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ABSTRACT

This paper describes a cross-version compiler validator and
measures its effectiveness on the CLR JIT compiler. The
validator checks for semantically equivalent assembly lan-
guage output from various versions of the compiler, includ-
ing versions across a seven-month time period, across two
architectures (x86 and ARM), across two compilation sce-
narios (JIT and MDIL), and across optimizations levels. For
month-to-month comparisons, the validator achieves a false
alarm rate of just 2.2%. To help understand reported seman-
tic differences, the validator performs a root-cause analysis
on the counterexample traces generated by the underlying
automated theorem proving tools. This root-cause analysis
groups most of the counterexamples into a small number of
buckets, reducing the number of counterexamples analyzed
by hand by anywhere from 53% to 96%. The validator ran on
over 500,000 methods across a large suite of test programs,
finding 12 previously unknown correctness and performance
bugs in the CLR compiler.

Categories and Subject Descriptors
D.2.4 [Validation]: Compiler Validation

General Terms
Verification, Reliability
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1. INTRODUCTION

Compilers have grown enormously complicated in re-
sponse to demands for new language features and better op-
timizations. When adding new features and optimizations to
an existing compiler, there’s always a danger of introducing
new bugs into the compiler. Such bugs might cause existing
programs to fail when recompiled with a new version of a
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compiler; this danger is particularly worrisome for just-in-
time (JIT) compilers, where installed programs might sud-
denly stop working due to a JIT compiler upgrade. Worse,
a JIT compiler bug might introduce a security vulnerability
into a system that trusts the compiler for secure execution of
downloaded code, as in the case of JavaScript engines, Java
virtual machines, and .NET Silverlight virtual machines.

To prevent new bugs in existing compilers, compiler devel-
opers typically run the compiler on large suites of regression
tests. Even very large test suites will not catch all compiler
bugs, though [17]. Therefore, many researchers have turned
their attention to static validation techniques for compilers,
using theorem proving technology to perform compiler veri-
fication [8] or translation validation [11, 9, 16, 14]. Compiler
verification uses a theorem prover or proof assistant to ver-
ify a compiler correct, once and for all, so that all compiler
output is guaranteed correct for all valid source programs.
Translation validation, on the other hand, runs a theorem
prover after each compilation to check that the output of the
compiler is semantically equivalent to the source program.

Compiler verification requires verifying the compiler im-
plementation, which is difficult for large compilers. So far,
compiler verification has scaled to moderately-sized research
compilers [8]. Although larger compilers have been formal-
ized to some extent [18], they have not been proven cor-
rect, and it remains a daunting task to do so. By contrast,
translation validation requires only verification of the com-
piler output, not the compiler implementation. As a result,
translation validation has been used to test gcc and LLVM,
both large, widely-used compilers [9, 16, 14].

Nevertheless, translation validation has long suffered from
false alarms: because program equivalence is undecidable,
the theorem prover often fails to prove equivalence between
the compiler output and the source program, even when
equivalence actually holds. Necula [9] reports false alarm
rates of up to 3% per function for individual compiler op-
timization passes, while Tristan et. al. [16] and Stepp et.
al. [14] report false alarm rates of 10%-40% for combined
series of optimizations. When running the theorem prover
on tens of thousands of test functions, it’s currently very dif-
ficult to investigate all of these failures for all optimization
passes by hand. To make static compiler validation prac-
tical for day-to-day compiler development, we must reduce
the burden of false alarms on compiler developers.

This paper proposes two techniques for static compiler
validation with a low false-alarm burden:

e We compare multiple versions of the compiler assem-
bly language output, rather than comparing the source



code to the assembly language code. We test sev-
eral incarnations of this idea: comparing the output
of multiple versions of a compiler over time (specifi-
cally, across check-ins to the compiler implementation
over many months), comparing the output of a com-
piler for two different architectures (ARM and x86),
comparing the output of a compiler in JIT mode to
the compiler in mostly-ahead-of-time mode (based on
the MDIL [12] machine-dependent intermediate lan-
guage), and comparing the output of a compiler with
different optimizations enabled.

e When an alarm is raised, our tool automatically pro-
duces counterexample traces showing values that cause
divergent behavior in the two assembly language pro-
grams. The tool then uses the traces to automatically
infer the suspected root cause of the divergent behav-
ior. The root causes classify the counterexamples into
a small number of buckets, greatly reducing the human
effort needed to investigate equivalence failures.

Comparing multiple versions of a compiler over time pro-
duces a particularly low false alarm rate, because much com-
piler development consists of refactoring of the existing com-
piler implementation or adding new features to the compiler.
In these cases, the goal is to not disturb the compiler output
for existing programs, to minimize the risk of new bugs that
break compilation of existing programs. Thus, across check-
ins to the compiler, we often find that the compiler assembly
language output remains syntactically identical. Even when
the output is syntactically different, the differences are often
easy for a theorem prover to check for semantic equivalence.

One concern with this cross-version validation is a lack of
“ground truth”: the validation may miss a bug that appears
in both the old version of a compiler and the new version.
Thus, one might worry that even if cross-version validation is
easier to use than traditional translation validation, it might
provide weaker correctness guarantees. We believe, though,
that cross-version validation and translation validation have
complementary strengths. For example, a developer might
use translation validation once to provide “ground truth” for
one version of the compiler, but then use cross-version vali-
dation to check subsequent versions of the compiler relative
to the original translation-validated version. In addition, ex-
isting implementations of translation validation don’t check
the complete translation from source code to assembly lan-
guage code. Instead, they usually assume that the source
code has been parsed into an abstract syntax tree, and thus
miss bugs in the compiler’s parser. Furthermore, they typ-
ically check the intermediate compiler representation, but
not the generation of assembly language code [9, 16, 14]. By
contrast, cross-version validation catches any changes to the
compiler that cause semantically differing output, including
changes in parsing and assembly-language generation.

The rest of this paper describes our implementation of
cross-version validation and root-cause analysis, and de-
scribes their application to a real-world optimizing compiler,
the .NET Common Language Runtime (CLR) JIT compiler:

e Section 2 describes the implementation of our cross-
version validator, based on the SymDiff [7] symbolic
differencing tool, the Boogie [1] program verifier, and
the Z3 [4] automated theorem prover. These tools
make the implementation of the validator considerably

easier, allowing us to focus our attention on the se-
mantics of assembly language instructions, the model
of memory, and the model of the run-time system.

e Section 3 describes our root-cause analysis, based on
the output from the SymDiff, Boogie, and Z3 tools.

e Section 4 presents experimental results containing
measurements of false alarms across 7 months of com-
piler check-ins for 2 source control branches of the
CLR under active development, including x86-to-ARM
validation, JIT-to-MDIL validation, and optimized-to-
unoptimized code validation. The measurements show
that the average false alarm rate for month-to-month
differences is 2.2%, an order of magnitude lower than
the 10%-40% false alarm rate for recent translation
validators [16, 14] and the 9%-31% false alarm rate
for month-to-month syntactic identity checking. The
measurements also show the effectiveness of root cause
analysis, which grouped anywhere from 53% to 96% of
the false alarms into a small number of buckets (with
no false alarms ever placed in the wrong bucket).

One limitation of our current work is that the validation
is not 100% sound; section 2 discusses the reasons for un-
soundness, such as assumptions about aliasing, assumptions
about the run-time system, and unsound modeling of loops.
Nevertheless, even without an absolute guarantee of correct-
ness, the tool is still useful for catching bugs; measurements
in section 4.3 show that the tool is very effective on real code
with artificially injected bugs, with just a 3% false negative
rate, while section 4.6 describes 12 real bugs found with the
tool during CLR development and testing.

2. IMPLEMENTATION

Our validator takes assembly language programs gener-
ated by two versions of the CLR compiler and tries to prove
the assembly language programs equivalent. Fach assembly
language program consists of a series of compiled method
bodies (functions), each consisting of a sequence of assem-
bly language instructions. As in earlier translation valida-
tion work [9, 16, 14], our validator works on one method
body at a time. In other words, if compiled program P con-
sists of method bodies M1..Mn and compiled program P’
consists of method bodies M1’..Mn’, the validator tries to
prove M1 equivalent to M1’, M2 equivalent to M2’, etc.

The validator converts each method body into a procedure
in the Boogie [1] programming language. Boogie is a simple
imperative language supporting assertions (e.g. precondi-
tions, postconditions, loop invariants) that can be statically
checked for validity using the Boogie verification generator.
Boogie is typically not used to write programs directly, but
instead is used to encode programs from other languages,
such as C and assembly language. Boogie provides basic
statements, such as if/else, goto, and assignment, and ba-
sic expressions, such as variables, integers, bit vectors, and
function applications. These constructs can encode a vari-
ety of other programming language constructs. This section
describes the encoding of assembly language used by our val-
idator, including encodings of arithmetic, memory, and calls
to other methods and run-time system functions. It then de-
scribes how the SymDiff tool, Boogie tool, and Z3 automated
theorem prover process the encoded assembly language.



2.1 Arithmetic

As a simple example, the validator encodes the x86 in-
struction “add eax, ebx” as a single Boogie statement, “eax
:= ADD(eax, ebx)”. Here, ADD is a Boogie function and
eax and ebx are Boogie variables:

type val;

var eax:val, ebx:val, ecx:val, edx:val;
var esi:val, edi:val, esp:val, ebp:val;
function ADD(x:val, y:val):val { ... 1}

There are several possible definitions of ADD. First, it
could be uninterpreted, declaring just that there exists an
ADD that computes an output deterministically as a func-
tion of its two inputs:

function ADD(x:val, y:val):val;

However, an uninterpreted ADD would lack properties
such as commutativity and associativity. Thus, if method
Mk contained “add eax, ebx” while method Mk’ contained
“add ebx, eax”; the validator would be unable to verify that
both add instructions compute the same value. It’s possible
to specify some of these properties as Boogie axioms:

axiom (forall x:val, y:val::ADD(x, y) == ADD(y, x));

Rather than axiomatizing arithmetic operations from
scratch, though, it’s more efficient to use the arithmetic
functions built into modern theorem provers like Z3 [4], ei-
ther using Z3’s big-vectors or Z3’s integers:

type val = bv32;
function ADD(x:val, y:val):val { $add32(x, y) }

type val = int;
function ADD(x:val, y:val):val { x + y }

The first definition declares the “val” type to be a 32-
bit “bit vector” value, which exactly matches the register
sizes on 32-bit architectures, such as x86. (The $add32
function is the theorem prover’s underlying addition oper-
ation for 32-bit numbers.) The second definition declares
the “val” type to be an arbitrarily sized mathematical in-
teger. Clearly, the second definition is only an approxima-
tion of the underlying hardware register values, which are
not arbitrary-sized. However, an automated theorem prover
usually reasons more quickly about mathematical integers
than bit vectors. Thus, there is a trade-off between a sound
representation of the hardware and theorem proving per-
formance. After implementing both definitions, we found
that bit vectors caused the theorem prover to time out on
medium-sized and large methods, making the validator only
useful for small methods. Therefore, we chose to model ma-
chine arithmetic using mathematical integers, even though
this can lead to both extra false alarms and missed bugs.

One drawback of using mathematical integers is a lack of
built-in definitions for bitwise operations, such as bitwise-
and and bitwise-exclusive-or. Compilers often make clever
use of such operations in generated assembly code. For ex-
ample, x86 compilers often exclusive-or a register with itself

to produce the value 0, since the exclusive-or instruction
happens to have an efficient x86 encoding. Compilers may
also use bitwise-and to align the stack pointer to 8-byte or
16-byte boundaries, or to truncate 32-bit values to 16 bits
or 8 bits. To support such idioms, we declare a small set
of axioms for bitwise operations (e.g. the exclusive-or of an
integer with itself equals 0).

The validator also encodes the x86 floating point stack
and status flags; we omit these details for brevity.

2.2 Memory

Boogie provides an array type, written “[t1]t2”, that maps
values of type t1 to values of type t2, along with expres-
sions to read array elements and update arrays with new ele-
ments. The validator encodes memory as an array mapping
addresses to values. However, reasoning effectively about
memory loads and stores requires some understanding of the
memory’s structure and potential aliasing between different
pointer values. For example, consider the following Boogie
encoding of the x86 instruction sequence “mov [esp + 12],
eax; mov [ebx + 4 * ecx + 8], edx; mov eax, [esp + 12]™:

type val = int;
var Mem: [vallval;

Mem[esp + 12] := eax;

Mem[ebx + 4 * ecx + 8] := edx;
eax := Mem[esp + 12];

If ebx points to a heap object (e.g. an array) while esp
points to a stack frame, the compiler will assume that ad-
dresses esp + 8 and ebx + 4 * ecx + 12 do not overlap, so the
final value of eax in this code should equal the initial value.
To prove that the code does not modify eax, the validator
needs to track the compiler’s non-aliasing assumptions.

To represent such non-aliasing information, we model
memory as a set of disjoint regions, with one region per
stack frame, one region per heap object, and one region for
static fields. We assume that stores to one region will not af-
fect loads from another region. We also assume that adding
an offset to an address in one region produces an address in
the same region, so that esp + 12 resides in the same region
as esp and ebx + 4 * ecx + 8 resides in the same region
as ebx. These assumptions are unsound; a big enough ecx
will cause ebx + 4 * ecx + 8 to overlap the stack frame.
(For type-safe code with array bounds checks, the compiler
enforces the soundness of these assumptions, but for unsafe
code like C++ and unsafe C#, the compiler makes these
assumptions without enforcement.) To track the region as-
sociated with each address, we define each register value to
be a pair of a region identifier and an integer value:

type ref; // region identifier
type word = int;

type val; // pair of (ref, word)
function Val(r:ref, i:word):val;
function ValRef (v:val) :ref;
function ValWord(v:val) :word;

The Val constructor creates a value from a region and an
integer word, while ValRef and ValWord extract the region



and integer word components from a value. Non-address val-
ues use a special null region identifier as their region compo-
nent. We lift arithmetic operations to work on region-word
pairs. For example, we define ADD as:

function ADD(x:val, y:val):val {
ValWithRegion(ValRef (x), ValRef(y),
ValWord(x) + ValWord(y))

where ValWithRegion builds a value for x + y with a
region chosen as follows: x’s region if y’s region is null, y’s
region if x’s region is null, and a dummy region if both x
and y have non-null regions. This allows the validator to
tell, for example, that ADD(esp, Val(nullRegion, 12)) keeps
esp’s region, and when ebx is an address and 4 * ecx is a
non-address, ADD(ebx, 4 * ecx) keeps ebx’s region.

Consider the x86 instruction “mov [esp + 12], eax” again.
After incorporating regions, the following Boogie statement
expresses the assignment to memory:

Mem[ADD(esp, Val(nullRegion, 12))] := eax;

This statement is still inaccurate in one way: storing a
32-bit value to memory should actually update 4 separate
memory locations, esp + 12, esp + 13, esp + 14, and esp +
15, placing 8 bits into each location, rather than putting the
whole 32-bit word in the single location esp + 12. Although
we did implement this byte-accurate model, we found that
the theorem prover performance degraded significantly rel-
ative to the less accurate word-oriented model shown in the
statement above, leading to excessive theorem prover time-
outs. Therefore, this paper’s experiments use the unsound
word-oriented model (which may cause missed bugs or false
alarms) rather than the byte-accurate model.

The validator can handle complex instructions that mod-
ify multiple words of memory, such as the x86 “rep movs”
and “rep stos” instructions (often used by the CLR compiler
to copy or initialize large values). For example, the “rep
stosb” instruction fills memory addresses edi ... edi+ecx-1
with a byte value from register al, expressed in Boogie as:

function REP_STOSB(Mem: [val]val, ecx:val, edi:val,
al:val):[vallval;
axiom (forall Mem: [vallval, ., al:val, i:val::
(...((ValRef(edi) == ValRef (i)
&& ValWord(edi) <= ValWord(i)
&& ValWord(i) < ValWord(edi) + ValWord(ecx))
==> REP_STOSB(Mem, ecx, edi, al)[i] == al)...))

2.3 Control Flow

Boogie supports goto statements and if/else statements,
so it is straightforward to encode assembly language jump
and conditional jump instructions. For call instructions, the
validator uses uninterpreted functions to model the call’s
effect on the registers and heap. For example, it encodes
the instruction “call eax” as:

function CallMem(addr:val, heapSig:int, args:list):
[vallval;
function CallOut(addr:val, heapSig:int, args:list):

[int]val;

Heap := CallMem(eax, HeapSig(Mem),
Cons(argl, ...Cons(argm)...));

retl := CallOut(eax, HeapSig(Mem), ...)[1];
retn := CallOut(eax, HeapSig(Mem), ...)[n];
Mem := ...combine stack, Heap...

assign retl...retn to registers, stack slots...

Here, argl...argm are the arguments to the call, and
retl...retn are the return values from the call. By-reference
parameters are treated as both arguments and return values.
To generate the encoding, the validator must know how ar-
guments and return values are laid out in registers and stack
slots. Therefore, the validator requires a type annotation on
each call instruction (generated by the CLR in our experi-
ments). The validator uses this type and the CLR’s calling
conventions for primitive types, structs, generics, pass-by-
reference parameters, and so on, to compute which registers
and stack locations hold arguments and return values.

We assume that the call’s output depends on the state
of the heap, but not on the state of the caller’s stack frame
(except for by-reference arguments from the stack, which ex-
plicitly appear in the list argl...argn). Therefore, we do not
make CallMem a function of the whole memory state Mem,
but rather just a function of the heap portion of Mem. The
function HeapSig strips away the stack portion of memory,
compressing the heap portion of memory into an integer sig-
nature; HeapSig(Mem1) equals HeapSig(Mem?2) if and only
if Mem1 and Mem?2 are identical at all non-stack addresses.
HeapSig considers Mem1 and Mem?2 equal regardless of the
order of stores to Mem1 and Mem?2, allowing the compiler
to reorder heap stores without upsetting the validator.

Since CallMem and CallOut are uninterpreted, the val-
idator has no information about the internal behavior of the
called function. Thus, if method Mk calls method Mj, while
method MKk’ inlines a call to Mj, the validator will fail to
prove Mk and Mk’ equivalent — the validator sees the un-
interpreted functions for Mj as different from the concrete
inlined statements in Mj. To avoid false alarms, we currently
keep inlining disabled when validating the CLR compiler.

While keeping calls uninterpreted is generally sound, lead-
ing to possible false alarms but not to false negatives, in
theory it may sometimes be unsound to represent calls to
run-time system functions as uninterpreted functions. This
is because the run-time system may change behavior from
version to version, so it might not always be the case that
calling the same run-time function with the same arguments
produces the same values. To be completely sound would
require an accurate model of every version of the run-time
system, including the behavior of casts, allocation, memory
barriers, lazy static initialization, lazy JI'T compilation, etc..
In practice, we have written models for a few run-time sys-
tem functions (mainly write barriers and 8-byte arithmetic),
but have otherwise left the run-time system uninterpreted.

Currently, the validator has only limited support for ex-
ception handling. The validator assumes that thrown excep-
tions exit the method; it lacks the control-flow edges into the
method’s exception handlers. Because if this, the validation
may fail to notice semantic differences in exception handlers.
Section 4 measures the impact of this unsoundness.



2.4 Running Symdiff, Boogie, and Z3

After encoding each method Mk and Mk’ in Boogie, the
validator invokes the SymDiff symbolic differencing tool [7]
to compare the Boogie encodings for semantic equivalence.
SymDiff combines the encodings of Mk and Mk’ into a sin-
gle block of Boogie code that executes Mk on some mem-
ory Mem and register state eax...esp, executes Mk’ on an
independent memory Mem’ and state eax’...esp’, and then
asserts the final state of Mk and Mk’ is the same:

...encoding of Mk...

...encoding of Mk’...

assert HeapSig(Mem) == HeapSig(Mem’);
assert returnVal == returnVal’;
assert calleeSaved == calleeSaved’;

The assertions say that for Mk and Mk’ to be considered
equivalent, the final heap state must be the same, the return
values must be the same, and the callee-save state must be
the same. The variable calleeSaved is a boolean that is true
if the method correctly restores callee-save registers (e.g.
ebx, ebp, etc.) and returns to the correct return address.
Initially, we created a separate assertion for each callee-save
register (assert ebx == ebx’, assert ebp == ebp’, etc.), but
found that this didn’t quite work for our cross-architecture
experiments, because the x86 method and the ARM method
have different sets of callee-save registers.

SymDiff feeds the combined Boogie code to the Boogie
verification tool, which attempts to prove that the assertions
hold. The Boogie tool converts the assertions into a “ver-
ification condition” — a pure logical formula that encodes
both the assertions and the meaning of the statements in Mk
and Mk’. The Z3 automated theorem prover attempts to
prove that the verification conditions are valid. If this proof
succeeds, then the validator deems Mk and Mk’ equivalent.

For code with loops, the verification condition generation
and proof is not entirely automatic — Boogie needs program
annotations in the form of “loop invariants” to avoid generat-
ing an infinite verification condition. Generating loop invari-
ants is undecidable, but earlier work by Necula [9] describes
how symbolic evaluation can be used to build simulation re-
lations that serve as potential loop invariants. For ease of
implementation, however, the validator currently employs
a more expedient solution: in the spirit of automated, un-
sound bug finding tools [2], the validator simply eliminates
loops by unrolling them n times, ignoring any behaviors past
the n’th iteration (n = 2 in the experiments in this paper).
While this is certainly unsound, because it fails to capture
semantic differences that require more than n iterations to
appear, we still observe a fairly low rate of false negatives
(see section 4), as most differences are observable after only
one or two iterations. After this loop unrolling, the encod-
ings of Mk and Mk’ are loop-free and thus require no loop
invariants during verification condition generation.

3. ROOT CAUSE ANALYSIS

If the proof of the verification condition fails, Z3 gener-
ates a model (a counterexample) showing values of variables
that make the verification condition false. The SymDiff tool
parses this model and annotates the variables in Mk and
Mk’ with values from the model. This annotation provides
a human-readable trace through each method body, helping

to see where the values in the variables of Mk differ from
the values in the variables of Mk’. Nevertheless, for long
methods, the trace may contain hundreds of values from
the model, which may take 5 or 10 minutes for a human
to make sense of; when analyzing hundreds of false alarms,
this time adds up. Therefore, it’s useful to provide an auto-
mated mechanism for finding the location in the trace most
responsible for the semantic difference.

This section briefly describes our root-cause analysis,
which attempts to find the most relevant values, highlight
them in the trace, and provide information useful for group-
ing related counterexamples into buckets. Our main root
cause analysis technique works by following counterexample
traces backwards through the dataflow graphs of the two
methods being compared. For comparison with other known
techniques, we also implemented a second analysis based on
MAX-SAT [6]; space constraints preclude a full description
of this, but Section 4.5 summarizes the results. Both anal-
yses work on the Boogie code generated from the assembly
language code. As a running example, consider the following
Boogie programs, with input i and outputs z1 and z2:

x1 := F(i); x2 := F(i);
if (i > 10) if (i <= 10)

y1l := G1(x1); y2 := 1 + x2;
else else

yl :=x1 + 1; y2 := G2(x2);
zl := H(x1, yi1); z2 := H(x2, y2);

This example contains only one meaningful difference be-
tween the two programs: the statement y1 := G1(x1) dif-
fers from y2 := G2(x2) because the functions G1 and G2
differ. In this example, we assume that the functions F, G1,
G2, and H are uninterpreted: there are no axioms constrain-
ing their outputs, so the theorem prover must assume that
the outputs of the functions may differ if the function names
differ or any inputs to the functions differ. By contrast, func-
tions like “+” and “<=" are interpreted: the theorem prover
knows that 1 + x = x + 1 and that x > 10 is the negation of
x <= 10. During root cause analysis, we treat functions such
as load, store, CallMem, and CallOut as uninterpreted.

The key insight of our analysis is that while identifying
root causes is difficult in general, uninterpreted functions are
relatively easy to reason about. For example, the statements
z1 := H(x1l, y1) and z2 := H(x2, y2) both call the same
uninterpreted function H. Given a counterexample showing
that z1 and z2 differ, we can safely conclude that differing
inputs to H cause the differing outputs from H: differing
x1/x2 or differing y1/y2 values cause the differing z1 and
z2 values. Furthermore, Z3’s counterexample trace provides
the values assigned to x1, x2, y1, and y2 for a particular
counterexample, allowing us to pinpoint the offending inputs
(y1/y2 in this case). Thus, we reduce the question of why
z1 and z2 differ to the question of why y1 and y2 differ.

This insight leads to a straightforward algorithm for pro-
grams with only uninterpreted functions: if an uninterpreted
function output differs, use the counterexample trace to se-
lect the differing inputs, and recurse on the uninterpreted
function that generates those differing inputs. Of course,
real programs have a mixture of interpreted and uninter-
preted functions. For example, various interpreted functions
(if/then/else, “>", “<=", “4”) produce y1 and y2:

yl = (i >10) ? G1(F(i)) F(i) + 1

y2 = (1 <= 10) ? 1 + F(i) G2(F(i))

Our solution is crude but effective in practice: we collapse



multiple interpreted functions into single uninterpreted func-
tions, ignoring the interpreted functions semantics:

yl = U1({i, 10, G1(F(i)), F(i), 1}

y2 = U2({i, 10, 1, F(1), G2(FGENH

Since the inputs to the interpreted functions may appear
in different orders (e.g. for commutative operators like “+”7),
we group all inputs together in unordered sets. The ques-
tion of why y1 and y2 differ then reduces to the question of
why the two sets above differ. To answer this, our algorithm
uses heuristics to match the members of the set as well as
possible, taking into account values from the trace and the
uninterpreted function names and input names that appear
in the dataflow subgraphs for each member. For example,
the two F(i) members are matched based on both their trace
value and their common names F and i. After matching i,
10, 1, and F(i), the members G1(F(i)) and G2(F(i)) remain,
and thus are considered the cause of the differing y1 and
y2 values. The algorithm then recurses on G1(F(i)) and
G2(F(i)), leading to the root cause that G1 differs from G2.
In cases where all members of the sets match, the analysis
blames the interpreted functions that were erased when cre-
ating the sets (although the analysis is unable to pinpoint
exactly which interpreted function is to blame).

Our algorithm employs additional heuristics, such as using
Mem/Heap values in the trace to skip over some of the back-
wards search, replacing stack memory accesses with variable
accesses, and taking into account the semantics of some in-
terpreted functions (e.g. the x86 exclusive-or idiom for set-
ting a register to 0); we omit details of these for brevity.

3.1 Bucketing

Once a root cause is identified, the algorithm emits a short
summary of the root cause (e.g. G1/G2 are mismatched
function names) and a list of matched uninterpreted func-
tions traversed by the algorithm on the way to the root cause
(just H in the example above). A user of the root cause al-
gorithm can then write simple classifiers to group related
root causes together into buckets, eliminating the need to
manually review all the counterexamples in each bucket.

For example, mismatched runtime system calls appear
as mismatched uninterpreted function names; we created a
classifier for each such mismatch so that different run-time
system function mismatches are grouped together into dif-
ferent buckets. As another example, we created a classifier
to detect when the algorithm traverses a load uninterpreted
function whose inputs contain mismatched integer constants
or mismatched symbolic constants, indicating mismatched
field offsets. Each classifier relies only on the short sum-
mary generated by the root cause analysis, so new classifiers
do not require modifying the root cause analysis.

4. EXPERIMENTAL RESULTS

This section presents results from running the validator on
the output of the CLR (Common Language Runtime) com-
piler, including measurements of month-to-month version
differences, optimized vs. unoptimized assembly language
differences, differences across architectures (x86 and ARM),
and different compilation scenarios (JIT vs. ahead-of-time
MDIL). This section also presents results from running the
validator on some of the same tests, but with faults artifi-
cially injected to check for false negatives (missed bugs).

The CLR just-in-time compiler compiles managed-
language bytecode into assembly language for execution in

the CLR virtual machine. (Other, higher-level compilers
generate bytecode from various managed languages, such as
C#, F#, and managed C++.) All assembly language in the
measurements was generated by the CoreCLR [10] subset of
the CLR, which is used to run mobile code (Silverlight ap-
plications [10]) and is hence a particularly security-critical
version of the CLR, worth extensive testing. This subset
uses the same just-in-time compiler as the full desktop CLR,
but has a smaller set of libraries and an easier installation
process, allowing us to easily build and run many versions
of the compiler on the same machine.

Although the CLR compiler runs in just-in-time mode by
default, it also supports ahead-of-time compilation (the na-
tive image generation, or “NGEN” feature), which we used to
generate the assembly language files for the validator. One
aspect of the CLR’s JIT-oriented design made cross-version
validation slightly difficult, though: the generated code con-
tains many embedded addresses and field offsets, rather than
symbolic names. These addresses and offsets vary from ver-
sion to version, and even from compilation to compilation,
leading to many false alarms that merely report mismatched
addresses (e.g “0x004fe208 != 0x003dd484”). Therefore, we
modified the CLR to print symbolic information for ad-
dresses and fields. These modifications consisted of about
230 lines of code, scattered across 20 files. We also extended
the CLR to print more information about methods and their
argument types so that the validator could determine regis-
ter and stack usage for each call; this modification consisted
of 370 lines of code added to one file. These modifications
were shared across all the CLR versions in our experiments.

As input to the CLR compiler, we used 16 test programs
from two sources: the publically available Silverlight li-
braries (10 bytecode files), and the 6 largest bytecode files
in the Bartok compiler [3, 5] test suite.

4.1 Month-to-month comparisons

Comparing just two versions of the compiler would provide
only a limited glimpse of how version-to-version comparison
works in practice across long periods of time, so we used a
diverse set of CLR versions in several dimensions:

e First, we selected versions from the CLR source control
server across seven months. Specifically, we chose eight
different dates, each spaced exactly one month apart;
we refer to those dates as “date 0”...“date 7”7, and the
months that separate them as “month 1”...“month 7”.

e Second, we selected versions from two different source
control branches. CLR compiler development takes
place across many source control branches, including
one “main” branch and many “feature” branches where
independent features are developed. We chose the
two branches with the most check-ins to the compiler
source files over the seven-month time period, the main
branch and one feature branch.

e Third, we configured the compilers in x86-generation
mode and ARM-generation mode.

In each configuration, we left all optimizations enabled ex-
cept for inlining (as explained in section 2).

Since these are internal versions under development rather
than released compilers, not all versions could compile all
the test files. Some versions did not work at all in the Core-
CLR NGEN configuration; we omitted these from the re-
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sults. Other versions compiled some test programs but not
others: one date in each branch compiled just over half the
of 16 test programs to x86, and another date in each branch
compiled only 15 of 16 test programs to ARM. For these,
we kept the successful test programs and omitted the fail-
ing test programs from the results. Other versions compiled
most but not all methods in each test program; we kept
these failed methods in the results, but classified the meth-
ods as “Missing” in the measurements. In addition, the val-
idator itself sometimes failed to process a method, usually
due to missing address or call information from the CLR;
these methods are also classified as “Missing”.

We randomly sampled 100 method bodies from each of the
16 test programs, for each of the 7 months, for each of the 2
source control branches, and for each of the 2 architectures
(with optimizations enabled), for a total of 29300 method-
body-to-method-body comparisons (less than 100*¥16*7*2*2
= 44800 due to the omissions described above).

Figures 1, 2, 3, and 4 show the validation output for these
29300 method-body pairs. The “Different” category shows
the percentage of method bodies categorized by the validator
as semantically different. The measured difference rate for
x86 code is 1.4% (main branch) and 1.8% (feature branch),
while the rate for ARM code is 3.0% (main branch) and 2.7%
(feature branch), for an overall average of 2.2%. The higher
rate for ARM may reflect the youth of the ARM code gener-
ator relative to the x86 code generator. Nevertheless, even
if the ARM code generator experiences more churn than the
x86 code generator, the x86 validation is still important to
ensure that changes to the compiler for ARM compilation
do not introduce bugs into the x86 compilation.

The “Equivalent” and “Identical” categories show the
method-body pairs judged equivalent by the validator. The
“Equivalent” method-body pairs are methods judged equiv-
alent by SymDiff. The “Identical” method-body pairs are
method bodies with exactly the same instructions (i.e. they
are syntactically identical) after replacing integer addresses
and field offsets with their corresponding symbols. For these
pairs, SymDiff would always consider the method bodies
equivalent, so there’s no reason to run SymDiff.

For the x86 code, about 90% of methods are syntactically
identical. This is an important reason for the low false alarm
rate of version-to-version testing: even a simple syntactic
diff tool could achieve a false alarm rate of less than 10% for
the x86 tests. Nevertheless, reducing the false alarm rate to
less than 2% requires semantic checking. Furthermore, fewer
than 70% of ARM methods are syntactically identical; for
these, a syntactic diff tool would have too many false alarms,
and semantic checking is essential.

Some method-body pairs are too large for Boogie/Z3 to
handle in a reasonable amount of time. We set a limit of
200 seconds on the time Z3 spends on any one method-body
pair. We also set a limit of 1000 assembly instructions on
any method we pass through Boogie (due to a Boogie stack
overflow issue), although this instruction limit affected less
than 0.3% of method-body pairs. The “TimeOut” category
shows the method-body pairs that exceeded either of these
limits; the time-out rate ranged from 1-2%.

We randomly sampled 100 pairs reported as “Different”
from across Figures 1, 2, 3, and 4, and then used the root
cause analysis to examine the causes of the differences. The
most common differences were embedded addresses (31%;
some addresses slipped through in spite of our efforts to con-

vert integer addresses to symbolic names inside the CLR),
lack of aliasing information (22%), interprocedural optimiza-
tions (9%), and bit-level arithmetic (6%).

Note that the false alarm rate depends on how often the
validator is run: we chose month-to-month comparisons, but
developers might run week-to-week validations or validations
after each check-in. In this case, we’d expect a lower false
alarm rate, as fewer changes occur in a week than in a month.

4.2 Optimization level, architecture, and
compilation scenario comparisons

Figure 5 shows measurements for varying optimization
levels, architectures, and compilation scenarios. Each of
these measurements uses the same version of the CLR com-
piler in two different configurations. The two left measure-
ments, taken for the feature branch at date 6 (the most
recent date common to both x86 and ARM), compare the
CLR output with default optimizations (except inlining) to
the CLR output with minimum optimizations. This is ef-
fectively a validation of the optimization phases, and the
results show about a 19% false alarm rate, similar to other
measurements of false alarms for compiler optimizations [16,
14], and much higher than our 2.2% month-to-month vali-
dation rate. This suggests that compiler-generated code is
more similar across time than across optimization levels.

Figure 5 also shows validation of x86 code against ARM
code, both with optimizations enabled (except for inlining).
The false alarm rate of 29% makes this validation too un-
wieldy to perform very often, but it might still be useful for
bootstrapping the validation of code generation for a new ar-
chitecture relative to an existing, well-tested code generator
for another architecture. After this bootstrapping, month-
to-month validation over the new architecture can be used.

The fourth measurement in Figure 5 shows validation of
ARM code generated directly by the CLR compiler in JIT
mode vs. ARM code generated via machine-dependent in-
termediate language (MDIL [12]) for a set of ten popular
phone apps. The MDIL mode is used by Windows Phone
8 to shift compilation work from the phone to a dedicated
server: the server’s CLR compiler compiles phone apps to
MDIL, and the phone compiles the MDIL to ARM code.
The MDIL code contains ARM instructions, but uses sym-
bolic placeholders for field accesses, method calls, and run-
time system calls. This leads to some differences in the ARM
code for method calls and run-time system calls, which ac-
count for most of the false alarms in Figure 5.

4.3 Fault injection

The month-to-month comparisons demonstrate a low false
alarm rate, but this by itself is not enough — a tool that al-
ways said “Equivalent” would have a low false-alarm rate,
but would not be useful. We also need to know that when
two pieces of assembly language are code semantically dif-
ferent, the tool is likely to report them as different. In other
words, we want few “false negatives” (semantically different
method bodies reported as “Equivalent”).

As an example, we ran the tool on three known incorrect
assembly language files generated by past CLR versions, and
the tool reported all three as different. While this was reas-
suring, we also wanted to quantify the false negative rate on
a broader set of bugs. Therefore, we performed the following
fault-injection experiment. We re-ran the ARM month-to-
month tests for the Feature branch, but for each compari-



son of method body Mk to method body Mk’, we injected
a random fault into Mk’ before performing the compari-
son. Each fault was one of the following single-instruction
modifications: changed arithmetic opcode, changed register,
changed integer constant (randomly flipping one of lower 4
bits), changed symbolic offset/address, changed branch con-
dition, changed branch target.

We then hand-inspected each method body pair reported
as “Equivalent” to see whether it was really equivalent. To
keep the number of hand-inspections reasonable, we ran the
validator on 10 random method bodies per test program
rather than 100. This resulted in 630 method body com-
parisons, of which 69 were reported as “Equivalent”. Of
these, hand-inspection showed 50 to actually be equivalent
(marked as “Equiv-correct” in Figure 6). Nearly all of these
involved modifications to registers whose values were no
longer needed; in particular many small methods created a
frame pointer but never used the frame pointer; faults that
corrupted the frame pointer did not change the meaning of
the method body. Another interesting fault was changing
a conditional jump if a register equaled 0 to a conditional
jump if the register was less than or equal to zero using
unsigned comparison; these conditions are equivalent.

The remaining 19 (3%) were genuine false negatives
(marked as “Equiv-unsound” in Figure 6):

e 7 were modifications to load instructions whose results
were ignored. The compiler emitted these instructions
not for their results, but for the exception they cause
in case of a null pointer access; our encoding of loads
does not capture this side effect.

e 7 were due to unsound loop handling.

e 3 were faults in exception handling code considered
unreachable in our encoding.

e 1 was due to a 4-byte store to address [sp+2],
which overlaps address [sp+4]. Because our memory
model does not model word memory operations byte-
accurately, the validator does not detect that the store
to [sp+2] corrupts the contents of [sp+4].

e 1 was due to the validator omitting the implicit type
dictionary argument to a generic method call.

4.4 Performance

Figure 7 shows the time taken to validate each method
for the months 4-5 from Figure 4 (feature branch, ARM
code). We chose this particular comparison as a worst-case-
measurement: it contains the minimum number of syntacti-
cally identical method bodies from all the month-to-month
comparisons (just 18%), and syntactically identical methods
take almost no time to validate.

Figure 7 shows the total bytecode size of each test file
along with the number of assembly language instructions
(taken from date 5, the most recent of the two compiler
outputs in the month 4-5 comparison) and the number of
method bodies generated by the CLR compiler for the entire
test file. For the validator performance, the average instruc-
tions per method is correlated with the average time taken
to validate each method. In particular, the go test has far
larger method bodies (454 instructions per method body)
than the other tests, takes longer to validate (53 seconds
on average), and contains the majority of theorem prover

time per
bytecode |assembly  |compiled [instructionsmethod [time-
Isize language method [per method body outs
(bytes) linstructions |bodies  |body (seconds)|(percent)
ByteMark 77824 17919 216| 83 21.1 4
Crafty 184320 56366 328 172 17.4 7
igo 479232 202151 445 454 53.1 39
iipeg 110592 20521 265 77| 19.5] 7
sat_solver 106496 21423 251 85 5.0 1
lisp 98304 19395 546| 36| 9.6| 0
Microsoft.VisualBasic 253952 78776 1062 74 16.8| 5
System.Core 536576 226902 4978 46 7.4 1
System 233472 51067 1137 45 12.1 2
System.Net 225280 40773 1106 37| 10.2] 1
System.Runtime.Serialization| 413696 106064 3036 35 7.0 0
System.ServiceModel 520192 121407 3355 36| 3.0 0
System.ServiceModel.Web 73728 11020 154 72| 21.5 4
System.Windows.Browser 143360 35179 706| 50 5.5 0
System.Windows 1478656 351060 10401 34 3.1 0
System.Xml 319488 69879 1775 39 4.3 0
IAVERAGE 328448 89369 1860 85.9 13.5] 4.4

Figure 7: per-test results; ARM feature branch months
4,5

time-outs (39%) from among the tests. On average, each
method-body pair takes 13.5 seconds to validate on a single
core of a 2.4GHz Intel Core2 Q6600 processor with 6GB of
memory. While not as fast as more specialized approaches
to translation validation [16], this is fast enough to process
tens of thousands of methods with few time-outs.

4.5 Root cause analysis and bucketing

We evaluated the effectiveness of root cause analysis and
bucketing on three sets of results: the monthly results and
the two results from Figure 5 with the most false alarms (x86
vs. ARM and MDIL vs. JIT). For each, we ran Section 3’s
dataflow-graph-based root cause analysis on a random sam-
ple, developed appropriate buckets for the output of the root
cause analysis, and manually checked the coverage and accu-
racy of the automated bucketing. The MDIL vs. JIT results
were best: of 600 methods classified as “different”, 578 (96%)
were grouped into 21 buckets, leaving only 4% of the meth-
ods unbucketed. By contrast, the monthly results (60 out of
111 grouped into 7 buckets) and x86 vs. ARM (232 out of
436 grouped into 14 buckets) only bucketed 53-54% of the
differences. In all cases, no differences were ever placed in-
correctly in a bucket (i.e. failures in the root cause analysis
always caused an unbucketed result rather than a misbuck-
eted result). The difference in success rates was due to the
nature of the root causes; the MDIL vs. JIT causes were
dominated by differences at function call sites, which were
relatively easy to diagnose and bucket, while the other two
sets contained more differences further away from call sites.
Even when the reported root cause wasn’t precise enough for
bucketing, the root cause analysis correctly highlighted most
of the relevant instructions in the majority of the cases, still
greatly reducing the human effort required for diagnosis.

For comparison, we evaluated the effectiveness of MAX-
SAT root cause analysis [6] on these tests, using Z3’s support
for computing maximum satisfiability. The MAX-SAT anal-
ysis uses inputs from a particular counterexample, trans-
forms the programs into a system of constraints (e.g. x1 =
F(i), z1 = H(x1, y1), etc. for the example from Section 3),
and tries to satisfy as many of the constraints as possible
while allowing the program to succeed on the inputs from



the counterexample. Unsatisfied constraints correspond to
possible root causes. The resulting algorithm has the advan-
tage over the dataflow-graph-based analysis that it retains
the semantics of interpreted functions during its search.

In contrast to the dataflow graph analysis, which tries to
pinpoint a single cause, MAX-SAT tends to return a larger
set of possible causes. This is useful for assisting manual
analysis, but doesn’t lend itself directly to bucketing. For
example, naive application of MAX-SAT highlights x1 :=
F(i) aswellasyl := G1(x1) in the example from Section 3,
on the grounds that an unconstrained x1 can contain an ar-
bitrary value that causes G1(x1) to equal G2(x2), for some
possible G1 and G2. To produce more bucketable results, we
applied MAX-SAT in a more constrained way, disallowing
equality between values unless both values were produced by
the same uninterpreted function. We also forced MAX-SAT
to report pairs of statements (one in each program) rather
than individual statements. We then manually compared
results from 129 examples randomly sampled from the x86
vs. ARM and MDIL vs. JIT tests. To prevent MAX-SAT
from always timing out, we also limited the analysis to focus
only on causes at function call sites. Overall, the resulting
algorithm bucketed fewer causes than the dataflow-graph ap-
proach, and never bucketed a cause that the dataflow-graph
approach failed to bucket. However, on some unbucketed
examples, MAX-SAT came closer to the real cause, suggest-
ing that combination the MAX-SAT and dataflow-graph ap-
proaches might lead to better bucketing than either alone.

4.6 Bugs found

The CLR test team ran the validator on over 500,000
methods from various test programs, revealing 12 bugs in
the CLR compiler that were previously unknown (i.e. had
not been discovered even during extensive testing). Of these,
6 were correctness bugs, including: multiple cases of incor-
rect runtime system functions being called; incorrect calling
conventions for return buffers in some corner cases; com-
patibility issues with floating point rounding due to conver-
sions between 8-byte numbers and 10-byte numbers; incor-
rect treatment of static fields and exceptions.

The other 6 bugs were performance bugs (unintended
performance regressions). Although we hadn’t intended to
look for performance issues, some differences that were false
alarms for correctness were nevertheless real bugs for perfor-
mance. These included calls to slow versions of runtime sys-
tem functions, runtime system calls that were supposed to
be inlined, and unintentionally disabled common subexpres-
sion eliminations. This suggests that false-alarm differences
can yield useful insights, so bucketing false alarms may be
better than eliminating all false alarms.

S. RELATED WORK

Although research on translation validation goes back over
a decade [11, 9], few validators checked industrial-scale com-
pilers: Necula’s validator [9] targeted gcc, Peggy [15] tar-
geted LLVM, and Tristan et. al. [16] targeted LLVM.
These focused on validating optimizations in the compiler’s
intermediate representation rather than end-to-end valida-
tion from source language to assembly language. Of these,
only Necula’s work reports false alarm rates of less than 10%,
and this seems to be due to reporting rates for just a handful
of individual optimizations, which have false alarm rates as
high as 3.5%, rather than a whole optimization pipeline, for

which it’s unclear how well Necula’s approach would work.
Peggy reports false alarm rates of 10%-25% for SPEC 2006
benchmarks under LLVM, while Tristan et. al. report false
alarm rates of 10%-40%. Ramos and Engler [13] report a se-
mantic difference rate of 11% for optimized-to-unoptimized
code comparisions, although the semantic equivalence rate
was only 54% due to timeouts and tool issues.

When applied to the Soot Java optimizer rather than to
LLVM, Peggy produces false alarm rates of just 2% [15], in-
dicating some promise for translation validation’s practical-
ity; perhaps given more experience, a 2% false alarm rate is
also within reach for compilers like gcc, LLVM, and the CLR.
On the other hand, compared to relatively clean research
projects like Soot, the many complexities of industrial-scale
compilers (tricky optimizations, complex language features,
intricate run-time system interactions, unexpected special
cases) may simply overwhelm translation validators. If so,
version-to-version comparison may have an easier job, since
most compiler complexities become inextricably engrained
in the compiler source code, and are thus stable over time.

When discussing Peggy, the authors mention the desire
for a finer-grained heap model [15] and SMT theorem prov-
ing technology [14]. Having implemented finer-grained heap
models for cross-version validation and having used the Z3
SMT solver for cross-version validation, we can report that
these techniques work, and enable the handling of complex
instructions like “rep stosb”, but that it can take 10 seconds
or more per method, acceptable for offline testing via ran-
dom sampling but not practical as an online compiler pass.
By contrast, Tristan et. al. [16] move in the opposite direc-
tion, towards more specialized, better-performing represen-
tations with less proof search. It would be interesting to see
the false alarm rate for these specialized representations for
cross-version validation. An open question is whether such
specialized representations are as easy for humans to diag-
nose as counterexample traces generated from Z3’s models.

Yang et. al. [17] found a large number of compiler bugs by
comparing the output of different compilers to each other,
including gcc and LLVM. Rather than using semantic vali-
dation techniques, they simply executed the assembly lan-
guage generated by the different compilers and looked at the
output. While execution on concrete inputs may have lim-
ited coverage compared to semantic equivalence checking,
Yang et. al. compensated by randomly generating a large
set of test programs to cover a large fraction of the compil-
ers’ behaviors. Current translation validators are limited to
the compiler behaviors exercised by their test suites; on the
other hand, translation validation and cross-version valida-
tion gives greater assurance about the behavior of the chosen
test programs (which are often widely deployed programs,
like Silverlight), since they consider all possible inputs to the
test programs; some of the bugs that our tool found would
have been very unlikely to occur on random inputs.

6. CONCLUSIONS

Our results show that month-to-month cross-version vali-
dation achieves a low false alarm rate in practice (2.2% using
our validator on the CLR) when compared to recent trans-
lation validation results [16, 14] (10%-40% false alarm rates)
and to the results of running our validator on unoptimized
vs. optimized code (19% false alarm rate). This indicates
that cross-version validation can serve as a useful supple-
ment to translation validation and traditional testing.
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