first
one. We now define a measure of the protrusion (bulge) of
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FIGURE 3. Catadioptric Imaging Model: (a) The mirror-panel pair is modeled as a catadioptric acquisition system, comprising
a curved mirror and an acquiring camera. (b) A ray emanating from a point P in the scene is reflected by the mirror onto the
corresponding image (panel) point pd. The ray is reflected off the mirror surface in the point Pm. (c) A square grid reflected by
a convex mirror appears barrel-distorted. (d) One of our goals is to “rectify” the image to produce a perspective image. In the
case of fig. (c), we wish to recover an image of the regular grid, where all the black-and-white patches are perfect squares.
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Summer 2004, Volume 37, Number 3 113

a spherical mirror as the ratio P between the disk radius and
the radius of the sphere.

(1)

If r2 < r1 and the disk radius rdisk is the same, then P2 > P1
(see fig. 6b).

From the protrusion measures reported in table 1 for
Campin’s and van Eyck’s painted mirrors, we can conclude
that the two mirrors are very similar in terms of shapes
(similar protrusions P), but the former is slightly bulgier
(greater value of P) than the latter.

This result should be taken with some care. In fact, to be
completely certain of the degree of protrusion of each mir-
ror, we need to be certain about the accuracy level of its ren-
dered geometry. The following section will show that
although we can be quite confident about the geometric cor-
rectness of Campin’s mirror, the same cannot be said of van
Eyck’s.

P
r

r
disk=

The protrusion measurements of table 1 can also be
used to compute the focal lengths of the two mirrors. In
fact, first-order optics teaches us that the radius of curva-
ture r of a mirror is twice its focal length. Therefore, from
equation (1), if we knew rdisk, we could compute r and,
therefore, f = r/2 would be the focal length. Note, though,
that an absolute metric value for rdisk can be estimated only
after we make further assumptions on shapes and sizes of
objects that appear in the scene. These kinds of assump-
tions would make sense if, as in the case of a few paintings
by Jan Vermeer, some depicted objects still exist and can

FIGURE 4. Rectification of the Convex Mirror in Campin’s St. John Panel: (a) Original (distorted) mirror from fig. 2d. (b, c,
d) Rectified images. (b) Result of rectification using the parabolic assumption. (c) Result of rectification using the spherical
assumption. (d) Result of rectification using the generic radial model fitting. Note that in all the rectified images the edges of
the window and door are straight.

a b dc

FIGURE 5. Rectification of the Convex Mirror in van Eyck’s Portrait: (a) Original (distorted) mirror from fig. 2b. (b, c, d)
Rectified images. (b) Result of rectification via the parabolic assumption. (c) Result of rectification via the spherical assump-
tion. (d) Result of rectification via generic radial model fitting.

a b c d

TABLE 1. A Comparison of the “Bulge” of the 
Two Mirrors

Painting Protrusion factor (P)

Campin’s St. John P = 0.83
van Eyck’s Arnolfini Portrait P = 0.78



be measured (Kemp 1990; Steadman 2001). But in the
case of the two paintings analyzed in this article, we feel
that assumptions not supported by strong physical evi-
dence may conduce to misleading results on the value of
the mirrors’ focal lengths.

Accuracy Analysis

We have already described how direct analysis of the
image of a convex mirror can lead to the removal of the
inherent optical distortion in the original images and the
generation of the corresponding perspectively correct
images. We have also been able to measure the “bulge” of
the two mirrors. In the following section, we analyze instead
the rectified images to assess their geometric consistency.

Accuracy of Campin’s St. John Panel

Straightening of curved edges. Figure 7a (identical to fig.
4c) shows the rectification of Campin’s mirror obtained
from the assumption of the spherical mirror. Images of
straight scene lines have now become consistently straight
(see fig. 7b). Furthermore, the edge of the door and the three
vertical edges of the window meet, quite accurately, in a
single vanishing point (far above the image). These results
demonstrate the extraordinary accuracy of the rendered
geometry and the high level of skill exercised by Robert
Campin. In fact, if it is difficult to paint in a perspectively
correct way, then painting a curved mirror with the degree
of accuracy demonstrated in Campin’s St. John requires an
extraordinary effort.

Measuring heights of people. The accuracy in Campin’s
painting is sufficient for us to apply single-view metrology
techniques (Criminisi 2001) to measure the ratio between the
heights of the two monks. Criminisi’s height-estimation algo-
rithms applied to the image in figure 7a produce the ratio
h1/h2 = 1.38 between the heights of the two monks, thus prov-
ing that the difference in the monks’ imaged height is due not
only to perspective effects (reduction of farther objects) but

114 HISTORICAL METHODS

FIGURE 6. (a) The visible part of a spherical mirror is
called a disk. The quantity rdisk is the disk radius. (b) A
cross-section of two spherical mirrors protruding from a
wall. Because r1 > r2 and rdisk is the same for both mirrors,
the second mirror sticks out more and thus is “bulgier”
(has a larger protrusion) than the first mirror.

FIGURE 7. Accuracy of Campin’s Mirror: (a) Rectified image of mirror from spherical assumption. (b) Straight lines have
been superimposed on (a) to demonstrate the accuracy of the rectification process. (c) The accuracy of the rectified image is
sufficient for extracting metric information from the painting. By applying single-view metrology techniques, the ratio
between the heights of the two monks is computed to be h1 /h2 = 1.38.
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also to a genuine difference in their height. This discrepancy
in height could be explained by the possibility that the farther
monk is kneeling, but the different scales of their heads sug-
gest that Campin’s otherwise meticulous scaling of objects in
the mirror image has gone awry in this small detail.

Accuracy of van Eyck’s Arnolfini Portrait

Inconsistency of mirror geometry. As can be observed in
figures 5b, c, d, whatever the parameters used (e.g., the
sphere radius), it does not seem possible to simultaneously
straighten all the edges in Jan van Eyck’s mirror (see also

fig. 8). The most striking error can be observed in the left-
most edge of the large window in the rectified images. In
fact, whereas it is possible to straighten up the central and
farthest vertical edges of the window frame, together with
the edges of other objects in the scene, the leftmost window
edge remains curved. Figure 8 illustrates this concept more
clearly. In figure 8b, some of the relevant edges have been
marked. Note that after rectification, the leftmost edge of
the window remains visibly curved. This can be interpreted
as a lack of geometric consistency: that is, it is not possible
for a physical parabolic or spherical mirror to produce the
kind of image observed in the original painting (fig. 2 a, b).

Figure 9 shows the effect of rectifying the reflected image
by the spherical model with different values of the sphere
radius (the mirror radius r). As can be seen, none of these
values can straighten all the edges at the same time. The
same problem arises with the parabolic or generic radial
model assumptions. Incidentally, as predicted by the laws of
optics, changing the radius of the mirror has the effect of
changing the focal length of the mirror-camera system, that
is, the zooming effect (see fig. 9b).

Correcting inaccuracies in van Eyck’s Portrait. Further incon-
sistencies characterize the geometry of Jan van Eyck’s mirror.
In figure 8b, we observe that the bottom edge of the wooden
bench and the bottom edge of the woman’s gown do not
appear to be horizontal (as they are likely to be). Instead, these
edges are roughly horizontal in the original painting (fig. 8a).
However, this fact is physically impossible: these edges,
because of their proximity to the boundary of a convex 
mirror, should appear curved and oriented at an angle. To
explain this concept in easier visual terms, we have run the
experiment illustrated in figure 10, taking the following steps:

1. Rectify the original mirror (fig. 10a) using the process
described in the previous section and spherical assump-
tion. The resulting rectified image (fig. 10b) shows the
window, bench, and gown artifacts mentioned earlier.

2. Straighten these three edges manually via an off-the-shelf
image-editing software. The resulting image (in fig. 10c) is
perspectively and physically “correct” in that the projected
straight 3-D edges are now straight and the bench and
gown edges (circled with a dotted line) are horizontal.

3. Warp the image in figure 10c using the inverse of the
spherical transformation employed in the first step to
obtain the image in figure 10d.

The resulting image (fig. 10d) illustrates what the artist
“should have painted.” When compared with the original
painting, the image in figure 10d is more consistent with the
laws of optics applied to a spherical convex mirror and gen-
eral assumptions about straight lines in an indoor environ-
ment. In figure 10d, the bottom edge of the bench more
realistically follows a sloped curve, as does the bottom of
the woman’s gown. Furthermore, the curvature of the left-
most edge of the large window is much less pronounced

FIGURE 8. Accuracy of J. van Eyck’s Mirror: (a) Orig-
inal image. (b) The best possible rectification with
spherical mirror assumption. Most edges have been cor-
rectly straightened, but the leftmost edge of the window
has remained noticeably curved, indicating an inconsis-
tency in the geometry of the painted mirror.
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than in the original painting. Overall, the image in figure
10d looks more consistent. In the interest of clarity, figure
11 shows some of the images in figure 10, with the edges of
interest marked.

The preceding analysis suggests the possibility that the
artist has deliberately altered the geometry of some objects
in the painted mirror. The question is: why would Jan van
Eyck have done so? Plausible answers may be that (a) the
artist accentuated the curvature of the leftmost edge of the
window to convey a stronger sense of the bulge of the mir-
ror (our analysis shows that Campin’s mirror is bulgier than
that of van Eyck’s) and (b) the artist may have painted the
edges of the bench and gown as straight to make them look
less strange, that is, to accentuate reality.

CONCLUSION

We have conducted a rigorous geometric analysis of the
convex mirrors painted in the St. John panel from the Hein-
rich von Werl Triptych and Jan van Eyck’s Arnolfini Portrait.
It must be stressed that the results were obtained from direct
analysis of the original paintings, without unnecessary (and
often unconvincing) assumptions about the represented scene,
such as the position and size of depicted objects or heights of
people. Finally, all the assumptions involved in this analysis
have been made explicit, cross-validated, and verified from a
scientific as well as a historical point of view. The computer
vision algorithms we used have allowed us to analyze the
shapes of the mirrors, compare them, and transform the
reflected images into ones that correspond with orthodox per-
spective. We are thus provided with new views from the back
of the depicted rooms. A rigorous comparison between the
two analyzed paintings leads to the conclusions that

• the geometry of Campin’s mirror is astonishingly good
and is considerably more accurate than that of Jan van

Eyck, which is nevertheless quite impressive;
• Campin’s mirror appears to be bulgier than van Eyck’s;
• it appears that Jan van Eyck has purposely modified the

geometry of the image in certain parts of the painted mirror.

A series of notable consequences in art history flow from
these findings, especially with respect to the St. John panel.

The St. John Panel

The viewpoint used by Campin to paint the mirror is
located on a vertical axis a small distance outside the right
boundary of the mirror (see fig. 12a). The viewpoint’s height
and distance are more problematic. The rectified view of the
mirror produces a point of convergence for the windows at a
horizontal level equivalent to eye level of the standing St.
John and nearest Franciscan.2 However, the most prominent
verticals in the rectified image (in fig. 12b) undergo upward
convergence toward a second, single vanishing point, sug-
gesting that the painter’s eye level was below the central axis
of the mirror. Experimenting with an actual spherical mirror
has confirmed that a lower viewpoint, relatively close to the
mirror, does indeed produce the effect of a convergence for
the orthogonals on or close to the central horizontal axis of
the mirror. This lower viewpoint is consistent with that of the
interior as a whole as represented on the panel, which is
clearly seen from a position closer to the eye level of the
kneeling donor and perpendicular to a point that lies deci-
sively within the lost central panel (i.e., well outside the right
boundary of the St. John panel). What we cannot tell deci-
sively is how close the artist’s viewpoint was located to the
mirror in the actual painting.

The foregoing observations suggest the following
model for the artist’s procedure. To paint the staged scene
in his convex mirror, Campin moved closer to the mirror
than is inferred from the original setup as portrayed as a

116 HISTORICAL METHODS

FIGURE 9. The Effect of Different Radii: Rectifying J. van Eyck’s mirror by means of spherical assumption and varying the
radius of the sphere. Despite all efforts, there is no single value of the mirror radius that can straighten all the edges at the
same time.
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whole in the panel. He observed it from a position just
sufficiently outside the right margin of the mirror to avoid
the problem of his head’s occluding significant portions
of the image. It may be that he used the door as a “shield”
from which he could observe the image with a minimum
of intrusion. He also observed the view in the mirror from
an angle below its horizontal midline, that is, effectively
tilting the picture plane or “camera” so as to cause the
upward convergence. 

The fundamental veracity of the painted reflection
extends to such details of the small portion of the donor’s
trailing drapery visible beyond the edge of the door, though
the donor himself is hidden. Whereas it may be possible to
envisage an imaginary view in a spherical mirror, it is
inconceivable that such consistently accurate optical effects
could have been achieved by a simple act of the imagina-
tion. We are drawn to what seems to be the inescapable con-
clusion that the artist has directly observed and recorded the

FIGURE 10. Correcting J. van Eyck’s Portrait: (a) The original painted mirror. (b) The rectified mirror (see text for details).
(c) The leftmost window edge is manually straightened. The bottom edges of the wooden bench and that of the woman’s gown
are manually made horizontal. (d) Image (c) is warped back by the inverse of the spherical model used to generate image (b).
The resulting image (d) is the “corrected” version of van Eyck’s mirror, one that more closely obeys the laws of optics.

a b
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effects visible when actual figures and objects are located in
a specific interior. Such a result means that, at some point,
models must have been posed in exactly those positions
occupied in the painting while dressed in appropriate cos-
tumes—with the exception of the two Franciscan witnesses,
who are in their normal habits. If this particular picture was
achieved by means of such a stage-managed arrangement,
we may reasonably believe that other Netherlandish mas-
terpieces of naturalism were accomplished in the same way.

The question of how the painter achieved such optical
accuracy remains. To some extent, given the condensing of
an image within the small compass of the mirror, and with the
circular frame serving as a ready point of precise reference,

the painter is faced with an easier task than the one he faces
when he surveys the whole scene at its normal scale. On the
other hand, if the optical image in the mirror could itself be
optically projected, the process would be facilitated. If the
mirror were to be projected from the distance implied in the
painting, the definition of the image with contemporary
equipment would have come nowhere near delivering the
required results. However, if, as suggested, the artist por-
trayed the mirror in a separate act, from a closer position, an
optical projection remains a possibility. We may note in pass-
ing that such an astonishing achievement suggests a major
mind and talent at work. The recent tendency to see the von
Werl wings as the works of a contemporary pasticheur of
Campin’s and van Eyck’s seems entirely unjustified.

The Arnolfini Portrait

Judged on its own merits, the accuracy of the image in
van Eyck’s convex mirror is striking. It is only by com-
parison with Campin’s that it appears less than notable.
Even with its faults, it is remarkable enough to support
(though less conclusively) the hypothesis that the image in
the mirror was painted directly from a stage-managed
setup in an actual space. The most notable of the artist’s
departures from optical accuracy, the line of the nearest
edge of the bench by the window, and the hem of the
woman’s dress, can both be explained as instinctive
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FIGURE 12. Vanishing Points in Campin’s St. John: (a)
The edges of the left window suggest a vanishing point a
short distance to the right of the right edge of the paint-
ing. (b) In the image of the rectified mirror, the hori-
zontal window edges converge roughly to a point on the
right boundary of the mirror, whereas the verticals con-
verge upward. The upward convergence suggests a tilt-
ing of the “camera/panel.”

a b

a

b

FIGURE 11. Correcting J. van Eyck’s Portrait: (a) The
original painting (see also fig. 10a) with three marked
edges. (b) Our corrected version (see also fig. 10d) with
the corrected edges marked. The leftmost edge of the
large window is less pronounced in the corrected version,
and the bench and gown bottom edges are correctly
curved, consistent with the laws of optics. 
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responses to the extreme effects visible in the mirror. In
other words, the painter has very selectively played to
what we expect the image to look like rather than precise-
ly following its actual appearance. Such moves are com-
mon enough in Italian perspective pictures. It may also be
that the border regions of the mirror used by van Eyck
were less optically sound than the middle sections. It
should also be noted that the mirror reflection in his paint-
ing is portrayed from a viewpoint perpendicular to or very
near the center of the mirror, which suggests that he did
not adopt the expedient we have suggested for Campin,
that is, moving closer to the mirror and slightly to the side
to portray the reflected scene more readily.

The Hockney Hypothesis and Wider Considerations

The finding that Campin and van Eyck seem to have
worked with a tableau vivant, using posed figures, actual
objects, and real interiors, does nothing to negate Hock-
ney’s hypothesis that optical projection from a concave mir-
ror or lens was used to make the paintings. But neither does
it prove it. We are still left with the possibility that the
painters “eyeballed” their scenes with miraculous accom-
plishment. In any event, it remains to be demonstrated that
the images in the painted convex mirrors could have been
projected, using contemporary equipment, with a quality
such as to provide such mini-masterpieces within each mas-
terpiece. On the other hand, the fact that the Campin mirror
may have been represented using a different viewpoint from
the interior in the panel as a whole lends some support to
Hockney’s “many windows” theory. Our findings may be
regarded as broadly permissive for Hockney’s theory, but
they stop short of providing incontrovertible support. The
main implications of our work lie elsewhere.

The chief of the wider considerations increases the radi-
cal distance we can discern between the wonders of illusion
being accomplished in the Netherlands and Italy at the very
same time. Italian perspectival pictures, as pioneered by
Masaccio, were achieved through the synthetic construction
of geometrical spaces according to preconceived designs.
Within the geometrical containers, the Italian painters then
inserted to scale separately studied figures or small groups
(sometimes beginning with nude or near-nude studies). By
contrast, the leading Netherlandish reformers of representa-
tion may be seen to be working as literally as possible with
what they could see. They are true champions of what Ernst
Gombrich has described as “making and matching.” Such
literalism of matching, much to the taste of nineteenth-cen-
tury critics like Ruskin, has not found favor with recent art
historians, who prefer more complicated explanations. It is
almost as if we are precociously entering the realm of
Courbet, the nineteenth-century realist, who declared,
“Show me an angel and I will paint one.” It seems that five
centuries earlier, Campin seemed to be saying, “To paint a
St. John, I need to see one.”

NOTES

Color versions of the illustrations in this article will soon be available
online at http://www.heldref.org

1. Straight scene edges are imaged as straight lines by a pinhole camera.
In addition, strictly speaking, the corrective transformation can be done
with the knowledge of only the mirror shape if the imaging system has a
single point of projection. Otherwise, additional knowledge such as scene
depth has to be known as well.

2. The horizontal edges of the window (in fig. 12b) converge roughly at
a point on the right boundary of the mirror, approximately at the eye level
of the reflections of St. John and the closest Franciscan in the mirror.
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APPENDIX

This section investigates the geometry of mirrors and pre-
sents an algorithm for rectifying reflected images according
to the three different mirror models presented in the body of
the article.

Assumption 1: Parabolic mirror

The parabolic shape assumption is convenient because it
allows us to reuse a considerable number of techniques devel-
oped in the field of catadioptric imaging (Benosman and
Kang 2001; Nayar 1997). In fact, it is possible to treat the
painted mirror as part of a parabolic mirror and orthographic
camera catadioptric system (fig. 3a). Such a system behaves
as a single-optical-center acquisition device,1 and the corre-
sponding rectification equations are straightforward.

The diagram in figure A1 describes a cross-section of the
basic parabolic mirror-camera system; simple algebra leads to

appendix continues



3-D shape and depth of the surrounding environment.
However, the equations for rectifying the image reflected

by a spherical mirror simplify if we assume that the visual-
ized points (e.g., the point P in fig. 3b) lie at infinity —or,
more realistically, far away from the mirror itself. Obvious-
ly, from a historical point of view, this latter assumption is
more plausible and effectively operates in our two chosen
examples. 

From an analysis of the diagrams in figure A2 and some
simple algebra, we can derive the following rectification
equations:

(A2)

where ∆ is the distance (large) of the camera/panel from the
center of the sphere, r is the radius of the sphere, ud is the
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FIGURE A2. The Geometry of Spherical Mirrors: (a)
Cross-section of a spherical mirror and the image (panel)
plane. (b) All the rays coming from the orthographic cam-
era are reflected by the mirror as rays that do not inter-
sect in a single point, but rather in a caustic surface. This
characteristic makes spherical mirrors harder to use,
unless the 3-D point P is assumed to be an infinite distance
(or very far) from the center of the mirror. (c) ud and ue are
the observed and corrected coordinates, respectively. 

a b

c

Center of sphere

the basic equations for undistorting the reflected image. Given
the pixel coordinate ud of the distorted point in the original
image, we can compute the coordinate uc of the correspond-
ing corrected point by applying the equations that follow:

(A1)

where ∆ is the distance of the camera/panel from the mirror
focus, h is the parabolic parameter, and r is the distance
between the focus and the point Pm .

Note that the above equations have been derived for the
2-D mirror cross-sections only, but because the mirrors are
assumed to be perfectly symmetrical surfaces of revolution,
the derivation of the formulas for the complete 3-D case is
straightforward.
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Assumption 2: Spherical mirror

Unlike parabolic mirrors, spherical mirrors do not pre-
sent a single point of projection but rather a whole locus of
viewpoints, called a caustic surface (Swaminathan, Gross-
berg, and Nayar 2001). The rectification process becomes
more complicated here, for it is now necessary to know the

coordinate of the distorted image point, and uc is the co-
ordinate of the corresponding corrected point.

Assumption 3: The convex mirror induces radial 
distortion on the image plane

In this discussion, rather than reasoning about the 3-D
shape of the mirror, we try to model directly the distorting
effect that a convex mirror produces on the reflected image.

FIGURE A1. The Geometry of Parabolic Mirrors: (a)
Cross-section of a parabolic mirror and the image
(panel) plane. (b) All the rays coming from the ortho-
graphic camera are reflected by the mirror as rays that
intersect in a single point, namely, the focus of the mir-
ror. The existence of a single focus makes parabolic mir-
rors particularly convenient (see text for details). (c) A
point P in the 3-D scene is reflected by the mirror into
its corresponding image point at ud distance from the
center of the image. In other words, ud is the observed
(distorted) coordinate. The corresponding undistorted
position is labeled uc. The center of projection (focus) is
denoted O and the parabolic parameter h.



Summer 2004, Volume 37, Number 3 121

FIGURE A3. Mirror Rectification via a Generic Radial
Model: A radial transformation maps a point pd in the
original image into the corresponding point pc in the
rectified (corrected) image by applying a radial trans-
formation centered in the image center c (see text for
details). The complete rectified image is obtained by
applying this point-based transformation to all the
points in the original (distorted) image. Note that the
radial transformation straightens curved edges—for
example, the edge ed in the original image is trans-
formed in the corresponding edge ec (straightened) in
the rectified image. (See also figs. 3c, d.)

TABLE A1. Mirror Shapes and Corresponding 
Parameters

Assumption Parameters to be computed

A1. parabolic mirror h (parabolic parameter)
A2. spherical mirror r (radius of sphere)
A3. generic radial model k1, k2

As shown in figures 3c, d, straight scene edges appear
curved in the image reflected by a convex mirror. Here, we
make the plausible assumption that the distorting transfor-
mation can be modeled as a standard radial distortion
model. Radial distortion typically occurs in cameras with
very wide angle lenses (Devernay and Faugeras 1995).
Cheap Web cameras are a good example.

A generic radial model can be described by the following
equations (see fig. A3):

pc = c + f(l)(pd – c), (A3)

where pd is a 2-D point on the plane of the original image
and pc is its corresponding corrected point. The quantity 
l = d(pd , c) is the distance in the image plane of the point
pd from the center of the image c, and the function f (l) is
defined as 

f(l) = 1 + k1l + k2l
2 + k3l

3 + k4l
4 + . . . .

Therefore, if the ki parameters of the above model were

known, this radial transformation could be applied to the
reflected image to “correct” the distortion and obtain the
corresponding perspectival image. It can be shown that a
generic radial model subsumes both the parabolic and
spherical models, by expanding the right-hand sides of
equations (A1) and (A2).

We can choose the complexity of the radial model by
selecting how many and which of the ki parameters to use. To
keep the model simple, we have chosen to use only the k1 and
k2 parameters, as is shown in the discussion that follows.

Image rectification

Estimating the parameters. In the previous three cases, to
rectify the reflected image it is necessary first to estimate
optimal values for the parameters of the described mathe-
matical models. The parameters that need to be estimated in
the three cases are summarized in table A1.

We expect the rectification algorithm to straighten the
curved images of straight scene edges such as window
frames and door frames. Therefore, the best set of rectifica-
tion parameters may be computed as the set of values that
best straightens some carefully selected edges in the origi-
nal (distorted) images. Our semiautomatic rectification
algorithm proceeds as follows:

1. a Canny (1986) edge detection algorithm automatically
detects sub-pixel accurate image edges;

2. a user manually selects some curved edges that corre-
spond to straight 3-D scene lines;

3. a numerical optimization routine, such as Levenberg-
Marquardt (Press et al. 1988), automatically estimates the
parameter values that best straighten the selected edges.

NOTE

1. The interested reader may refer to Shih-Schon Lin and
Ruzena Bajcsy (2001) and Tomas Svoboda, Tomas Pajdla, and
Vaclav Hlavac (1998) for discussions on other single viewpoint
catadioptric systems.
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