
CPU Sharing Techniques for Performance Isolation in
Multi­tenant Relational Database­as­a­Service

Sudipto Das§ Vivek R. Narasayya§ Feng Li†∗ Manoj Syamala§

§Microsoft Research †National University of Singapore
Redmond, WA USA Singapore

{sudiptod, viveknar, manojsy}@microsoft.com li-feng@comp.nus.edu.sg

ABSTRACT

Multi-tenancy and resource sharing are essential to make a Database-
as-a-Service (DaaS) cost-effective. However, one major conse-
quence of resource sharing is that the performance of one tenant’s
workload can be significantly affected by the resource demands of
co-located tenants. The lack of performance isolation in a shared
environment can make DaaS less attractive to performance-sensitive
tenants. Our approach to performance isolation in a DaaS is to iso-
late the key resources needed by the tenants’ workload. In this
paper, we focus on the problem of effectively sharing and isolating
CPU among co-located tenants in a multi-tenant DaaS. We show
that traditional CPU sharing abstractions and algorithms are inad-
equate to support several key new requirements that arise in DaaS:
(a) absolute and fine-grained CPU reservations without static allo-
cation; (b) support elasticity by dynamically adapting to bursty re-
source demands; and (c) enable the DaaS provider to suitably trade-
off revenue with fairness. We implemented these new scheduling
algorithms in a commercial DaaS prototype and extensive experi-
ments demonstrate the effectiveness of our techniques.

1. INTRODUCTION
Relational Database-as-a-Service (DaaS) providers, such as Mi-

crosoft SQL Azure, host large numbers of applications’ databases
(or tenants). Sharing resources among tenants is essential to make
DaaS cost-effective. Multi-tenancy in the database tier is there-
fore critical in a DaaS setting. However, one major concern aris-
ing from multi-tenancy is the lack of performance isolation. When
workloads from multiple tenants contend for shared resources, one
tenant’s performance may be affected by the workload of another
tenant. A natural question to ask is: what meaningful assurances

can a provider of a multi-tenant DaaS platform expose and yet be

cost-effective?

Applications often reason about performance at the level of query
latency and/or throughput. One approach is to provide performance
assurances in a multi-tenant environment where the provider mod-
els application’s workload and/or resource requirements to judi-
ciously co-locate tenants such that their performance goals are sat-

∗Work done while visiting Microsoft Research, Redmond, WA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 40th International Conference on Very Large Data Bases,
September 1st ­ 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 1
Copyright 2013 VLDB Endowment 2150­8097/13/09... $ 10.00.

isfied [4, 6]. However, if the service provider does not control
or restrict the tenant workloads and aims to support general SQL
workloads, such workload-level assurances are hard even when the
entire server is dedicated to a tenant. Furthermore, tenants’ work-
loads and resource requirements change with time as the workload,
access patterns, data sizes, and distributions change. In such a dy-
namic multi-tenant setting, if a tenant’s performance goals are not
met, it becomes hard to determine whether the performance degra-
dation resulted from a tenant’s change in behavior or due to the
provider’s fault. Therefore, our approach is to provide resource

isolation assurances to tenants of a DaaS [15] that isolates a ten-
ant’s resources (and hence performance) from resource demands
of other concurrently executing tenants. In spite of the large body
of existing work on resource management, there are several new
requirements in a DaaS which motivate us to rethink the resource
management abstractions and mechanisms for isolation.

1.1 Requirements
First, resource assurances should be absolute, i.e., independent

of other tenants. This exposes to a tenant the paradigm similar to
that in a traditional enterprise setting where the tenant provisions
a server with adequate resources for their workload. Service dif-
ferentiation using priorities (common in OS schedulers) or propor-
tions (such as [20,24]) only provide relative assurances. The actual

resources allocated to a tenant depends on which other co-located
tenant workloads are contending for resources. In a shared environ-
ment where different un-related tenants are co-located, such rela-
tive assurances are not sufficient for performance-sensitive tenants.
Similarly, maximum resource limits, supported by many commer-
cial databases today, does not assure a tenant how much resources
will actually be allocated under heavy resource contention. A min-

imum resource assurance for each tenant is necessary for perfor-
mance isolation.

Second, providers want the service to be cost-effective. Thus,
although the resource assurances are absolute, a strategy of stati-
cally reserving resources for a tenant at the granularity of proces-
sor cores, disks, memory etc., limits consolidation and increases the
provider’s cost. Therefore, overbooking is common in shared en-
vironments [23], where the provider consolidates hundreds or even
thousands of tenants on a single server, knowing that many tenants
are likely to have long periods of low resource demands. In order
to safeguard the tenant’s interests in the presence of overbooking,
it is important to have an objective means to establish provider ac-

countability, i.e., determine if a resource assurance was not met
due to the provider’s fault.

Third, supporting the full richness of SQL in DaaS is important
for many enterprise applications. Therefore, it is crucial that the
provider does not restrict the tenant workloads. Further, it is
also important to not make any assumptions about the workloads,



such as transactional vs. analysis or in-memory vs. disk-resident,
or require advance knowledge of the workload.

Last, the above mechanism for ensuring a minimum resource as-
surance must be flexible enough to support various policies. On
one hand, performance-sensitive line-of-business applications with
continuous resource demands would benefit from guaranteed re-
source assurances and might be willing to subscribe to a premium

service. On the other hand, some workloads are mostly idle with
a few bursts of activity. For example, consider an online business
productivity software suite, such as Office 365, which uses a DaaS
to store and serve its back-end databases. Users of such applica-
tions are mostly inactive and so are the corresponding databases.
Such tenants would benefit from an economy service with relatively
small resource assurances on average over time. However, to en-
sure low latency response, such tenants would like their resource
demands to be met quickly when the burst occurs. Therefore, re-
source assurances must be elastic and adaptable to changing work-
load requirements. As another example of a policy, the provider
may also want to support a service class such as low-latency guar-
antees for OLTP workloads. Further, prices and penalties for viola-
tion may be associated with absolute assurances. In such a setting,
the provider overbooking a server must be able to enforce policies
that suitably trade-off its revenue and fairness among tenants.

1.2 Our approach
We presented SQLVM [15], an abstraction for absolute and ac-

countable resource assurances. Each tenant is promised a reserva-

tion of a set of key resources—such as CPU, I/O, and memory—
within a database management system (DBMS) which is guaran-
teed to be allocated provided the tenant has sufficient demand for
the resources. Conceptually, the tenant is exposed an abstraction
of a lightweight VM with reserved resources without incurring the
overheads of classical VMs. This model of absolute resources pro-
vides a natural bridge from the on-premise settings to the cloud
while being powerful enough to ensure that a tenant’s performance—
even the 99th percentile query latency—remains unaffected in spite
of multiple tenants contending for shared resources within a DBMS.
Furthermore, absolute resource assurances generalize to any SQL
workload without imposing any restrictions on the kinds of queries
or requiring advance knowledge of the workload.

In [15], we provided an overview of SQLVM which encom-
passes multiple key resources within a DBMS. In this paper, we
focus on the problem of effectively sharing the CPU between ten-
ants co-located at a server each of which are executing within a
SQLVM. For CPU reservations, each tenant is promised an abso-
lute CPU utilization reservation which is defined as the CPU time
allocated to the tenant as a percentage of the elapsed time. For in-
stance, if a tenant T1 is promised 30% utilization, the assurance is
that if T1 has sufficient demand for resources, the provider takes re-
sponsibility to allocate 30% CPU to T1 irrespective of which other
co-located tenants are contending for the CPU.

To establish accountability when a tenant’s utilization is less than
its reservation, we also present a metering logic for CPU, inde-

pendent of the scheduling algorithm. Providers often overbook
resources, i.e., promise a sum total of reservations exceeding the
server’s capacity. However, utilization lower than the reservation in
an overbooked server does not necessarily imply a violation since
the tenant might not have enough demand for resources. The chal-
lenge of metering is to differentiate such cases of insufficient de-
mand from that of resource deprivation.

In spite of the rich literature on CPU scheduling and general-
ized processor sharing, existing approaches are not flexible to sup-
port absolute CPU reservations, be elastic, handle needs of diverse

database workloads, dynamically adapt to changing resource re-
quirements, and support provider-enforced policies with a single

algorithm. CPU reservations or quality-of-service for CPU utiliza-
tion have been proposed earlier in the context of real-time sys-
tems [13] and multimedia systems [11, 14, 16]. However, such
techniques often rely on application hints (such as real-time con-
straints) or require workloads to have certain arrival and usage pat-
terns (such as periodic arrival, pre-defined CPU usage behavior).
Multi-tenant DBMSs serving a wide variety of workloads cannot

make such assumptions about workload, usage, or arrival. Propor-
tional sharing, with approaches such as lottery scheduling [24], or
hierarchical scheduling approaches [8] do not provide an absolute
resource assurance. To the best of our knowledge, this is the first

work that explores this problem of providing absolute CPU reser-

vations for performance isolation in a relational DaaS without any

assumptions or restrictions on the workloads.
We delve into the intricacies of providing CPU reservations, how

the CPU scheduling algorithm must adapt to support reservations,
how to establish provider accountability, and how to allow providers
to impose various policies that govern resource allocation. We
present largest deficit first (LDF), a work-conserving, dynamic pri-
ority scheduling algorithm. LDF uses a deficit between a tenant’s
CPU utilization and reservation as a means for continuous feedback
about every active tenant to determine which tenant to allocate the
CPU at a given context switch. We qualitatively and quantitatively
show how a simple greedy heuristic and knowledge about all ac-
tive tenants is important and enough to guarantee reservations. We
further demonstrate how the same algorithm can be extended to
support features such as elastic reservations, proportional sharing
of surplus resources, and maximizing a provider’s revenue.

We implemented LDF in a prototype of Microsoft SQL Azure
and evaluated our design using a variety of CPU-intensive work-
loads and up to 400 tenants consolidated within a server. Our exper-
iments show that even when running the server at CPU utilization
greater than 95%, LDF continues to meet reservations with high
accuracy, co-located tenants have minimal impact even on the 99th

percentile end-to-end query latency, and using LDF results in about
3× to 8× improvements in the 99th percentile latency compared to
other alternatives. Today’s service providers strive to provide low
variance in performance for mission critical applications where the
99th percentile latency is more critical than the average or even the
median [5]. Our experiments demonstrate LDF’s ability to isolate
the 99th percentile latency even during heavy resource contention,
which proves LDF’s superiority in providing resource isolation. Fi-
nally, we demonstrate LDF’s flexibility in adapting to a variety of
workloads and policies using a single algorithm.

This paper makes the following significant contributions:
• A detailed requirements analysis and characterization of the de-

sign space for CPU sharing in a multi-tenant DaaS, and discus-
sion of abstractions for resource isolation catering to a variety of
important scenarios (§2).

• A dynamic priority scheduling algorithm to isolate tenants’ re-
source requirements which is flexible enough to handle these re-
quirements (§3).

• An adaptation of the algorithm to support elastic reservations
to minimize query latency in high consolidation scenarios (§4)
while accommodating the notions of pricing, penalties, and dif-
ferentiated service quality (§5).

• An prototype implementation in a commercial multi-tenant DBMS
and a detailed evaluation using a variety of workloads to demon-
strates the effectiveness of the proposed approaches (§6).
This paper’s contributions, and that of SQLVM, form one com-

ponent towards building an end-to-end multi-tenant relational DaaS.



SQLVM enables the service provider to exercise fine-grained con-
trol on the key resources within a DBMS. Determining which ten-
ants to co-locate can leverage approaches in workload and resource
modeling [4, 25]. In the event of a performance crisis, approach
such as [6] can be used for load balancing to avoid repeatedly pay-
ing penalties. Furthermore, approaches such as [26] can be used
to optimize the overall provider’s revenue. Note that irrespective
of which technique we use for workload modeling, load balancing,
or revenue optimization, once a set of tenants are co-located at a
server, the SQLVM abstraction is still needed to ensure that each
tenant’s workload is isolated from that of others.

2. CPU SHARING PRELIMINARIES

2.1 CPU Reservations
Consider a system where multiple tenants share the same DBMS

process and contend for resources at the server, a model used in
DaaS services such as Microsoft SQL Azure. CPU reservation is
a promise that a tenant (Ti) will be allocated a minimum CPU uti-
lization (ResCPUi) at the DBMS server, if the tenant has sufficient
demand for CPU, irrespective of which other tenants are contend-
ing for CPU at the server. Ti’s CPU utilization (CPUi) over an
interval of time (called the metering interval) is defined as time for
which Ti’s tasks use the CPU, expressed as a percentage of the to-
tal time in the interval. If Ti is promised a 10% CPU reservation
at a server , it implies that in a given metering interval, Ti will
be allocated 10% of the aggregated CPU time across all cores on
the server. ResCPUi can be finer than a CPU core, thus allow-
ing the provider to consolidate more tenants than available cores,
while supporting resource assurances. CPU reservations can be for
a physical or a logical server. A DaaS provider with a heteroge-
nous cluster of servers can expose a reservation on a logical server

(similar to Amazon EC2, for instance). Once a tenant is placed at a
server, its logical CPU reservation is transformed internally to the
reservation on the DBMS server.

In addition to ResCPUi, the provider might also limit Ti’s max-
imum CPU utilization (MaxCPUi), where MaxCPUi ≥ ResCPUi.
The value of MaxCPUi used is a policy decision. However, the
CPU scheduling algorithm must possess the ability to enforce this
limit even if the tenant inundates the system with a lot of work.

2.2 Metering
CPU reservations do not imply static resource allocation. There-

fore, it is possible that the provider allocates less CPU to a ten-
ant, especially when resources are overbooked. A metering logic,
which is independently auditable, establishes accountability when
a tenant’s utilization is less than its reservation. Metering differen-
tiates low utilization due to insufficient work from that due to over-
booked resources where demand exceeds capacity. Since tenants
are often idle, overbooking does not necessarily imply a violation.

Metering pivots on factoring out a tenant (Ti)’s idle time, i.e.,
when Ti did not have CPU work and hence was not allocated the
CPU. At a given scheduler, if Ti has at least one task that is either
allocated the CPU or is ready to use it, then it has work that can uti-
lize the CPU. A provider can violate a reservation by delaying Ti’s
allocation, i.e., by allocating the CPU to another tenant Tj even
though Ti had at least one task ready to use the CPU. Let Delayi
denote the time Ti was delayed due to other co-located tenants us-
ing the CPU, expressed as a percentage of the metering interval
length.1 We define Ti’s effective CPU utilization as:

1Delayi is different from the time spent by the tasks waiting in the runnable queue
since time when Ti was allocated the CPU does not count toward Delayi. Moreover,
Delayi only accounts for the number of CPU quanta Ti was delayed and is indepen-
dent of the number of Ti’s tasks that are ready to run.

CPU
Eff

i =
CPUi × 100

(CPUi + Delayi)
(1)

Ti’s reservation is violated iff CPU
Eff

i < ResCPUi. The denomi-
nator corresponds to the time when the tenant was active and could
potentially have used the CPU, thus factoring out idle time. There-
fore, the ratio denotes Ti’s effective share of the CPU in the time
it was active. The multiplier 100 converts the fraction in the range
[0, 1] to a percentage in the range [0, 100] to match the scales of

ResCPUi and CPU
Eff

i . If the ratio is greater than ResCPUi, then
during the time Ti was active, the provider allocated CPU time at a
proportion greater than the reservation. Thus, Ti’s lower utilization
is due to insufficient demand for CPU and the provider did not vi-
olate the reservation. This definition of metering does not hold the
provider accountable for the tenant being idle, while ensuring that
a provider cannot arbitrarily delay a tenants task without violating
the reservation. Further, Delayi can be tracked independently at
every scheduler and aggregated at the end of the metering interval.

2.3 Elastic Reservations
The CPU reservation abstraction discussed above exposes a static

resource promise suitable for tenants with a steady resource de-
mand. A static reservation is unattractive to tenants with unpre-
dictable and bursty workloads since subscribing to a large static
reservation equal to the peak demand is uneconomical, and a small
static reservation equal to the average utilization limits a tenant’s
ability to obtain resources during workload bursts.

To make reservations economical for such lightweight tenants,
the provider must consolidate hundreds or even thousands of such
tenants on a single server. This implies that each tenant will be pro-
vided a small reservation. Tenants with workload bursts would ben-
efit from an elastic reservation which allows utilization to be higher
than the reservation during small bursts of activity when the ten-
ant has high demand for resources. Elastic reservation bounds the
total resource utilization for a given metering interval to the reser-
vation promised, but allows instantaneous utilization to be driven
by the tenant’s resource demands. The maximum utilization at a
given instant is bounded by a maximum burst size (bi). Therefore,
a mostly-inactive tenant with bursts of activity can subscribe to a
small reservation (such as 0.5%) for a long metering interval (such
as minutes or hours). The magnitude of the reservation depends on
its average resource utilization over longer periods and the burst pa-
rameter (bi) corresponds to its burst size which provides the tenant
quick access to resources during a burst.

Metering elastic reservation is similar to that of static reserva-
tion. If Ti subscribed to an elastic reservation ResCPUi with a burst
bi, then when Ti is active and its utilization is less than ResCPUi

for the entire metering interval, the burst is not met if CPU
Eff

i < bi.

2.4 Revenue
CPU reservations can also be exposed directly to tenants. For in-

stance, similar to an Infrastructure-as-a-Service (IaaS) provider, a
DaaS provider can expose the CPU reservation for a tenant. When
reservations are exposed directly to the tenants, it will be accom-
panied with a price which a tenant pays for the reservation [26].
Further, a reservation can also have a penalty which the provider
refunds a fraction of the price if the reservation is violated. For in-
stance, many of today’s service providers guarantee that if service
availability falls below a threshold, it will refund a fraction of the
price a tenant pays. Similarly, priced CPU reservations can also be
accompanied by penalty functions. Recall that a tenant Ti’s reser-
vation is violated iff CPU

Eff

i < ResCPUi. The extent of violation
is computed as the fractional CPU violation:



Figure 1: Penalty functions determine the fraction of the price re-
funded as a function of the extent of violation.

ViolCPUi =
ResCPUi − CPU

Eff

i

ResCPUi

(2)

The numerator is the absolute violation in the reservation and
the denominator normalizes the violation allowing this metric to be
used for tenants with different ResCPUi. Different penalty func-
tions can be associated with ViolCPUi. Figure 1 shows a few ex-
ample penalty functions which use ViolCPUi to determine the per-
centage of price refunded to the tenant. Irrespective of the func-
tion’s shape, a price-aware CPU scheduling algorithm must allow
the provider to maximize its revenue and minimize penalties.

2.5 Fairness
In the quest towards minimizing penalty, it is possible that in an

overbooked system, certain low-paying tenants get starved of the
CPU, thus making the system unfair. For instance, in the Gold,
Silver, and Bronze scenario, an overbooked server with a number
of active Gold tenants can deprive CPU to the Bronze tenants in
order to minimize the penalties paid to the incurring violation for
the higher-priced Gold tenant. We use the Jain’s fairness index [10],
a well-known measure used in the networking literature, to quantify
such unfairness. The system is CPU utilization fair if ViolCPUi is
the same for all tenants. Jain’s fairness index is expressed as:

J (ViolCPU1, . . . ,ViolCPUn) =
(
∑n

i=1
ViolCPUi)

2

n×
∑n

i=1
(ViolCPUi)2

(3)

The value of J varies between 1 (all tenants have equal values
of ViolCPUi) to 1/n (one tenant gets the largest possible ViolCPUi

with ViolCPUj being 0 for others); where n is the number of ten-
ants with at least one task active during a metering interval. The
reason we use Jain’s index is that it is independent of the popula-
tion size, scale or metric, is continuous, and bounded [10].

Fairness, in terms of CPU utilization, is important for the provider
for customer satisfaction and retention in a competitive market-
place. Therefore, a provider may also want to balance between
revenue and fairness. Jain’s index can be used to evaluate the ef-
fectiveness of an price-aware scheduling algorithm that balances
revenue with fairness.

3. RESERVATION­AWARE SCHEDULING
Supporting the abstraction of CPU reservations within a DBMS

requires reservation-aware CPU scheduling algorithms. The dy-
namic nature of the tenant workloads, burstiness, different degrees
of parallelism, and varying quantum lengths make it impossible to
use off-the-shelf OS schedulers to support a variety of properties
(as discussed in § 2) desirable from a multi-tenant DBMS.

3.1 CPU Scheduling Preliminaries
Many DBMSs directly manage a server’s resources (such as CPU,

memory, and disk I/O) with minimal support from the OS. Con-
sider, for example, a DBMS running on a multi-core processor. The

DBMS runs a scheduler that enforces the DBMS-specific schedul-
ing policies; DBMS’s often use a user-mode co-operative (i.e., non-
preemptive) scheduler that allows more control to the system de-
signers in determining opportune moments for yielding the CPU [22].
Our algorithms generalize to both preemptive and non-preemptive
schedulers. However, our implementation uses a non-preemptive
scheduler, which we use for the remaining discussion. Using a
scheduler per CPU core allows the DBMS to scale to large numbers
of cores. On each core, a scheduler manages a set tasks queued
for execution on that core. A task can be in one of the follow-
ing states: running (currently executing on the core), runnable

(ready to execute but is waiting for its turn), or blocked (waiting
on some resource, e.g., a lock on a data item, and hence not ready
to execute). The scheduler maintains a runnable queue for all the
runnable tasks. At a context switch boundary, the scheduler deter-
mines which task to allocate the CPU. Every task allocated the CPU
uses its quantum of CPU which is a pre-defined maximum time in
a cooperative scheduler. By having at most as many schedulers as
the number of processor cores and each scheduler making at most
one task runnable, the OS scheduler can schedule only those tasks
made runnable by the DBMS scheduler, thus allowing the DBMS
to control the CPU without relying on the OS.

3.2 The Fractional Deficit Measure
The CPU scheduler’s primary goal is to meet the reservations.

It is tempting to consider a solution which ensures that each ten-
ant is provided opportunities to use the CPU which is in proportion
of their ResCPUi. For instance, an approach such as the tagging-
based I/O scheduling algorithm proposed in [15] is a candidate
to determine when a tenant will be allocated the CPU. However,
different tenants have different quantum lengths. For instance, an
OLTP workload often has shorter quanta compared to an analysis
workload with CPU-intensive operators or user-defined functions.
Therefore, the same number of scheduling opportunities might re-
sult in very different CPU utilization for different tenants. Varying
numbers of connections and degrees of parallelism make this even
more challenging. In fact, in an implementation based on schedul-
ing opportunities, we observed significant errors in meeting reser-
vations when OLTP and DSS workloads are co-located.

It is important that there is a continuous feedback to the sched-
uler based on tenant Ti’s utilization (CPUi) and its reservation
(ResCPUi). We define a metric, called the fractional deficit (di),
which measures the deficit between Ti’s utilization and reservation
normalized by its reservation.

di = 1−
CPUi

ResCPUi

(4)

Incorporating the current utilization (CPUi) and the reservation
(ResCPUi) into the scheduling decision provides feedback to the
scheduler about quantum length variance and degrees of query par-
allelism. We normalize di by ResCPUi so that when Ti uses the
CPU for a quantum, the rate of decrease in di is inversely propor-
tional to ResCPUi, while if Ti was not allocated a quantum, the
increase in its deficit is directly proportional to ResCPUi. Thus, as
time progresses, di dynamically adjusts the scheduling decisions
based on CPU allocation and the reservation. Note that Equa-
tion (4) can also use CPU

Eff
i instead of CPUi. However, we choose

CPUi to keep the metering and scheduling logic disjoint. Later in
this paper (see §5) we discuss adaptation of di to factor in CPU

Eff

i

and ViolCPUi. di is positive if CPUi < ResCPUi, thus signify-
ing that Ti is CPU-deficient. The scheduler computes di at a con-
text switch boundary to determine how deficient Ti is and makes
scheduling decisions accordingly.



There are a several interesting properties of this deficit metric
which are critical to support the variety of properties discussed ear-
lier (see §2). First, if the scheduler never schedules a tenant with
deficit less than or equal to zero and the server is not overbooked,
then the scheduler can guarantee that all reservations will be met.
This property ensures that the schedulers using this metric can guar-
antee reservations. Second, even though schedulers are local to
a core, Ti’s CPU utilization across all cores can be computed by
maintaining one shared variable updated atomically. This property
provides a low cost feedback mechanism enabling the scheduler to
support reservations on a multi-core processor with minimal syn-
chronization overhead, while being able to scale to large numbers
of cores. Last, changing ResCPUi directly affects di. Therefore,
using di for scheduling decisions allows the algorithms to almost
immediately react to changes in a tenant’s ResCPUi, thus making
it adaptable to changing resource and workload demands.

3.3 Deficit­based Round Robin
A scheduling algorithm, such as round robin, which does con-

stant amount of work per context switch can scale to large num-
bers of concurrently-active tenants.2 However, unfairness of round
robin schedulers is well-known, especially when quantum lengths
differ among tenants [18], making it unsuitable for reservations.

Inspired by Shreedhar and Varghese [18], we propose a variant of
the round robin scheduler, called deficit-based round robin (DRR),
where the scheduler uses the deficit for the scheduling decisions.
Our deficit measure (di) differs from that used in [18] for network
packet scheduling since unlike in network scheduling where packet
size is known when scheduling the packet, the amount of time a
task would use the CPU is not known at scheduling time. The
scheduler maintains a list of active (i.e., ready to run) tenants, called
the active list. Each entry in the active list points to a FIFO queue
of all runnable tasks of the tenant. The scheduler’s runnable queue
is maintained as a hash table keyed on the tenant ID. For a newly-
active tenant, a new entry is added to the active list next to the
current element, making enqueue a constant time operation.

The scheduler goes round robin over the active list to determine
if the current tenant (Ti) can be scheduled. If di > 0 and Ti has
more CPU work, then Ti is scheduled for the next quantum. If
CPUi ≥ MaxCPUi, then the next tenant in the active list is ex-
amined. If di ≤ 0 and CPUi < MaxCPUi, then scheduling Ti

is a tradeoff between the scheduling overhead and delaying allo-
cating the CPU to Tj with dj > 0. If Ti is scheduled, it is pos-
sible that there is at least one other Tj (j 6= i) in the active list
with dj > 0 which was deprived the CPU. On the other hand, if
Ti is not scheduled, it increases the scheduler’s cost since DRR
aims to keep scheduling cost at O(1) and hence inspect one (or
at most a constant number of) tenants per scheduling opportunity.
If Ti is not scheduled when di ≤ 0, then in the worst case, if
dj ≤ 0 ∀j ∈ [1, . . . , n] will result in the scheduling cost tend-
ing towards O(n), where n is the number of active tenants. In our
implementation, we schedule Ti once if CPUi < MaxCPUi.

While simple and efficient, the round robin nature of DRR intro-
duces some fundamental limitations. First, the scheduler only has
the most recent deficit of the current tenant it is inspecting. Without
global information about all active tenants and their deficits, DRR
needs heuristics (such as those discussed in the previous paragraph)
to make a scheduling decision and ensure the cost remains O(1).
Second, when large number of tenants are active and the scheduler
goes round robin scheduling a tenant at least once at every context
switch, in case a highly CPU-deficient tenant appears late in the
round robin order, there can be significant delays before the tenant

2Work done by the scheduler is the sum of the work to enqueue and dequeue a task.

Algorithm 1 Largest Deficit First Scheduling (Dequeue)

while true do

maxDeficit←−∞; maxDeficitTenant← NULL
for each active tenant Ti do

di = 1 − CPUi/ResCPUi

if (CPUi < MaxCPUi && di > maxDeficit) then

maxDeficit← di; maxDeficitTenant← Ti

if (maxDeficit >−∞) then

// Select the task at the head of the queue for the tenant with largest deficit.
ScheduleTask (maxDeficitTenant.Head)

else

// Either no tenant is active or all tenants have hit their maximum limit.
ScheduleIdleQuantum ()

is allocated the CPU . Such delays can result in higher variance in
performance—a fact corroborated by our experiments. When striv-
ing for performance isolation, it is important to ensure low perfor-
mance variance. Last, the round robin nature inherently limits the
scheduler’s ability to prioritize access. Such dynamic prioritiza-
tion is critical to support features such as optimizing for revenue
or providing higher priority access to tenants subscribing to more
expensive service classes. Therefore, while the O(1) algorithm is
efficient, the feature set it can support is limited.

3.4 Largest Deficit First
We now present an algorithm which uses knowledge about all

active tenants to select the next tenant to be allocated the CPU. We
compute the deficit of all active tenants and use a greedy heuristic
to allocate CPU to the tenant with the largest deficit, i.e., which
is most CPU-deficient; we call this algorithm largest deficit first

(LDF). The scheduler maintains a per-tenant FIFO queue for tasks
ready to run. A hash table keyed by the tenant ID points to a ten-
ant’s queue. Enqueue is a constant time operation involving looking
up the tenant’s queue and appending to it. At dequeue, the sched-
uler must determine the tenant with the largest deficit. To make
the dequeue efficient, it might be tempting to consider a structure,
such as a max heap, which will result in logarithmic dequeue com-
plexity. However, such a structure cannot be used in this case due
to a number of reasons. First, as noted in §3.2, a tenant’s deficit
changes continuously over time and at varying rates. Second, mul-
tiple tenants’ deficits might change as a result of CPU being allo-
cated on other cores in the system. Therefore, incrementally main-
taining a heap with logarithmic complexity becomes impossible.
We therefore recompute every active tenant’s deficit at a context
switch boundary and select the tenant with the largest deficit. Al-
gorithm 1 presents the pseudocode of LDF’s dequeue.

The LDF scheduler’s enqueue is O(1) and dequeue is O(n),
thus resulting in an overall complexity of O(n), where n is the
number of active tenants at a context switch. Note that a provider
might consolidate hundreds or even thousands of tenants on a sin-
gle server. However, such high consolidation is practical only be-
cause these tenants are expected to be idle most of the time; if
hundreds of tenants are concurrently active, the node will already
be too overloaded. Furthermore, most modern servers have tens
of CPU cores. Therefore, the number of active tenants at a con-
text switch boundary at a scheduler is typically small. Thus, even
though the O(n) complexity might sound theoretically daunting,
the scheduling overheads are expected to be low in practice, a claim
we validate in our experiments. Our experiments demonstrate that
the scheduler scales to four hundred bursty tenants co-located at the
same server without any noticeable overheads.

The LDF algorithm’s use of the fractional deficit measure lends
it several interesting properties. First, if a server has enough CPU
capacity, LDF ensures that all the reservations can be met. Claim 1
formalizes this property of LDF.



CLAIM 1. If CPU capacity is not overbooked and the tenant

submits sufficient work, then LDF ensures that every tenant will

meet its reservation.

PROOF. Assume for contradiction that Ti had sufficient work
but was still not allocated its reservation, i.e., di is positive at the
end of the metering interval. Since CPU was not overbooked and
Ti had enough work, the only reason was Ti was deprived the CPU
is that another tenant Tj was allocated a CPU share larger than its
reservation. That is, Tj was allocated the CPU when dj was nega-
tive even though di was positive. This is a contradiction, since the
scheduling algorithm selects the tenant with the largest deficit.

Second, LDF results in continual sharing of the CPU in propor-
tion to the ResCPUi, preventing one tenant with a large reservation
from hogging the CPU for long periods. When Ti uses the CPU
for a given quantum, the rate of decrease in di is inversely pro-
portional to ResCPUi. On the contrary, if Ti was not allocated
a quantum, the increase in its deficit is directly proportional to
ResCPUi. The scheduler’s goal is to meet every tenant’s reser-
vation. By selecting the tenant which is farthest from the goal
(i.e., with the largest deficit), LDF ensures that the CPU band-
width is proportionally shared in the ratio of all the active ten-
ants’ ResCPUi. That is, if all tenants are active, Ti’s proportion
is: (ResCPUi)/(

∑n

j=1
ResCPUj).

Third, the scheduler is a dynamic priority scheduler that is work-

conserving. That is, a tenant’s scheduling priority is determined
dynamically at every context switch and unless a limit is enforced
by MaxCPUi, the scheduler can operate at 100% CPU utilization
if the tenants have enough work to consume the resources.

3.5 Metering
The metering logic tracks Delayi. Every tenant’s entry in the

scheduler’s runnable queue contains a timestamp which is updated
when a tenant transitions from idle to active. Subsequently, when
a tenant Ti yields the CPU to another tenant Tj , Ti’s timestamp
is updated to the current time and Delayj is incremented by the
difference between the current time and the previous value of Tj’s
timestamp. Ti’s delays are accumulated across all cores at the end
of the metering interval to compute CPU

Eff

i which is used to detect
a violation in the reservation. Recall that a reservation is violated
iff CPU

Eff
i < ResCPUi.

4. ELASTIC RESERVATIONS
One attraction for cloud services is the elasticity of the resources.

However, the basic model of CPU reservations exposes a static
reservation. Recall that the fractional deficit metric (di) factors
ResCPUi and the scheduler’s priority can be dynamically adapted
by changing ResCPUi. In this section, we discuss how this adapt-
able di metric can be used to implement an elastic reservation ab-
straction for tenants with bursty workloads (see §2.3).

Different shapes of the utilization curve can be achieved by inter-
nally boosting a tenant’s reservation (and hence its priority). That
is, if Ti’s CPU utilization in the metering interval is less than a
fraction fi (0 ≤ fi ≤ 1) of ResCPUi for the entire interval, then
internally, Ti’s reservation is boosted to bi, where bi is a parameter
to the scheduler. The boosted reservation is then used to compute
di which determines Ti’s priority. This boosting is internal to the
scheduler to provide low response times to bursty and mostly in-
active tenant workloads. The tenant’s actual reservation remains
unaffected and determines the total CPU allocated in the metering
interval. The shape of the utilization curve depends on Ti’s work-
load and resource demands.

The dynamic boosting algorithm introduces a couple of parame-
ters fi and bi. fi = 0 disables boosting and fi = 1 will allow the

tenant to benefit from boosting until it has exhausted its entire reser-
vation. A value of 0.8 boosts priority until the utilization is up to
80% of the reservation and degenerates into the regular scheduling
algorithm beyond that. Similarly, setting bi = MaxCPUi allows
the tenant’s priority to be boosted to the maximum CPU utilization
allowed by the system for Ti. The values used for fi and bi are
policy decisions not addressed in this paper. Also note that this dy-
namic boosting is temporary, that is only for a specific scheduling
opportunity.

5. PROVIDER­ENFORCED POLICIES
So far, our discussion has focused on the goal of meeting CPU

reservations. We now explore adaptations to enable a provider to
enforce various policies based on price, penalties, and optimize for
revenue and fairness in an overbooked server. LDF adapts to cater
to these additional requirements by changing the formula used to
compute di; the rest of the scheduling logic remains unaltered.

5.1 Sharing Surplus Capacity
Once the scheduler has met all the reservations and surplus CPU

capacity is available, one policy question is how to share this sur-
plus capacity. By default, LDF shares this surplus capacity in the
ratio of the ResCPUi of all active tenants Ti. In a more general
setting, the provider might want to share the CPU in the propor-
tion of a weight (wi) associated with Ti. wi can correspond to the
price paid, or ResCPUi, or some other provider-determined weight.
Once Ti’s utilization had reached ResCPUi, sharing in proportion
of wi is achieved by computing di as:

di =
(ResCPUi − CPUi)

wi

(5)

First, note that if CPUi > ResCPUi, then di < 0. Therefore,
any tenant with a positive deficit continues to have higher priority
and LDF still ensures that all reservations are met first. Second, an
analysis similar to that in §3.4 shows that this modified formula for
di proportionally shares the surplus CPU in the ratio wi∑

k
wk

for all

active tenants Tk that have met their reservation.

5.2 Maximizing Revenue
When reservations are exposed to tenants, the provider may as-

sociate a price and a penalty function (see §2). In such a setting, if
a DBMS server is overbooked and there is more demand for CPU
than the resources available, some reservations may be violated.
When reservations have associated prices and penalties, violations
may decrease the provider’s revenue. It is natural for the provider to
want to maximize its revenue. Since the basic LDF algorithm is un-
aware of prices and penalties and does not optimize for revenue, it
can result in considerable penalties in an overbooked server. Penal-
ties can be minimized (and revenue maximized) by allocating the
CPU to the tenant with the highest potential penalty if deprived the
CPU. This greedy heuristic can also be added to LDF by modifying
deficit computation as follows:

di = PFi(ViolCPUi)× pricei (6)

The scheduler computes Ti’s fractional violation (ViolCPUi) and
uses Ti’s penalty function (PFi) to obtain the fractional penalty ex-
pected for this metering interval assuming Ti continues to receive
the same CPU proportion. When multiplied by pricei that Ti pays,
di is the absolute penalty which the provider is liable to Ti. Thus,
LDF will select the tenant with the largest potential for penalty.
Note that for CPUi ≥ ResCPUi, penalty is zero and so is di. Equa-
tions (4) or (5) can be used for setting the value of di, which will
be negative in this case. Also note that simply replacing CPUi by



CPU
Eff

i in Equation (4) is also not enough as it does not account for
the penalty function’s shape or the price paid.

5.3 Revenue and Fairness
The above mentioned greedy heuristic can deprive CPU to some

tenants more than others, thus making the system unfair in terms
of utilization fairness. While fairness might not be most critical
for the provider, it is important to prevent complete starvation and
considerable performance degradation for some tenants. Fairness
is also important for customer satisfaction and retention in a com-
petitive marketplace. When using the deficit formula from Equa-
tion (4), LDF is utilization fair while using Equation (6) makes it
completely revenue oriented. The scheduler can trade-off fairness
and revenue by combining both factors into the deficit computation:

di = α×

(

1 −
CPUi

ResCPUi

)

︸ ︷︷ ︸

utilization fairness

+ (1− α) ×

(
PFi(ViolCPUi)× pricei

Max(pricei)

)

︸ ︷︷ ︸

maximizing revenue

(7)

The first component (from Equation (4)) contributes to utiliza-
tion fairness while the second component (from Equation (6)) max-
imizes revenue. To match with utilization fairness component which
is in the range [0, 1] for a CPU-deficient tenant, we normalize the
revenue component by dividing pricei with the maximum price
among all tenants. A weighted sum of these two factors allows
the provider to tune between utilization fairness and revenue. The
tuning parameter α is the fairness index which determines how fair
the scheduler is: α = 0 configures the scheduler to maximize for
revenue and α = 1 configures it to be fair. Note that α does not di-
rectly correspond to any fairness measure, such as the Jain’s index.
α can be configured statically based on the system’s policy or set
dynamically to achieve a target value fairness measure. Our exper-
iments show how statically setting α affects revenue and fairness;
the latter is left for future work.

5.4 Discussion
In this section, we presented three extensions to the LDF sched-

uler by modifying how a tenant’s fractional deficit is computed. Al-
gorithm 2 shows the pseudocode of the LDF scheduler’s dequeue
function which combines the three extensions along with boosting.
Thus, a single algorithm is flexible enough to handle a variety of re-

quirements desirable for a CPU scheduler of a multi-tenant DaaS.

LDF generalizes to I/O and network sharing as well. For in-
stance, assume a tenant Ti is promised an I/O reservation of 2Mbps.
di needs to be adapted to consider Ti’s I/O utilization (computed
by accumulating the size of Ti’s I/Os) and replacing the denomi-
nator by the I/O reservation. It is straightforward to show that by
scheduling the tenant with the largest I/O deficit, LDF provides the
same behavior as for CPU. Implementing LDF for I/O and network
sharing is left as future work.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup and Baselines
We implemented our proposed CPU reservations abstraction, me-

tering, and the different scheduling algorithms in a prototype of
Microsoft SQL Azure. This section experimentally evaluates the
effectiveness of these abstractions and algorithms using a variety of
workloads in a multi-tenant setting. Our evaluation uses a workload
suite comprising four different workloads that represent diverse
resource and performance requirements: TPC-C and Dell DVD
Store3 benchmarks are OLTP-style workloads; TPC-H benchmark
is a DSS-style workload; and a synthetic micro-benchmark (called
CPUIO) that generates queries that are CPU- and/or I/O-intensive.

3
http://linux.dell.com/dvdstore/

Algorithm 2 Dequeue operation of the extended LDF Scheduler

while true do

maxDeficit←−∞; maxDeficitTenant← NULL
for each active tenant Ti do

reservation← ResCPUi; schedOpt← GetSchedulerOption()
if (schedOpt = BOOSTED & IsElasticRes (Ti) & CPUi < fi × ResCPUi)
then

reservation← bi
di→ 1− CPUi/reservation
if (CPUi > ResCPUi) then

// Proportionally sharing the surplus CPU capacity.
di← (ResCPUi − CPUi)/wi

else if ((schedOpt = MAXIMIZE REVENUE)) then

di← PFi(ViolCPUi)× pricei
else if (schedOpt = REVENUE AND FAIRNESS) then

di← α×
(

1−
CPUi

ResCPUi

)

+ (1− α)×
(

PFi(ViolCPUi)×pricei
Max(pricei)

)

if (CPUi < MaxCPUi && di > maxDeficit) then

maxDeficit← di; maxDeficitTenant← Ti

Schedule tenant with largest deficit.

The TPC-C workload contains a mix of read/write transactions
portraying a wholesale supplier. The Dell DVD Store benchmark
emulates an e-commerce workload where transactions represent
user interactions with the web site. The TPC-H benchmark simu-
lates decision support systems that examine large volumes of data,
execute queries with a high degree of complexity, and give answers
to critical business questions. The CPUIO benchmark comprises
of a single table with a clustered index on the primary key and a
non-clustered index on a secondary key. The workload consists of
three query types: (i) a CPU-intensive computation; (ii) a query in-
volving a sequential scan with a range predicate on the primary key
of the table; and (iii) a query with a predicate on the non-clustered
index which performs random accesses to the database pages.

Each tenant is an instance of one of these workloads and con-
nects to its own logical database. Tenants are hosted within a single
instance of the database server with a 12 core processor (24 logical
cores), 96GB memory, data files striped across three HDDs, and
transaction log stored in an SSD. The tenants’ database sizes range
from 500MB to 5GB.

An experiment starts with loading a number of tenant databases,
warming up the cache by running all the workloads concurrently
for 30 minutes, followed by another 30 minute period where all the
measurements are collected, aggregated, and reported. In all exper-
iments, the combined tenant CPU utilization is limited to 95% to
leave head room for system management and maintenance tasks.
Since the focus is on CPU, the warmup period loads the working
set in memory so that very little or no I/O is incurred during the ex-
periment. Further, we use an I/O reservation technique, described
in [15], to isolate I/O requirements of the tenants, if any. We eval-
uated two configurations: one where all tenants execute the exact
same workload and another when a tenant’s workload is chosen
randomly from the workload suite. In these experiments, we do not
consider the case of tenants joining or leaving; we refer the inter-
ested readers to [15] for such experiments.

We compare LDF against multiple baselines. First, the deficit
round robin algorithm (DRR) (§3.3). Second, an adaptation of the
earliest deadline first (EDF) algorithm [13]. EDF was designed
for real-time applications with deadlines. It might be tempting to
use the end of the metering interval as the deadline. However,
such a deadline is not enough since all tenants would then have
the same deadline. We therefore use a variant of EDF used in
the Atropos scheduler of Xen [12] where a tenant Ti’s deadline
is set to the actual interval’s deadline minus the tenant’s deficit
(ResCPUi − CPUi). Third, a system without any CPU reserva-
tions (No Res) which provides best effort allocation without any

http://linux.dell.com/dvdstore/


Table 1: Tenant T8’s average CPU utilization.
Num LDF DRR EDF No Res

Bullies Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.
0 25 1.06 25.06 0.71 25.09 0.84 11.89 1.29

2 25.11 1.49 23.86 2.24 25.14 1.39 9.48 0.78

4 25.12 1.61 20.93 3.89 25.11 1.46 7.93 0.55

6 25.09 1.7 19.36 4.9 25.12 3.45 6.82 0.49

8 25.09 1.62 17.5 6.01 24.85 3.48 5.97 0.42

Figure 2: 99th percentile latency for one of T8’s query types.

prioritization. Note that LDF and DRR use the same deficit mea-
sure but have different underlying strategies—LDF is greedy while
DRR is round robin. On the other hand, LDF and EDF are both
greedy, but use different metrics for making the greedy choice.

6.2 Over­provisioned Server
In this experiment, we use an over-provisioned server, i.e., where

available resources is greater than the aggregate of reservations.
We use two classes of tenants in this experiment. The first class
comprises tenants with CPU reservations while the second class is
without reservations. All tenants, irrespective of their class, gener-
ate CPU-intensive workloads, resulting in heavy CPU contention at
the DBMS server. The eight tenants with reservations (T1, . . . , T8)
are of interest for performance and resource isolation. These ten-
ants have CPU reservation of 5%, 8%, 8%, 8%, 10%, 10%, 10%,
and 25%, resulting in 85% capacity reservation. The goal of the
second class of tenants is to hog resources and generate contention,
hence we call them resource hogs or bullies. The number of bullies
is varied from zero to eight. Since bullies do not have any reser-
vation, the server is over-provisioned in terms of reservations, even
with eight bullies. For brevity, as a representative, we report the uti-
lization and latency numbers for one of the tenants (T8) and when
all tenants (including the bullies) are executing the same workload;
similar trends were observed for other tenants and configurations.

Table 1 shows the average CPU utilization of tenant T8; CPU
utilization was sampled every second and averaged over the dura-
tion of the experiment. Recall that ResCPU8 was 25% for LDF,
DRR, and EDF. When there are no bullies, all of LDF, DRR, and
EDF result in comparable utilization. However, as more bullies are
introduced, only LDF continues to meet the reservation with very

little variance. DRR’s round robin nature implies that the bully
workloads are scheduled at least once in every round through the
runnable queue. Hence, T8’s (as well as that of T1, . . . , T7) utiliza-
tion continues to decrease as more bullies are added. EDF’s greedy
heuristic enables it to meet all the reservations, a property shared
with LDF. However, EDF’s standard deviation is higher than LDF.
This is because LDF results in continual proportional sharing of the
CPU (see §3.4). On the other hand, EDF results in more coarse-
grained sharing, since the deadlines are dominated by the absolute
values of ResCPUi. Different from LDF, DRR, and EDF, No Res
does not promise any minimum resource allocation, thus resulting
is more drastic impact on resource allocations as bullies are added.

Table 2: End-to-end latency (in ms) for one of T8’s query types.
Num LDF DRR EDF No Res

Bullies Avg.Std. Dev. Avg.Std. Dev. Avg.Std. Dev. Avg.Std. Dev.
0 331 77 278 100 336 84 379 1115

2 350 76 236 327 339 83 405 1156

4 332 97 255 462 341 98 386 1212

6 336 74 283 559 359 204 400 1447

8 341 89 304 777 368 231 501 1505

The benefits of good resource isolation is also evident from the
end-to-end latency for one of the query types of T8. Figure 2 re-
ports the 99th percentile latency observed by the tenant. As is evi-
dent, T8’s latencies remain unchanged as the number of bullies are
increased. Since EDF’s CPU isolation is better compared to DRR,
so is it’s 99th percentile latency. However, LDF’s lower variance
in allocation implies best isolation of the 99th percentile latency
compared to all other algorithms. With eight bullies, T8’s 99th per-

centile latency when using LDF is ∼ 5× compared to DRR, ∼ 2×
better compared to EDF, and ∼ 8× better compared to No Res.

Service providers strive to provide low variance in performance for
mission critical applications where 99th percentile latency is much
more critical compared to the average or the median latency [5].
Therefore, LDF’s ability to isolate even the 99th percentile latency
in scenarios of heavy resource contention validates our claim of
performance isolation.

While our focus is on the 99th percentile, we observed an inter-
esting behavior when analyzing the average latency and the vari-
ance which tenants observe. Table 2 reports the average latency
(in ms) and the standard deviation for the same query. There are
two important observations: (1) DRR’s average latency (Column
4) is lower compared all other techniques (columns 2, 6, and 8).
However, due to the high variance observed in performance, DRR’s
99th percentile is worse (see Figure 2). Even though LDF’s av-
erage is higher than that of DRR, the low variance explains why
LDF’s 99th percentile latency is the lowest; and (2) neither the av-
erage nor the standard deviation increase for LDF as the number
of bullies are increased, which further asserts LDF’s ability to ef-
fectively isolate resources and performance. Therefore, using LDF

results in negligible performance impact on a tenants workload due

to other co-located workloads. This is remarkable considering that
the server was running at 85% to 98% average utilization in all
the experiments. The lower average latency and higher variance
in DRR results from a combination of the round robin nature and
accumulation of deficits. As discussed earlier (§3.3), when many
tenants are concurrently active, there can be considerable delays
between successive rounds when the scheduler inspects Ti. For
queries arriving in the intervening period, the wait times will be
higher. However, if Ti’s accumulated deficit is also large, it implies
that when Ti is scheduled, it may receive a burst of CPU alloca-
tion if it has enough work. Queries arriving during this burst will
observe low wait times if they complete within this burst. This bi-
modal distribution is the reason why DRR results in a lower average
latency but higher variance.

6.3 Overbooking and Violations
The setup is similar to that in the previous experiment in an

over-provisioned server, with one difference: the reservations for
T1, . . . , T8 are each doubled, i.e., the reservations are 10%, 16%,
16%, 16%, 20%, 20%, 20%, and 50% respectively, and so are
the maximums for max only. The reservations add up to 170% and
hence the server is overbooked. Similar to the previous experiment,
the number of bullies is varied from zero to eight.



Table 3: CPU utilization and metering with no bullies.

Tenant

LDF DRR EDF

CPUi % Violation CPUi % Violation CPUi % Violation
Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

T1 5.75 0.37 2.94 0.4 6.35 2.51 1.36 1.95 0.93 0.53 8.54 0.97

T3 9.09 0.62 4.91 0.64 9.58 3.81 2.67 3.26 6.89 0.58 8.18 1.0

T5 11.31 0.89 6.47 0.97 11.69 4.9 3.69 4.22 10.87 0.68 8.04 1.13

T8 27.89 2.45 17.68 2.32 26.67 12.58 12.97 9.97 40.81 3.01 7.48 1.37

(a) T1 (b) T8

Figure 3: 99th percentile latency observed for one query type of
T1 and T8 in an overbooked server.

Table 3 reports the average and standard deviation of CPUi and
the percentage violation for all the tenants in an experiment with-
out any bully workloads. Even when the server is overbooked,
LDF continues to allocate CPU at a steady rate with low variance.

Recall that in an overbooked setting, LDF proportionally shares
the resources among the active tenants where a tenant’s share is

ResCPUi∑
ResCPUi

of the available CPU capacity of the server. Since we

limit the aggregate server utilization to 95%, T1’s share is 5.58%,
T2 − T4’s share is 8.94%, T5 − T7’s share is 11.18%, and T8’s
share is 27.94%. As is evident, LDF results in allocation which
closely matches the tenant’s proportion. DRR follows closely, but
the allocation differs slightly from the proportion. However, similar
to the previous experiment, the variance is much higher for DRR.
On the other hand, EDF favors tenants with larger reservations. At
the start of the metering interval, T8 has the largest reservation and
hence has the earliest deadline, a condition which remains true until
CPU8 = ResCPU8 − ResCPU7, where T7 has the second largest
reservation. Beyond this point, T8 and T7’s allocation alternate un-
til their deadline equals that of T5, the tenant with the next highest
reservation. This behavior of EDF stems from using the absolute
value of ResCPUi in computing the deadline. LDF’s use of frac-
tional measures for the deficit results in finer-grained sharing dur-
ing the entire metering interval. This unfairness is magnified in
an overbooked server since earlier deadlines of tenants with large
reservations might deprive tenants with smaller reservations and
hence later deadlines. Measured quantitatively, in this experiment,
using LDF results in the Jain’s index score of J = 0.99 while EDF
results in J = 0.87.

This unfairness is also evident in the end-to-end query latencies.
Figure 3 plots the 99th percentile latency for the same query ex-
ecuted by T1 (smallest reservation) and T8 (largest reservation).
There are two important observations. First, the greedy nature both
LDF and EDF allows them to dynamically priority the tenants with
reservations over the bullies, thus resulting in considerably better
performance isolation when compared to DRR and No Res. This
fact is further affirmed by Table 4 which reports T8’s average CPU
utilization. As is evident, T8’s CPU allocation degrades consider-
ably as more bullies are added (see columns 4 and 6). It is remark-

Table 4: T8’s CPU utilization with varying number of bullies.
Num LDF DRR EDF No Res

Bullies Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.
0 27.89 2.45 26.67 12.58 40.81 3.01 11.89 1.29

2 27.89 1.75 24.32 11.29 40.67 3.19 9.48 0.78

4 27.70 2.86 28.24 9.99 40.5 2.95 7.93 0.55

6 27.64 1.43 17.71 12.28 40.58 2.59 6.82 0.49

8 27.47 2.55 14.32 11.035 40.56 2.96 5.97 0.42

Figure 4: Average latency for a tenant with bursty workload sub-
scribing to static and elastic reservations.

able that even on an overbooked server hosting sixteen resource-

intensive tenants, the 99th percentile latency with LDF remains

unaffected as the number of bullies and the resource contention in-

creases. Compared to DRR and No Res, tenants observe between
6× to 8× lower latency for the 99th percentile. The average query
latencies show a pattern similar to that of the previous experiments
and the results are omitted for brevity. Second, the unfairness of
EDF results in better end-to-end performance for T8 (which is allo-
cated more CPU in EDF that with LDF; see Table 3 last row) at the
expense of considerably worse performance for T1 which is almost
deprived of CPU (see Table 3 first row). Note that, LDF continues
to deliver excellent isolation irrespective of the magnitude of the
tenant’s reservation.

Another important observation from Table 3 is that the meter-
ing logic detects violations, thus establishing accountability when
the provider fails to allocate resources in an overbooked scenario.
Since metering logic factors out time when the tenant is not active,
utilization and percentage violation need not add up to ResCPUi.
Note that when LDF uses the deficit measure of Equation (4), its
goal is to be utilization fair. Hence, tenants with larger reservation
will observe larger violations. DRR’s lower violation compared to
LDF is again due to bursty CPU allocation due to the round robin
nature. On the other hand, EDF prefers tenants with larger reserva-
tion, hence resulting in lower violation for such tenants.

6.4 Elastic Reservations
In this section, we evaluate the effectiveness of elastic reser-

vations for bursty workloads. In this experiment, multiple bursty
workloads are co-located on the same server. A bursty tenant gen-
erates a burst of CPU activity where the burst size and the interval
are configurable. We configure the workload to generate at least
one burst every minute with the burst size set to use up to 5% of



CPU during the period of the burst. Over a long period of time, a
bursty tenant’s average utilization is 0.5%.

We evaluate two different scenarios: (i) four resource-intensive
static reservation tenants are co-located with twenty bursty tenants
(denoted as 4Res-20Bursty); and (ii) forty bursty tenants are co-
located with no other resource-intensive tenants (denoted as 40Bursty).
In one setup, the bursty tenants are given a static reservation of 1%
of the CPU metered every second (enough to meet their average
CPU requirement of 0.5%) and in another setup, the bursty tenants
are given an elastic reservation of 1% metered every minute with
bi = 30% and fi = 0.8. In both scenarios, the server is over-
provisioned.

Figure 4 plots the average end-to-end query latency as observed
by the bursty tenants (averaged over the average latency of each
bursty tenant) with static and elastic reservations for the bursty
workloads. As is evident, an elastic reservation, for both LDF and
DRR, results in 3× to 5× reduction in the query latency. Fur-
ther, in the 4Res-20Bursty scenario, this boosting result in negligi-
ble (less than 1% measured) impact on the average and 99th per-
centile latency of the resource intensive tenants with static reser-
vations. Therefore, elastic reservations result in significant latency
improvements for bursty workloads without much overhead on any
co-located static reservation tenants. EDF’s deadlines are not cog-
nizant of elastic reservations, and hence the latencies are compara-
ble to static reservations in LDF and DRR.

6.5 Revenue and Fairness
In this section, we evaluate the LDF scheduler’s ability to maxi-

mize the provider’s revenue and in trading off revenue with utiliza-
tion fairness. The first experiment focuses on optimizing revenue
(using the deficit measure of Equation 6) while the second experi-
ment evaluates the impact of the fairness index (α) on revenue and
fairness (using the deficit measure from Equation 7).

In this experiment, we consider a scenario where there are three
service classes: Gold (ResCPUi = 32%, price 20 cents), Silver
(ResCPUi = 16%, price 10 cents), and Bronze (ResCPUi = 8%,
price 5 cents). In addition, every class has an associated penalty
function with a higher-priced class having a more stringent func-
tion, i.e., a higher fractional penalty for the same fractional viola-
tion. Penalty functions are modeled as step functions with varying
slope. We run a set up with eight co-located tenants with reser-
vations. One configuration (C1) co-locates three Gold, three Sil-
ver, and two Bronze tenants with an aggregate CPU reservation of
170% and a maximum possible revenue of 100 cents. The sec-
ond configuration (C2) co-located one Gold, four Silver, and three
Bronze tenants with a total CPU reservation of 120% and a max-
imum possible revenue of 75 cents. In both configurations, we
run resource-intensive workloads such that resource demands are
higher than capacity. That is, violations are inevitable and the goal
is to minimize the penalty.

Figure 5 plots the results for both configurations (C1 and C2)
in a setting without bullies and one with eight resource bullies. In
each sub figure, each group of bars correspond to the LDF and
DRR schedulers running without optimization (-NoOpt) and with
revenue optimization (-Opt) and the EDF scheduler. Figure 5(a)
plots the % penalty, i.e., the percentage of the maximum possible
revenue refunded as penalty for violating reservations, as the verti-
cal axis. As is evident, LDF optimized for revenue results in con-
siderably lesser penalty when compared to the un-optimized ver-
sion. Furthermore, as expected, C2 results in lower penalty since
it is less overbooked and hence has lesser probability of penalties.
Even though DRR uses the same deficit measure, the round robin
nature does not provide DRR knowledge of deficits of all active ten-

Figure 6: Trading-off provider’s revenue with utilization fairness
using the fairness index (α).

ants and in most cases, local decisions do not result in the desired
global outcome of maximizing revenue. EDF uses a greedy heuris-
tic and favors tenants with larger reservations (and hence higher
potential penalties for the same violation), its penalties are lower
than LDF. However, EDF is also unaware of the price, the violation
incurred, and the shape of the penalty function. Therefore, LDF’s
revenue-optimized version results in considerably lower penalties.
Figure 5(b) plots the Jain’s fairness score along the vertical axis. As
expected, higher revenue of the optimized scheduler comes at the
cost of lower fairness, i.e., by providing more resources to the ten-
ants subscribing to the higher-priced service class. Finally, provid-
ing preferential treatment to the higher-priced tenant implies better
performance for the tenants. Figure 5(c) reports the 99th percentile
latency for one query type of T8 which is in the Gold class in both
configurations. As is evident, LDF-Opt results in 20% to 30% im-
provement in the 99th percentile latency. Therefore, the optimized
LDF scheduler provides improved service quality to tenants paying
for higher service classes as well as maximizes provider revenue.

Finally, Figure 6 demonstrates the LDF scheduler’s ability to bal-
ance between revenue and fairness by exposing a fairness index (α)
which the provider can set. The horizontal axis plots the different
values of α, the primary vertical axis plots the provider’s revenue
as a percentage of the maximum possible revenue (100 for C1 and
75 for C2), and the secondary vertical axis plots the fairness score
(Jain’s index). The solid lines plot the revenue, the dotted lines
plot the fairness score. The thicker lines with triangular markers
correspond to C1 and the thinner lines with circular markers corre-
spond to C2. We use a setup similar to the previous experiment and
vary α from 0 (least fair, most revenue optimized) to 1 (most fair,
least revenue optimized). As is evident, as we increase the fairness
index, the revenue decreases and fairness increases for both con-
figurations. Thus, LDF allows the provider to select a balance that
suits its requirements and business needs. Therefore, not only does
LDF result in better tenant experience, it allows the provide to exer-
cise fine-grained control and enforce various higher-level policies
to suit a diverse set of requirements.

6.6 Scheduling overhead
Earlier, we noted that even though LDF’s scheduling cost is lin-

ear to the number of tenants active at a given context switch, LDF’s
scheduling overhead is expected to be low in practice. These ex-
periments compare the scheduling overheads of LDF to DRR and
a scheduler without CPU reservations.

In one setup, we co-locate hundred bursty tenants and compare
the overheads running with the LDF and the DRR schedulers. Each
bursty tenant generated a burst of CPU activity at least once every
twenty seconds. The DBMS server was using about 40% CPU
on average during the experiment. The performance overhead of



(a) Penalty as % of subscription. (b) Fairness (Jain’s index). (c) 99th percentile latency of T8 .

Figure 5: Differentiated service and optimizing for provider revenue.

LDF when compared to DRR, measured in terms of query latency
and throughput as observed by the tenants, was low (between 1%
to 3%). In another setup, we ran up to forty resource-intensive
tenants and compared the performance of LDF with a best-effort
scheduler. The overheads were negligible (less than 3% decrease
in the throughout aggregated across all tenants). In both cases, the
overheads fade in light of LDF’s rich feature set. To further demon-
strate LDF’s scalability, we also ran an experiment with four hun-
dred mostly inactive tenants generating periodic bursts of activity.
There was no measurable increase in the scheduler’s overheads.

In an adversarial scenario where forty tenants each with fifty con-
current connections (i.e., an aggregate of 2000 connections) were
issuing queries concurrently on all connections without any think
time, we observed about 5% - 10% decrease in aggregate through-
put with the LDF scheduler when compared to a best effort sched-
uler that does not provide any assurances. While this scenario will
be infrequent in practice, this experiment confirms that LDF’s over-
heads remain manageable even under heavy load. Therefore, LDF
provides flexibility and assurances paramount in a multi-tenant set-
ting with minimal overheads in practice.

6.7 Summary
Experiments presented in this section using a variety of work-

loads and a wide variety of scenarios validate LDF’s ability to pro-
vide excellent performance isolation while being flexible enough
to cater to various tenant’s requirements and provider’s policies.
Results in this section demonstrate that:
• LDF meets reservations with high accuracy when enough re-

sources are available, which in turn results in excellent perfor-
mance isolation as reflected by the negligible effect of other ten-
ants’ workload on a tenant’s 99th percentile latency;

• in an overbooked server, LDF continues to isolate resources ir-
respective of the reservation’s magnitude and detects violations
to establish accountability;

• LDF can effectively support elastic reservations for bursty work-
loads to lower tenant’s average latency by ∼ 3× to 5×, thus
improving the tenant’s experience;

• LDF is able to support higher-level provider-enforced policies
such as optimizing for revenue and fairness; and

• LDF introduces minimal overheads when compared to DRR or
a scheduler providing no assurances.

7. RELATED WORK
Classical approaches of fair sharing, used in many OS and net-

work packet schedulers [18], are not flexible enough to support ser-
vice differentiation and absolute assurances critical in multi-tenant
systems. Static priorities, used in OS schedulers and many com-
mercial DBMSs, and proportional sharing [8,20,24] provide coarse
service differentiation but do not provide absolute assurances. On

the contrary, CPU reservations expose an absolute resource assur-
ance. Static CPU reservations has also been explored in real-time [11]
and multimedia systems [14] where the goal was only to support
low latency response to time-critical applications. Absolute reser-
vations with accountability differentiates our work.

Various CPU scheduling algorithms have also been proposed in
the literature. One class of schedulers target proportional sharing.
Examples include lottery and stride-based scheduling [24], Stoica
et al. [20], Goyal et al. [8], and Chandra et al. [1]. As discussed
in Stoica et al. [21], resource reservations and proportional sharing
are dual problems. In theory, a proportional sharing algorithm can
be used to support reservations [19]. However, in the presence of
workload variety, such as different CPU quantum lengths, tenants
joining and leaving, and varying resource demands, guaranteeing
a reservation requires a complex feedback-driven controller which
continuously adapts the tenants’ proportions. In contrast, LDF pro-
vides a simple approach to guarantee reservations relying on the
feedback of the deficit measure while supporting many properties
similar to proportional sharing schedulers (see §3.4), thus provid-
ing the best of both worlds.

Another class of algorithms was proposed to support reservations
or low latency characteristics in real-time and multimedia applica-
tions; the earliest proposals were rate monotonic (RM) scheduling
and earliest deadline first (EDF) [13]. EDF is a dynamic priority
algorithm with a greedy heuristic similar to that of LDF; RM on
the other hand is a static priority scheme. Both algorithms rely on
a notion of rate or deadlines common in real-time systems. Such
assumptions about predictable request arrival rates or deadlines de-
clared upfront are impractical in a multi-tenant DBMS serving a va-
riety of workloads. The EDF scheduler has been adapted in various
other scenarios for providing real-time assurances or CPU reser-
vations [2, 3, 12]. Jones et al. [11] rely on CPU reservations and
application-specified time constraints to pre-compute a scheduling
graph which determines how tasks are scheduled. However, such
pre-computation of the schedule limits the applicability of the algo-
rithm in dynamic environments which we consider. SMART [16]
uses a combination of static priorities and virtual time to achieve
proportional sharing and meet time constraints. Similarly, Mercer
et al. [14] support CPU reservations relying on application coop-
eration and an estimate of the CPU times from the programmers
to map an application’s quality-of-service (QoS) requirements into
resource requirements. Again, such application hints are impracti-
cal in a multi-tenant DBMS. On the contrary, LDF does not require
any application hints, assumptions about the workload or its arrival
patterns, or impose any limitations on the workloads supported.

Regehr and Stankovic [17] present a mechanism to adapt a real-
time scheduler, similar to EDF, to account for time spent in Ker-
nel mode. Similarly, Gupta et al. [9] propose a technique to iso-



late the and determine a tenant’s (a VM in the paper) CPU uti-
lization in the user domain and that consumed by the hypervisor
when performing work on behalf of the VM. Our work focuses
on isolating the CPU consumption between the tenants. Govindan
et al. [7] present a communication-aware CPU scheduler that pri-
oritizes communication-oriented applications over CPU-intensive
ones. Variants of LDF which give preferential treatment to bursty
workloads or higher-paying tenants are, in principle, similar to [7].

8. CONCLUDING REMARKS
Resource sharing is inevitable in a multi-tenant DaaS, causing

concerns that a tenant’s performance may be impacted due to re-
source contention with other co-located workloads. We focused on
the problem of effective CPU sharing among tenants co-located at
a server. We presented the abstraction of CPU reservations which
provides an absolute assurance of resources to tenants without re-
stricting the tenant workloads by any form or means. We presented
two variations of the CPU reservations model—a static reserva-
tion and an elastic reservations—which are targeted towards tenants
with very different resource and performance requirements. We
also presented a metering logic to establish provider accountabil-
ity. Finally, we presented a single scheduling algorithm which is
flexible enough to meet reservations and provide fine-grained con-
trol on resource while catering to a variety of tenant workloads and
provider-enforced policies. Implementation in a prototype of SQL
Azure and thorough evaluation demonstrated the effectiveness of
the proposed CPU sharing abstractions and the LDF scheduler.

Acknowledgements

The authors would like to thank Pamela Bhattacharya, Surajit Chaud-
huri, Christian Konig, and the anonymous reviewers for useful feed-
back to improve this paper. Several members of the Microsoft SQL
Azure group, including Morgan Oslake, George Reynya, and Leigh
Stewart, have provided feedback that influenced our work.

9. REFERENCES
[1] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus fair

scheduling: a proportional-share CPU scheduling algorithm
for symmetric multiprocessors. In OSDI, pages 45–58, 2000.

[2] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the
three CPU schedulers in Xen. SIGMETRICS Perform. Eval.

Rev., 35(2):42–51, 2007.

[3] T. Cucinotta, D. Giani, D. Faggioli, and F. Checconi.
Providing Performance Guarantees to Virtual Machines
Using Real-Time Scheduling. In Euro-Par Workshops, pages
657–664, 2010.

[4] C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan.
Workload-aware database monitoring and consolidation. In
SIGMOD, pages 313–324, 2011.

[5] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74–80, 2013.

[6] A. Elmore, S. Das, A. Pucher, D. Agrawal, A. E. Abbadi, and
X. Yan. Characterizing Tenant Behavior for Placement and
Crisis Mitigation in Multitenant DBMSs. In SIGMOD, pages
517–528, 2013.

[7] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and
A. Sivasubramaniam. Xen and co.: communication-aware
CPU scheduling for consolidated xen-based hosting
platforms. In VEE, pages 126–136, 2007.

[8] P. Goyal, X. Guo, and H. M. Vin. A hierarchial CPU
scheduler for multimedia operating systems. In OSDI, pages
107–121, 1996.

[9] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing Performance Isolation Across Virtual Machines in
Xen. In Middleware, pages 342–362, 2006.

[10] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A Quantitative
Measure of Fairness and Discrimination for Resource
Allocation in Shared Computer Systems. Technical report,
DEC, September 1984.

[11] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU reservations
and time constraints: efficient, predictable scheduling of
independent activities. In SOSP, pages 198–211, 1997.

[12] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and
implementation of an operating system to support distributed
multimedia applications. J. of Sel. areas in Comm.,
14(7):1280–1297, 1996.

[13] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J.

ACM, 20(1):46–61, January 1973.

[14] C. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves: operating system support for multimedia
applications. In ICMCS, pages 90–99, 1994.

[15] V. Narasayya, S. Das, M. Syamala, B. Chandramouli, and
S. Chaudhuri. SQLVM: Performance Isolation in
Multi-Tenant Relational Database-as-a-Service. In CIDR,
2013.

[16] J. Nieh and M. S. Lam. The design, implementation and
evaluation of SMART: a scheduler for multimedia
applications. In SOSP, pages 184–197, 1997.

[17] J. Regehr and J. A. Stankovic. Augmented CPU
Reservations: Towards Predictable Execution on
General-Purpose Operating Systems. In RTAS, 2001.

[18] M. Shreedhar and G. Varghese. Efficient fair queuing using
deficit round-robin. IEEE/ACM Trans. Netw., 4(3):375 –385,
1996.

[19] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A feedback-driven proportion allocator for
real-rate scheduling. In OSDI, pages 145–158, 1999.

[20] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke,
and C. Plaxton. A proportional share resource allocation
algorithm for real-time, time-shared systems. In RTSS, pages
288 –299, 1996.

[21] I. Stoica, H. Adbel-Wahab, and K. Jeffay. On the Duality
between Resource Reservation and Proportional Share
Resource Allocation. In Mult. Comp. and Networking, pages
207–214, 1997.

[22] M. Stonebraker. Operating system support for database
management. Commun. ACM, 24(7):412–418, 1981.

[23] B. Urgaonkar, P. J. Shenoy, and T. Roscoe. Resource
overbooking and application profiling in a shared Internet
hosting platform. ACM Trans. Internet Techn., 9(1), 2009.

[24] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible

Proportional-Share Resource Management. PhD thesis, MIT,
1995.

[25] P. Wong, Z. He, and E. Lo. Parallel Analytics as a Service. In
SIGMOD, pages 25–36, 2013.

[26] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and
H. HacigümüŞ. ActiveSLA: a profit-oriented admission
control framework for database-as-a-service providers. In
SoCC, 2011.


	Introduction
	Requirements
	Our approach

	CPU Sharing Preliminaries
	CPU Reservations
	Metering
	Elastic Reservations
	Revenue
	Fairness

	Reservation-aware Scheduling
	CPU Scheduling Preliminaries
	The Fractional Deficit Measure
	Deficit-based Round Robin
	Largest Deficit First
	Metering

	Elastic Reservations
	Provider-enforced Policies
	Sharing Surplus Capacity
	Maximizing Revenue
	Revenue and Fairness
	Discussion

	Experimental Evaluation
	Experimental Setup and Baselines
	Over-provisioned Server
	Overbooking and Violations
	Elastic Reservations
	Revenue and Fairness
	Scheduling overhead
	Summary

	Related Work
	Concluding Remarks
	References

