
Detecting Fair Non-Termination
in Multithreaded Programs∗

Mohamed Faouzi Atig1, Ahmed Bouajjani2, Michael Emmi2†, and Akash Lal3

1 Uppsala University, Sweden / mohamed faouzi.atig@it.uu.se
2 LIAFA, Université Paris Diderot, France / {abou,mje}@liafa.jussieu.fr

3 Microsoft Research, Bangalore, India / akashl@microsoft.com

Abstract. We develop compositional analysis algorithms for detecting non-
termination in multithreaded programs. Our analysis explores fair and ultimately-
periodic executions—i.e., those in which the infinitely-often enabled threads
repeatedly execute the same sequences of actions over and over. By limiting the
number of context-switches each thread is allowed along any repeating action
sequence, our algorithm quickly discovers practically-arising non-terminating
executions. Limiting the number of context-switches in each period leads to a
compositional analysis in which we consider each thread separately, in isolation,
and reduces the search for fair ultimately-periodic executions in multithreaded
programs to state-reachability in sequential programs. We implement our analysis
by a systematic code-to-code translation from multithreaded programs to sequen-
tial programs. By leveraging standard sequential analysis tools, our prototype tool
MUTANT is able to discover fair non-terminating executions in typical mutual
exclusion protocols and concurrent data-structure algorithms.

1 Introduction

Multithreaded programming is the predominant style for implementing parallel and
reactive single-processor software. A multithreaded program is composed of several
sequentially-executing threads who share the same memory address space. As a thread’s
operations on shared memory generally do not commute with the operations of others,
each schedule—i.e., each distinct order on the actions of different threads—leads to
distinct program behavior. Generally speaking, the schedule of inter-thread execution
relies on factors external to the program, such as processor utilization and I/O activity.
Though some programming errors are witnessed in many different schedules, and are
thus likely to be discovered by testing, others manifest only in a small number of
rarely-encountered schedules; these Heisenbugs are notoriously difficult to debug.

The correctness criteria for multithreaded programs generally include both safety
and liveness conditions, and ensuring safety can threaten liveness. For instance, to ensure
linearizability—i.e., the result of concurrently executing operations is equivalent to some
sequential execution of the same operations—concurrent data structure implementations
often employ a retrying mechanism [9] (see Figure 1c for a simple instance): a validation

∗Partially supported by the project ANR-09-SEGI-016 Veridyc.
†Supported by a Fondation Sciences Mathématiques de Paris post-doctoral fellowship.

phase before the effectuation of each operation ensures concurrent modifications have not
interfered; when validation fails, the operation is simply attempted again. A priori nothing
prevents an operation from being retried forever. Retry is also a mechanism used in
mutual exclusion protocols. For instance, a common solution to the dining philosophers
problem proposes that philosophers drop the fork they first picked up when they cannot
obtain the second fork—presumably because a neighboring philosopher already holds the
second. Though this scheme avoids deadlock, it also leads to non-terminating executions
in which no philosophers ever eat; particularly when each philosopher picks up his first
fork, finds his neighbor has the other, and then all release their first fork, repeatedly;
Figure 1b illustrates a simplification of this pattern. As such retrying raises the possibility
that some or all interfering operations are never completed even under fair schedules—
repeatedly failing operations already execute infinitely often—one does want to ensure
that concurrent operations do always terminate. Note that unlike in sequential programs,
where interesting non-terminating executions involve ever diverging data values, non-
terminating executions in multithreaded programs also involve repeated inter-thread
interference, even over small finite data domains (see Figure 1).

Proving the absence of programming errors such as assertion violations, and unin-
tentional non-termination due to inter-thread interference, in multithreaded programs is
difficult precisely because of the enormous number of possible schedules which need
be considered. Automated approaches based on model checking are highly complex—
e.g., computing state-reachability is PSPACE-complete when threads are finite state [10],
and undecidable when threads are recursive [23]—and are susceptible to state-explosion;
naı̈ve approaches are unlikely to scale to realistic programs. Otherwise, modular de-
ductive verification techniques may apply, though they require programmer-supplied
invariants, which for multithreaded programs are regarded as difficult to divine. Fur-
thermore, a failed verification attempt may only prove that the supplied invariants are
insufficient, rather than the existence of a programming error.

Instead of exhaustive program exploration, recent approaches to detecting safety
violations (e.g., assertion violations) have focused on exploring only a representative
subset of program behaviors by limiting inter-thread interaction [22, 21, 17, 15, 3];
for instance, Qadeer and Rehof [21] consider only executions with a given number
k ∈N of context switches between threads. Though techniques like context-bounding are
clearly incomplete for any given k ∈ N, every execution is considered in the limit as k
approaches infinity, and small values of k have proved to provide great coverage [17]
and uncover subtle bugs [13] in practice. The bounded analysis approach is particularly
attractive since it enables compositional reasoning: each thread can be considered
separately, in isolation, once the number of environmental interactions is fixed. This fact
has been exploited by the so-called “sequentializations” which reduce multithreaded
state-reachability under an interaction bound to state-reachability in a polynomially-
sized sequential program [15, 11, 7, 3], leading to efficient analyses. Conveniently these
reductions allow leveraging highly-developed sequential program analysis tools for
multithreaded program analysis.

Though these techniques seem promising for the detection of safety violations, they
have been deemed inapplicable for detecting liveness violations, since, for instance, in
any context-bounded execution, only one thread can execute infinitely often; interesting

2

1 // One thread
2 // forever
3 // spins
4 var g: B
5

6 proc Thread1 ()
7 g := false;
8 while !g do
9 skip;

10 return
11

12 proc Thread2 ()
13 g := true;
14 return

(a)

1 // Both threads
2 // can retry
3 // forever
4 var g: B
5

6 proc Thread1 ()
7 while g do
8 g := false;
9 return

10

11 proc Thread2 ()
12 while !g do
13 g := true;
14 return

(b)

// The second thread can forever retry

1 var g: T
2 var x: B
3

4 proc Thread1 ()
5 while ? do
6 acquire x;
7 g := ?;
8 release x;
9 return

10 proc Thread2 ()
11 var gi, gf: T
12 while true do
13 gi := g;
14 gf := ...;
15 acquire x;
16 if g = gi then
17 g := gf;
18 release x;
19 return
20 else
21 release x
22 return

(c)

Fig. 1. Three programs with non-terminating executions. (a) Though the first thread may execute
forever if the second never sets g to true, no such execution is fair. (b) Two threads repeatedly
trying to validate their set values of g will keep retrying forever under a schedule which schedules
each loop head just after the opposing thread’s assignment. (c) As long as the first thread executes
an iteration between each of the second thread’s reads and validations of g, the second thread is
never able to finish its operation.

concurrency bugs such as unintentional yet coordinated non-termination require the
participation of multiple infinitely-often executing threads. This limitation has effectively
prevented the application of compositional bounded analyses to detecting liveness
violations in multithreaded programs.

In this work we demonstrate that restricting thread interaction also leads to an
effective technique for detecting liveness violations in recursive multithreaded programs—
in particular we detect the presence of fair non-terminating executions. Though in
general the problem of detecting non-terminating executions is very difficult, we restrict
our attention to the simpler (recursively-enumerable yet still undecidable) case of fair
ultimately periodic executions, which after a finite execution prefix (called the stem)
ultimately repeat the same sequence of actions (the lasso) over and over again. Many
interesting non-terminating executions occurring in practice are ultimately periodic. For
instance, in the program of Figure 1b, every non-terminating execution must repeat
the same sequence of statements on Lines 7, 8, 12, and 13. Similarly, every fair non-
terminating execution of the program in Figure 1c must repeat the statements of Lines 5–
8, 12–15, and 20–21. Thus focusing on periodically repeating executions is already
quite interesting. Furthermore, every ultimately periodic execution is described with a
finite number of thread contexts: those occurring during the stem, and those occurring
during each iteration of the lasso; e.g., the non-terminating executions of each program
in Figure 1 require just two contexts per thread: one per stem, and one per lasso.

By bounding the number of thread contexts we detect ultimately periodic executions
compositionally, without exposing the local configurations of each thread to one another.
We actually detect ultimately periodic executions that repeatedly encounter, along some
lasso, the same sequence of shared global state valuations at thread context-switch points.
Clearly ultimate state-repeatability is a sufficient condition for ultimate periodicity. We

3

prove that this condition is necessary when the domain of shared global state valuations
is finite. (This is not trivial in the presence of recursion, where threads access unbounded
procedure stacks). Then, supposing each thread executes within k1 contexts during
the stem, and within k2 contexts during each iteration of this lasso, its execution is
summarized by an interface of k = 2(k1 + k2) valuations g1g′1 . . .gkg′k: the shared global
state valuations gi and g′i, resp., encountered at the beginning and end of each execution
context during the stem and lasso. Given the possible bounded interfaces of each thread,
we infer the existence of ultimately periodic executions by composing thread interfaces.
Essentially, two context summaries g1g′1 and g2g′2 compose when g′1 = g2; by composing
interfaces so that the valuation reached in the last context of the lasso match both the
valuation reached in the last context of the stem, and the starting valuation of the first
context of the lasso, we deduce the existence of a periodic computation.

We thus reduce the problem of detecting ultimately periodic computations to that of
computing thread interfaces. Essentially, we must establish two conditions on an interface
g1g′1 . . .gkg′k of a thread t: first, the interface describes a valid thread computation,
i.e., beginning from g1, t executing alone reaches g′1, and when resumed from the
valuation g2, t executing alone reaches g′2, etc. Second, the interface is repeatable,
i.e., each time t returns to its first lasso context i, t can again repeat the same sequence
of global valuations gig′i . . .gkg′k. Though both conditions reduce to (repeated) state-
reachability for non-recursive programs, ensuring repeatability in recursive programs
requires establishing equivalence of an unbounded number of procedure frames visited
along each period of the lasso. An execution in which the procedure stack incurs a net
decrease, for instance, along the lasso is not repeatable. We avoid explicitly comparing
stack frames simply by noticing that along each period of any repeating execution there
exists a procedure keyframe which is never returned from. By checking whether one
keyframe can reach the same keyframe—perhaps with the first keyframe below on the
procedure stack—in the same context number one period later, we ensure repeatability.

Finally, to ensure that the detected non-terminating executions are fair, we expose
a bounded amount of additional information across thread interfaces. For the case of
strong fairness, we observe that any thread t which does not execute during the lasso
must be blocked, i.e., waiting on a synchronization object x which has not been signaled.
Furthermore, in any fair execution, no concurrently executing thread may signal x, since
otherwise t would become temporarily enabled—thus a violation of strong fairness.
In this way, by ensuring thread interfaces agree on the set X of indefinitely waited-on
synchronization objects, each thread can locally ensure no x ∈ X is signaled during the
lasso, and only threads waiting on some x ∈ X are exempt from participating in the lasso.

As is the case for finding safety violations, the compositional fair non-termination
analysis we describe in Section 3 has a convenient encoding as sequential program anal-
ysis. In Section 4 we describe a code-to-code translation from multithreaded programs
to sequential programs which violate an assertion exactly when the source program
has a fair ultimately periodic execution with given bounds k1 and k2 on the number
of stem and lasso contexts.4 In Section 5 we discuss our implementation MUTANT,
which systematically detects fair non-terminating executions in typical concurrent data
structure and mutual exclusion algorithms.

4Technically, our reduction considers round-robin schedules of thread contexts.

4

2 Recursive Multithreaded Programs

We consider a simple but general multithreaded program model in which each of a
statically-determined collection Tids of threads concurrently execute as recursive se-
quential programs which access a shared global state. For simplicity we suppose each
program declares a single shared global variable g with domain Vals, and each procedure
from a finite set Procs declares only a single parameter l, also of domain Vals; further-
more each program statement is uniquely labeled from a set Locs of program locations.
A (procedure) frame f = 〈`,v〉 is a program location ` ∈ Locs along with a local variable
valuation v ∈ Vals, and a configuration c = 〈g,σ〉 is a shared global state valuation
g ∈ Vals along with a local state map σ : Tids→ (Locs×Vals)+ mapping each thread t

to a procedure frame stack σ(t). The transition relation
t,`
=⇒ between configurations is

labelled by the active program location ` ∈ Locs and acting thread t ∈ Tids. We suppose
a standard set of inter-procedural program statements, including assignment x := e,
branching if e then s1 else s2, and looping while e do s statements, lock acquire e and
release e, and procedure call x := p e and return e, where e are expressions from an
unspecified grammar, s are labeled sub-statements, and p ∈ Procs. The definition of the
transition relation is standard, as are the following:

Trace, Reachable: A trace π of a program P from a configuration c is a possibly empty
transition-label sequence a0a1a2 . . . for which there exists a configuration sequence
c0c1c2 . . . such that c0 = c and c j

a j
=⇒P c j+1 for all 0≤ j < |π|; each configuration

c j = 〈g,σ〉 (alternatively, the shared global valuation g) is said to be reachable from
c by the finite trace π j = a0a1 . . .a j−1.

Context: A context of thread t is a trace π = a0a1 . . . in which for all 0≤ j < |π| there
exists ` ∈ Locs such that a j = 〈t, `〉; every trace is a context-sequence concatenation.

Enabled, Blocked, Fair A thread t ∈ Tids is enabled after a finite trace π if and only if
there exists an a labeling a t-transition such that π ·a is also a trace; otherwise t is
blocked. An infinite trace is strongly fair (resp., weakly fair) if each infinitely-often
(resp., continuously) enabled thread makes a transition infinitely often.

Checking typical safety and liveness specifications often reduces to finding whether
certain program configurations are reachable, or determining whether fair infinite traces
are possible. The following two problems are thus fundamental.

Problem 1 (State-Reachability). Given a configuration c of a program P, and a shared
global state valuation g, is g reachable from c in P?

Problem 2 (Fair Non-Termination). Given a configuration c of a program P, does there
exist an infinite strongly (resp., weakly) fair trace of P from c?

Even for recursive multithreaded programs accessing finite data, both problems
are undecidable [23]. However, while state-reachability is recursively enumerable by
examining all possible concurrent traces in increasing length, detecting non-terminating
traces is more complex; from Yen [24] one deduces that the problem is not even semi-
decidable. A simpler problem is to detect non-terminating traces which eventually repeat
the same sequence of actions indefinitely. Formally, an infinite trace π is ultimately

5

periodic when there exists two finite traces µ and ν, called resp., the stem and lasso, such
that π = µ ·νω. Then a key question is the detection of ultimately periodic traces.

Problem 3 (Fair Periodic Non-Termination). Given a configuration c of a program P,
does there exist an ultimately periodic strongly (resp., weakly) fair trace of P from c?

Periodic non-termination is also undecidable, yet still recursively enumerable—by
examining all possible stems and lassos in increasing length. This implies that not all
non-terminating executions are ultimately periodic. In principle, coordinating threads
can construct phased executions in which each phase consists of an increasingly-longer
sequence of actions, using their unbounded procedure stacks to simulate unbounded
integer counters. Still, it is unclear whether non-periodic executions arise in practice.
Our goal is to efficiently detect ultimately periodic fair traces where they exist.

3 Bounded Compositional Non-Termination Analysis

Rather than incrementally searching for non-terminating executions by bounding the
length of the considered stems and lassos, our discovery strategy bounds the number of
thread contexts in the considered stems and lassos; this strategy is justified by the hypoth-
esis that many interesting bugs are likely to occur within few contexts per thread [21, 17].
Notice, for instance, that the non-terminating executions of each of the programs in
Figure 1 require only one context-switch per thread during their repeating sequences
of actions. Formally for k ∈ N, we say a trace π = a0a1 . . . is k context-bounded when
there exist j1, j2, . . . , jk ∈ N and jk+1 = |π| such that π = π1π2 . . .πk is a sequence of k
thread contexts πi = a ji . . .a ji+1−1; we refer to each ji as a context-switch point. Though
we expect many ultimately periodic traces to exhibit few context switches per period,
context-bounding is anyhow complete in the limit as context-bounds approach infinity.

Remark 1. For every ultimately periodic trace µ ·νω there exists k1,k2 ∈ N such that µ
and ν are, resp., k1 and k2 context-bounded.

In what follows, we show that for given stem and lasso context-bounds, resp., k1 ∈N
and k2 ∈ N, the fair periodic non-termination problem reduces to the state-reachability
problem in sequential programs; the salient feature of this reduction is compositionality:
the resulting sequential program considers each thread independently, without explicitly
representing thread-product states. The general idea is to show that all ultimately periodic
executions can be decomposed into stem and lasso such that during each period of the
given lasso, each thread reencounters the same global valuations at context-switch points,
and reencounters the same topmost stack-frame valuation; since each procedure stack
must be non-decreasing over each lasso iteration, there must be some frame during
each period which is never returned from. We show that detecting these repeated global
valuations and topmost stack frames over a single lasso iteration implies periodicity.

To begin, we show that the existence of an ultimately periodic trace µ ·νω implies
the existence of an ultimately periodic trace µ′ · ν′ω in which the sequence of global
valuations (and topmost procedure-stack frames) of each thread at context-switch points
repeat in each iteration of the lasso ν′.

6

3.1 Annotated Traces

For a configuration c = 〈g,σ〉 of a program P, we write c[g := g′] to denote the
configuration c = 〈g′,σ〉. An annotated trace π̄ of a program P is a sequence π̄ =
〈gi,τi,πi,g′i,τ

′
i〉i=1...k—where each gi,g′i ∈ Vals are global valuations, τi,τ

′
i ∈ Tids→

(Locs×Vals) are thread-to-frame mappings, and πi is a thread context—for which
there exist local-state maps σ1,σ

′
1, . . . ,σk,σ

′
k : Tids→ (Locs×Vals)+ of configurations

c1,c′1, . . . ,ck,c′k where for each 1≤ i≤ k:

– ci = 〈gi,σi〉 and c′i = 〈g′i,σ′i〉,
– σi(t) = τi(t) ·wi and σ′i(t) = τ′i(t) ·w′i for each thread t ∈ Tids, for some wi,w′i,
– each c′i is reachable from ci via the trace πi, and
– ci+1 = c′i[g := gi+1] for i < k.

We say the annotated trace π̄ is valid when ci+1 = c′i for 1 ≤ i < k. The definitions
applying to traces are lifted naturally to annotated traces.

Lemma 1. There exists an ultimately periodic trace µ ·νω from a configuration c in a
program P iff there exists a valid annotated ultimately periodic trace µ̄ · ν̄ω from c in P.

As we are mainly concerned with annotated traces, we usually drop the bar-notation,
writing, e.g., π to denote an annotated trace π̄, and use “trace” to mean “annotated trace.”

3.2 Compositional Detection of Periodic Traces

In the following we reduce the detection of valid ultimately periodic traces to the
detection of ultimately periodic traces for each individual thread t ∈ Tids. Let π =
µ · νω be a valid ultimately periodic trace which divides µ and ν, resp., into k1 ∈ N
and k2 ∈ N contexts, indexed by Iµ ⊆ N and Iν ⊆ N, as µ = 〈gi,τi,µi,g′i,τ

′
i〉i∈Iµ and

ν = 〈gi,τi,νi,g′i,τ
′
i〉i∈Iν . We construct an ultimately periodic trace πt in which only t is

active. Roughly speaking, the constructed trace πt corresponds to the projection of π on
the set of t-labeled transitions. Given the global values gi and g′i seen at the beginning
and end of each context i of thread t, the trace πt can be computed in complete isolation:
we simply resume the ith context of thread t with the global value gi, and ensure g′i is
encountered at the end of the ith context. Supposing thread t executes in the contexts
indexed by Iµ

t ⊆ Iµ, along the stem µ, and in the contexts indexed by Iν
t ⊆ Iν along the

lasso ν, we define the thread-periodic trace for t as πt
def
= µt ·νω

t , where

µt =
〈
gi,τi(t),µi,g′i,τ

′
i(t)

〉
i∈Iµ

t
νt =

〈
gi,τi(t),νi,g′i,τ

′
i(t)

〉
i∈Iν

t

For the thread-periodic trace πt of t, we associate two sequences SI(πt) = 〈gi,g′i〉i∈Iµ
t

and LI(πt) = 〈gi,g′i〉i∈Iν
t

of global valuation pairs encountered at the beginning and end
of each context, called, resp., the stem and lasso interfaces; the sizes of interfaces are
bounded by the number of contexts: |SI(πt)| ≤ k1 and |LI(πt)| ≤ k2.

We define the shuffle of a sequence set S inductively as shuffle({ε}) = {ε}, and
shuffle(S) =

⋃
{s1 · shuffle(S′) : s1s2 . . .s j ∈ S and S\{s1 . . .s j}∪{s2 . . .s j}= S′}; for

instance, shuffle({s1s2,s3}) = {s1s2s3,s1s3s2,s3s1s2}. We say the thread interface sets

7

S and L are compatible when there exists s1 . . .sk1 ∈ shuffle(S) and sk1+1 . . .sk1+k2 ∈
shuffle(L) where each si = 〈gi,g′i〉, and g′i = gi+1 for 0 < i < k1+k2, and g′k1+k2

= gk1+1.
Extending this definition, we say a set {πt : t ∈ Tids} of thread-periodic traces is com-
patible if and only if {SI(πt) : t ∈ Tids} and {LI(πt) : t ∈ Tids} are compatible.

Lemma 2. If there exists a compatible set of thread-periodic traces {πt : t ∈ Tids} of a
program P, then there exists a valid ultimately periodic trace π = µ ·νω of P. Moreover,
µ and ν are, resp., ∑t∈Tids |SI(πt)| and ∑t∈Tids |LI(πt)| context-bounded.

Lemma 2 suggests a compositional algorithm to detect ultimately periodic valid
traces. As each trace is constructed from a straight-forward composition of thread-
periodic traces, we need simply to compute a compatible set of thread-periodic traces. We
thus reduce the detection of valid ultimately periodic traces to computing (finite) compat-
ible thread interface sets {St : t ∈ Tids and |St | ≤ k1} and {Lt : t ∈ Tids and |Lt | ≤ k2},
and ensure the existence of, for each thread t ∈ Tids, a thread-periodic trace πt such that
SI(πt) = St and LI(πt) = Lt .

3.3 From Thread-Periodic Traces to Sequential Reachability

Section 3.2 reduced the problem of finding periodic executions to that of computing
thread interfaces. Now we demonstrate that thread interfaces can be computed by state-
reachability in sequential programs. For the remainder of this section we fix an initial
configuration c0 of a program P, and a thread-periodic trace πt = µt ·νω

t of a thread t.
We know that the thread period trace πt repeats the same sequence of actions per

period over and over indefinitely. It follows that although during each period the size
of t’s frame stack may increase and decrease due to procedure calling and returning,
the net size of t’s frame stack must not be decreasing—otherwise t cannot repeat νt
indefinitely. This implies that there exists a sequence f1 f2 . . . of t’s procedure frames—
each fi ∈ (Locs×Vals) encountered in the ith period—which are never returned from;
we call these frames the keyframes of t. Since we repeat the same sequence of calls
and returns along each period, we can assume w.l.o.g. that each keyframe fi is the
procedure frame encountered at the beginning of the same context shift in νt with
0 ≤ shift < |LI(πt)|. Furthermore, we know that these keyframes correspond to the
same procedure frame f (from definition of value annotated traces).

In order to check that f is a keyframe (i.e., never removed from the stack), we check
that from a configuration where the stack contains only the frame f , we can reach a
configuration with topmost frame f after executing the trace νt (modulo rotation). We
know also that executing the trace µt followed by the first shift contexts in νt will
result in a configuration with topmost frame f . This is exactly what is defined below:

Feasibility: Let SI(πt) = 〈gi,g′i〉i∈Iµ
t

and LI(πt) = 〈gi,g′i〉i∈Iν
t

be the given stem and
lasso interfaces. We say that 〈SI(πt),LI(πt)〉 is feasible if there are a frame f , a
natural number shift with 0 ≤ shift < k1, and a sequence of configurations
c1,c′1, . . .cm,c′m with m = (k1 + k2 +shift) such that, for every 1≤ j ≤ m:

– c′j is reachable from c j via a trace of the thread t.
– The global valuation in c j and c′j are gi and g′i with i = j(mod k1 + k2)+ k2 +1.

8

– The stack in c′j−1 and c j are the same when j 6= (k2 +shift+1) with c′0 = c0.
– The stack in ck2+shift+1 contains only the frame f . Moreover, the topmost

frame in c′k2+shift and c′m is precisely f .

Lemma 3. If the thread trace πt is periodic, then 〈SI(πt),LI(πt)〉 is feasible.

Now, we can show if there is a thread trace π′t of t from a configuration containing
the keyframe f , satisfying the interface Lt , and reaching a configuration whose topmost
frame is precisely f , then this thread trace can be executed infinity often. This means
that π′t can be considered as a lasso trace of t whose lasso interface is precisely Lt .
On the other hand, if there is a thread trace π′′t of t from the initial configuration to a
configuration whose topmost keyframe is precisely f while respecting the stem interface
S′t (which is the concatenation of St and the first (shift)-elements of Lt) then π′′t ·π′t can
be considered as a stem trace for the lasso trace π′t .

Lemma 4. Given a compatible interface sets {St : t ∈ Tids} and {Lt : t ∈ Tids} such
that 〈St ,Lt〉 is feasible for each t ∈ Tids, we can construct compatible thread-periodic
traces {πt : t ∈ Tids} such that |SI(πt)|= |St |+ |Lt | and |LI(πt)|= |Lt | for each t ∈Tids.

The lemmata above suggest the following procedure: first, guess compatible inter-
faces {St ,Lt : t ∈ Tids}, then check feasibility of each 〈St ,Lt〉. Observe that checking
the feasibility of each given pair 〈St ,Lt〉 boilds down to solving reachability problems in
the sequential program describing the behavior of the thread t. Section 4 concretizes this
algorithm in a code-to-code reduction to sequential program analysis.

3.4 Encoding Fairness

By our definitions in Section 2 any blocked thread must be waiting to acquire a held
lock. This leads to the following characterization of strongly fair ultimately periodic
traces: for each thread t ∈ Tids, either

Case 1 The lasso contains at least one transition of t, or
Case 2 The thread t is blocked throughout the lasso, waiting to acquire some lock

x ∈ Locks; this further implies that
Cond. 1 the lock x may not be released during the lasso by any thread,
Cond. 2 the lock x must be held by another thread at the beginning of the lasso, and
Cond. 3 t remains at the control location of the acquire of x throughout the lasso.

These conditions characterize strongly fair ultimately periodic computations. We ensure
these conditions are met by extending the notion of interfaces to include the set X ⊆ Locks
of locks which are held throughout the lasso. Then, we must ensure locally per thread
that any x ∈ X is not released during the lasso (Cond. 1), and that some thread holds
x when entering the lasso (Cond. 2); additionally, we allow any thread attempting to
acquire some x ∈ X to execute no further action. (Observe that if the lock x is released
during the lasso by any thread (see Cond. 1 of Case 2) then the resulting ultimately
periodic computation is not strongly-fair since the thread t is infinitely often enabled and
does not infinity often fire a transition.) Weak fairness can be similarly characterized
using a set Y ⊆ Locks of locks which are held at some point during the lasso; we then
ensure that each y ∈ Y is either held at the beginning of the lasso, or acquired at some
point during the lasso.

9

4 Reduction to Sequential Program Analysis

The compositional analysis outlined in Section 3 reduces (context-bounded) fair periodic
non-termination to state-reachability in sequential programs. Given thread stem and lasso
interfaces, and the set of locks held throughout the lasso, the feasibility of each interface
is computed separately, per thread. In this section we describe how to implement this
reduction by a code-to-code translation to sequential programs with an assertion which
fails exactly when the source program has a strongly fair ultimately periodic execution
whose stem and lasso satisfy a given context bound.5 Figure 2 lists our translation in full.

Essentially, we introduce a Main procedure for the target program which executes
each thread one-by-one using an initially-guessed sequence of global valuations stored
in Stem0 and Lasso0. For each thread t, we guess the number—stored in shift—of
contexts following the k1st context until t’s keyframe is encountered on Line 18, and
begin executing t’s main procedure Main[t] on Line 21. Initially, the values stored in
Stem and Lasso are the values seen at the beginning of each context of the first thread
during, resp., the stem and repeating lasso. After execution of the ith thread, the values
of Stem and Lasso are the values seen at the end of each context of the ith thread, and
at the beginning of each context of the (i+1)st thread. Accordingly, after the execution
of the final thread, the values seen at the end of each context must match the values
guessed at the beginning of the following contexts of the first thread, according to the
round-robin order; the assumptions on Lines 22–27 ensure these values match.

The execution of each thread thus acts simply to compute its interface. As the
keyframes of different threads may be encountered at different points along the lasso, the
length of each thread’s stem varies. Our translation computes for each thread a stem long
enough (at most k1+k2−1 contexts) to cover the stem of any thread. Since each thread’s
repeating sequence may begin as soon as the k1st context, the stem and lasso computation
may overlap. Our translation maintains the invariant that the Stem (resp., Lasso) values
are active exactly when k1 6=⊥ (resp., k2 6=⊥). Reads and writes to shared variables (on
Lines 47–57) read and write to both Stem and Lasso as they are active.

Our translation also adds code at every potential context switch point (Lines 71–
96). Initially, the context counters k1 and k2 are incremented nondeterministically and
synchronously (the block starting at Line 74). Then, at Line 78, we check whether the
thread’s keyframe has been encountered for the first time, and if so make a snapshot of
the local valuation and program location, and activate the lasso; later along, at Line 90,
we validate the snapshot when returning to the same keyframe (perhaps with a larger
procedure stack). At some point in between, at Line 86, the stem becomes inactive.
We ensure using the local variable bottom that the keyframe in which a thread begins
repeating is never returned from.

We ensure strong fairness using an auxiliary vector of Boolean constants waited,
one per lock x ∈ Locks, indicating the set of locks which are held throughout the lasso.
According to Section 3.4, we ensure each waited lock is held at the beginning of the

5Technically we consider bounded round-robin thread schedules rather than bounded context
switch. Though in principle the two notions are equivalent for a fixed number of threads—i.e., any
k-context execution takes place within k rounds, and any k-round n-thread execution takes place in
kn contexts [15]—ensuring interface compatibility is simpler assuming round-robin.

10

// translation of
// var g: T
var Stem[k1+k2-1]: T
var Lasso[k2]: T

5 var Local: T
var Location: Locs
var shift: N<k2 ∪{⊥}
const waited[Locks]: B
var k1: N∪{⊥}

10 var k2: N∪{⊥}

proc Main ()
const Stem0 := ?;
const Lasso0 := ?;

15 Stem := Stem0;
Lasso := Lasso0;
foreach t in Tids do

shift := ?;
k1 := 0;

20 k2 := ⊥;
call Main[t] ();

assume
Stem[0..k1+k2-3]
= Stem0[1..k1+k2-2];

25 assume
Lasso[0..k2-2]
= Lasso0[1..k2-1];

assume ∀x ∈ Locks·
x(Lasso[0])

30 ⇔ waited[x];
assert false;
return

// translation of
// proc p (var l: T) s

35 proc p (var l: T,
bottom: B) s

// translation of
// call x := p e

40 call x := p (e,?)

// translation of
// return e
assume !bottom;

45 return e

// translation of shared
// variable read x := g
assume Stem[k1]

50 = Lasso[k2];
x := Stem[k1]
x := Lasso[k2];

// translation of shared
55 // variable write g := e
Stem[k1] := e;
Lasso[k2] := e

// translation of
60 // acquire x

if shift = ⊥ ∧ ?
∧ waited[x] then
abort;

acquire x

65

// translation of
// release x
assume k2 ⇒ !waited[x];
release x

70

// translation of
// (implicit) yield
// at location ‘loc’
while ? do

75 k1 := k1 + 1;
k2 := (k2+1) mod k2;

if k1 = k1+shift
∧ k2 = ⊥ then

80 // begin the lasso
assume bottom;
k2 := shift;
Local := l;
Location := loc;

85

if k1 ≥ k1+k2-1 then
// end the stem
k1 := ⊥;

90 if k2 = shift
∧ k1 = ⊥ then
// end the lasso
assume Local = l;
assume Location = loc;

95 // exit to main
abort;

Fig. 2. The sequential translation ((P))k1,k2 of a multithreaded program P. We assume that state-
ments which evaluate undefined expressions (i.e., using ⊥ in arithmetic or array indexing) are
simply skipped, and that no statement both reads and writes to g. The expression ? nondetermin-
istically evaluates to any well-typed value, and the assume e statement proceeds only when e
evaluates to true. The abort statement discards the procedure stack and returns control to Main.

lasso (Lines 28–30) and not released during the lasso (Line 68), and allow attempted
acquires to abort (Line 63).

Lemma 5. The program ((P))k1,k2 violates its assertion if P has a strongly-fair ultimately
periodic round-robin execution with k1 ∈ N and k2 ∈ N, resp., stem and lasso rounds; if
((P))k1,k2 violates its assertion then P has a strongly-fair ultimately periodic round-robin
execution with k1 + k2 and k2, resp., stem and lasso rounds.

5 Experimental Evaluation

We have implemented our analysis, based on the code-to-code translation presented in
Section 4. Our prototype tool, called MUTANT6, takes as input a program written in

6MUTANT stands for MUltiThreAded Non Termination.

11

1 // An array of N locks
2 var Lock[N]: mutex
3

4 proc Philosopher(n: int)
5 var left := Lock[n];
6 var right := Lock[(n+1)%N];
7 while true do
8 if TryLock(left)
9 if TryLock(right)

10 break
11 else
12 ReleaseLock(left);
13 ReleaseLock(right);
14 ReleaseLock(left);
15 return

(a)

1 proc Thread1()
2 var v1 := ?;
3 add(v1);
4 flag := false;
5 return
6

7 proc Thread2()
8 while flag do
9 var v2 := ?;

10 if ? then
11 add(v2)
12 else
13 remove(v2);
14 return

(b)

1 while e1 do
2 timeout := false;
3 if ? and e2 then
4 timeout := true;
5 break

(c)

N=2 3 4 5 6
2.1s 3.43s 6.13s 8.94s 21.91s

N=7 8 9 10
15.79s 30.77s 31.66s 43.54s

(d)

Fig. 3. (a) TryLock based dining phisophers. (b) A concurrent client operating on an OptimisticList.
(c) Modeling timeout. (d) Running time of MUTANT on the dining philosophers example. As our
verifier is based on the Z3 SMT solver, running times may increase non-uniformly with N due to
Z3’s internal heuristics, which may vary widely across different instances.

the BOOGIE intermediate verification language [2]. Though normally a rich sequential
language with recursive procedures, integers, maps, and algebraic datatypes, we have
extended BOOGIE with thread-creation and atomic blocks, which we use to model
shared-memory multithreaded programs with synchronization operations. Given a bound
K ∈N (where K = k1+k2), MUTANT outputs an assertion-annotated sequential BOOGIE
program. We feed the resulting program to our SMT-based bounded model checker
CORRAL [14]. MUTANT has support for strong fairness, and does not falsely detect
nonterminating executions in the program of Figure 1a, for instance.

As an initial example to demonstrate MUTANT’s effectiveness, we consider a try-lock
based algorithm for the dining philosophers problem. This program involves N locks and
N threads, each of which executes the code shown in Figure 3a. Each philosopher tries
to acquire two locks. TryLock is a non-blocking synchronization operation that returns
true when the lock is successfully acquired, otherwise it returns false. If a philosopher
acquires the left lock but is not able to acquire the right lock, then he releases the left lock
and tries again. A philosopher terminates when he is able to acquire both locks (Line 10).
This program has a fair non-terminating execution for each N ≥ 2, namely where each
philosopher first acquires their left lock, then upon seeing their right lock unavailable,
they release their left lock. MUTANT is able to automatically detect this execution for
each value of N with K = 2; we report running times in Figure 3d. Note that while this
execution requires all N threads to participate, each thread only uses a fixed number of
context switches in each period of the lasso. Though the state-space of the program grows
exponentially with N, Figure 3d demonstrates that MUTANT scales sub-exponentially.
Though the program has unfair non-terminating executions—e.g., where one philosopher
acquires a lock and ceases to participate further, while the others continuously spin
waiting to acquire both their locks—MUTANT correctly does not report any such unfair
non-terminating executions.

12

As a second example we consider the concurrent OptimisticList algorithm from
Section 9.6 of Herlihy and Shavit [9], supporting concurrent insertions and deletions on
sorted lists using optimistic concurrency control. Our BOOGIE encoding spans roughly
250 lines. In order to determine whether each operation is guaranteed to terminate
in the presence of an environment performing arbitrary list operations, we wrote the
two-thread driver of Figure 3b. While the first thread tries to insert an element, the
second thread continuously fires add and remove operations with arbitrary arguments.
The shared variable flag ensures that the second thread terminates when the first thread
does. Though not shown, the driver also initializes the list with a few arbitrary elements.

This program has the following fair non-terminating execution, similar in spirit to
that in Figure 1c: first, the add operation of Thread1 selects a position in the (sorted) list
where to insert a value v1, say between consecutive nodes with values a and b (i.e., such
that a < v1 < b). Then the second thread picks a value v2, such that a < v2 < b, and
inserts. When the first thread then sees that list has been modified at the position it was
about to insert, it retries the add operation. Meanwhile, the second thread fires a remove
operation and deletes v2. This program then reencounters the initial configuration, and
the add operation has not succeeded. MUTANT finds this execution with three contexts
per thread in 44 seconds. Interesting to note is that even though this program may use
infinite-domain data values, there remains nevertheless an execution that loops back
exactly to the configuration. One slightly tricky aspect of this example is modeling
memory allocation: because the second thread allocates and removes a list node in
each period, we must explicitly free the removed node in order to reencounter the same
configuration at the end of the lasso. As future work, using a more abstract notion of
heap equality could simplify this aspect.

As a third example we consider a algorithm developed by our colleagues [20]
that enables programmers to write assertions which are checked continuously and
concurrently with the actual program, in similar spirit to asynchronous assertions [1].
One salient feature of this algorithm is that it is non-blocking, i.e., the evaluation of the
asserted expressions does not block other threads from making progress. We coded the
algorithm, and two variations with possible non-termination bugs, in roughly 230 lines
of BOOGIE code. In each of the potentially-buggy variations we found a non-terminating
execution where incorrect assertion evaluations led to livelock. To our surprise, we also
found a non-terminating execution in our supposedly-correct variation. After consulting
with the developers, the problem turned out to be in our modeling. To understand the
problem, consider the code in Fig. 3c. MUTANT detected non-termination by skipping
the then-branch in each iteration of the lasso. (The actual non-termination found by
MUTANT required concurrent reasoning, even though the lasso only involved one thread.)
However, the intention of the designers was that this branch represents an actual time
out reflecting a timer running down to zero. We corrected this modeling by ensuring that
the above choice must evaluate to true at least once within the lasso. This is similar to
enforcing Condition 1, Case 2 of strong fairness in Section 3. Nonetheless, MUTANT’s
output is still valuable: it says that if the time out is not implemented correctly, then the
program may enter a livelock.

MUTANT is able to determine the absence of periodic nontermination bugs in the
corrected variation with up to 3 contexts per thread in 402 seconds. MUTANT also detects

13

nonterminating executions in the three buggy variations in 11, 21, and 36 seconds. These
experiments demonstrate that MUTANT is effective on real-world algorithms.

6 Related Work

Our work follows the line of research on compositional reductions from concurrent to se-
quential programs. The initial so-called “sequentialization” [22] explored multi-threaded
programs up to one context-switch between threads. Following Qadeer and Rehof [21]’s
generalization of context-bounding to an arbitrary number of context switches, Lal
and Reps [15] later proposed a sequentialization to handle a parameterized amount of
context-switches between a statically-determined set of threads executing in round-robin
order. La Torre et al. [12] extended the approach to handle programs parameterized by
an unbounded number of statically-determined threads, and shortly after, Emmi et al. [6]
further extended these results to handle an unbounded amount of dynamically-created
tasks. Bouajjani et al. [3] pushed these results even further to a sequentialization which
attempts to explore as many behaviors as possible within a given analysis budget. The
compositional analyses resulting from each of these sequentializations however only
consider finite executions, and are thus incapable of establishing liveness properties.

Although much previous work has been done for proving termination and detecting
non-termination in sequential programs—for instance, Cook et al. [4] discover ranking
functions to prove termination of sequential programs, and Gupta et al. [8] use concolic
execution to detect non-terminating executions in sequential programs—relatively little
attention has been paid to multithreaded programs, where interesting non-terminating
executions often have little to do with possible divergence of data values. Though Cook
et al. [5] have extended TERMINATOR to multithreaded programs, their analysis is
oriented to proving termination; failure to prove termination does not generally indicate
the existence of a non-terminating execution. More recently Popeea and Rybalchenko
[19] have developed compositional techniques to prove termination in multithreaded
programs, though again, their approach does not certify the existence of non-terminating
executions. Because both of these techniques focus on establishing a proof of termination,
they necessarily consider over-approximations of concurrent programs, whereas our
technique looks at an under-approximation to find counterexamples faster.

Musuvathi and Qadeer [18] consider liveness properties in multithreaded programs,
but their approach is based on systematic testing, and thus behavioral coverage is
limited by test harnesses and concrete input values. Moreover, their approach is stateless
(i.e., they never store states during the execution of the program), hence they can only
detect possible non-termination by identifying lengthy executions.

In the most closely related work of which we are aware, Morse et al. [16] propose
a compositional LTL model checking technique for multithreaded programs based
on context-bounding. As far as we can tell, their technique (a) does not ensure non-
terminating executions are fair, (b) does not consider lassos in which multiple recursive
threads interfere, and (c) requires very high context-bounds to capture synchronized
interaction between the program and a monitor Büchi automaton.

14

7 Conclusion

We have developed a compositional algorithm for detecting fair ultimately periodic
executions in recursive multithreaded programs by bounding the number of context-
switches in each repeating period. Our approach reveals a simple-to-implement code-to-
code translation, which reduces the problem to finding assertion violations in recursive
sequential programs; consequently we leverage existing sequential analysis algorithms.

Our approach can be used to encode other linear temporal logic conditions besides
non-termination, e.g., response properties. Though for specific classes of formulae/prop-
erties efficient encodings are possible, a sequentialization parameterized by arbitrary
linear temporal logic formulae must essentially construct the product of the input pro-
gram with an arbitrary Büchi automaton; the encoding of this (synchronous) product as
a sequential program may not be as succinct.

In this work, discovering ultimately periodic executions is done by detecting repeated
state valuations. This notion of repeatability is complete for programs manipulating
finite data, but is not complete in general. Still, this notion is actually relevant in many
practical cases, since non-termination bugs in concurrent programs are often due to
non-state-changing retry mechanisms. In the case of infinite data domains periodic
executions may exhibit, for instance, ever increasing counter values; there a notion of
repeatability more relaxed than state-equality may be necessary. This notion however,
contrary to the one we consider here, would have to account for the actions encountered
during the lasso. Ensuring repeatability may be complex to define and check, depending
on the data domains and the nature of program operations.

References

[1] Aftandilian, E., Guyer, S.Z., Vechev, M.T., Yahav, E.: Asynchronous assertions.
In: OOPSLA ’11: Proc. 26th Annual ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications. pp. 275–288. ACM (2011)

[2] Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: FMCO ’05: Proc.
4th Intl. Symp. on Formal Methods for Components and Objects. pp. 364–387.
Springer (2006)

[3] Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs. In:
SAS ’11: Proc. 18th Intl. Symp. on Static Analysis. pp. 129–145. Springer (2011)

[4] Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI ’06: Proc. ACM SIGPLAN 2006 Conf. on Programming Language Design
and Implementation. pp. 415–426. ACM (2006)

[5] Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI
’07: Proc. ACM SIGPLAN 2007 Conf. on Programming Language Design and
Implementation. pp. 320–330. ACM (2007)

[6] Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. In: POPL
’11: Proc. 38th ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages. pp. 411–422. ACM (2011)

15

[7] Garg, P., Madhusudan, P.: Compositionality entails sequentializability. In: TACAS
’11: Proc. 17th Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 26–40. Springer (2011)

[8] Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: POPL ’08: Proc. 35th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages. pp. 147–158. ACM (2008)

[9] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

[10] Kozen, D.: Lower bounds for natural proof systems. In: FOCS ’77: Proc. 18th
Annual Symp. on Foundations of Computer Science. pp. 254–266. IEEE Computer
Society (1977)

[11] La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: CAV ’09: Proc. 21st Intl. Conf. on
Computer Aided Verification. pp. 477–492. Springer (2009)

[12] La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized con-
current programs using linear interfaces. In: CAV ’10: Proc. 22nd Intl. Conf. on
Computer Aided Verification. pp. 629–644. Springer (2010)

[13] Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and precise detection of concurrency
errors in systems code using SMT solvers. In: CAV ’09: Proc. 21st Intl. Conf. on
Computer Aided Verification. pp. 509–524. Springer (2009)

[14] Lal, A., Qadeer, S., Lahiri, S.: Corral: A solver for reachability modulo theories. In:
CAV ’12: Proc. 24th Intl. Conf. on Computer Aided Verification. Springer (2012)

[15] Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

[16] Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Context-bounded model checking
of LTL properties for ANSI-C software. In: SEFM ’11: Proc. 9th Intl. Conf. on
Software Engineering and Formal Methods. pp. 302–317. Springer (2011)

[17] Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of mul-
tithreaded programs. In: PLDI ’07: Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation. pp. 446–455. ACM (2007)

[18] Musuvathi, M., Qadeer, S.: Fair stateless model checking. In: PLDI ’08: Proc. ACM
SIGPLAN 2008 Conf. on Programming Language Design and Implementation. pp.
362–371. ACM (2008)

[19] Popeea, C., Rybalchenko, A.: Compositional termination proofs for multi-threaded
programs. In: TACAS ’12: Proc. 18th Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems. pp. 237–251. Springer (2012)

[20] Qadeer, S., Musuvathi, M., Burnim, J.: Personal communication (January 2012)
[21] Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:

TACAS ’05: Proc. 11th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 93–107. Springer (2005)

[22] Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI ’04: Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation.
pp. 14–24. ACM (2004)

[23] Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

[24] Yen, H.C.: Communicating processes, scheduling, and the complexity of nondeter-
minism. Mathematical Systems Theory 23(1), 33–59 (1990)

16

	 Detecting Fair Non-Termination in Multithreaded Programs

