
Traffic Management and Resource Allocation in
Small Wired/Wireless Networks

Christos Gkantsidis
Microsoft Research

Cambridge, UK
chrisgk@microsoft.com

Thomas Karagiannis
Microsoft Research

Cambridge, UK
thomkar@microsoft.com

Peter Key
Microsoft Research

Cambridge, UK
peterkey@microsoft.com

Bozidar Radunovic
Microsoft Research

Cambridge, UK
bozidar@microsoft.com

Elias Raftopoulos
FORTH, Greece

eraftop@ics.forth.gr

D. Manjunath
IIT Bombay, India

dmanju@ee.iitb.ac.in

ABSTRACT
We consider the problem of traffic management in small networks
with both wireless and wired devices, connected to the Internet
through a single gateway. Examples of such networks are small of-
fice networks or residential networks, where typically traffic man-
agement is limited to flow prioritization through port-based filter-
ing.

We propose a practical resource allocation framework that pro-
vides simple mechanisms to applications and users to enable traf-
fic management functionality currently not present due to the dis-
tributed nature of the system and various technology or protocol
limitations. To allow for control irrespective of whether traffic
flows cross wireless, wired or even broadband links, the proposed
framework jointly optimizes rate allocations across wireless and
wired devices in a weighted fair manner. Additionally, we propose
a model for estimating the achievable capacity regions in wireless
networks. This model is used by the controller to achieve a specific
rate allocation.

We evaluate a decentralized, host-based implementation of the
proposed framework. The controller is incrementally deployable
by not requiring modifications to existing network protocols and
equipment or the wireless MAC. Using analytical methods and
experimental results with realistic traffic, we show that our con-
troller is stable with fast convergence for both UDP and TCP traffic,
achieves weighted fairness, and mitigates scheduling inefficiencies
of the existing hardware.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Management; C.2.3 [Network
Operations]: Network Monitoring

General Terms
Algorithms,Design,Measurement,Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

Keywords
home networking, congestion control, rate control, weighted fair-
ness, wireless networks, quality-of-service

1. INTRODUCTION
We consider the problem of traffic management in small networks
comprising a mix of wireless and wireline hosts connecting to the
Internet through one central gateway. Examples of such networks
include those in small offices and residential networks, in which
case connectivity to the Internet might be provided through a broad-
band access link. In such networks, hosts are often connected in an
ad-hoc manner, typically through a single device, for example a
small router and/or Access Point (AP). These devices may provide
some form of minimal centralized control or could implement any
desired policies (e.g., prioritization of certain types of traffic). Our
aim is to significantly extend the existing management functional-
ity to allow users and applications to exert control over the network
in scenarios that currently cannot be enforced. This is especially
relevant for small business networks where users have some notion
of the intrinsic business value of each application’s traffic.

Traffic management in these networks is problematic. Control
typically translates to application prioritization which is enforced
at the central gateway. This form of control is achieved crudely,
through port-based filters, and can be highly ineffective or inaccu-
rate for applications using arbitrary port numbers such as Skype
or BitTorrent; in these cases, packet payload inspection becomes
necessary. Low-cost devices providing payload classification func-
tionality are rarely found in these networks. Even if available, such
devices are not easily extensible, with policies that focus on spe-
cific application types (e.g., gaming traffic) and cannot be modi-
fied. Additionally, policies are enforced irrespective of the under-
lying technology, that is without taking into account whether hosts
are wireless or wired which may lead to performance degradation
for the overall network.

A traffic controller in a small network needs to address three
main challenges:

• Sharing the wireless medium. While in wired networks net-
work queues are shared across all participating hosts in the
network, queues are distributed in the case of wireless net-
works. Thus, the notion of a single queue where centralized
rate control might be applied is not present. Further, wireless
hosts obey a predetermined MAC protocol which is built-in,
cannot easily change, and is known to be inefficient [10].

• Sharing across diverse scheduling disciplines. Different net-
work devices might obey different scheduling disciplines that
cannot be easily modified (or even known to users and ap-
plications). For example, most devices such APs or home
routers, obey FIFO schedulers that may cause unfairness in
the network.

• Application priority scheduling. Applying application-specific
policies in devices such as routers or APs is hindered by sev-
eral factors such as the usage of arbitrary transport-layer port
numbers, encrypted packets, etc. This is especially true in
the considered networks where low-cost devices prevail and
traffic may cross from wireless to wired and broadband links.

The key contribution of this paper is a practical control frame-
work for small networks that i) allocates resources among flows,
hosts or applications according to a desired policy in a decentral-
ized manner, ii) mitigates various deficiencies of different sched-
ulers present in today’s networks (e.g., WiFi MAC, FIFO at de-
vices), iii) is incrementally deployable and requires no modifica-
tion of the existing network architecture (i.e. no changes to the
MAC, network, or transport layers, except for support for rate lim-
iting which is already provided in most current operating systems)
and iv) it does not presuppose control over network devices such as
APs, routers or broadband modems. Instead, our solution is based
on host coordinated rate control.

We first describe our controller which is based on weighted max-
min fair allocations. Resource allocations are in proportion to a
per-application weight, thus enforcing a form of weighted max-
min fairness. We argue that this form of control is the most flexible
in small wired/wireless networks. Hard priority mechanisms, such
as strict or preemptive priorities have several disadvantages, such
as possible starvation or unbounded performance for lower prior-
ity traffic, and potential priority inversion when there are several
resources.

To achieve allocations in WLANs, we derive a practical model
for the capacity of a wireless network as a function of the access
rates of the associated devices and the rate limits imposed. It is
based on existing analytical models (see [5] and follow-up works)
and provides a simple and accurate approximation of the feasible
rate set of a wireless network, that can be easily parametrized and
implemented in a controller.

We implement the proposed controller in a decentralized system
and evaluate its performance in three sample scenarios. In par-
ticular, we show how our controller can i) provide prioritization
of wireless flows irrespective of the MAC scheduler, ii) improve
network performance by rate-limiting wireless hosts experiencing
bad channel quality, and iii) improve network responsiveness by
controlling network queues created by bandwidth intensive appli-
cations such as peer-to-peer. In each scenario, our controller is fast
to converge to the desired policy, is stable irrespective of the ap-
plication traffic demands and does not under-utilize the network.
This is achieved despite the dynamic nature of the network (e.g.,
WiFi, broadband) and the variable rate of applications such as video
streaming.

To our knowledge, our work is the first to provide a practical re-
source allocation framework that jointly optimizes wired and wire-
less networks. We further provide experimental evidence that sim-
ple extensions of previous theoretical work to characterize achiev-
able wireless throughput regions are applicable in practice. This
is even operating at significantly different timescales (e.g., aggre-
gating information at the second granularity) and with hosts being
associated at different rates.

2. PROBLEM DEFINITION
In this section, we present simple cases of traffic management that
are difficult to support in today’s networks, and illustrate the prob-
lem we want to solve. We then provide a more formal definition of
the problem space under consideration.

2.1 Sample Scenarios
We present three sample scenarios that our control framework en-
ables: i) prioritizing wireless flows, ii) improving wireless network
performance, and iii) ensuring network responsiveness by reduc-
ing queues in the network. Realizing similar scenarios currently
requires modification of network devices and/or protocols (such as
the wireless MAC) and some form of coordination among devices.
Instead, the proposed framework provides flexible control mecha-
nisms that facilitate the management of a variety of scenarios under
the same solution. In Section 5, we demonstrate how each of the
examined scenarios may be realized under the proposed controller.

Scenario 1: Prioritizing wireless flows. Our controller facili-
tates prioritization of wireless flows irrespective of their direction
(upstream, towards the AP, or downstream). Consider, for exam-
ple, the scenario presented in Fig. 1 (left), where two flows (f1 and
f2) compete for the wireless capacity. Enforcing a higher priority
for a flow (say f2) is currently not feasible even after applying per
flow priorities at the AP. This is due to the fact that the wireless
MAC is distributed and the scheduler is fair, and hence allocates
equal resources for the two flows by design. Such a scenario to-
day could only be achieved with 802.11e which is rare in low-cost
APs. 802.11e has also other disadvantages discussed in the follow-
ing section.

Scenario 2: Improving network performance. In a related
scenario, consider the same setup, with the additional complication
of the wireless hosts experiencing different channel qualities. For
example, in Fig. 1 (middle), the host sourcing flow f2 is associated
at rate 12Mbps with the access point, while the other wireless host
is associated at 54Mbps. In such a case, network performance is
affected overall due to the properties of the MAC layer; the total
network capacity drops to 12Mbps penalizing the host associated
at 54Mbps [10]. Providing higher priority for f2 would improve
the total capacity of the network at the same time (of course, at the
expense of f1’s rate).

Scenario 3: Improving network responsiveness. Broadband
queuing delays can be significant (for example, roundtrip times up
to seconds are not unusual [7]), which may have a dramatic im-
pact on network responsiveness. Consider the scenario in Fig. 1
(right), where flow f1 competes with two other flows (f2 and f3),
and flows f2 and f3 are fast, long file transfers or bandwidth inten-
sive applications (e.g., p2p), while f1 represents short flows (e.g., a
web session). I denotes the Internet. Assuming that the bottleneck
is the last mile link (represented here by typical broadband speeds),
queues may build up in two places in the network, namely at the
broadband downstream link, as well as at the downstream wireless
link. In such a scenario, web packets will be queued after a se-
ries of f2 and f3 packets which will result in poor user experience,
observable, for example, by web pages taking significant time to
load. Removing such queuing from the network to ensure respon-
siveness today is feasible only by modifying the AP architecture.
Similarly, removing queues building up in downstream broadband
link requires modification of the first hop upstream router of the
broadband provider. Finally, reducing network queues results in
less packet losses which in turn increases the goodput (see Sec-
tion 5.4 for an example).

Additionally, several network devices such as NICs, routers, modems
or APs often implement a FIFO scheduler. Assuming that this is

Scenario 1 Scenario 2 Scenario 3

Figure 1: Illustration of the sample scenarios

Figure 2: Example of a simple local network

the case in the preceding scenario, if flow f3 is of a higher rate than
f1 (e.g., due to slow broadband connection), f3 will overload the
queue of the AP, resulting in most of the f1 packets being dropped.
If the difference in rates is significant, this may even result in TCP
timeouts and f1 being dropped. Instead, by reducing queues in
the network and appropriately rate-limiting f3, we can prevent this
gross unfairness, without changing the existing hardware.

2.2 Problem definition
Consider a local network composed of a wireless subnetwork, a
wireline subnetwork, and a connection to the rest of the Internet
(see Fig. 2). We denote byN the set of active hosts, some of which,
say NW ⊆ N , connect using the wireless subnetwork, and the
rest connect through wireline, NH ⊆ N . For convenience, we
shall assume that each host connects to the network using only one
interface, henceNH ∩NW = ∅ andNH +NW = N .

For those hosts connected to the wireless network, let rij(t) be
the association rate which denotes the nominal data rate that i uses
when transmitting data to j at time t (either i or j is the wireless
AP). For simplicity, we shall assume that the local wireline network
is over-provisioned, and hence we shall ignore capacity limitations
in the wireline subnetwork (hence, for brevity, we ignore the case
of powerline and related technologies).

We assume a set of active unidirectional traffic flows f ∈ F ,
with Src(f) ∈ N ∪ {I} and Dst(f) ∈ N ∪ {I} representing
the source and destination hosts. I denotes an endpoint that is not
part of the local network, i.e., the endpoint is in the Internet and
accessed via the broadband link. We associate a weight wf with
flow f that denotes the relative importance of the flow. We shall
assume that the weights wf are known in advance.

Given the set of flowsF , their associated weights, the upload and
download capacities of the Internet access link (CU andCD respec-

tively), and the characteristics of the wireless subnetwork, our goal
is to implement an end-host weight-based priority scheduling. Intu-
itively, this means that flows with higher weights should experience
better data rates. More precisely, our aim is to ensure two flows f
and f ′ have sending rates, say xf and xf ′ proportional to their
“weights”, i.e., xf/xf ′ = wf/wf ′ , assuming that they share the
same bottleneck (wireless or broadband) and that they have enough
data to send.

We also want to control the responsiveness of the network. Since
we cannot modify the schedulers inside the network, we need to
control the amount of queuing in the network. We seek to find
an algorithm that balances the responsive (i.e. small queue sizes)
versus the utilization (i.e. large queue sizes) of the network. We
discuss in detail the motivation behind our two objectives in Sec-
tion 3.

Observe that this differs from the priority-based medium access
for wireless technologies such as 802.11e, which ignores the effect
of the association rates. Also note that we have to jointly optimize
the use of the wireless subnetwork and of the Internet access link.

3. RATE ALLOCATIONS AND CONTROL
This section presents the design of a simple yet efficient controller
that addresses the problem defined in the previous section. We first
discuss the motivation and overall design goals, and then present
the principles of the controller’s design. Finally, we explain how
the controller can incorporate allocations for WLANs by providing
a model to infer the achievable capacity regions.

3.1 Motivation & design goals
The goal of our controller is to be flexible, and operate in dynamic
environments where the capacity of the controlled resource fluctu-
ates in time, as in the case of the broadband link or the wireless
[15, 7]. Similarly, the type of applications that are typical in these
networks further dictate a form of dynamic control that is both au-
tomatic and transparent to the user. Applications such as video
streaming or peer-to-peer are characterized by variable rate. This
implies that enforcing rate control with hard rate guarantees per
application (such as reserving fraction of the available capacity)
would lead to under-utilizing the network.

We design our controller to adapt to traffic demands and utilize
resources efficiently by re-allocating resources. Our controller is
thus based on a weighted max-min fair allocation [4], and rates are
allocated in proportion to a per-application weight.1

As discussed previously, we cannot presuppose any modifica-
tions to existing hardware, or protocols (e.g., the wireless MAC or
1Or per-{flow, connection, host} depending on the desired level of
granularity.

APs). Instead, in order to achieve weighted fairness, rate-limiting
traffic flows needs to occur at the wireless hosts. This implies a de-
centralized controller that is executed at each host. Therefore, our
controller should enable the sharing of traffic information among
hosts and apply the desired limits at the application layer.

Decentralized control is attractive because hosts have easy ac-
cess to extensive information regarding the context of their own
traffic. Modern operating systems allow easy association of traf-
fic flows to process ids, user ids, and other application informa-
tion which enables flexible rate control. For example, rate-limiting
all traffic generated by a peer-to-peer application is simple at the
host, whereas performing the same operation at a switch without
host cooperation is practically infeasible. This is because associ-
ating traffic flows with specific applications within the network is
not possible without deep-packet inspection or traffic classification
software, which is rarely found in low-cost network equipment.

Adapting flow rates to traffic demands requires knowledge of
whether the various resources (wireless, Internet access uplink and
downlink) are saturated. Existing devices offer limited or no infor-
mation regarding the congestion level of each of these resources.
For example, it is quite unlikely for hosts and network interfaces
to offer the possibility to peek into MAC level queues in order to
estimate congestion (although our framework is able to incorporate
that information, should it become available). Hence, we need to
explicitly estimate the capacity of each resource, measure the net-
work traffic, and from there deduce the level of congestion; these
should be accomplished in a decentralized manner as discussed pre-
viously. For the purposes of this paper, we shall assume that the
capacity of the broadband access link is known; this may be fea-
sible through the provider of the link, or estimated using active or
passive measurements e.g., [8], [14]. We develop a framework to
estimate the capacity of the wireless network (explained in detail in
are Section 3.4) and incorporate it into the controller design.

Based on the previous discussion and design goals, the follow-
ing are the main steps in the algorithm of our controller and are
repeated in a loop. The algorithm is implemented in each node,
executes in parallel and asynchronously (implementation details in
Section 6).

1. Collect instantaneous rates of flows at each host and share
required information.

2. Determine the utilization of the wireless and wireline re-
sources (Section 3.2.3).

3. Given the utilizations and the flow weights, adjust each flow’s
rate limit (Section 3.2.2).

The controller implicitly finds a weighted max-min fair alloca-
tion (Section 3.2.1). The algorithm is flexible and can also be used
to guarantee a rate; this relates to the method of picking the weights.
Since the choice of weights is not a core part of the controller, we
discuss it in Section 6.

3.2 Weighted fair sharing of resources
We would like our network to behave like a weighted fair queue
switch where different flows would have different priorities (weights).
However, there are several potential bottlenecks in our network:
the wireless access, the Internet uplink and the Internet downlink.
One needs to define what is the fair share across all the resources.
Hence, each flow should get at most the weighted fair share of each
resource it uses.

The intuition behind this is as follows. Suppose for the pur-
pose of illustration that the Internet uplink is the most congested
resource. The flows that traverse the Internet uplink will share the

f Refers to a (unidirectional) flow.
f 3 ij Refers to a (unidirectional) flow that uses link i →

j. We use it to describe flows that use the wireless
network. Either i is one endpoint of the flow and j
is the wireless access point, or vice versa.

xf (Target) Rate of flow f .
xf3ij Rate of flow f (xf) iff f uses (wireless) link i→ j,

and 0 otherwise.
x̂f Observed rate of flow f .
wf Weight of flow f .
A Refers to a resource, A ∈ {U,D,W} denoting up-

link, downlink, or wireless respectively.
FA Set of flows that use resource A. E.g. FW for the

set of flows that use the wireless network.
XA Set of feasible rates for resource A. XA ⊆ <|FA|

CA Capacity of resource A (when applicable). E.g. CU
for the capacity of the Internet uplink.

ĈA Estimate of capacity of A.
xAf Fair share of flow f in resource A.
xA Nominal fair share of resource A.
ρA Utilization of resource A.
ρ̃A Target utilization of resource A.
pA Congestion price of resource A, typically pA = ρBA

for a small constant B (B=5).

Table 1: List of symbols

access capacity according to their weights. Suppose some of these
flows also use the wireless network. Since they are already con-
strained at the Internet uplink, they will get less than what would
otherwise be their weighted fair share of the wireless access. The
other flows, which use the wireless access but not the Internet up-
link, share what remains from the wireless capacity (and get more
than what would be their weighted fair share of the wireless access).
We now define this weighted fair share more formally.

3.2.1 Weighted max-min fairness
Let xf denote the rate of flow f . Let FA be the set of flows that
use resource A (wireless, uplink, or downlink). Each resource A
has a set of feasible rates XA and rates (xf)f∈FA are feasible if
(xf)f∈FA ∈ XA. For example, for uplink U of capacity CU , the
feasible rate set is defined as the set of all possible flow rates such
that the sum of all rates is smaller than the link capacity, XU =
{(xf)f∈FU |

∑
f∈FU

xf ≤ CU}. The set of feasible rates for the
downlink XD is defined analogously. The set of feasible rates for
the wireless, XW , is also linear (see (8)) but slightly more difficult
to define. We address this in Section 3.4.

Let wf be the weight of flow f . A fair share of resource A for
flow f is defined as

xAf = min(x−Af , wfXA/
∑
f ′∈FA

wf ′) (1)

where x−Af is the maximum possible sending rate of flow f assum-
ing that A has infinite capacity (i.e., f is not bottlenecked in A),
and XA is the nominal fair share of resource A. XA is defined as:

max XA

s.t.

min(x−Af , wfXA/
∑
f ′∈FA

wf ′)


f∈FA

∈ XA.

The rate of flow f is then the smallest of the fair shares of all re-
sources used by f ,

xf = min
A:f∈FA

xAf (2)

In other words, if the bottleneck for flow f is resource A, then f
will get rate

xf = wfXA/
∑
f ′∈FA

wf ′ .

As a simple example, assume a resource A with capacity CA.
By definition xf ≤ xAf . If all flows FA are rate limited at A, i.e.,
xf = xAf , and A is fully utilized, i.e.,

∑
f∈FA

xf = CA, then

CA =
∑
f∈FA

xf =
∑
f∈FA

xAf =
∑
f∈FA

wfXA/
∑
f ′∈FA

wf ′ = XA.

If a subset of the flowsFA are rate limited elsewhere in the network
(i.e., not inA), which implies xf < xAf for some f , then to achieve
full utilization of A, the following condition should apply:

CA =
∑
f∈FA

xf <
∑
f∈FA

wfXA/
∑
f ′∈FA

wf ′ = XA

By increasingXA above the capacityCA, the fair share of all flows
increases, and that allows the flows that are bottlenecked at A to
claim the excess capacity that is not used by flows that are rate
limited elsewhere in the network.

The goal of the rate controller is precisely to estimate the nom-
inal fair share values for all resources (i.e. XA), and then use it to
compute the rate limits for each connection (from (1) and (2)). Un-
derestimatingXA results in very conservative rate limits and hence
resource underutilization. Overestimating XA allows flows to send
excessive traffic and create congestion. During the congested pe-
riods, the system cannot guarantee allocation of the resource ac-
cording to the flow weights. Observe that in a more realistic sce-
nario XA needs to be adapted with time, to keep track of the ac-
tive network flows and their instantaneous rates. The algorithm for
adapting XA is described in Section 3.2.2. Increases in XA and
the associated rates that do not impact a low utilization is a signal
that there is not enough demand for A. In that case, we can safely
ignore A, until the observed utilization increases.

It is easy to verify that the resource mechanism described above
is the weighted max-min fairness [4], hence the vector (xf/wf)f
is max-min fair on the set of all feasible rate vectors in the network.
Observe that in this vector, as well as in the discussion above, the
absolute values of the weights wf are not important. Indeed, the
allocations depend on the ratio of the weights.

It is well known that the max-min fair allocation can be achieved
using a simple water-filling approach [4]. The basis of this ap-
proach is that we gradually increase the nominal fair share XA of
each resource A until the resource is saturated. This is done in
parallel and independently at all resources. The details are given
next.

3.2.2 A rate control algorithm
Each resourceA in the system (wireless, Internet uplink and down-
link) is assigned a “price” pA. The price is a dimensionless number
between 0 and 1 and denotes how congested the resource is.

Each host has an estimate of the nominal fair share XA of each
resource in the system. It adjusts this estimate based on the follow-
ing feedback control loop:

XA(t+1)← XA(t)+κXA(t) [1− pA(t)− pA(t)ρA(t)] (3)

where κ is a gain parameter, and ρA(t) is the observed utilization of
resourceA at time t. The utilization ρA(t) is computed as in (4) by
using empirical observations. In the simple case of resources with
constant capacity (such as the Internet access link), ρA(t) equals
the ratio of the aggregate rate using resource A at time t over the
capacity ofA. This algorithm implements a Multiplicative Increase
Multiplicative Decrease (MIMD) type control, similar to the primal
algorithm proposed in [11]. As explained in Section 3.2.1, the rate
of flow f is then assigned to be

xf (t) = min
A:f∈FA

wfXA(t)/
∑
f ′∈FA

wf ′ .

It is easy to verify that the update (3) “forces” ρA = (1− pA)/pA;
if ρA > (1− pA)/pA the increase is negative, otherwise it is posi-
tive. The algorithm (3) then represents the water-filling algorithm.
The nominal fair shares of all resources are increased slowly and
independently, until each of them gets saturated and its nominal
fair share reaches the steady point.

Observe that in principle the algorithm does not need to know
the capacities of the resources, i.e. CA. It only needs to know the
resource utilization, which determined utilization ρA(t) and price
pA(t). The resource utilization can be determined by observing
the queue sizes, or directly when the resource capacity CA and the
traffic loads xf∈FA are known, as we show in Section 3.2.3.

Here, xf (t) is the assigned rate of the connection. In other
words, this is the rate which the system will try to enforce on f . The
actual rate used by the connection, denoted by x̂f (t),will be differ-
ent and typically it will be smaller. For example, when rate limiting
a TCP connection, the achieved rate is usually slightly smaller than
xf . As we shall see in Section 4, when we do not have control over
the sender (as in the case of traffic coming from the Internet), the
rate limit is applied in the receiver. In that case, it will take a few
RTTs for the sender to infer that there is congestion (i.e., our rate
limiter) and reduce the rate. In those cases, the actual rate may be
higher than xf (t). The use of the particular feedback control loop
is justified in the following section.

3.2.3 Calculating prices
The price pA of resource A represents a congestion level of the
resource A. In fact, if such information is available (e.g., by read-
ing queue statistics from a broadband modem or a wireless NIC),
it could be plugged in directly in the calculation and the algorithm
would work with no modifications. However, devices rarely sup-
port this capability and henceforth we will assume this functionality
is not offered.

Instead, we model each resource using a so-called virtual queue
strategy [9, 13]. This signals early warnings of congestion for re-
source A with capacity CA by studying a queue with the same ar-
rivals but reduced capacity βCA, for some β < 1. For a virtual
wired queue A with offered load

∑
f xf , and virtual capacity of

βCA, β < 1, the virtual utilization is ρA =
(∑

f∈FA
x̂f
)
/(βCA).

The virtual utilization of the wireless virtual queue W is ρW =
1
β

∑
f∈FW ,ij

x̂f3ijTij , where the summation is over all wireless
channels ij and all flows f that use wireless, and depends on the
wireless link(s) that each flow uses, and the performance charac-
teristics of each link (Tij). The wireless utilization is derived from
(8) in Section 3.4, where the characterization of achievable wireless
regions is discussed in detail. Consequently, we use

pA = ρBA , ρA
def
=

{ (∑
f∈FA

x̂f
)
/(βCA), A is wired,

1
β

∑
f∈FA,ij

x̂f3ijTij , A is wireless,
(4)

where B is a small number (e.g., B = 5). For example, if we were
to model resource A as an M/G/1 queue with utilization ρA, pA is
the probability that an arriving packet finds at least B packets in
the queue. Every host simulates the operation of a virtual queue
for every constraint resource, and learns the flow rates from other
hosts.

We choose our estimate of capacity, ĈA such that E[ĈA] =
βCA, to align with this price calculation, where for example β =
0.95. We simulate the virtual queue by using the observed rates
x̂f (t) of the flows FA to determine the utilization ρA of the re-
source, and hence the marking probability pA that a queue with the
same average ρA would observe.2

We do not know the instantaneous load at the resource; instead,
the hosts determine the utilization of the resources every M sec-
onds (typicallyM=2 seconds in our implementation, see Section 4),
which includes measuring the rates of the local connections and
broadcasting them). It is then straightforward to show (using con-
trol theory techniques [21], [19], [18]) that the delayed feedback
algorithm (3) is locally stable about the equilibrium point provided
that κ is sufficiently small, i.e., provided that

κ ≤ min

(
1

B + 1
,
M

RTT

)
.

We omit the details here due to lack of space. Given our large
observation window (M), we just need to pick κ < 1/(B + 1),
and then we can show that the recursions are indeed stable.

3.3 Resource utilization
Our aim is to achieve a high target resource utilization, ρ̃A, that
satisfies

ρ̃A = α
1− pA
pA

= α
1− ρ̃BA
ρ̃BA

(5)

where α is a small scaling parameter that gives us flexibility in de-
termining the desired rate. If we view our rate controller as a feed-
back control system, then the fixed point solution of (5) expresses
the desired stable point for the system.

From a practical point of view, (5) expresses a quantifiable op-
erational target as a function of configuration parameters B and α.
For example, when α = 1 and B = 5, the target utilization is
ρ̃ ≈ 0.88. The higher the α is, the larger the queuing delays are
which impacts user experience (see the discussion in Section 2.1).
We find that ρ̃ = 0.88 is a good compromise between efficiency
and network responsiveness (see also Section 5.4).

3.4 Wireless capacity
As discussed in Section 3.2.3, in order to estimate the congestion
prices for wireless hosts, we need to characterize the service rate of
the wireless medium and calculate the feedback. We now provide a
simple characterization of the throughput region for an access-point
based 802.11 network. Our characterization captures additionally
cases where the host association rates are not all equal. This is de-
scribed via an approximate conservation law for the rate allocation
region in the 802.11 network.

The model presented here is not intended to be yet another per-
formance model of the 802.11 protocol. Rather, it is a simplified
yet accurate model of the wireless resource. Its main contribution
is in its simple parametrization and as such it can easily be incor-
porated in the controller design, without incurring large overhead.

2A refinement is to use an Adaptive Virtual Queue [13] which
adapts ĈA dynamically to increase utilization.

Figure 3: Typical timeline of a packet

Table 2: 802.11g parameter values used in the numerical results and
experiments.

Parameter Value
TS (for Basic service) 9µs

TSIFS 10µs
TDIFS 28µs

Tphy (preamble and header, OFDM) 20µs
Control Frame rate Rbs−1

TACK Tphy + 112/R
bMAC 36 Bytes
CWmin 15

L 1500 Bytes

3.4.1 Packet Transmission Times
Host i transmits to host j using packets of average size Lij bytes
and has wireless association rate rij (either i or j is the AP). Con-
sider the channel activity on the WLAN. The average transmis-
sion time Tij has three components—(a) TC , the contention period
when hosts are competing for the channel (including backoff times
and time lost to collisions), (b) TO, the MAC protocol overhead,
and (c) the MAC packet that contains the fixed MAC overhead of
bMAC bytes and a payload of Lij octets that is transmitted at rate
rij , if host i is successful. Fig. 3 illustrates these times, for the
case of 802.11g with RTS/CTS enabled; it is easy to construct sim-
ilar timelines for other variations of the protocol. (Unless explic-
itly stated, our discussion throughout the paper will be for 802.11g
without RTS/CTS). TC , depends on the load (number of active
hosts) and we will discuss its characterization in Section 3.4.3. The
MAC protocol overhead consists of the time required to transmit
the RTS, CTS and the ACK packets and also the interframe spac-
ings; thus, TO = TDIFS + TSIFS + TACK + TPHY (an additional
TRTS + TCTS + 2 TSIFS is required when RTS/CTS is used). The
average packet transmission time is (bMAC +Lij)/rij . Hence, the
average transmission time Tij is

Tij = TC + TO + (bMAC + Lij)/rij . (6)

The values of 802.11g parameters used in the controller are given
in Table 2.

3.4.2 Sharing the Medium
Let xf3ij be the rate of flow f , i.e. xf3ij = xf , iff f uses the
wireless link from host i to host j, and 0 otherwise. For example, if
i is a wireless node and j is the wireless access point, then xf3ij =
xf for all flows f that leave i and are destined to a node on the
wired network or to the Internet. Similarly, xf3ji = xf for traffic
destined to i coming from the wired network or the Internet. If
k is another wireless node and there are some flows from i to k,
then xf3ij = xf and xf3jk = xf for each such flow f (assuming
the typical case that the traffic is relayed by the access point j).
Observe that the flows of the last example use the wireless network
twice. We want to characterize the “maximal” set of {xf} that can
be achieved, conditioned on the capacity of the wireless channel,
and the characteristics and usage of the wireless links ij.

For each vector of feasible rates {xf} (measured in MAC frames
per second) when the system is stable, the probability that a packet
being scheduled at the wireless medium is from flow f at node

Figure 4: Conservation law in practice: Achieved throughputs (averaged over 2sec) of the two hosts transmitting simultaneously, and each of them
is rate limited at a time with 0, 2, 6, 8 Mbps, and with no rate limits. In the left and middle figures two hosts send UDP traffic to a wireline host. In the
right figure, the hosts send TCP traffic to a wireline host. For TCP, the conservation law does not result in an exact straight line due to the association
rate adaptation performed for the packets (ACKs) sent by the AP.

i is xf3ij/
∑
f ′,i′j′ xf ′3i′j′ . Note that this holds regardless of

the scheduling policy among wireless nodes, or the policy used at
each individual node because the network is not saturated, hence
all packets will be served.

The average time between two consecutive transmissions is

TR =
∑
f,ij

(xf3ijTij)/
∑
f,ij

xf3ij , (7)

and the service rate of the wireless network is µ = 1/TR. Observe
that in sharp contrast to the wired networks, the service rate of the
wireless network depends on the offered load, assuming that the
wireless links ij differ in performance (i.e. not all Tij are equal).
(7) suggests, for example, that the service rate is inversely propor-
tional to the rate carried by the slow wireless link (those with large
Tij) [10]. The network is stable if

∑
f,ij xf3ij < µ (the total load

is smaller than the service rate) hence the feasible rate region is
characterized by ∑

f,ij

xf3ijTij < 1, (8)

where Tij is defined in (6). The left hand side of (8), ρW =∑
f,ij xf3ijTij , is the utilization of the wireless medium. Note

that (8) includes the case when there is cross-traffic among the
wireless nodes.

Equation (8) was derived under the assumption that the rates xf
are given in MAC frames per second. It can applied to the rates
given in bytes per second under either of the following conditions:
(a) the packets are of similar sizes, i.e. Lij ≈ L, or (b) the trans-
mission overhead is substantial smaller than the packet transmis-
sion time. We shall assume that both conditions are met.

In practice, the left part of (8) should be bounded away from
1 to protect against traffic fluctuations that may lead to saturation.
(Recall that during saturation the rate allocations depend also on the
MAC protocol and are not strictly determined by the flow weights.)
We protect against such cases by scaling the utilization by a factor
1/β as in (4) (we use β = 0.95).

We have verified (8) in a simple setting with 802.11g hosts using
backlogged traffic to a wireline host. Fig. 4 presents such an ex-
ample for an experiment with two wireless hosts for visualization
purposes. We have experimented with both UDP and TCP. In the
experiment, a rate limit was applied to one of the hosts, with the
other host not being rate limited (i.e., we controlled xf), and vice
versa. The figure shows scatter plots of the throughputs that the
two hosts achieved against each other, for experiments that lasted

5 minutes for each of the rate limits (points show averages over 2
seconds). The rate predicted by (8) is also shown; observe good
agreement with experimental data. We have verified that (8) is in
agreement with experimental data for experiments using up to 4
wireless hosts of varying association rates.

3.4.3 Accounting for Collisions
The analysis above ignores the effects of MAC-level packet colli-
sions. We now obtain the collision overhead when there are n ac-
tive hosts. Since the objective is to obtain a simple characterization
for use in (4), we make a simplifying assumption, that the packets
experience very few collisions. This is reasonable because of the
small number of hosts in the network and also because CWmin,
the minimum backoff window, is quite large and hence minimizes
collisions.

As in most models, e.g., [5], we assume that a transmission at-
tempt results in a collision independent of the other attempts. Let
γ(n) be the probability of a collision, given a node transmits. It can
be shown that

γ(n) ≈ nζδ, (9)

where ζ is the transmission attempt rate and δ is the slot length.
Of course, ζ depends on γ(n) and we have a fixed point equation.
(See Chapter 7, [12]). Using the approach of [5, 12], we can obtain
the following first-order approximation for γ(n).

γ(n) =
1

2(CWmin − 2)
(4n+ CWmin − 5

−
√
CWmin(CWmin − 2) + (4n− 3)2

)
(10)

In Fig. 5, we compare the value of γ(n) as obtained from (10),
from an exact computation of (9). The goodness of the approxi-
mation is evident. We also show γ(n) obtained from experimental
data for 2 ≤ n ≤ 4. Once again, (10) seems to fit experimental
data reasonably accurately.

On average, there are 1/ (1− γ(n)) − 1 = γ(n)/(1 − γ(n))
collisions and 1/(1 − γ(n)) idle slots between successful trans-
missions for host j. An average idle time between two transmission
attempts (successful or not) is δ/γ(n) Therefore, we have

TC =
δ

(1− γ(n))γ(n) +
γ(n)

1− γ(n)Tcoll, (11)

where Tcoll is the average duration of a collision and it depends
on the usage or otherwise of RTS/CTS. If RTS/CTS is used, then

Figure 5: Probability of collision γ(n) as a function of the number of
hosts n. For n = 1 there are no collision errors, only channel losses,
which explains the deviation from the model (of about 5%). For n > 1

the collisions dominate and the model fits well.

Tcoll = TRTS+TSIFS+TDIFS+TACK . When RTS/CTS is not
used, the exact expression is tedious (since it involves accounting
for the duration of the longest of the colliding packets), and we use
the following conservative approximation

Tcoll = max
ij

bMAC + Lij
rij

.

Another source of a non negligible loss of capacity is the PHY er-
rors. It is known [16] that these errors can occasionally be substan-
tial. We believe it is rather hard to capture PHY errors in a simple
model. Further, the hosts react to PHY losses in a rather complex
manner which also defies simple characterization. Nevertheless,
(8) is reasonably accurate and the approximate linear relationship
is very useful in defining control algorithms and developing opti-
mization techniques.

3.5 The rate control algorithm
Summarizing the discussion over the whole section, we provide
here a sequence of steps for resource allocation in wired-wireless
networks. This sequence of steps is the exact control loop imple-
mented in our system at the end hosts (discussed in Section 4), and
can be directly used as a guide for a network practitioner.

1. Determine the weights wi per application, flow or host.

2. Estimate the current operating point of the WLAN (See Sec-
tion 3.4).

3. Estimate the current utilizations f̂i(t) of the flows (or appli-
cations) under consideration, the utilization ρA of each re-
source A by aggregating the relevant f̂i(t), and hence the
marking probability p from (4) (See Section 3.2.3).

4. Update the rate caps per application by following (3) (See
Section 3.2.2). Then, go to step 2 after M seconds, with
M ≈ 1s− 2s.

4. SYSTEM IMPLEMENTATION
Over the previous sections, we have presented a set of algorithms
to enable rate control in small networks comprising wireless and
wired hosts. We now discuss how we implemented this framework.

Our framework comprises two basic components: i) the infer-
ence of the wireless capacity across all wireless hosts in NW , and
ii) the estimation of the prices and the enforcement of rate limits
across all hosts. For both of these components, local host informa-
tion such as the wireless association rates rij and the instantaneous
rates of the controlled applications xf , is required. This gives us

two possible design choices. The first choice is of a centralized ap-
proach where all hosts transmit the relevant information to a ded-
icated host or device that implements the algorithms, performs all
estimations, computes the rate limits to be imposed, and announces
the limits to the hosts (which will implement them). Second, a de-
centralized approach, where hosts share the necessary information
and independently perform all computations.

We believe that a decentralized architecture better meets the de-
sign goals outlined in Section 3. First, a decentralized approach is
incrementally deployable through a light-weight software agent at
the hosts; no changes are required to applications, protocols (e.g.,
MAC, TCP) or devices such as switches and routers which are gen-
erally low-cost in small networks. Second, sharing of information
only bears a minimal overhead due to the small number of hosts.
Third, as pointed out throughout the paper, hosts are better suited
to associate traffic information to applications and users.

We implemented the entire functionality of coordination and con-
trol at the hosts. Each host periodically (every second in our im-
plementation) polls the operating system for application specific
performance information like connection, and network interface
statistics. Then, the necessary information for our algorithms, such
as application rates xf , weights wf , average packet size Lij , and
the association rates rij , is broadcasted to all other nodes in the
network. This broadcast communication requires an efficient and
reliable communication channel, with modest capacity for control
traffic, for timely delivery of the information. We have used reli-
able multicasting (PGM [1]) to broadcast this information, with an
overhead of roughly 250 bytes per second per host for this control
traffic. Other overheads such as memory consumption (both code
and data), and CPU utilization, are typically less than 30MB, and
2% respectively, on our low-end 2GHz/1.5GB RAM laptop.

We have used a token-bucket approach for rate limiting and shap-
ing. We set the token rate for each connection to be equal to the rate
determined by the simulation of the virtual queue. The implemen-
tation of rate limiting for outgoing traffic is based on the Windows
OS traffic control interface [3]. For incoming traffic from the Inter-
net, where we cannot assume control over the sender, we rate limit
at the receiver, and expect that higher-level congestion controllers
(such as TCP) will react by rate adaptation. We have used a custom
made rate limiter for such incoming traffic.

Observe that our approach assumes that users trust each other.
Indeed, we assume that all hosts connected to the network imple-
ment our system, that they broadcast their rates and weights truth-
fully, and that they rate limit their local connections based on the
output of the algorithm described in Section 3. Moreover, we as-
sume that the users have agreed on how to set the weights of their
traffic. Dealing with malicious or misbehaving hosts is outside the
scope of this work.

We have implemented the prototype for the Windows Vista op-
erating system, using interfaces that are available to user processes
(with administrative privileges). In principle, the implementation
does not require any changes to the operating system, and does not
involve installing specialized device drivers.3 Similar interfaces are
available to other modern operating systems, and are typically en-
abled by default. Hence, our implementation can be easily ported
to other operating systems, and requires zero or very little changes
to the core of the operating system.

3This is true for the various Linux variants. In Windows, the traf-
fic control interface does not implement rate limiting of incoming
traffic. We control incoming traffic using our own rate controller,
which was implemented as a network driver. We still use the stan-
dard traffic control interfaces to rate limit outgoing traffic.

Figure 6: Prioritizing wireless flows in scenario 1. The top figure
presents the ratio achieved between the two flows, while the bottom
shows the individual flow rates.

5. EVALUATION
We now present an evaluation of the proposed rate allocation frame-
work implemented as described in the previous section. Our eval-
uation will cover our motivation scenarios outlined in Section 2.2.
The experiments were performed in our testbed which is similar to
the simple network presented in Fig. 2. In particular, two wireless
hosts connect through 802.11g to a Belkin access point. A DSL
modem/router provides connectivity to the Internet and DHCP ser-
vice. The nominal DSL access speeds are 8Mbps downstream and
512 upstream. Finally, two wired hosts are connected directly to
the Ethernet ports of the local router. Unless otherwise specified,
the experiments refer to TCP flows generated with iperf.4 TCP is
in general harder to control due to the ACK feedback loop. UDP
results look similar (except the higher observed total capacity for
wireless) and have been omitted due to space limitations.5

5.1 Scenario 1: Prioritizing wireless flows.
We first examine the scenario described by Fig. 1(left), where two
flows (f1 and f2) compete in the WLAN; f2 is downstream towards
the wireless host, while f1 upstream sourced at the second wireless
host. The goal here is to provide higher capacity to one of the wire-
less flows. As discussed previously, this is currently not feasible
without modifying the MAC.

We configure the weights per flow to be w1 = 1, and w2 = 2,
implying that our desired policy specifies that f2 should experience
twice the rate of f1. Fig. 6 presents the result of this simple exercise
when the controller is enabled and f2 starts one second after f1.
The top figure highlights the achieved ratio between the two flows,
while the bottom the individual flow rates. Our controller succeeds
in allocating rates according to the desired weights, with the aver-
age flow ratio over time equal to 1.9. The controller takes roughly
10 seconds to converge, and appears stable despite the variability
individual flows may experience due to TCP or wireless channel
effects.

5.2 Scenario 2: Improving network performance
Scenario 2 examines the case where channel quality is different
among hosts which is not uncommon in residential networks [16].
In such cases, the overall network performance may be degraded
(cf. [10]) as shown in Fig. 7. The figure highlights the setup pre-
sented in Fig. 1(middle), where two wireless flows (f1 and f2) are
sourced at hosts with different association rates. When f2 becomes

4http://sourceforge.net/projects/iperf/
5Note that controlling UDP traffic can only be achieved at the
sender side.

Figure 7: Prioritizing wireless flows in scenario 2. Top: Uncontrolled
case. Bottom: Controlled case.

active roughly at 30 seconds (Fig. 7, top), the total capacity of the
WLAN experiences a drop of roughly 55% due to the small asso-
ciation rate of the wireless host (12 Mbps).

Applying rate control can increase overall network performance
by giving higher priority to hosts that experience good channel
quality. For example, Fig. 7 (bottom), presents a scenario where
we configure the weights per flow to be w1 = 3, and w2 = 1,
effectively allocating the medium with a bias towards the host as-
sociated at 54 Mbps. This results in increasing the total WLAN
capacity by roughly 20% compared to the uncontrolled case, and
the rate limited host achieving a rate of 410KBps (600KBps in the
uncontrolled case). Depending on the scenario and the extent to
which rate-limiting the slow host is desirable, the total capacity of
the network will increase as the bias towards the faster hosts in-
creases. Overall, the gain in capacity after applying the controller
can be estimated by the analysis in Section 3.4, and will be roughly
equal to

1− (1 + l)(w1 + w2)

2(w1 + w2l)
,

where 1
l

reflects the percentage of capacity lost when slow hosts
are introduced in the WLAN. In the particular example, where
1
l
≈ 0.55, the estimated theoretical gain is 0.23 or 23%. Con-

sequently, we are able to mitigate the network performance loss
due to the presence of slow nodes without modifying the MAC.
It is also possible to increase the rate of the slow node and, con-
sequently, reduce overall network performance by increasing the
weight of the slow node. Hence, it is possible to implement other
wireless resource allocation objectives without changing the MAC.

5.3 Improving network responsiveness
When a network resource is highly utilized, then its associated
queue grows in size. Applications using the resource will then ex-
perience high latencies. Here, we reproduce such a scenario similar
to the one depicted in Fig. 1(right). The two flows, f1 and f2, rep-
resent traffic from high-quality video streaming from YouTube and

No control Equal Weights Video with higher weight

Figure 8: Experiments with both P2P downloading and video streaming. Left: Uncontrolled traffic, video streaming rate is lower than p2p down-
loading and the video frequently pauses. Center: P2P and streaming get the same rate, however there is still not enough rate for video streaming and
the video pauses frequently. Right: Streaming is configured with a weight 6x of the p2p weight; rates are allocated proportionally and the streaming
rate is high enough to achieve smooth playback without pauses. (Rates smoothed for 5sec to improve readability.)

a peer-to-peer (p2p) application respectively. We will introduce f3
later in this section. To estimate the queuing delay, we were con-
tinuously pinging the first upstream broadband router.

Fig. 8(left) depicts the rates of the p2p and the video stream-
ing traffic, when no control is enforced. The p2p traffic captures
most of the broadband capacity, resulting in not enough capacity
for video playback, causing frequent pauses. Measured ping times
averaged 243ms, and often were in excess of 500ms. Ping times
without traffic are in the order of 30ms.

Fig. 8(center) depicts the controlled case when equal weights
were assigned to each application. As expected, when both applica-
tions were active, their rates were similar (151KB/s and 157KB/s).
Unlike the uncontrolled case, the ping times now were significantly
reduced, as we have reduced the network queuing; our controller
allows just enough traffic so that network queues do not grow but
the network is utilized at the same time. The average ping time was
roughly 55ms, and less than 3% of the measurements were greater
than 150ms. However, even in this case, the video playback freezes
frequently not receiving enough throughput.

To provide a better experience for video streaming, we reduced
the weight of p2p to be 6 times lower than the weight of video
streaming. Fig. 8(right) indicates this case, for which the video
playback did not suffer from pauses. The average ping time was
also low, around 68ms. This means that other (low rate) network
applications, such as web browsing and emailing, would also per-
ceive a responsive network. The choice of 6 as the ratio of the
weights was arbitrary in order to guarantee that there is enough
capacity for the video. In practice, either the user or some other
algorithm should determine an appropriate ratio (and weights) in
order to guarantee the desired performance, by taking into account
the capacity of the network resources and the demands of the ap-
plications. Determining the weight ratios is out of the scope of this
work.

Compared to the first two scenarios examined, this is a more
challenging scenario as p2p applications open a large number of
TCP connections, most of which with a small rate. Indeed, during
these experiments, the number of connections included in f1 was
larger than 200. Even in such an extreme scenario, the controller
manages to achieve the desired weighted allocation, and provide a
stable performance.

Consider now a similar case, with f1 and f2 being upstream
flows, and introducing the internal flow f3. This can further have a

pronounced impact on the network as Fig. 9 denotes. f3 creates sig-
nificant queuing in the WLAN, which delays the ACKs of f1, and
eventually connection f1 drops. Enabling the controller “reserves”
capacity for the ACK stream of flow f1.

5.4 Virtual queue and utilization
The price for controlling the queuing delay at the constrained re-
source is a reduction in its utilization. To evaluate this reduction,
we have performed the following controlled experiment. We em-
ulate a link of 100kBytes/sec with three long term TCP transfers
(from three different hosts). Table 3 gives the application rate of
each of flow for various configurations of the rate controller (see
Section 3.3). Table 3 shows that the effective rate (i.e., Total) re-
duced from 76.83kB/s (uncontrolled) to 66.65kB/s − 75.46kB/s,
depending on the controller. Hence, the penalty for rate controlling
can be made quite small.

Moreover, rate control brings advantages with respect to fairness
and efficient use of resources. Examining the ratio of bytes sent
(goodput) over the total bytes (G/T), we observe that rate control
reduces the overhead by 10% (see goodput ratio G/T). In other
words, rate control reduced the amount of capacity spent in retrans-
missions. This was the result of preventing saturation at the bottle-
neck link. By queuing packets at the end-hosts (and before the TCP
layer), we implicitly signal congestion to the TCP endpoints before
congestion builds up in the network and packets are dropped. Re-
call also that controlling the queues at the hosts reduces queuing
delays, and that, in general, benefits congestion control algorithm,
like TCP. Observe in Table 3 that in the uncontrolled case, connec-
tion A received a higher rate than the other two connections. This
unfairness was common in this particular scenario (though not uni-
versal, i.e., in some cases TCP allocated the capacity fairly). We
never observed such unfairness with rate control.

The ratio T/C is the network utilization ρ of our virtual queue.
The measured ρ is close to the theoretical values predicted by (5).
For example, optimal ρ = 0.881 for B = 5 and α = 1; the
observed utilization was 0.867. A larger B increases utilization
at the cost of responsiveness. Overall, the particular configuration
choices of the virtual queue size B were not very important (with
the exception of B = 3 that is a bad choice even theoretically).
Such robustness is attractive from an engineering point of view,
since it negates the need for fine-tuning.

Figure 9: Uncontrolled and controlled cases for the scenario in Fig. 1(right), with two upstream flows to the Internet (f1 and f2), and an internal
wired-to-wireless flow (f3) If the f3 is not rate-limited, f1 drops because the wireless is saturated.

Table 3: Performance of three web transfers (of equal priority) [in
kBytes/sec] and network utilization

Connection
Controller 1 2 3 Total G/T Gdput T/C
Uncontrolled 43.6 15.7 17.4 76.83 0.78 59.9 0.97
B = 3α = 1 26.6 22.3 21.6 66.65 0.84 56 0.79
B = 3α = 2 24. 23.1 22.8 70.02 0.84 58.8 0.83
B = 5α = 1 25.1 23.7 26.6 75.46 0.84 63.4 0.87
B = 5α = 2 25.6 24.1 24.2 74.01 0.84 62.2 0.88
B = 10α = 1 25.8 24.8 24.4 75.08 0.83 62.3 0.90
B = 10α = 2 26.2 24.4 24.9 75.64 0.83 62.7 0.91
G/T is the ratio of unique bytes transferred (goodput) over total transfers
(including retransmissions). T/C is the ratio of total transfers over (our
estimate of) the capacity of the uplink (100kBytes/sec).

6. DISCUSSION
We have presented a framework for traffic management and re-
source allocation in small networks. However, our approach leaves
some issues for future work; we outline here the most important of
these.
Non-compliant devices. So far, we have operated under the as-
sumption that all hosts participate in the inference and control phases
of our algorithms. If this is not the case, we can still infer the equiv-
alent capacity, both for wired and wireless resources; yet, to control
non-compliant or partially compliant devices we need to partner
with an intermediate device, such as a middle box, AP or switch.
For the wired case, our algorithm produces estimates of the con-
trolled capacity Ĉ (from compliant devices), while standard band-
width estimation techniques, such packet-pairs or probe-based, can
estimate the total capacity in certain scenarios. For the wireless,
our estimated capacity will be less that the nominal capacity of the
channel: from Section 3.4, we will estimate a reduced capacity for
the WLAN, and the difference between this and the nominal capac-
ity is approximately equal to the weighted sum of the rates from the
non-compliant devices.
Wireless characteristics. Our model currently does not account
for interference, but it can be extended to do so. Consider the
example from Fig. 10, which is similar to Fig. 4 in Section 3.4.
The difference here is that we have three flows, one of which is
an interfering host. Point A corresponds to the case when all three
flows behave as unconstrained. Point B corresponds to the case
when f2 and f3 are unconstrained and f1 = 0. It is easy to verify
analytically that the region between A and B is linear, as shown
by the experiment (similarly between A and C). Hence, in pres-
ence of the interference the rate region is piece-wise linear, and the

Figure 10: Prioritizing wireless flows in scenario 2. There are two
controlled flows, flow f1 with association rate 54 Mbps and flow f2
with 12 Mbps. There is an additional uncontrolled (interfering) flow
f3 whose rate is not plotted.

parametrization is only slightly more complex. We leave the full
analysis here for future work.

In practice, interference will manifest itself as an increase in lost
packets. We can measure this as a drop in capacity, and hence
perform our allocation on the revised capacity automatically. Ad-
ditionally, we have not discussed association rate adaptation. Our
system continuously monitors the association rates and adapts the
optimization problem and the associated rate limits. In the experi-
ments, the controller had time to adapt between the changes in the
association rates.
Network size. Our solution targets small networks, with at most
10s of devices (and could also extend to networks with a few APs).
This is already a large market segment, typified by low-end hard-
ware with limited functionality. For a more complex wireless net-
work, interaction between different subnets/APs may make our con-
servation laws less appropriate. Examining the efficiency of the
proposed algorithm in more complex scenarios is out of the scope
of this work.
Setting the flow weights. Setting the weights wi is a challenging
and an “orthogonal” problem that should take into account user
priorities and intentions that are very difficult to infer even at the
host-level, since the weights of a given application can be context
dependent. One way to set initial weights is to setwf =Mxtargetf ,
where xtargetf is a nominal target rate for the connection, andM =

E[p/(1 − p)], related to the target utilization via (5). We do not
elaborate the problem further here.

7. RELATED WORK
Traffic management and resource allocation has largely been ig-
nored for small networks. Several management solutions have been
proposed for large-scale enterprise networks [6, 22, 17]. These
studies attempt to impose pre-defined detailed policies on the net-
work; policies are enforced by network equipment through a cen-
tralized control. Our work targets much simpler networks without
dedicated administrative entities, and our goal is to improve perfor-
mance rather than minimize configuration or security errors.

A small number of studies [16, 7] gave some insight into the
characteristics of residential and small office networks. Specifi-
cally, Papagiannaki et al. [16] examine wireless characteristics of
home networks and show how simple changes in the configuration
of the network could result in a big impact on performance. Simi-
larly, Dischinger et al. [7] show significant variation in the capacity
of the broadband access link offered to residential users. Our rate
controller takes into account these variations by adapting to the of-
fered capacity and traffic demands.

Our approach resonates with the Congestion Manager (CM) ap-
proach of Balakrishnan et al. [2], particularly in terms of philos-
ophy which puts the application in control, accommodates traffic
and application heterogeneity and adapts to traffic dynamics. How-
ever, unlike the CM approach, our system does not need to probe
periodically to infer network characteristics, neither do we use a
congestion window-based control. Additionally, our controller is
especially designed to take account of wireless networks and their
idiosyncrasies. Our approach also shares some of the goals of the
wireless distributed fair scheduling by Vaidya et al. [20], which
implements a distributed fair queuing that achieves proportionally
fair allocations. However, the authors there describe a MAC imple-
mentation, and assume that all association rates are the same. In
contrast, we provide a general solution that requires no modifica-
tion to underlying protocols and is implemented at the application
layer.

Our model of the wireless resource is based on existing analytical
models (see [5] and follow-up works). However, to the best of our
knowledge no other wireless model gives a simple parametrization
of the rate region of an unsaturated wireless network.

8. CONCLUDING REMARKS
We have presented a practical resource allocation framework for
small networks that contain both wired and wireless hosts. The
controller jointly optimizes over multiple wired and wired resources.
To enable allocations in wireless networks, we have derived a con-
servation law for wireless networks, which is both simple and ef-
fective, and a good approximation to experimental data. We have
further demonstrated the feasibility of application layer control by
building and experimentally validating the framework in user space.
We believe that the proposed framework can significantly augment
the available traffic management functionality and as a result the
user experience. This was demonstrated through sample scenar-
ios that cannot be supported in today’s networks due to protocol or
device restrictions.

9. REFERENCES
[1] RFC 3208 - PGM Reliable Transport Protocol Specification.

http://www.faqs.org/rfcs/rfc3208.html.
[2] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated

Congestion Management Architecture for Internet Hosts. In
SIGCOMM, 1999.

[3] Y. Bernet. Networking Quality of Service and Windows
Operating System. New Riders, 2001.

[4] D. Bertsekas and G. R. Data Networks. Prentice-Hall, 1987.
[5] G. Bianchi. Performance analysis of the IEEE 802.11

distributed coordination function. In IEEE J. Sel. Areas
Commun., 2000.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: taking control of the enterprise. In
ACM SIGCOMM, 2007.

[7] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characterizing Residential Broadband Networks. In IMC,
AM SIGCOMM Internet Measurement Conference, 2007.

[8] C. Dovrolis, P. Ramanathan, and D. Moore. Packet
dispersion techniques and capacity estimation. IEEE/ACM
Transactions on Networking, 12(6):963–977, December
2004.

[9] R. J. Gibbens and F. P. Kelly. Resource Pricing and the
Evolution of Congestion Control. Automatica,
35:1969–1985, 1999.

[10] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda.
Performance anomaly of 802.11b. In INFOCOM, 2003.

[11] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate Control in
Communication Networks: Shadow Prices, Proportional
Fairness and Stability. Journal of the Operational Research
Society, 1998.

[12] A. Kumar, D. Manjunath, and J. Kuri. Wireless Networking.
Morgan-Kaufmann (an imprint of Elsevier), USA, 2008.

[13] S. Kunniyur and R. Srikant. Analysis and design of an
adaptive virtual queue (AVQ) algorithm for active queue
management. In ACM SIGCOMM, 2001.

[14] S. Machiraju, D. Veitch, F. Baccelli, and J. Bolot. Adding
definition to active probing. ACM SIGCOMM Computer
Communication Review, 37(2):17–28, April 2007.

[15] Office of Communications UK (OfCom). Consumer
experience of broadband performance: initial findings, 2009.
http://www.ofcom.org.uk/research/
telecoms/reports/bbspeed_jan09/.

[16] K. Papagiannaki, M. Yarvis, and W. S. Conner. Experimental
characterisation of home wireless networks and design
implications. In Proceedings of IEEE INFOCOM, Barcelona,
Spain, April 2006.

[17] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz,
A. Myers, G. Xie, J. Zhan, and H. Zhang. Network-wide
Decision Making: Toward a Wafer-thin Control Plane. In
HotNets–III, 2004.

[18] S. L. Song Chong and S. Kang. A Simple, Scalable and
Stable Explicit Rate Allocation Algorithm for MAX-MIN
Flow Control with Minimum Rate Guarantee. IEEE/ACM
Trans. on Networking, 9(3):322–335, 2001.

[19] R. Srikant. The Mathematics of Internet Congestion Control.
Birkausser, 2004.

[20] N. Vaidya, A. Dugar, S. Gupta, and P. Bahl. Distributed fair
scheduling in a wireless LAN. IEEE Trans. Mobile
Computing, 4(6):616–629, 2005.

[21] G. Vinnicombe. On the stability of networks operating
TCP-like congestion control. In Proc. IFAC World Congress,
Spain, 2002.

[22] H. Yan, D. A. Maltz, T. E. Ng, H. Gogineni, H. Zhang, and
Z. Cai. Tesseract: A 4D network control plane. In NSDI,
2007.

