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Abstract
The rack is increasingly replacing individual servers as
the basic building block of modern data centers. Fu-
ture rack-scale computers will comprise a large number
of tightly integrated systems-on-chip, interconnected by
a switch-less internal fabric. This design enables thou-
sands of cores per rack and provides high bandwidth for
rack-scale applications. Most of the benefits promised by
these new architectures, however, can only be achieved
with adequate support from the software stack.

In this paper, we take a step in this direction by focus-
ing on the network stack for rack-scale computers. Us-
ing routing and rate control as examples, we show how
the peculiarities of rack architectures allow for new ap-
proaches that are attuned to the underlying hardware. We
also discuss other exciting research challenges posed by
rack-scale computers.

1 Introduction
While today’s large-scale data centers such as those run
by Amazon, Google, and Microsoft are built using com-
modity off-the-shelf servers, recently there has been an
increasing trend towards server customization to reduce
costs and improve performance [29, 31, 33]. One such
trend is the advent of rack-scale computing.

1.1 Rack-scale computing
Rack-scale computers (RASCs) comprise 100s to 1,000s
of micro-servers that are connected by a network fabric.
Their emergence is due to two hardware innovations:

System-on-chip (SoC) integration combines cores,
caches and network interfaces in a single die. SoCs are
widespread on mobile platforms as they save power and
space, and the same advantages also apply in the server
domain. SoCs enable vendors to build micro-servers:
extremely small server boards containing computation,
memory, network interfaces, and sometimes flash stor-
age. For instance, the Calxeda ECX-1000 SoC [26] hosts
four ARM cores, a memory controller, a SATA interface,

and a fabric switch onto a single die.
Fabric integration connects such micro-servers into

a high-bandwidth low-latency network. Typically this
is done by using a “distributed switch” architecture;
micro-servers are connected via point-to-point links into
a multi-hop direct-connect topology. The point-to-point
links can simply be traces on a PCB back-plane and can
run custom physical and link protocols that are not ex-
posed to the micro-servers. They can thus offer high
bandwidth (10–100 Gbps) and low per-hop latency (100-
500 ns). A “fabric controller” on each node provides
a NIC interface to the micro-server and also forwards
packets for other micro-servers. Any topology that has a
small number of links per node can be used; 2D and 3D
torus are popular choices adapted from supercomputing
architectures.

We use the term “rack-scale” because we do not expect
this technology to scale to the entire data center. At the
rack-scale, it is possible to achieve high bandwidth and
low latency with low-dimensional topologies such as a
3D torus. Scaling beyond the rack, however, would i) in-
troduce large over-subscription (due to the higher density
and higher bandwidth per link compared to today) and ii)
incur higher propagation delays (dictated by the speed of
light and the additional switching latency), which would
be unacceptable for many operations, e.g., remote mem-
ory access.

Early examples of RASCs have appeared on the mar-
ket. For example, HP’s Moonshot [30] is a 4.3 rack-
units chassis with 45 8-core Intel Atom SoCs and 1.4
TB of RAM in a 3D torus topology. The AMD SeaMi-
cro 15000-OP [34] stacks 512 cores and 4 TB of RAM
within 10 rack-units using a 3D torus network fabric with
a bisection bandwidth of 1.28 Tbps. Intel’s proposed
Rack-scale Architecture [28, 32] combines SoC and fab-
ric integration with silicon photonics, which support link
bandwidths of 100 Gbps and higher. RASC designs have
also been proposed by the academic community such as
the soNUMA [16] and Firebox [3] platforms.



Given the amount of innovation happening at the hard-
ware level, it is important to understand the implications
for the software stack (operating system, network and
storage layers, and applications). In the rest of this pa-
per, we explore the implications for the RASC network
stack, and discuss the research challenges and opportu-
nity lying ahead. We defer an exploration of the rest of
the software stack to future work.

1.2 Rack-scale networking
A prominent feature of RASCs is the distributed switch
architecture where each node functions as a small switch
and forwards traffic from other nodes. This results in
a multi-hop direct-connect topology, e.g., a 2D mesh or
a 3D torus, characterized by high path diversity. Fur-
ther, performance efficiency dictates “resource disaggre-
gation”, whereby each micro-server can access the re-
sources at other micro-servers across the network [14].
Therefore, the same network fabric carries both IP and
non-IP (e.g., memory and storage) traffic.

The rack’s network fabric is a departure from today’s
data centers, which mostly use tree-like topologies. Also,
while direct-connect topologies have been used in high
performance computing (HPC), the disaggregated nature
of resources and the multi-tenant environment makes
RASC network traffic more diverse and unpredictable
than in HPC clusters. Such differences mean that both
the traditional TCP/IP stack and solutions from the HPC
domain, e.g., [6–8], are ill-suited to this environment.

As a concrete example, in this paper we focus on
routing and rate control in RASCs. High path diver-
sity in rack topologies and the wimpy nature of micro-
servers pose a challenge for the TCP-family of rate con-
trol protocols as they use a single path and impose high
processing overhead [16]. Even multi-path extensions
like MPTCP [19] only consider few tens of paths. This is
roughly three orders of magnitude smaller than the num-
ber of paths available here. Dually, approaches based on
per-flow network queues with back pressure do not scale
to the expected number of applications in a rack.

In the next section, we sketch a new routing and rate
control design that leverages a key characteristic of these
topologies– their direct-connect nature. The basic idea
is to use a variant of Valiant Load Balancing for routing
which ensures that each micro-server has a local view
of the rack’s global traffic matrix, and can independently
determine the sending rate for its flows. This approach
eschews any path probing. Using simulations, we show
it can simultaneously achieve both low flow completion
time (at the tail too) and tiny queues.

We finish the paper by highlighting other research
challenges (and opportunities) resulting from the pecu-
liarities of RASCs. For each example, we make a case
for new designs that are attuned to and leverage the char-

acteristics of the underlying hardware.

2 Routing and rate control in RASCs
In this section, we sketch our design and show how the
peculiar characteristics of RASCs enable approaches that
are unfeasible in traditional switch-based networks. We
begin by focusing on two very basic questions for a
RASC network stack. For a flow between two nodes,
what path should each packet take (routing) and what rate
should the packets be sent at (rate control)?

2.1 Design goals
We adopt three key design goals–

(i). Leverage the path diversity prevalent in rack net-
work topologies. Using multiple paths can increase the
throughput of a flow significantly, e.g., by up to a factor
of six for a 3D torus.

(ii). Good load balance across network links. Data
center workloads often have skewed communication pat-
terns [5] which can result in hotspots and bring down
overall network throughput.

(iii). Low network queuing. While a standard goal
for network design, this is particularly important here be-
cause the micro-servers have very limited buffers and the
network may carry traffic that is latency-sensitive.

2.2 Routing
Routing across direct-connect topologies has been exten-
sively studied in the the scientific computing and HPC
literature [8]. Minimal routing protocols like equal-cost
multi-path (ECMP) [15] and randomized packet spray-
ing [10] route packets only along shortest paths. This
ensures low propagation delay but at the expense of load
imbalance across network links.

In our design, we select Valiant Load Balancing
(VLB) [23] as the underlying routing protocol. VLB is a
non-minimal routing protocol in that packets are not al-
ways routed along the shortest path. However, VLB has
excellent load balancing properties and is agnostic to the
input traffic matrix [11, 13]. It works by randomly se-
lecting, at the source, an intermediate hop to which the
packet must be routed through before reaching the ac-
tual destination. This uniformly spreads traffic across the
rack, regardless of the specific traffic matrix. This is very
important in our context, because it gives a lower bound
on the throughput achieved by the network.

A key consequence of using VLB in a direct-connect
topology is global visibility. Since VLB evenly spreads
the packets of a flow across the entire fabric, nodes can
obtain a good approximation of the rack’s flow matrix,
just by observing the headers of packets they forward.
This does not require any additional control traffic. We
exploit this property in our rate control design.

While global visibility is a useful property, with
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Figure 1: A flow from node 0 to 1 comprises four sub-
flows A-D.
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Figure 2: Links weights for sub-flows A-D. The flow’s
total weight w is split evenly among the four sub-flows.

vanilla VLB, a new flow may need to send many pack-
ets before all nodes become aware of it. Specifically, the
expected number of packets to be sent before all n nodes
in the rack have been chosen as an intermediate hop at
least once is given by Ω(n logn) [27]. With n=512, it
would take around 3,490 packets for all nodes to be cho-
sen as the intermediate hop. To address this, we propose
a VLB variant called VLB+. For each flow, we generate
a random permutation of the n nodes in the rack which
specifies the intermediate hops for the next n packets to
be sent. Thus, every node is guaranteed to be chosen as
an intermediate hop for a flow after it has sent n pack-
ets. Since nodes that forward a flow’s packets from its
source to the intermediate hop and on to the destination
also become aware of the flow, in practice, the number of
packets needed to ensure global visibility is smaller.

2.3 Rate control
The basic idea behind our rate control protocol is that
given knowledge of the network topology and all active
flows, each node can independently determine the load
on each network link and hence, the fair sending rate for
its flows. Thus, we transform the distributed congestion
control problem into one of local rate calculation. While
the rack’s topology is relatively static, the set of active
flows can change rapidly. We begin with the assumption
that nodes are aware of the rack’s current traffic matrix.

We first define a few terms. A flow is characterized
by its source and destination, [s,d]. From a rate com-
putation perspective, each flow comprises n sub-flows,
one for each intermediate hop its packets are routed
through. Each sub-flow is thus characterized by a three-
tuple [s, i,d], i ∈ [1,n] where n is the number of nodes in

the rack. The use of VLB+ at the routing layer imposes
the following constraint on the rate computation– all sub-
flows for a flow should be assigned the same rate. This is
because VLB+ chooses intermediate hops in a random-
ized round-robin fashion. Thus, any mismatch between
the rates allocated to the sub-flows will result in queues
building up at the flow’s source.

To achieve per-flow fairness, each flow is assigned
the same weight w which, in turn, is equally distributed
among its sub-flows. Thus, the weight for each sub-flow
is w

n . We use information about how packets are routed
to determine the weight of each sub-flow at each link in
the topology. We illustrate this through the example 2x2
mesh topology in Figure 1. Consider a flow [0,1] which
comprises four sub-flows A–D. Sub-flow A uses node 0
as the intermediate hop and its packets are routed directly
from node 0 to 1. Thus, this sub-flow has a weight of w
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on the link from 0 to 1 and no weight at any other link.
The same is true for sub-flow B which uses node 1 as its
intermediate hop.

Sub-flow C uses node 2 as the intermediate hop. Pack-
ets from the source are routed along the link from node
0 to 2. From node 2, there are two equally short paths to
the destination, 2 → 0 → 1 and 2 → 3 → 1. To capture
the fact that the sub-flow’s packets are routed along these
paths with equal probability, we split its weight across
these paths. The resulting per-link weights for all sub-
flows are shown in Figure 2.

We can repeat the above process for all flows to de-
termine per-flow weights at all network links. Given this
setup, any node can independently compute the max-min
fair rate for each flow through a simple iterative algo-
rithm that we summarize here. At each iteration, we
find the link with the highest total weight. This is the
most bottlenecked link, and its capacity dictates the rates
for all flows using the link. Specifically, we allocate the
link’s capacity among the flows across it in proportion
to their weight at the link and mark these flows as allo-
cated. To account for host-limited flows, we can add flow
demands in the packet header. The rate assigned to each
flow is then the minimum between its fair share and its
demand. Finally, we remove the weights for all allocated
flows from all network links and continue to the next it-
eration till all active flows have been allocated.

This simple design has a few advantages. First, it
avoids the need to probe the network and induce con-
gestion signals like packets drops and queuing to infer a
flow’s sending rate. High path diversity in RASCs makes
the design of a congestion probing mechanism partic-
ularly challenging. Second, if nodes have an accurate
view of the rack’s traffic matrix, the rate allocation en-
sures both high network utilization and low queuing.

Similarly, we use a decentralized mechanism to
garbage collect flow state, thus avoiding expensive global

3



coordination. For any given flow, by combining its per-
link weights and the assigned rate, a node can locally
estimate the next packet arrival time and set the time-
out accordingly. If no packet arrives before the timeout
expires, the flow is considered completed and removed
from the list.

2.4 Preliminary results
We use simulations to evaluate our rack network design,
hereon referred to as RASC-NET. While preliminary,
the results indicate that our protocol is able to signifi-
cantly decrease flow completion times while requiring
only small packet queues in the network.

We use a packet-level network simulator to model a
512-node 3D torus. This is the same size and topology of
the AMD SeaMicro 15000-OP. We assume a link band-
width of 10 Gbps and we do not consider any compu-
tation overhead. For our experiments, we use a random
permutation traffic matrix, in which we vary the traffic
load, expressed as the fraction of sources in the network.
All flows have a size of 10 MB and start at the same time.

We compare RASC-NET, comprising VLB+ and the
rate control protocol described in Section 2.3, against
three approaches. The first one, TCP, uses ECMP [15]
as the routing protocol and TCP to control flow rates.
This is representative of today’s status quo. ECMP as-
signs different shortest paths to different flows between
the same endpoints. The next two, Ideal-M and Ideal-
NM, use random packet spraying (minimal routing) and
VLB+ (non-minimal routing) respectively. With random
packet spraying, a shortest path is randomly chosen for
each packet in a flow. We denote them as “ideal” as they
do not rate limit flows at the source but, instead, rely
on unbounded per-flow queues at the nodes. This is im-
practical but provides upper bounds on the performance
achievable by any rate control protocol for minimal and
non-minimal traffic oblivious routing.

Figure 3 shows the 99th percentile of the flow com-
pletion time (FCT) when varying the traffic load. The
performance of TCP is limited by the fact the ECMP
only uses a single path for each flow and, hence, cannot
fully utilize the network capacity. In contrast, Ideal-M
yields lower completion times as packets are allowed to
use all shortest paths for a source-destination pair. How-
ever, especially for low traffic load, RASC-NET outper-
forms Ideal-M as the former can also use links not on
the shortest path. As the number of flows increases, the
gains from using non-minimal routing are partially off-
set by the increased channel load, and the gap between
RASC-NET and Ideal-M narrows. Notably, RASC-NET
performance is indistinguishable from Ideal-NM. This
confirms that our rate control protocol achieves a good
approximation of (ideal) unbounded flow queues.

Since RASC-NET does not probe the network to infer
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Figure 4: CDF of FCT for network load equal to 0.5.

the correct rates, it achieves tiny packet queues. In our
experiments, across all values of the load, the maximum
queue occupancy was 138 packets (203 KB of buffer-
ing). Low queue occupancy also reduces the amount of
packet reordering occurring at the destination caused by
the multi-path routing. For example, across all our ex-
periments, the median size of the reordering buffer was
96 packets with a maximum value of 158 packets.

Finally, Figure 4 shows the CDF of the FCT for all
four approaches when the network load is equal to 0.5.
While both Ideal-M and TCP exhibit a long tail, in
RASC-NET the FCT distribution is very narrow, which
is particularly useful for data center workloads [9].

2.5 Discussion
While these results are encouraging, more work is
needed to achieve a complete solution. Here, we high-
light the key concerns and the solutions we are pursuing.
Short flows. Our design assumes that nodes are aware of
the rack’s current traffic matrix. For our 512-node topol-
ogy, in the worst case it can take up to 511 packets for
all nodes to be aware of a new flow. In data centers,
however, most flows are only a few packets long. For
example, in a typical data-mining workload [13], 80% of
flows are less then 10KB. Yet, 95% of all bytes are in
the 3.6% flows larger than 35MB. Thus, we could adopt
an approach similar to HULL [1] and reserve some spare
capacity to account for the short flows; a small spare ca-
pacity should absorb such flows while our rate-limiting
mechanism ensures that medium-to-long flows do not
congest the network.
Computation overhead. In our design, rack nodes re-
compute the rates whenever a new flow is detected or
the timeout associated to an existing flow expires. In our
case, however, the max-min computation is very cheap,
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needing only a few iterations to converge. This is due
to the use of VLB+ routing, which entails that each flow
uses almost all links in the network. Consequently, the
most bottlenecked link is actually the bottleneck for al-
most all active flows (e.g., 89.1% for the experiment in
Figure 4). This can be optimized even further by stop-
ping the computation after one iteration, thus trading-off
a little utilization for reduced computation overhead.
Beyond per-flow fairness. Our approach can be ex-
tended to support sharing policies beyond per-flow fair-
ness. For example, sources can include in the packet the
weight and the priority of the flow. Nodes can then in-
voke the allocation algorithm over multiple rounds, one
for each priority level. At each round, flows belong-
ing to the corresponding priority level are allocated a
rate in a weighted fashion. We expect that higher level
fairness policies such as deadline-based [24] or tenant-
based [18], can be mapped onto these two primitives,
similar to pFabric [2].
Traffic-aware routing. VLB achieves good load bal-
ance at the expense of increasing the average path length.
While this is a good trade-off in low-load regimes, it can
be sub-optimal at high load or when the workload ex-
hibits high locality. To compensate for this while still
retaining the nice properties of VLB, we are considering
using traffic-aware variants of VLB [21] which limit the
amount of non-minimal traffic routing.

3 Research Directions
In this section, we briefly discuss some of the research
questions that RASCs raise. Our intent is not to provide
an exhaustive list but rather to give a taste of the exciting
challenges and opportunities that lie ahead.
Converged fabric. Existing systems use a variety of
interconnect technologies and protocols, e.g., QPI and
HTX for inter-socket interconnection in NUMA sys-
tems, Ethernet or InfiniBand for inter-server communi-
cation, and storage area networks (SANs). By contrast,
RASCs have a single fabric that is expected to carry dif-
ferent types of traffic. It is therefore worth investigating
whether we can replace all these protocols with a sin-
gle unified one and, in such case, what are the correct
abstractions (e.g., packet-based vs. circuit-based and re-
liable vs. best-effort). Another important question is to
understand how to share the network resources between
different users and applications as well as between differ-
ent classes of traffic. Recent proposals show that, to max-
imize utilization while ensuring fairness, each traffic type
has different requirements; e.g., for memory traffic [17],
storage traffic [20], and inter-server traffic [4, 18]. An
open question is how such requirements and policies can
be composed atop a converged fabric. Finally, the mech-
anisms used for enforcing these policies will likely vary
according to the type of traffic. For instance, while a

centralized controller might be a feasible option to han-
dle storage traffic at this scale [22], the extremely low
latency requirements of memory traffic will probably re-
quire decentralized mechanisms.
Inter-RASC network. Thus far, we have only focused
on intra-RASC communication. It is important, how-
ever, to investigate how to interconnect multiple RASCs
to form a large cluster. This includes both the physical
wiring layout and the network protocols used to bridge
between two RASCs. One simple option would be to
just use traditional switches and tunnel RASC packets
by encapsulating them inside Ethernet frames. While this
would allow for a smooth transition from today’s deploy-
ments, it has some limitations. First, given the high bi-
section bandwidth available within a rack, the only way
to avoid creating high over-subscription would be to use
high-radix switches with large back-plane capacity, in
the order of (tens of) Terabits. This, however, would dra-
matically increase costs and it may even be unfeasible if
100+ Gbps links are to be deployed within a rack. Fur-
ther, the need to bridge between the rack and the Ethernet
domain would add further overhead and increase end-to-
end latency. A more promising (albeit challenging) solu-
tion might be instead to directly connect multiple RASCs
without using any switch, similar to [25].
Resource co-scheduling. As observed in the Introduc-
tion, we believe that the impact of RASC architectures
extends beyond the network, to the entire stack. In par-
ticular, the small scale and the tight integration among
resources provided by SoC designs create exciting op-
portunities for cross-resource approaches. As a concrete
example, we are exploring the benefits of having a global
scheduler that controls all resources (CPUs, memory, and
network). For example, in case of network congestion,
the scheduler can decide whether it is more convenient
to redirect network flows, migrate the computation, mi-
grate the data or a combination of all three. This differs
from today’s model in which the network controller oper-
ates largely independently from the job scheduler and the
storage substrate. This also would require a new defini-
tion of fairness. While recent work on dominant resource
fairness (DRF) [12] provides a promising starting point,
it is not obvious how to extend it to capture the RASC
disaggregated resource model [14].

4 Conclusions
We advocate the need for researchers and practitioners
to reconsider existing software mechanisms and abstrac-
tions in light of the advent of rack-scale computing. In
this paper, we started this process by considering the im-
plications for network protocols. Our hope, however, is
that this paper helps to create awareness about the unique
opportunities posed by RASCs and can spur fruitful dis-
cussions in the community at large.
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