
Short Text Understanding Through Lexical-Semantic

Analysis

Wen Hua §#1, Zhongyuan Wang §†2, Haixun Wang ‡3, Kai Zheng #4, Xiaofang Zhou #5

§ School of Information, Renmin University of China, Beijing, China
1 huawen@ruc.edu.cn

† Microsoft Research, Beijing, China
2 zhy.wang@microsoft.com

‡ Google Research, Mountain View, CA, U.S.A.
3 haixun@google.com

School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
4 kevinz@itee.uq.edu.au 5 zxf@itee.uq.edu.au

Abstract—Understanding short texts is crucial to many appli-
cations, but challenges abound. First, short texts do not always
observe the syntax of a written language. As a result, traditional
natural language processing methods cannot be easily applied.
Second, short texts usually do not contain sufficient statistical
signals to support many state-of-the-art approaches for text
processing such as topic modeling. Third, short texts are usually
more ambiguous. We argue that knowledge is needed in order
to better understand short texts. In this work, we use lexical-
semantic knowledge provided by a well-known semantic network
for short text understanding. Our knowledge-intensive approach
disrupts traditional methods for tasks such as text segmentation,
part-of-speech tagging, and concept labeling, in the sense that we
focus on semantics in all these tasks. We conduct a comprehensive
performance evaluation on real-life data. The results show that
knowledge is indispensable for short text understanding, and
our knowledge-intensive approaches are effective in harvesting
semantics of short texts.

I. Introduction

In this paper, we focus on short text understanding, which
is crucial to many applications, such as web search, mi-
croblogging, ads matching, etc. Unlike documents, short texts
have some unique characteristics which make them difficult to
handle. First, short texts do not always observe the syntax of
a written language. This means traditional NLP techniques,
ranging from POS tagging to dependency parsing, cannot
always apply to short texts. Second, short texts have limited
context. The majority of search queries contain less than 5
words, and tweets can have no more than 140 characters.
Thus, short texts usually do not possess sufficient signals to
support statistical text processing techniques such as topic
modeling. Because of the above reasons, short texts give rise
to a significant amount of ambiguity, and new approaches must
be introduced to handle them.

In the following, we use several examples to illustrate the
challenges of short text understanding.

Example 1 (Ambiguity in Text Segmentation):

• “april in paris lyrics” vs. “vacation april in paris”

• “book hotel california” vs. “hotel california eagles”

A short text can often be segmented in multiple ways. We
want to choose a semantic coherent one. For instance, two
segmentations are possible for “april in paris lyrics”, namely
{april in paris lyrics} and {april paris lyrics}. The former is

better because “lyrics” is semantically related to songs (“april
in paris”). The Longest-Cover method for segmentation, which
prefers the longest terms in a given vocabulary, ignores such
knowledge and thus will lead to incorrect segmentations.
Take “vacation april in paris” as an example. The Longest-
Cover method segments it as {vacation april in paris}, which

is obviously an incoherent segmentation.

An important application of short text understanding is
to calculate semantic similarity between short texts. In our
previous research [1], semantic similarity has been proven to
be much more preferable than surface similarity. However, in-
correct segmentation of short texts leads to incorrect semantic
similarity. For example, “april in paris lyrics” and “vacation
april in paris”, although look quite alike, are totally different
on the semantic level, as the former searches for lyrics of
a song (“april in paris”) and the latter vacation information
of a city (“paris”) during a specific time (“april”). However,
when “vacation april in paris” is incorrectly segmented as
{vacation april in paris}, it will have a high similarity with

“april in paris lyrics”. Similarly, telling the difference between
“book hotel california” and “hotel california eagles” requires
correct segmentation too, as the former is about booking a
hotel in California while the latter searches for a song (“hotel
california”) performed by the Eagles Band.

Example 2 (Ambiguity in Type Detection):

• “pink[e](singer) songs” vs. “pink[ad j] shoes”

• “watch[v] free movie” vs. “watch[c] omega”

We tag terms with part of speech or semantic types (e.g.,
verb, adjective, attribute, concept, and instance). Finding cor-
rect types requires knowledge about the terms. In Example 2,
“pink” in “pink songs” refers to a famous singer and thus
should be labeled as an instance, whereas “pink” in “pink
shoes” is an adjective. Similarly, term “watch” is a verb
in “watch free movie” and a concept (category) in “watch

omega”. Traditional approaches to Part-Of-Speech tagging
(POS tagging) consider only lexical features. In particular,
they infer the best type for a term within specific context
based on manually defined linguistic rules [2][3] or lexical
and sequential probabilities learned from a labeled corpora
[4][5][6][7][8][9][10]. However, surface features are insuffi-
cient to determine types of terms in short texts. In the case of
“pink songs”, “pink” will be incorrectly labeled as an adjective
using traditional approaches, since both the probability of
“pink” as an adjective and the probability of an adjective
preceding a noun are relatively high. One of the limitations of
state-of-the-art approaches to short text understanding [11][12]
is that they do not handle type ambiguity.

Example 3 (Ambiguity in Concept Labeling):

• “hotel california eagles[e](band)” vs. “jaguar[e](brand)

cars”

An instance may belong to different concepts or corre-
spond to different real-world objects in different contexts. In
Example 3, for “hotel california eagles,” we may recognize
“eagles” to be a band rather than an animal, given we have
the knowledge that a song (“hotel california”) is more related
to music bands than animals. Without such knowledge, we
might consider “hotel california eagles” and “jaguar cars” to be
similar since both “eagles” and “jaguar” belong to the category
of animal.

In this work, we argue that external knowledge is indispens-
able for short text understanding, which in turn benefits many
real-world applications that need to handle large amount of
short texts. We harvest lexical-semantic relationships between
terms (namely words and phrases) from a well-known prob-
abilistic network and a web corpus, and propose knowledge-
intensive approaches to understand short texts effectively and
efficiently. Our contributions are threefold:

• We demonstrate the pervasiveness of ambiguity in
short texts and the limitations of traditional approaches
in handling them;

• We achieve better accuracy of short text understand-
ing, using knowledge-intensive approaches based on
lexical-semantic analysis;

• We improve the efficiency of our approaches to facil-
itate real-time applications.

The rest of this paper is organized as follows: in Section
II, we briefly summarize related work in the literature of
text processing; then we define the problem of short text
understanding formally in Section III, along with a brief
introduction of notations adopted in this work; our approaches
and experiments are described in Section IV and Section V
respectively, followed by a brief conclusion and discussion of
future work in Section VI.

II. RelatedWork

In this section, we discuss related work in three aspects:
text segmentation, POS tagging, and concept labeling.

Text Segmentation. The goal of segmentation is to divide
a short text into a sequence of meaningful components. Naive

approaches used in previous work [13][14][15][16][17] treat
the input text as a bag-of-words. However, words on their own
are often insufficient to express semantics, as many instances
and concepts are composed of multiple words. Some recent
approaches [11][12] use the Longest-Cover method for text
segmentation, that is, it prefers the longest terms in a given
vocabulary. The Longest-Cover method does not understand
the semantics of a short text, and fails in cases such as
“vacation april in paris” and “book hotel california”, which
were described in Section I. Thus, a good approach to short
text segmentation must take semantics into consideration.

POS Tagging. POS tagging determines the lexical type
of a word in a text. Mainstream POS tagging algorithms
fall into two categories: rule-based and statistical approaches.
Rule-based POS taggers assign tags to unknown words based
on a large number of hand-crafted [2][3] or automatically
learned [18][19][20] linguistic rules. Statistical POS taggers
[21][5] avoid the cost of constructing tagging rules by learning
a statistical model automatically from a corpora and then
labeling untagged texts based on those learned statistical
information. One thing to note is that both rule-based and
statistical approaches rely on the assumption that text is
correctly structured, which is not always the case for short
texts. Besides, all of the aforementioned work only considers
lexical features and ignores semantics. This leads to mistakes
such as “pink songs” as described in Section I. Besides POS
tagging, we also want to disambiguate senses. For example,
“country” is a political and geographical concept in “jazz is
popular in this country,” but an instance of music style in
“he likes jazz more than country.” In this work, we propose
new approaches to determine types of terms including verbs,
adjectives, attributes, concepts, and instances.

Concept Labeling. Concept labeling determines the most
appropriate concepts of an instance within specific context.
Named Entity Recognition (NER) is a special case of concept
labeling, which only focuses on named entities. Specially, it
seeks to locate named entities in a text and classifies them into
predefined categories using statistical models like CRF [22]
and HMM [23]. However, the number of predefined categories
is extremely limited. Besides, traditional approaches to NER
cannot be directly applied to short texts which are informal and
error-prone. Recent work attempts to link instances to concepts
in a knowledgebase. For example, Song [11] developed a
Bayesian Inference mechanism to conceptualize terms and
short texts, and tried to eliminate instance ambiguity based on
other homogeneous instances. Kim [12] noticed that related
instances can also help with disambiguation. Hence, they
tried to capture semantic relations between terms using LDA,
and improved the accuracy of short text conceptualization by
taking context semantics into consideration. Whereas other
terms, such as verbs, adjectives, and attributes, can also help
eliminating instance ambiguity. For example, “harry potter”
is a book in “read harry potter”, while a movie in “watch
harry potter”. Therefore, we incorporate type detection into our
framework of short text understanding, and conduct instance
disambiguation based on all types of context information.

III. Problem Statement

We briefly introduce some concepts and notations em-
ployed in the paper. Then we define the short text understand-

ing problem, and give an overview of our framework.

A. Preliminary Concepts

Definition 1 (vocabulary): A vocabulary is a collection of
words and phrases (of a certain language).

We download lists of English verbs and adjectives from an
online dictionary - YourDictionary1, and harvest a collection
of attributes , concepts, and instances from a well-known
probabilistic knowledgebase - Probase [24]. Altogether, they
constitute our vocabulary.

Definition 2 (term): A term t is an entry in the vocabulary.

We represent a term as a sequence of words, and denote
|t| as the length (number of words) of term t. Example terms
are “hotel”, “california” and “hotel california” etc.

Definition 3 (segmentation): A segmentation p of a short
text is a sequence of terms p = {ti|i = 1, ..., l} such that:

1) terms cannot overlap with each other, i.e., ti∩ti+1 = ∅,∀i;

2) every non-stopword in the short text should be covered
by a term, i.e., s −

⋃l
i=1 ti ⊂ stopwords.

For example, a possible segmentation of “vacation april
in paris” is {vacation april paris}, where only stopword “in”

is ignored from the original short text. For “new york times
square,” although both “new york times” and “times square”
are terms in our vocabulary, {new york times times square}

is invalid according to our restriction because the two terms
overlap with each other.

Definition 4 (type and typed-term): A term can be
mapped to multiple types including verb, adjective, attribute,
concept, and instance. A typed-term t̄ refers to a term with a
specific type t̄.r.

We denote the set of possible typed-terms for a term as
T = {t̄i|i = 1, ...,m}, which can be obtained directly from
the vocabulary. For example, we observe that term “book”
appears in verb-list, concept-list as well as instance-list of
our vocabulary, thus the possible typed-terms of “book” are
{book[v],book[c],book[e]}.

Definition 5 (concept vector and concept cluster vector):
During concept labeling, we map a typed-term to a concept
vector denoted as t̄.~c = (〈c1,w1〉, 〈c2,w2〉, ..., 〈cn,wn〉), where
ci represents a concept in the knowledgebase, and wi the
weight of ci. We can also map a typed-term to a concept

cluster vector t̄. ~C = (〈C1,W1〉, 〈C2,W2〉, ..., 〈CN ,WN〉), where
Ci represents a concept cluster and Wi the weight-sum of
containing concepts.

Take “disneyland” as an example. We can map it to a con-
cept vector (〈themepark, 0.0351〉, 〈amusementpark, 0.0336〉,
〈company, 0.0179〉, 〈park, 0.0178〉, 〈bigcompany, 0.0178〉), as
well as a concept cluster vector (〈 {theme park, amusement
park, park}, 0.0865 〉, 〈 {company, big company}, 0.0357 〉).
We describe concept clustering later in Section IV-B.

1http://www.yourdictionary.com/

TABLE I. Summary of notations.

Definition Example

s short text book hotel california

p segmentation {book hotel california}

t term hotel,california,hotel california

t̄ typed-term book[v],book[c],book[e]

t̄.r type v,adj,att,c,e

t̄.~c concept vector (theme park,company,park...)

t̄. ~C concept cluster vector ({theme park,park},{company}...)

B. Problem Definition

Given a query “book disneyland hotel california”, we
want to know that the user is searching for hotels close to
Disneyland Theme Park in California. In order to do this, we
take several steps as shown in Figure 1.

1. Using a vocabulary, we detect all candidate terms
that appear in a short text. For the query “book disneyland
hotel california,” we get {“book”,“disneyland”,“hotel carlifor-
nia”,“hotel”,“california”}. Based on our definition, we obtain
two possible segmentations: {book disneyland hotel california}

and {book disneyland hotel california}. We determine the latter

is better because it is more semantically coherent (see Section
IV-A for more details);

2. Although “book” has multiple types, namely {book[v],
book[c], book[e]}, we recognize that it should be a verb within
such a context. Analogously, we label “hotel” as a concept,
“disneyland” and “california” as instances.

3. We find that “disneyland” has multiple senses, since it
can be either a theme park or a company. We determine that it
refers to the famous theme park within this short text, because
we know that the concept hotel is more semantically related
to the concept theme park than the concept company.

���������	
��
��������������������������	����	�����
�����

���������	
��
��������������������	����	����

������	
��
��������������	����	�

������	
��
��������������	����	�

Fig. 1. Examples of steps in short text understanding.

From the above example, we observe that the basic way to
understand a short text is to divide it into a collection of terms
and try to understand the semantics of each term. Therefore,
we formulate the task of short text understanding as follows:

Definition 6 (Short Text Understanding): For a short text
s in natural language, generate a semantic interpretation of s,
which is represented as a sequence of typed-terms, namely
s̄ = {t̄i|i = 1, ..., l}.

As illustrated in Figure 1, the semantic interpretation
of short text “book disneyland hotel california” is {book[v]

disneyland[e](park) hotel[c] california[e](state)}. Note that we can

obtain semantics from attributes associated with typed-terms

namely t̄. ~C. Therefore, we divide the task of short text under-
standing into three subtasks that correspond to the aforemen-
tioned three steps respectively:

1. Text Segmentation. Given a short text s, find the best
segmentation p∗.

2. Type Detection. For term t, find the best typed-term t̄∗

in the context.

3. Instance Disambiguation. For any instance t̄ with

possible senses (concept clusters) ~C = (C1,C2, ...,CN), rank
the senses with regard to the context.

C. Framework Overview

Figure 2 illustrates our framework for short text under-
standing. In the offline part, we acquire knowledge from
the web and existing knowledgebases. Then, we pre-calculate
some scores and probabilities which will be used for inferenc-
ing. In online part, we perform text segmentation, type detec-
tion, and instance disambiguation, and generate a semantically
coherent interpretation of a given short text.

�������������

���	��
���
��

�
�
�
	
��

�
��
�
�
�
�
��
��
��
�

����������

�������

��������

������
��

���
���
��

�������
����
����

�� �����!���
����

"���
��#

$
 �!
��������

�����%��������

�&
��'(
��	���

$��

���������������

)������	��*

��+�����������

���	��*

��������������
%��
!����
����

����&��
�����

�&������ �

)��������
����

Fig. 2. Framework overview.

Q1: What knowledge to acquire: We need three types
of knowledge for short text understanding: 1) A vocabulary
of verbs, adjectives, attributes, concepts and instances; 2)
Hypernym-hyponym relations that tell the concepts of an
instance. For example, we need to know that “disneyland”
refers to a theme park as well as a company. We obtain this
knowledge directly from the is-a network in Probase; 3) A co-
occurrence network. In order to determine the most appropriate
concepts of “disneyland” in “book disneyland hotel california”,
we need to know that the concept hotel is more related to the
concept theme park than the concept company. We construct
a co-occurrence network for this purpose.

Q2: Why text segmentation before type detection: In tra-
ditional NLP, chunking relies on POS tagging, which in turn
relies on the fact that the sentences being processed observe the
grammar of a written language. This is however not the case
for short texts. Our approach exploits external knowledge and
infers the best segmentation based on the semantics among
the terms, which reduces its dependency on POS tagging.
Furthermore, in order to calculate semantic relatedness, the
set of terms (namely the segmentation of a short text) should
be determined first, which raises the necessity to accomplish
segmentation first.

IV. Methodology

As shown in Figure 2, our methodology consists of two
parts: an online inference part for short text understanding

and an offline part for knowledge acquisition. We describe the
details in this section.

A. Online Inference

There are basically three tasks in online processing of short
texts, namely text segmentation, type detection, and instance
disambiguation.

1) Text Segmentation: We organize the vocabulary in a
hash index so that we can detect all possible terms in a short
text efficiently. But the real question is how to obtain a coher-
ent segmentation from the set of terms. We use two examples
in Figure 3 to illustrate our approach of text segmentation.
Obviously, {april in paris lyrics} is a better segmentation of

“april in paris lyrics” than {april paris lyrics}, since “lyrics” is

more semantically related to songs than to months or cities.
Similarly, {vacation april paris} is a better segmentation of

“vacation april in paris”, due to higher coherence among
“vacation”, “april”, and “paris” than that between “vacation”
and “april in paris”.

We segment a short text into a sequence of terms. We give
the following heuristics in determining a good segmentation.

• Except for stop words, each word belongs to one and
only one term;

• Terms are coherent (i.e., terms mutually reinforce each
other).

We use a graph to represent candidate terms and their
relationships. In this work, we define two types of relations
among candidate terms:

• Mutual Exclusion - Candidate terms that contain
a same word are mutually exclusive. For example,
“april in paris” and “april” in Figure 3 are mutually
exclusive, because they cannot co-exist in the final
segmentation;

• Mutual Reinforcement - Candidate terms that are
related mutually reinforce each other. For example, in
Figure 3, “april in paris” and “lyrics” reinforce each
other because they are semantically related.

Based on these two types of relations, we construct a
Term Graph (TG, as shown in Figure 3) where each node
is a candidate term. We associate each node with a weight
representing its coverage of words in the short text excluding
stop words. We add an edge between two candidate terms
when they are not mutually exclusive, and set the edge weight
to reflect the strength of mutual reinforcement as follows:

w(x, y) = max(ǫ,max
i, j

S (x̄i, ȳ j)) (1)

where ǫ > 0 is a small positive weight, {x̄1, x̄2, ..., x̄m} is
the set of typed-terms for term x, {ȳ1, ȳ2, ..., ȳn} is the set of
typed-terms for term y, and S (x̄, ȳ) reflects semantic coherence
between typed-terms x̄ and ȳ. We call S (x̄, ȳ) Affinity Score
and we calculate affinity scores in the offline process (We
describe it in detail in Section IV-B). Since a term may
potentially map to multiple typed-terms, we define the edge
weight between two candidate terms as the maximum Affinity
Score between their corresponding typed-terms. When two

terms are not related, the edge weight is set to be slightly
larger than 0 (to guarantee the feasibility of a Monte Carlo
algorithm).

��������������

����� �����

�	��
�

��

��
 ��

��

�����

����� �����

�����

(a) coherent segmentation of “april in
paris lyrics” is {april in paris, lyrics}.

��������������

����� �����

	�
�����

��

��� ���

���

�����

���
� �����

�����

(b) coherent segmentation of “vaca-
tion april in paris” is {vacation, april,
paris}.

Fig. 3. Examples of text segmentation.

Now, the problem of finding the best segmentation is
transformed into the problem of finding a sub-graph in the
original TG such that the sub-graph

• is a complete graph (clique) - The selected terms are
not mutually exclusive;

• has 100% word coverage excluding stop words;

• has the largest average edge weight - We choose
average edge weight rather than total edge weight as
the measure of a sub-graph, since the latter usually
prefers shorter terms (i.e., more nodes and edges in the
sub-graph), which is contradictory with the intuition
of the widely-used Longest-Cover algorithm.

Given that an edge exists between each pair of nodes as
long as the corresponding terms are not mutually exclusive,
we can arrive at the following theorem:

Theorem 1: Finding a clique with 100% word coverage is
equivalent to retrieving a Maximal Clique from the TG.

Proof: If the retrieved clique G′ is not a Maximal Clique
of the original TG, then we can find another node v such
that after inserting v and the corresponding edges into G′, the
resulting sub-graph is still a clique. Due to the special structure
of TG, v is not mutually exclusive with any other node in G′.
In other words, they do not cover the same word. Therefore,
adding v into G′ will increase the total word coverage to be
larger than 100%, which is obviously impossible.

Now we need to find a Maximal Clique with the largest
average edge weight from the original TG. However, this
problem is NP-hard, since it requires to enumerate every
possible subset of nodes, determine whether the resulting
subgraph is a Maximal Clique or not, calculate its average
edge weight, and then find the one with the largest weight.
Consequently, the time complexity of this problem is O(2nv ·n2

v),
where nv is the number of nodes in TG. Though nv is not
too large in the case of short texts, we still need to reduce
the exponential time requirement into polynomial, since short
text understanding is usually regarded as an online task or an
underlying step of many other applications like classification
or clustering. Therefore, we propose a randomized algorithm
to obtain an approximate solution more efficiently, as described
in Algorithm 1 and Algorithm 2.

Algorithm 1 runs as follows: First, it randomly selects an
edge e = (u, v) with probability proportional to its weight.

Algorithm 1 Maximal Clique by Monte Carlo (MaxCMC)

Input:
G = (V, E); W(E) = {w(e)|e ∈ E}

Output:
G′ = (V ′, E′); s(G′)

1: V ′ = ∅; E′ = ∅

2: while E , ∅ do
3: randomly select e = (u, v) from E with probability proportional

to its weight
4: V ′ = V ′ ∪ {u, v}; E′ = E′ ∪ {e}
5: V = V − {u, v}; E = E − {e}
6: for each t ∈ V do
7: if e′ = (u, t) < E or e′ = (v, t) < E then
8: V = V − {t}
9: remove edges linked to t from E: E = E − {e′ = (t, ∗)}

10: end if
11: end for
12: end while

13: calculate average edge weight: s(G′) =

∑

e∈E′
w(e)

|E′ |

Algorithm 2 Chunking by Maximal Clique (CMaxC)

Input:
G = (V, E); W(E) = {w(e)|e ∈ E}
number of times to run Algorithm 1: k

Output:
G′

best
= (V ′

best
, E′

best
)

1: smax = 0
2: for i = 1; i ≤ k; i + + do
3: run Algorithm 1 with ¡G′

i = (V ′
i , E

′
i),s(G′

i)¿ as output
4: if s(G′

i) > smax then
5: G′

best
= G′

i ; smax = s(G′
i)

6: end if
7: end for

In other words, the larger the edge weight, the higher the
probability to be selected. After picking an edge, it removes
all nodes that are disconnected (namely mutually exclusive)
with the picked nodes u or v. At the same time, it removes
all edges that are linked to the deleted nodes. This process
is repeated until no edges can be selected. The obtained sub-
graph G′ is obviously a Maximal Clique of the original TG.
Finally, it evaluates G′ and assigns it with a score representing
the average edge weight. Since edges are randomly selected
according to their weights in this process, it will intuitively
result in high probability to achieve a Maximal Clique with the
largest average edge weight. In order to further improve the
accuracy of the above algorithm, we repeat it for k times, and
choose the Maximal Clique with the highest score as the final
segmentation. Obviously, the larger k is, the larger accuracy
we can achieve. The parameter k can be manually defined or
automatically learned using existing machine learning meth-
ods. However, due to lack of large labeled dataset, we have to
set k manually. The experimental results in Section V verify
the effectiveness of this randomized algorithm, and we found
that our framework works very well even when k is 3.

In algorithm 1, the while loop will be repeated for at most
ne times, since each time the algorithm removes at least one
edge from the original TG. Here, ne is the total number of
edges in TG. Similarly, the for loop in each while loop will
be repeated for at most nv times. Therefore, the total time
complexity of this randomized algorithm is O(k ·ne ·nv) or O(k ·

n3
v). In other words, the algorithm successfully reduces the time

requirement of finding best segmentations from exponential to
polynomial.

2) Type Detection: Recall that we can obtain the collection
of typed-terms for a term directly from the vocabulary. For
example, term “watch” appears in instance-list, concept-list,
as well as verb-list of our vocabulary, thus the possible typed-
terms of “watch” are {watch[c],watch[e],watch[v]}. Analogous-
ly, the collections of possible typed-terms for “free” and
“movie” are { f ree[ad j], f ree[v]} and {movie[c],movie[e]} respec-
tively, as illustrated in Figure 4. For each term derived from a
short text, type detection determines the best typed-term from
the set of possible typed-terms. In the case of “watch free
movie”, the best typed-terms for “watch”, “free”, and “movie”
are watch[v], free[ad j], and movie[c] respectively.

The Chain Model (CM): Traditional approaches to POS
tagging consider lexical features only. Most of them adop-
t Markov Model [4][5][6][7][8][9][10] which learns lexical
probabilities (P(word|tag)) as well as sequential probabilities
(P(tagi|tagi−1, ..., tagi−n)) from a labeled corpora of sentences,
and tags a new sentence by searching for tag sequence that
maximizes the combination of lexical and sequential prob-
abilities. However, such surface features are insufficient to
determine types of terms in the case of short texts. As we
have discussed in Section I, “pink” in “pink songs” will be
mistakenly recognized as an adjective using traditional POS
taggers, since both the probability of “pink” as an adjective
and that of an adjective preceding a noun are relatively
high. Whereas, “pink” is actually a famous singer and thus
should be labeled as an instance, considering the fact that
the concept song is much more semantically related with
the concept singer than the color-describing adjective “pink”.
Furthermore, the sequential feature (P(tagi|tagi−1, ..., tagi−n))
fails in short texts. In other words, the type of a term does
not necessarily depend on types of preceding terms only, as
illustrated in the query “microsoft office download”. Therefore,
better approaches should be invented to improve the accuracy
of type detection.

Our intuition is that although lexical features are insuf-
ficient to determine types of terms derived from a short text,
errors can be reduced substantially by taking into consideration
semantic relations with surrounding context. We believe that
the preferred result of type detection is a sequence of typed-
terms where each typed-term has a high prior score obtained
by considering traditional lexical features, and typed-terms in
a short text are semantically coherent with each other.

More formally, we define Singleton Score (SS) to measure
the correctness of a typed-term considering lexical features. To
simplify implementation, we calculate Singleton Scores direct-
ly based on the results of traditional POS taggers. Specifically,
we first obtain the POS tagging result of a short text using an
open source POS tagger - Stanford Tagger2 [25][26]. Then we
assign Singleton Scores to terms by comparing theirs types and
POS tags. Specifically, terms whose types are consistent with
their POS tags will get a slightly larger Singleton Score than
those whose types are different from their POS tags. Since
traditional POS tagging methods cannot distinguish among
attributes, concepts, and instances, we treat all of them as

2http://nlp.stanford.edu/software/tagger.shtml

nouns. This guarantees types and POS tags to be comparable.

S sg(x̄) =

{

1 + θ x̄.r = pos(x̄)
1 otherwise

(2)

In Equation 2, x̄.r and pos(x̄) are the type and POS tag of
typed-term x̄ respectively.

Based on Singleton Score which represents lexical features
of typed-terms and Affinity Score which models semantic
coherence between typed-terms (will be described in Section
IV-B), we formulate the problem of type detection into a graph
model - the Chain Model. Figure 4 (a) illustrates an example
of the Chain Model.

We borrow the idea of first order bilexical grammar,
and consider topical coherence between adjacent typed-terms,
namely the preceding and the following one. In particular,
we build a chain-like graph where nodes are typed-terms
retrieved from the original short text, edges are added between
each pair of typed-terms mapped from adjacent terms, and
the edge weight between typed-terms x̄ and ȳ is calculated
by multiplying the Affinity Score with the corresponding
Singleton Scores.

w(x̄, ȳ) = S sg(x̄) · S (x̄, ȳ) · S sg(ȳ) (3)

Here, S sg(x̄) is the Singleton Score of typed-term x̄ defined in
Equation 2, and S (x̄, ȳ) is the Affinity Score between typed-
terms x̄ and ȳ reflecting their semantic coherence.

Now the problem of type detection is transformed into
finding the best sequence of typed-terms collectively, which
maximizes the total weight of the resulting sub-graph. That
is, given a sequence of terms {t1, t2, ..., tl} derived from the
original short text, we need to find a corresponding sequence
of typed-terms {t̄∗

1
, t̄∗

2
, ..., t̄∗

l
} that maximize:

l−1
∑

i=1

w(t̄i, t̄i+1) (4)

In the case of “watch free movie”, the best se-
quence of typed-terms detected using the Chain Model is
{watch[e], f ree[ad j],movie[c]}, as illustrated in Figure 4 (a).

��������

��������

������	�

�����

������
�

����	�

��	�����

��	�����

���

��	��

(a) type detection result of “watch
free movie using the Chain Model

is {watch[e], f ree[ad j], movie[c]}.

��������

��������

������	�

�����

������
�

����	�

��	�����

��	�����

���

��	��

(b) type detection result of “watch
free movie using the Pairwise Model

is {watch[v], f ree[ad j], movie[c]}.

Fig. 4. Difference between Chain Model and Pairwise Model.

The Pairwise Model (PM): In fact, terms that are most
related in a short text might not always be adjacent. Therefore,
if we only consider semantic relations between consecutive
terms, like in the Chain Model, it will lead to mistakes.
In the case of “watch free movie” in Figure 4 (a), the
Chain Model incorrectly recognizes “watch” to be an instance,
since “watch” is an instance of the concept product in our
knowledgebase, and the probability of adjective “free” co-
occurring with concept product is relatively high. However,

when relatedness between “watch” and “movie” is considered,
“watch” should be labeled as a verb. The Pairwise Model is
able to capture such cross-term relations. More specifically, the
Pairwise Model adds edges between typed-terms mapped from
each pair of terms rather than adjacent terms only. In Figure
4 (b), there are edges between nonadjacent terms “watch” and
“movie”, in addition to those between “watch” and “free” as
well as those between “free” and “movie”.

Like the assumption of Chain Model, the best sequence
of typed-terms should be semantically coherent. One thing
to note is that although cross-term relations are considered
in the Pairwise model, a typed-term is not required to be
related with every other typed-term. Instead, we assume that it
should be semantically coherent with at least one other typed-
term. Therefore, the goal of the Pairwise Model is to find
the best sequence of typed-terms which guarantees that the
Maximum Spanning Tree (MST) of the resulting sub-graph has
the largest weight. In Figure 4 (b), as long as the total weight of
edge between watch[v] and movie[c] and that between f ree[ad j]

and movie[c] is the largest, {watch[v], f ree[ad j],movie[c]} can be
successfully recognized as the best sequence of typed-terms for
“watch free movie”, regardless of relations between watch[v]

and f ree[ad j].

We employ the Pairwise Model in our prototype system as
the approach to type detection. But we present the accuracy
of both models in the experiments, in order to verify the
superiority of Pairwise Model over Chain Model.

3) Instance Disambiguation: Instance disambiguation is
the process of eliminating inappropriate concepts behind an
ambiguous instance. We accomplish this task by re-ranking
concept clusters of the target instance based on context in-
formation in a short text (i.e., remaining terms), so that the
most appropriate concept clusters are ranked higher and the
incorrect ones lower.

Our intuition is that a concept cluster is appropriate for an
instance only if it is a common sense of that instance and it
achieves support from surrounding context at the same time.
Take “hotel california eagles” described in Section I as an
example. Although both animal and music band are popular
senses of “eagles”, only music band is semantically coherent
(i.e., frequently co-occurs) with the concept song and thus can
be kept as the final semantics of “eagles”.

We have mentioned before that a term is not necessarily
related with every other term in the short text. If irrelevant
terms are used to disambiguate a target instance, most of
its concept clusters will obtain little support, which will in
turn lead to over-filtering. Therefore, we decide to use only
the most related term to help with disambiguation. In the
Chain Model and Pairwise Model, we have obtained the best
sequence of typed-terms together with the weighted edges
in-between, hence the most related term can be retrieved
straightforwardly by comparing weights of edges connecting
to the target instance.

Based on the aforementioned intuition, we model the
process of instance disambiguation using a Weighted-Vote ap-
proach. Assume that the target ambiguous instance is x̄ whose

concept cluster vector is x̄. ~C = (〈C1,W1〉, ..., 〈CN ,WN〉), and
the most related typed-term used for disambiguation is ȳ. Then

the importance of each concept cluster in x̄’s disambiguated

concept cluster vector x̄. ~C′ = (〈C1,W
′
1
〉, ..., 〈CN ,W

′
N
〉) is a

combination of Self-Vote and Context-Vote. More formally,

x̄.W ′
i = Vsel f (Ci) · Vcontext(Ci) (5)

Here, Self-Vote Vsel f (Ci) is defined as the original weight
of concept cluster Ci, namely Vsel f (Ci) = x̄.Wi; Context-
Vote Vcontext(Ci) represents the probability of Ci as a co-
occurrence neighbor of the context ȳ. In other words, Context-
Vote Vcontext(Ci) is the weight of Ci in ȳ’s co-occur concept
cluster vector. The concept cluster vector as well as the co-
occur concept cluster vector of a typed-term can be obtained
offline. We will describe it in detail in Section IV-B.

In the case of “hotel california eagles”, the original concept
cluster vector of “eagles” is (〈animal,0.2379〉,〈band,0.1277〉,
〈bird,0.1101〉,〈celebrity,0.0463〉...) and the co-occur concep-
t cluster vector of “hotel california” is (〈singer,0.0237〉,
〈band,0.0181〉, 〈celebrity,0.0137〉, 〈album,0.0132〉...). After
disambiguation using Weighted-Vote, the final concept cluster
vector of “eagles” (after normalization) is (〈band,0.4562〉,
〈celebrity,0.1583〉,〈animal,0.1317〉,〈singer,0.0911〉...).

B. Offline Knowledge Acquisition

A prerequisite to short text understanding is knowledge
about instance semantics as well as relatedness between terms.
Therefore, we build an is-a network and a co-occurrence
network between words and phrases. We also pre-calculate
some essential scores for online inference.

1) Harvesting Is-A Network from Probase: Probase [24]
is a huge semantic network of concepts (e.g., country and
president), instances (e.g., china and barac obama) and at-
tributes (e.g., population and age). It mainly focuses on two
types of relationships, namely the isA relationship between
instances and concepts (e.g., china isA country and barac
obama isA president) and the isAttributeOf [27] relationship
between attributes and concepts (e.g., population isAttributeOf
country and age isAttributeOf president).

We use Probase3 for two reasons. First, Probase’s broad
coverage of concepts makes it more general, in comparison
with other knowledgebases such as Freebase [28], WordNet
[29], WikiTaxonomy [30], DBPedia [31], etc. Knowledge in
Probase is acquired automatically from a corpus of 1.68 billion
webpages, and it contains 2.7 million concepts and 16 million
instances, which results in more than 20.7 million is-a pairs4.
Second, the probabilistic information contained in Probase
enables probabilistic reasoning and thus makes short text
understanding feasible. Unlike traditional knowledgebases that
simply treat knowledge as black or white, Probase quantifies
many measures such as popularity, typicality, basic level of
categorization, etc. which are important to cognition.

2) Constructing Co-occurrence Network: We construct a
co-occurrence network to model semantic relatedness. The co-
occurrence network can be regarded as an indirected graph,
where nodes are typed-terms and edge weight w(x̄, ȳ) formu-
lates the strength of relatedness between typed-terms x̄ and ȳ.
We observe that

3Probase data is publicly available at http://probase.msra.cn/dataset.aspx
4http://research.microsoft.com/en-us/projects/probase/statistics.aspx

• Terms of different types occurs in different contexts.
Therefore, the co-occurrence network should be con-
structed between typed-terms instead of terms;

• Common terms (e.g., “item” and “object”) which co-
occur with almost every other term are meaningless in
modeling semantic relatedness, thus the corresponding
edge weights should be penalized.

Based on these observations, we build a co-occurrence
network as follows: 1) We scan every distinct sentence from a
web corpus, and obtain part-of-speech tags using Stanford POS
tagger. For words tagged as verbs or adjectives, we derive their
stems and get a collection of verbs and adjectives. For noun
phrases, we check them in the vocabulary and determine their
types (attribute, concept, instance) collectively by minimizing
topical diversity. Our intuition is that the number of topics
mentioned in a sentence is usually limited. For example,
“population” can be an attribute of country as well as an
instance of geographical data. Assume that the collection of
noun phrases parsed from a sentence is {“china”,“population”},
then “population” should be labeled as an attribute in order
to limit the topic of the sentence to be country only. Using
this approach, we can obtain a set of attributes, concepts and
instances. Take “Outlook.com is a free personal email from
Microsoft” as another example. The collection of typed-terms
we get after analyzing this sentence is {outlook[e], f ree[ad j],
personal[ad j], email[c], microso f t[e]}. 2) Given the set of typed-
terms derived from a sentence, we add a co-occur edge
between each pair of typed-terms. To estimate edge weight,
we first calculate the frequency of two typed-terms appearing
together using the following formula:

fs(x̄, ȳ) = ns · e−dists(x̄,ȳ) (6)

Here, ns is the number of times sentence s appears in the web
corpus, and dists(x̄, ȳ) is the distance between typed-terms x̄
and ȳ (i.e., number of typed-terms in-between) in that sentence.
e−dists(x̄,ȳ) is used to penalize long distance co-occurrence. We
then aggregate frequencies among sentences, and weigh each
edge by a modified tf-idf formula.

f (x̄, ȳ) =
∑

s

fs(x̄, ȳ) (7)

w(x̄, ȳ) =
f (x̄, ȳ)
∑

z̄ f (x̄, z̄)
· log

N

Nnei(ȳ)

(8)

In Equation 8,
f (x̄,ȳ)
∑

z̄ f (x̄,z̄)
reflects the probability that humans think

of typed-term ȳ when seeing x̄. N is the total number of typed-
terms contained in the co-occurrence network, and Nnei(ȳ) is
the number of co-occurrence neighbors of ȳ. Therefore, the
idf part of this formula penalizes typed-terms that co-occur
with almost every other typed-term.

There are some obvious drawbacks in the above approach.
First, the number of typed-terms is extremely large. Recall
that Probase contributes 2.7 million concepts and 16 million
instances to our vocabulary. This will increase storage cost and
affect the efficiency of probabilistic inference on the network.
Second, concept-level co-occurrence is more useful for short
text understanding, when semantic coherence is considered.
Therefore, we compress the original co-occurrence network by
retrieving concepts of each instance from the is-a network, and
then grouping similar concepts together into concept clusters.

The nodes in the reduced version of the co-occurrence network
are verbs, adjectives, attributes and concept clusters, and the
edge weights (i.e., w(x̄,C) and w(C1,C2)) are aggregated from
the original network. We use the reduced network in the
remaining of this work to estimate semantic relatedness.

3) Concept Clustering by K-Mediods: To represent the
semantics of an instance in a more compact manner, and to
reduce the size of the original co-occurrence network at the
same time, we employ the K-Mediods [32] algorithm to cluster
similar concepts contained in Probase (k is set as 5000 in this
work). We believe that if two concepts share many instances,
they are similar to each other. Therefore, we define the distance
between two concepts c1 and c2 as

d(c1, c2) = 1 − cosine(E(c1), E(c2)) (9)

where E(c) is the instance distribution of concept c, which can
be obtained directly from Probase’s is-a network. Readers can
refer to [33] for more details on concept clustering.

Given a typed-term t̄, we can determine its semantics (i.e.,

concept cluster vector t̄. ~C) from the is-a network and the
concept clustering result.

t̄. ~C =



















∅ t̄.r ∈ {v, ad j, att}
(< C, 1 > |t̄ ∈ C) t̄.r = c
(< Ci,Wi > |i = 1, ...,N) t̄.r = e

(10)

In Equation 10, we distinguish among three circumstances:
1) verbs, adjectives, and attributes have no hypernyms in
the is-a network, thus we specifically define their concept
cluster vectors as empty; 2) for a concept, only the con-
cept cluster it belongs to will be assigned with the weight
1 and all the other concept clusters will be assigned with
the weight 0; 3) for an instance, we retrieve its concept-
s from the is-a network, and weigh each concept cluster
by the summation of weights of containing concepts. More
formally, Wi =

∑

c∈Ci
p(c|t̄) where p(c|t̄) is the popularity

score harvested by Probase. For example, the concept vector
of “eagles” contained in Probase is (〈themepark, 0.0351〉,
〈amusementpark, 0.0336〉, 〈company, 0.0179〉, 〈park, 0.0178〉,
〈bigcompany, 0.0178〉). After concept clustering, we obtain a
concept cluster vector (〈 {theme park, amusement park, park},
0.0865 〉, 〈 {company, big company}, 0.0357 〉).

4) Scoring Semantic Coherence: We define Affinity Score
(AS) to measure semantic coherence between typed-terms. In
this work, we consider two types of coherence: similarity and
relatedness (co-occurrence). We believe that two typed-terms
are coherent if they are semantically similar or they often co-
occur on the web. Therefore, the Affinity Score between typed-
terms x̄ and ȳ can be calculated as follows:

S (x̄, ȳ) = max(S sim(x̄, ȳ), S co(x̄, ȳ)) (11)

Here, S sim(x̄, ȳ) is the semantic similarity between typed-terms
x̄ and ȳ, which can be calculated directly as cosine similarity
between their concept cluster vectors.

S sim(x̄, ȳ) = cosine(x̄. ~C, ȳ. ~C) (12)

S co(x̄, ȳ) measures semantic relatedness between typed-terms x̄
and ȳ. We denote the co-occur concept cluster vector of typed-

term x̄ as ~Cco(x̄), and the concept cluster vector of typed-term

ȳ as ȳ. ~C. We observe that the larger the overlapping between

these two concept cluster vectors, the stronger the relatedness
between typed-terms x̄ and y. Therefore, we calculate S co(x̄, ȳ)
as follows:

S co(x̄, ȳ) = cosine(~Cco(x̄), ȳ. ~C) (13)

An important question is how to get the co-occur concept

clusters of a typed-term (namely ~Cco(x̄)) from the reduced co-
occurrence network. Figure 5 shows two examples: 1) for
verbs, adjectives, and attributes, their co-occur concept clusters
can be retrieved directly; 2) for instances and concepts, we
aggregate the co-occur concept cluster vectors of their con-
cept clusters. More formally, we denote the co-occur concept

clusters of a typed-term as a vector ~Cco(x̄) = (< C1,W1 >, <
C2,W2 >, ..., < CN ,WN >), and calculate the weight of each
concept cluster as follows:

Wi =

{

w(x̄,Ci) x̄.r ∈ {v, ad j, att}
∑

C w(C, x̄. ~C) · w(C,Ci) x̄.r ∈ {c, e}
(14)

In Equation 14, w(x̄,Ci) and w(C,Ci) represent edge weights
between typed-terms and concept clusters and that between
concept clusters respectively in the reduced co-occurrence net-
work. As mentioned before, these information are aggregated
from edge weights in the original co-occurrence network.

w(C, x̄. ~C) refers to the weight of C in x̄’s concept cluster vector
defined in Equation 10.

�������

���	
��

�

� ���	��

���	
��

�

��

(a) for typed-term read[v].

�������

��	�
��

��
��� �����

�	�����

��
���

��	�
��

�	�	��
�

�	��������
����

(b) for typed-term ipad[e].

Fig. 5. Examples of retrieving co-occur concept clusters.

V. Experiment

We conducted comprehensive experiments on real-world
dataset to evaluate the performance of our approach to short
text understanding. All the algorithms were implemented in
C#, and all the experiments were conducted on a server with
2.90GHz Intel Xeon E5-2690 CPU and 192GB memory.

A. Benchmark

One of the most notable advantages of our framework
over current state-of-the-art approaches [11][12] to short text
understanding is that we build a generalized framework that
can recognize best segmentations, conduct type detection, and
eliminate instance ambiguity explicitly based on various types
of context information. Therefore, we manually picked 11
terms that have ambiguity in segmentations, types, or concepts
(i.e., “april in paris”, “hotel california”, “watch”, “book”,
“pink”, “blue”, “orange”, “population”, “birthday”, “apple”,
“fox”), and randomly selected 1100 queries containing one of
these terms from one day’s querylog (100 queries for each
term). Furthermore, in order to verify the effectiveness of
our framework on general short texts, we randomly sampled
another 400 queries without any restriction. We removed 22

queries containing only one word which cannot be recognized
by Probase. Altogether, we obtained 1478 queries through this
process.

We divided the original dataset into 5 disjoint parts, and
invited 15 colleagues to label them (3 for each part). We
defined three labeling tasks, namely labeling the correctness
of text segmentation, type detection and concept labeling
respectively. Note that different people might refer to the
same topic with different expressions or in different levels
which all make sense. For example, some might label “barack
obama” as a‘president while others label him as a politician.
Besides, although we have clustered Probase’s concepts into
5000 concept clusters, it is still infeasible for annotators to
manually select one from thousands of concept clusters to label
an instance. Therefore, we decided to run our algorithms first,
provide annotators with the segmentation of each query as well
as types and top-1 concept clusters of terms in that query,
and then ask them to determine the correctness of provided
results. In order to eliminate conflicts, final labels were based
on majority vote.

B. Effectiveness of Text Segmentation

In order to incorporate context semantics into the frame-
work of text segmentation, we construct a Term Graph (TG)
between candidate terms and conduct segmentation by search-
ing for the Maximal Clique with the largest average edge
weight in TG. We propose a randomized algorithm to reduce
time complexity of the naive Brute Force search. Therefore, we
compare the accuracy of three models for text segmentation in
this part, namely Longest-Cover, MaxCBF (Maximal Clique
by Brute Force) and MaxCMC (Maximal Clique by Monte
Carlo).

TABLE II. Accuracy of text segmentation.

Longest-Cover MaxCBF MaxCMC

accuracy 0.954 0.984 0.979

From the results in Table II, we can see that the Maximal
Clique approach to text segmentation achieves better perfor-
mance than the Longest-Cover algorithm by taking into con-
sideration context semantics in addition to traditional surface
features like length. Furthermore, the randomized algorithm
used to improve efficiency also achieves comparable accuracy
to that of the Brute Force search. Therefore, we decide to adopt
the randomized Maximal Clique algorithm (MaxCMC) as the
approach to text segmentation in the rest of the experiments.

C. Effectiveness of Type Detection

In this part, we compare our approaches to type detection
(i.e., the Chain Model and Pairwise Model) with a widely-used,
non-commercial POS tagger - Stanford Tagger. Since tradition-
al POS taggers do not distinguish among attributes, concepts
and instances, we need to address this problem first in order
to make a reasonable comparison. We consider two situations
here: 1) if the recognized term contains multiple words or its
POS tag is noun, then we check the frequency of that term
as an attribute, a concept and an instance respectively in our
knowledgebase, and choose the type with the highest frequency

as its label; 2) otherwise, we label the term according to its
POS tag.

Table III demonstrates the accuracies of Stanford Tagger
(ST), Chain Model (CM) and Pairwise Model (PM) for type
detection. We use four kinds of accuracies to measure the
effectiveness of these models:

• lexical-level: the percentage of correct lexical (i.e.,
verb and adjective) term-type pairs;

• semantic-level: the percentage of correct semantic
(i.e., attribute, concept and instance) term-type pairs;

• term-level: the percentage of correct term-type pairs;

• query-level: the percentage of queries whose term-type
pairs are all correct.

From Table III, we can see that the Pairwise Model
performs better than the Chain Model on all kinds of accuracy
measures, which in turn provides better accuracies than the
Stanford Tagger. This is consistent with our expectations. Since
the Stanford Tagger only pays attention to lexical features,
it will mistakenly recognize “pink” in “pink songs” as an
adjective, which is actually an instance of singer. The Chain
Model and Pairwise Model, on the contrary, take context
semantics into consideration and thus can solve the above
problem. Note that the Chain Model has the limitation that
it only considers semantic relations between adjacent terms,
which makes it incomparable with the Pairwise Model.

TABLE III. Accuracy of type detection.

ST CM PM

lexical-level 0.865 0.967 0.978

semantic-level 0.944 0.969 0.973

term-level 0.932 0.968 0.974

query-level 0.876 0.955 0.967

Recall that we employ a Singleton Score to incorporate
the result of traditional POS taggers in the Chain Model and
Pairwise Model. We assign Singleton Score of a typed-term
as 1 + θ when its type is consistent with its POS tag, and 1
otherwise. In other words, the variable θ represents the amount
of impact lexical features have on type detection results. Figure
6 depicts the variation of type detection accuracies on terms
and queries, when θ ranges from 0 to 1.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy

θ

term
query

(a) CM

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy

θ

term
query

(b) PM

Fig. 6. Accuracy of type detection when θ increases.

From Figure 6, we can see that the accuracy of type
detection increases dramatically when context semantics and
lexical features are combined to estimate best types (from
θ = 0 to θ = 0.1). However, as lexical features play an

increasingly important role in the Chain Model and Pairwise
Model, the accuracy decreases slightly (from θ = 0.2 to θ = 1).
Most notably, the accuracy of type detection using Chain
Model and Pairwise Model when θ = 0 (namely only semantic
features are considered) is larger than that of the Standford
Parser depicted in Table III. This proves that context semantics
are more important than lexical features for determining types
of terms in short texts.

D. Effectiveness of Short Text Understanding

As we have mentioned before, one of the most notable
contributions of our work is that we propose a generalized
framework that can recognize best segmentations, conduct
type detection, and eliminate instance ambiguity based on
various types of context information. Therefore, we examine
the effectiveness of short text understanding as a whole in this
part. More specifically, we compare the performance of our
framework with current state-of-the-art approaches to mining
semantics from short texts:

• Song [11] - conduct text segmentation by Longest-
Cover, and disambiguate based on similar instances;

• Kim [12] - conduct text segmentation by Longest-
Cover, and disambiguate based on related instances;

• Our approach - conduct text segmentation by finding
Maximal Clique, and disambiguate using various types
of context information.

We consider accuracy from two perspectives to measure
the effectiveness of short text understanding:

• term-level: the percentage of instances whose top-1
concept cluster is correct;

• query-level: the percentage of queries whose instances
are all correctly conceptualized.

As depicted in Table IV, our approach performs dramatical-
ly better than current state-of-the-art approaches, since it takes
into consideration both surface features and context semantics
for text segmentation and type detection, and at the same
time utilizes various context information to conduct instance
disambiguation.

TABLE IV. Accuracy of short text understanding.

Song Kim Our Approach

term-level 0.694 0.701 0.943

query-level 0.525 0.526 0.890

It is worth mentioning that the most crucial prerequisite
to concept labeling (or instance disambiguation) is that the
types of contextual terms should be recognized correctly. This
is because the same term with various types might co-occur
with different concept clusters. Therefore, we examine the
correlation between type detection and concept labeling in the
remaining part.

First, we compare the accuracy of concept labeling after
applying Stanford Tagger with that achieved after applying
Chain Model and Pairwise Model. In order to conduct a
meaningful comparison, we extend Stanford Tagger to two

models, ST-AC and ST-NAC corresponding to CM-WV (Chain
Model + Weighted-Vote) and PM-WV (Pairwise Model +
Weighted-Vote) respectively.

• Stanford Tagger + Adjacent Context (ST-AC) - dis-
ambiguate using most related and adjacent contextual
terms after applying Stanford Tagger;

• Stanford Tagger + Nonadjacent Context (ST-NAC)
- disambiguate using most related contextual terms
which can be nonadjacent, after applying Stanford
Tagger.

Table V demonstrates the accuracies of ST-AC, ST-NAC,
CM-WV, and PM-WV for concept labeling. We can see that
the performance of ST-AC and ST-NAC is incomparable with
that of CM-WV and PM-WV respectively. This is mainly
because the Chain Model and Pairwise Model perform better
than the Stanford Tagger in determining types of terms parsed
from a short text, as shown in Table III.

TABLE V. Impact of type detection on concept labeling.

ST-AC CM-WV ST-NAC PM-WV

term-level 0.831 0.937 0.834 0.943

query-level 0.679 0.876 0.683 0.890

We then examine the variation of concept labeling ac-
curacies on terms and queries when θ ranges from 0 to 1.
From Figure 7, we can see a similar trend with that in Figure
6. Specifically, the accuracy of concept labeling increases
dramatically, when our type detection module achieves bet-
ter performance by combining context semantics and lexical
features (from θ = 0 to θ = 0.1). However, as lexical features
play an increasingly important role in type detection (from
θ = 0.2 to θ = 1), its accuracy decreases slightly, which in
turn leads to performance degradation in concept labeling.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy

θ

term
query

(a) CM-WV

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy

θ

term
query

(b) PM-WV

Fig. 7. Accuracy of concept labeling when θ increases.

E. Efficiency of Short Text Understanding

As we know, short text understanding is usually regarded
as an online task or an underlying step of many other text
mining applications like classification and clustering. These
applications usually need to handle millions of short texts at
a time, which makes the efficiency of short text understanding
extremely critical. Therefore, we examine the time requirement
of our framework to verify its efficiency.

Figure 8 depicts the variation of average time requirement
of our framework for short text understanding (i.e., conduct
text segmentation using Monte Carlo algorithm, type detec-
tion using the Pairwise Model, and instance disambiguation

using Weighted-Vote algorithm) when query length (number
of words) increases. Most of the queries in our dataset (1275
out of 1278) contain no more than 11 words. From Figure 8, we
can see that our framework can efficiently interpret a short text
within hundreds of milliseconds, and that the time requirement
increases linearly with the ascending of query length.

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9 10 11

L
at

en
cy

 (
m

s)

Query Length

Fig. 8. Average time requirement of short text understanding when length
(number of words) increases.

VI. Conclusion

In this work, we propose a generalized framework to under-
stand short texts effectively and efficiently. More specifically,
we divide the task of short text understanding into three sub-
tasks: text segmentation, type detection, and concept labeling.
We formulate text segmentation as a weighted Maximal Clique
problem, and propose a randomized approximation algorithm
to maintain accuracy and improve efficiency at the same
time. We introduce a Chain Model and a Pairwise Model
which combine lexical and semantic features to conduct type
detection. They achieve better accuracy than traditional POS
taggers on the labeled benchmark. We employ a Weighted-
Vote algorithm to determine the most appropriate concepts
for an instance when ambiguity is detected. The experimental
results demonstrate that our proposed framework outperforms
existing state-of-the-art approaches in the field of short text
understanding.

We observe that the three steps of short text understanding,
namely text segmentation, type detection, and concept labeling
are actually related with each other. For example, the quality of
text segmentation has an direct influence on that of type detec-
tion and concept labeling. Similarly, disambiguated instances
can improve the accuracy of measuring semantic coherence
between terms, which in turn leads to better performance
of text segmentation and type detection. Therefore, a better
framework for short text understanding should be one with
feedbacks. We leave it as future work.

Acknowledgement

This work was partially supported by the National 863
High-tech Program under Grant No. 2012AA011001, the Na-
tional Key Basic Research Program (973 Program) of China
under Grant No. 2014CB340403, and the National Natural
Science Foundation of China under Grant No. M13210007.

References

[1] W. Hua, Y. Song, H. Wang, and X. Zhou, “Identifying users’ topical
tasks in web search,” in Proceedings of the Sixth ACM International

Conference on Web Search and Data Mining, ser. WSDM ’13.
New York, NY, USA: ACM, 2013, pp. 93–102. [Online]. Available:
http://doi.acm.org/10.1145/2433396.2433410

[2] S. Klein and R. F. Simmons, “A computational approach to grammatical
coding of english words,” J. ACM, vol. 10, no. 3, pp. 334–347, Jul.
1963. [Online]. Available: http://doi.acm.org/10.1145/321172.321180

[3] B. B. Greene and G. M. Rubin, Automatic grammatical tagging of

English. Department of Linguistics, Brown University, 1971.

[4] K. W. Church, “A stochastic parts program and noun phrase parser for
unrestricted text,” in Proceedings of the second conference on Applied

natural language processing, ser. ANLC ’88. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1988, pp. 136–143.
[Online]. Available: http://dx.doi.org/10.3115/974235.974260

[5] S. J. DeRose, “Grammatical category disambiguation by statistical
optimization,” Comput. Linguist., vol. 14, no. 1, pp. 31–39, Jan. 1988.
[Online]. Available: http://dl.acm.org/citation.cfm?id=49084.49087

[6] C. G. de Marcken, “Parsing the lob corpus,” in Proceedings

of the 28th annual meeting on Association for Computational

Linguistics, ser. ACL ’90. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1990, pp. 243–251. [Online]. Available:
http://dx.doi.org/10.3115/981823.981854

[7] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, “A practical
part-of-speech tagger,” in Proceedings of the third conference on

Applied natural language processing, ser. ANLC ’92. Stroudsburg,
PA, USA: Association for Computational Linguistics, 1992, pp.
133–140. [Online]. Available: http://dx.doi.org/10.3115/974499.974523

[8] R. Weischedel, R. Schwartz, J. Palmucci, M. Meteer, and L. Ramshaw,
“Coping with ambiguity and unknown words through probabilistic
models,” Comput. Linguist., vol. 19, no. 2, pp. 361–382, Jun. 1993.
[Online]. Available: http://dl.acm.org/citation.cfm?id=972470.972477

[9] B. Merialdo, “Tagging english text with a probabilistic model,”
Comput. Linguist., vol. 20, no. 2, pp. 155–171, Jun. 1994. [Online].
Available: http://dl.acm.org/citation.cfm?id=972525.972526

[10] H. Schütze and Y. Singer, “Part-of-speech tagging using a variable
memory markov model,” in Proceedings of the 32nd annual meeting on

Association for Computational Linguistics, ser. ACL ’94. Stroudsburg,
PA, USA: Association for Computational Linguistics, 1994, pp. 181–
187. [Online]. Available: http://dx.doi.org/10.3115/981732.981757

[11] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen, “Short
text conceptualization using a probabilistic knowledgebase,” in
Proceedings of the Twenty-Second international joint conference

on Artificial Intelligence - Volume Volume Three, ser. IJCAI’11.
AAAI Press, 2011, pp. 2330–2336. [Online]. Available: http:
//dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-388

[12] D. Kim, H. Wang, and A. Oh, “Context-dependent conceptualization,”
in Proceedings of the Twenty-Third International Joint Conference on

Artificial Intelligence, ser. IJCAI’13. AAAI Press, 2013, pp. 2654–
2661. [Online]. Available: http://dl.acm.org/citation.cfm?id=2540128.
2540511

[13] R. Mihalcea and A. Csomai, “Wikify! linking documents to
encyclopedic knowledge,” in Proceedings of the sixteenth ACM

conference on Conference on information and knowledge management,
ser. CIKM ’07. New York, NY, USA: ACM, 2007, pp. 233–242.
[Online]. Available: http://doi.acm.org/10.1145/1321440.1321475

[14] D. Milne and I. H. Witten, “Learning to link with wikipedia,”
in Proceedings of the 17th ACM conference on Information and

knowledge management, ser. CIKM ’08. New York, NY, USA: ACM,
2008, pp. 509–518. [Online]. Available: http://doi.acm.org/10.1145/
1458082.1458150

[15] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti,
“Collective annotation of wikipedia entities in web text,” in
Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining, ser. KDD ’09. New
York, NY, USA: ACM, 2009, pp. 457–466. [Online]. Available:
http://doi.acm.org/10.1145/1557019.1557073

[16] X. Han and J. Zhao, “Named entity disambiguation by leveraging
wikipedia semantic knowledge,” in Proceedings of the 18th ACM

conference on Information and knowledge management, ser. CIKM
’09. New York, NY, USA: ACM, 2009, pp. 215–224. [Online].
Available: http://doi.acm.org/10.1145/1645953.1645983

[17] X. Han, L. Sun, and J. Zhao, “Collective entity linking in web text:
A graph-based method,” in Proceedings of the 34th International

ACM SIGIR Conference on Research and Development in Information

Retrieval, ser. SIGIR ’11. New York, NY, USA: ACM, 2011, pp. 765–
774. [Online]. Available: http://doi.acm.org/10.1145/2009916.2010019

[18] E. Brill, “A simple rule-based part of speech tagger,” in Proceedings

of the workshop on Speech and Natural Language, ser. HLT ’91.
Stroudsburg, PA, USA: Association for Computational Linguistics,
1992, pp. 112–116. [Online]. Available: http://dx.doi.org/10.3115/
1075527.1075553

[19] E. BRILL, “Some advances in transformation-based part of speech
tagging,” in National Conference on Artificial Intelligence, 1994, 1994,
pp. 722–727.

[20] E. Brill, “Transformation-based error-driven learning and natural
language processing: a case study in part-of-speech tagging,” Comput.

Linguist., vol. 21, no. 4, pp. 543–565, Dec. 1995. [Online]. Available:
http://dl.acm.org/citation.cfm?id=218355.218367

[21] R. Garside, “The claws word-tagging system,” The Computational

analysis of English: A corpus-based approach. London: Longman, pp.
30–41, 1987.

[22] A. McCallum and W. Li, “Early results for named entity recognition
with conditional random fields, feature induction and web-enhanced
lexicons,” in Proceedings of the Seventh Conference on Natural

Language Learning at HLT-NAACL 2003 - Volume 4, ser. CONLL ’03.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2003, pp. 188–191. [Online]. Available: http://dx.doi.org/10.3115/
1119176.1119206

[23] G. Zhou and J. Su, “Named entity recognition using an hmm-
based chunk tagger,” in Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics, ser. ACL ’02. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2002, pp. 473–
480. [Online]. Available: http://dx.doi.org/10.3115/1073083.1073163

[24] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: a probabilistic
taxonomy for text understanding,” in Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, ser.
SIGMOD ’12. New York, NY, USA: ACM, 2012, pp. 481–492.
[Online]. Available: http://doi.acm.org/10.1145/2213836.2213891

[25] K. Toutanova and C. D. Manning, “Enriching the knowledge sources
used in a maximum entropy part-of-speech tagger,” in Proceedings of

the 2000 Joint SIGDAT conference on Empirical methods in natural

language processing and very large corpora: held in conjunction

with the 38th Annual Meeting of the Association for Computational

Linguistics - Volume 13, ser. EMNLP ’00. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2000, pp. 63–70. [Online].
Available: http://dx.doi.org/10.3115/1117794.1117802

[26] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-
rich part-of-speech tagging with a cyclic dependency network,”
in Proceedings of the 2003 Conference of the North American

Chapter of the Association for Computational Linguistics on Human

Language Technology - Volume 1, ser. NAACL ’03. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2003, pp. 173–180.
[Online]. Available: http://dx.doi.org/10.3115/1073445.1073478

[27] T. Lee, Z. Wang, H. Wang, and S. won Hwang, “Attribute extraction
and scoring: A probabilistic approach,” in Data Engineering (ICDE),

2013 IEEE 29th International Conference on, April 2013, pp. 194–205.

[28] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international

conference on Management of data. ACM, 2008, pp. 1247–1250.

[29] F. Christiane, “Wordnet: an electronic lexical database,” Cambrige, MIT

Press, Language, Speech, and Communication, 1998.

[30] S. P. Ponzetto and M. Strube, “Deriving a large scale taxonomy from
wikipedia,” in AAAI, vol. 7, 2007, pp. 1440–1445.

[31] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in The semantic web.
Springer, 2007, pp. 722–735.

[32] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-

tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[33] P. Li, H. Wang, K. Q. Zhu, Z. Wang, and X. Wu, “Computing
term similarity by large probabilistic isa knowledge,” in Proceedings

of the 22Nd ACM International Conference on Conference on

Information & Knowledge Management, ser. CIKM ’13. New
York, NY, USA: ACM, 2013, pp. 1401–1410. [Online]. Available:
http://doi.acm.org/10.1145/2505515.2505567

