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Abstract 

In this work, we quantitatively investigate the ways in which a 
given person influences the joint turn-taking behavior in a 
conversation.  After collecting an auditory database of social 
interactions among a group of twenty-three people via wearable 
sensors (66 hours of data each over two weeks), we apply speech 
and conversation detection methods to the auditory streams.  These 
methods automatical ly locate the conversations, determine their 
participants, and mark which participant was speaking when.  We 
then model the joint turn-taking behavior as a Mixed-Memory 
Markov Model [1] that combines the statistics of the individual 
subjects’  self-transitions and the partners’  cross-transitions.  The 
mixture parameters in this model describe how much each person’s 
individual behavior contributes to the joint turn-taking behavior of 
the pair.  By estimating these parameters, we thus estimate how 
much influence each participant has in determining the joint turn-
taking behavior.  We show how this measure correlates 
signif icantly with betweenness centrality [2], an independent 
measure of an individual ’ s importance in a social network.   This 
result suggests that our estimate of conversational influence is 
predictive of social influence. 

1  Intro duct io n  

People’s relationships are largely determined by their social interactions, and the 
nature of their conversations plays a large part in defining those interactions. There 
is a long history of work in the social sciences aimed at understanding the 
interactions between individuals and the influences they have on each others’  
behavior.  However, existing studies of social network interactions have either been 
restricted to online communities, where unambiguous measurements about how 
people interact can be obtained, or have been forced to rely on questionnaires or 
diaries to get data on face-to-face interactions. Survey-based methods are error 
prone and impractical to scale up. Studies show that self-reports correspond poorly 
to communication behavior as recorded by independent observers [3].  

In contrast, we have used wearable sensors and recent advances in speech 
processing techniques to automatically gather information about conversations: 



 

when they occurred, who was involved, and who was speaking when.  Our goal was 
then to see i f we could examine the influence a given speaker had on the turn-taking 
behavior of her conversational partners.   Specif ically, we wanted to see i f we could 
better explain the turn-taking transitions observed in a given conversation between 
subjects i and j by combining the transitions typical to i  and those typical to j.  We 
could then interpret the contribution from i as her influence on the joint turn-taking 
behavior. 

In this paper, we first describe how we extract speech and conversation information 
from the raw sensor data, and how we can use this to estimate the underlying social 
network.  We then detail how we use a Mixed-Memory Markov Model to combine 
the individuals’  statistics. Final ly, we show the performance of our method on our 
collected data and how it correlates well with other metrics of social influence.  

2 Sensing and Modeling Face-to-face Communication Networks 

Although people heavily rely on email, telephone, and other virtual means of 
communication, high complexity information is primarily exchanged through face-to-
face interaction [4].   Prior work on sensing face-to-face networks have been based on 
proximity measures [5],[6], a weak approximation of the actual communication network. 
Our focus is to model the network based on conversations that take place within a 
community. To do this, we need to gather data from real-world interactions.  
 
We thus used an experiment conducted at MIT [7] in which 23 people agreed to wear the 
sociometer, a wearable data acquisition board [7],[8]. The device stored audio 
information from a single microphone at 8 KHz. During the experiment the users wore 
the device both indoors and outdoors for six hours a day for 11 days. The participants 
were a mix of students, faculty, and administrative support staff who were distributed 
across different floors of a laboratory building and across different research groups. 

3 Speech and Conversation Detection 

Given the set of auditory streams of each subject, we now have the problem of 
detecting who is speaking when and to whom they are speaking.  We break this 
problem into two parts: voicing/speech detection and conversation detection. 

3 .1  Vo ic ing  a nd  Speech  D etec t io n  

To detect the speech, we use the linked-HMM model for voicing and speech 
detection presented in [9]. This structure models the speech as two layers (see 
Figure 1); the lower level hidden state represents whether the current frame of audio 
is voiced or unvoiced (i.e., whether the audio in the frame has a harmonic structure, 
as in a vowel), whi le the second level represents whether we are in a speech or non-
speech segment.  The principle behind the model is that while there are many voiced 
sounds in our environment (car horns, tones, computer sounds, etc.), the dynamics 
of voiced/unvoiced transitions provide a unique signature for human speech; the 
higher level is able to capture this dynamics since the lower level ’ s transitions are 
dependent on this variable.   

 



 

 

Figure 1: Graphical model for the voicing and speech detector. 

To apply this model to data, the 8 kHz audio is spli t into 256-sample frames (32 
mil l iseconds) with a 128-sample overlap. Three features are then computed: the 
non-initial maximum of the noisy autocorrelation, the number of autocorrelation 
peaks, and the spectral entropy.  The features were modeled as a Gaussian with 
diagonal covariance. The model was then trained on 8000 frames of ful ly labeled 
data.  We chose this model because of its robustness to noise and distance from the 
microphone: even at 20 feet away more than 90% of voiced frames were detected 
with negligible false alarms (see [9]).  

The results from this model are the binary sequences v[ t]  and s[ t]  signifying 
whether the frame is voiced and whether it is in a speech segment for all frames of 
the audio. 

3 .2  Co nv ersa t io n  Detec t ion  

Once the voicing and speech segments are identi fied, we are sti l l  left with the 
problem of determining who was talking with whom and when.  To approach this, 
we use the method of conversation detection described in [10].  The basic idea is 
simple: since the speech detection method described above is robust to distance, the 
voicing segments v[ t]  of all the participants in the conversation will be picked up by 
the detector in al l of the streams (this is referred to as a “mixed stream”  in [10]).   
We can then examine the mutual information of the binary voicing estimates 
between each person as a matching measure. Since both voicing streams will be 
nearly identical, the mutual information should peak when the two participants are 
either involved in a conversation or are overhearing a conversation from a nearby 
group.   However, we have the added complication that the streams are only roughly 
aligned in time.  Thus, we also need to consider a range of time shifts between the 
streams.  We can express the alignment measure [ ]a k  for an offset of k between the 
two voicing streams as follows:  
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where i  and j take on values { 0, 1}   for unvoiced and voiced states respectively.  
The distributions for 1 2( , )p v v  and its marginals are estimated over a window of one 
minute (T=3750 frames). To see how well this measure performs, we examine an 
example pair of subjects who had one five-minute conversation over the course of 
half an hour.  The streams are correctly aligned at k=0, and by examining the value 
of a[ k]  over a large range we can investigate its uti l i ty for conversation detection 
and for aligning the auditory streams (see Figure 2). 

The peaks are both strong and unique to the correct alignment (k=0), implying that 
this is indeed a good measure for detecting conversations and aligning the audio in 
our setup.   By choosing the optimal threshold via the ROC curve, we can achieve 
100% detection with no false alarms using time windows T of one minute. 

 

  voicing layer (V[ t]  = { 0,1} ) 

  observation layer (3 features) 

speech layer (S[ t]  = { 0,1} ) 



 

 

Figure 2: Values of a[k] over ranges: 1.6 seconds, 2.5 minutes, and 11 minutes. 

For each minute of data in each speaker’ s stream, we computed a[ k]  for k ranging 
over +/- 30 seconds with T=3750 for each of the other 22 subjects in the study.   
While we can now be confident that this will  detect most of the conversations 
between the subjects, since the speech segments from all the participants are being 
picked up by al l of their microphones (and those of others within earshot), there is 
sti l l  the problem of determining who is speaking when.   Fortunately, this is fairly 
straightforward.  Since the microphones for each subject are pre-calibrated to have 
approximately equal energy response, we can classify each voicing segment among 
the speakers by integrating the audio energy over the segment and choosing the 
argmax over subjects.   It is sti l l  possible that the resulting subject does not 
correspond to the actual speaker (she could simply be the one nearest to a non-
subject who is speaking), we determine an overall threshold below which the 
assignment to the speaker is rejected. Both of these methods are further detailed in 
[10].    

For this work, we rejected all conversations with more than two participants or 
those that were simply overheard by the subjects.   Finally, we tested the overall  
performance of our method by comparing with a hand-labeling of conversation 
occurrence and length from four subjects over 2 days (48 hours of data) and found 
an 87% agreement with the hand labeling. Note that the actual performance may 
have been better than this, as the labelers did miss some conversations.  

3 .3  The  T urn-Ta king  S ig n a l  i

t
S  

Finally, given the location of the conversations and who is speaking when, we can 

create a new signal for each subject i, i

t
S , which is 1 when the subject is holding the 

turn and 0 when the other speaker is holding it.  In the midst of a conversation, 
whoever has produced a voicing segment most recently is considered the holder of 
the turn.  Thus, within a given conversation between subjects i and j, the turn-taking 

signals are complements of each other, i.e., i j

t t
S S= ¬ . 

4 Estimating the Social Network Structure 

Once we have detected the pairwise conversations we can identify the communication 
that occurs within the community and map the links between individuals. The link 
structure is calculated from the total number of conversations each subject has with 
others: interactions with another person that account for less than 5% of the subject’s 
total interactions are removed from the graph. To get an intuitive picture of the 
interaction pattern within the group, we visualize the network diagram by performing 
multi-dimensional scaling (MDS) on the geodesic distances (number of hops) between 
the people (Figure 3). The nodes are colored according to the physical closeness of the 
subjects’  office locations. From this we see that people whose offices are in the same 
general space seem to be close in the communication space as well.  



 

 

Figure 3: Estimated network of subjects 

5  M o del ing  the  Inf luenc e  o f  Turn- ta king  B eha v io r  in  
Co nv ersa t io ns  

When we talk to other people we are influenced by their style of interaction. 
Sometimes this influence is strong and sometimes insignificant – we are interested 
in finding a way to quanti fy this effect. We probably all know people who have a 
strong effect on our natural interaction style when we talk to them, causing us to 
change our style as a result. For example, consider someone who never seems to 
stop talking once i t is her turn. She may end up imposing her style on us, and we 
may consequently end up not having enough of a chance to talk, whereas in most 
other circumstances we tend to be an active and equal participant. 

In our case, we can model this effect via the signals we have already gathered. Let 
us consider the influence subject j has on subject i. We can compute i ’ s average 
self-transition table, 1( | )i i

t tP S S− , via simple counts over all conversations for subject 
i (excluding those with j). Similarly, we can compute j ’s average cross-transition 
table, 1( | )jk

t tP S S− , over al l subjects k (excluding i) with which j had conversations.   
The question now is, for a given conversation between  i and j, how much does j ’s 
average cross-transition help explain 1 1( | , )ji i

t t tP S S S− − ? 

We can formalize this contribution via the  Mixed-Memory Markov Model of Saul 
and Jordan [1].  The basic idea of this model was to approximate a high-dimensional 
conditional probability table of one variable conditioned on many others as a convex 
combination of the pairwise conditional tables.  For a general set of N interacting 
Markov chains in the form of a Coupled Markov Model [11], we can write this 
approximation as: 
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For our case of a two chain (two person) model the transition probabilities will  be 
the following: 



 

1 1 2 1 1 2

1 1 11 1 12 1

2 1 2 1 2 2

1 1 21 1 22 1

( | , ) ( | ) ( | )

( | , ) ( | ) ( | )

k

t t t t t t t

k

t t t t t t t

P S S S P S S P S S

P S S S P S S P S S

α α

α α
− − − −

− − − −

= +

= +
 

This is very similar to the original Mixed-Memory Model, though the transition 
tables are estimated over al l other subjects  k excluding the partner as described 

above.  Also, since the 
ij

α sum to one over j, in this case 
11 12

1α α= − .  We thus have 

a single parameter, 
12

α , which describes the contribution of 2
1( | )k

t tP S S−  to 

explaining 1 1 2
1 1( | , )t t tP S S S− − , i.e., the contribution of subject 2’ s average turn-taking 

behavior on her interactions with subject 1. 

5 .1  Lea rning  the  in f lue nc e  pa ra meters   

To find the 
ij

α values, we would like to maximize the likelihood of the data.  Since 

we have already estimated the relevant conditional probability tables, we can do this 

via constrained gradient ascent, where we ensure that 
ij

α >0 [12]. Let us first 

examine how the likelihood function simpli fies for the Mixed-Markov model: 
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Converting this expression to log likelihood and removing terms that are not 

relevant to maximization over 
ij

α  yields: 

*
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Now we reparametrize for the normali ty constraint with 
ij i j

β α= and 1
iN ij

j

β β= −� , 

remove the terms not relevant to chain i ,  and take the derivatives: 
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We can show that the likelihood is convex in the 
ij

α , so we are guaranteed to 

achieve the global maximum by climbing the gradient. More detai ls of this 
formulation are given in [12],[7]. 

5 .2  Ag g reg a te  Inf luence  o v er  M ul t ip le  Co nv ersa t io ns   

In order to evaluate whether this model provides additional benefi t over using a 
given subject’ s self-transition statistics alone, we estimated the reduction in KL 
divergence by using the mixture of interactions vs. using the self-transition model. 
We found that by using the mixture model we were able to reduce the KL 
divergence between a subject’ s average self-transition statistics and the observed 
transitions by 32% on average. However, in the mixture model we have added extra 
degrees of freedom, and hence tested whether the better fit was statistical ly 
signif icant by using the F-test. The resulting p-value was less than 0.01, implying 
that the mixture model is a significantly better fi t to the data.  



 

In order to find a single influence parameter for each person, we took a subset of 80 
conversations and aggregated all the pairwise influences each subject had on all her 
conversational partners.  In order to compute this aggregate value, there is an 

additional aspect about 
ij

α  we need to consider.  If the subject’ s self-transition 

matrix and the complement of the partner’ s cross-transition matrix are very similar, 

the influence scores are indeterminate, since for a given interaction i j

t t
S S= ¬ : i.e., 

we would essentially be trying to find the best way to l inearly combine two identical 
transition matrices.  We thus weight the contribution to the aggregate influence 
estimate for each individual 

i
A  by the relevant J-divergence (symmetrized KL 

divergence) for each conversational partner: 

1 1( ( | ) || ( | ))i k i i
i t t t t ki

k partners

J P S S P S S α− −
∈

Α = ¬�  

The upper panel of Figure 4 shows the aggregated influence values for the subset of 
subjects contained in the set of eighty conversations analyzed. 

6 Link between Conversational Dynamics and Social Role 

Betweenness centrality is a measure frequently used in social network analysis to 
characterize importance in the social network.  For a given person i, it is defined as 
being proportional to the number of pairs of people (j ,k) for which that person lies 
along the shortest path in the network between j  and k.  It is thus used to estimate 
how much control an individual has over the interaction of others, since it is a count 
of how often she is a “gateway”  between others.  People with high betweenness are 
often perceived as leaders [2].  

We computed the betweenness centrality for the subjects from the 80 conversations 
using the network structure we estimated in Section 3.  We then discovered an 
interesting and statistically signif icant correlation between a person’s aggregate 
influence score and her betweenness centrality – i t appears that a person’s 
interaction style is indicative of her role within the community based on the 
central ity measure. Figure 4 shows the weighted influence values along with the 
central ity scores. Note that ID 8 (the experiment coordinator) is somewhat of an 
outlier – a plausible explanation for this can be that during the data collection ID 8 
went and talked to many of the subjects, which is not her usual behavior. This 
resulted in her having arti ficially high central ity (based on link structure) but not 
high influence based on her interaction style. 

We computed the statistical correlation between the influence values and the 
central ity scores, both including and excluding the outlier subject ID 8. The 
correlation excluding ID 8 was 0.90 (p-value < 0.0004, rank correlation 0.92) and 
including ID 8 it was 0.48 (p-value <0.07, rank correlation 0.65). The two measures, 
namely influence and centrality, are highly correlated, and this correlation is 
statistically significant when we exclude ID 8, who was the coordinator of the 
project and whose centrality is l ikely to be arti ficially large. 

7  Conclusion 
We have developed a model for quantitatively representing the influence of a given 
person j ’ s turn-taking behavior on the joint-turn taking behavior with person i.  On 
real-world data gathered from wearable sensors, we have estimated the relevant 
component statistics about turn taking behavior via robust speech processing 
techniques, and have shown how we can use the Mixed-Memory Markov formalism 



 

to estimate the behavioral influence.  Finally, we have shown a strong correlation 
between a person’s aggregate influence value and her betweenness centrality score.  
This implies that our estimate of conversational influence may be indicative of 
importance within the social network. 

 

Figure 4: Aggregate influence values and corresponding centrality scores.  
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