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Abstract

In the multi-armed bandit (MAB) problem there
are k distributions associated with the rewards of
playing each of k strategies (slot machine arms).
The reward distributions are initially unknown to
the player. The player iteratively plays one strat-
egy per round, observes the associated reward, and
decides on the strategy for the next iteration. The
goal is to maximize the reward by balancing ex-
ploitation: the use of acquired information, with
exploration: learning new information.
We introduce and study a dynamic MAB prob-
lem in which the reward functions stochastically
and gradually change in time. Specifically, the ex-
pected reward of each arm follows a Brownian mo-
tion, a discrete random walk, or similar processes.
In this setting a player has to continuously keep ex-
ploring in order to adapt to the changing environ-
ment. Our formulation is (roughly) a special case
of the notoriously intractable restless MAB prob-
lem.
Our goal here is to characterize the cost of learn-
ing and adapting to the changing environment, in
terms of the stochastic rate of the change. We con-
sider an infinite time horizon, and strive to min-
imize the average cost per step which we define
with respect to a hypothetical algorithm that at ev-
ery step plays the arm with the maximum expected
reward at this step. A related line of work on the
adversarial MAB problem used a significantly weaker
benchmark, the best time-invariant policy.
The dynamic MAB problem models a variety of
practical online, game-against- nature type opti-
mization settings. While building on prior work,
algorithms and steady-state analysis for the dynamic
setting require a novel approach based on different
stochastic tools.
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1 Introduction
The multi-armed bandit (MAB) problem [27, 5, 12] has been
studied extensively for over 50 years in Operations Research,
Economics and Computer Science literature, modeling on-
line decisions under uncertainty in a setting in which an agent
simultaneously attempts to acquire new knowledge and to
optimize its decisions based on the existing knowledge. In
the basic MAB setting, which we term the static MAB prob-
lem, there are k time-invariant probability distributions as-
sociated with the rewards of playing each of the k strategies
(slot machine arms). The distributions are initially unknown
to the player. The player iteratively plays one strategy per
round, observes the associated reward, and decides on the
strategy for the next iteration. The goal of a MAB algorithm
is to optimize the total reward1 by balancing exploitation:
the use of acquired information, with exploration: learning
new information. For several algorithms in the literature (e.g.
see [5, 2]) as the number of rounds goes to infinity the ex-
pected total reward asymptotically approaches that of play-
ing a strategy with the highest expected reward. The qual-
ity of an algorithm for the static MAB problem is therefore
measured by the expected cost, or regret, incurred during an
initial finite time interval. The regret in the first t steps is de-
fined as the expected gap between the total reward collected
by the algorithm and that collected by playing an optimal
strategy in these t steps.

The MAB problem models a variety of practical online
optimization problems. As an example consider a packet
routing network where a router learns about delays on routes
by measuring the time to receive an acknowledgment for a
packet sent on that route [4, 16]. The delay for one packet
on a given route is a random value drawn from some distri-
bution. The router must try various routes in order to learn
about the delays. Trying a loaded route adds unnecessary
delay to the routing of one packet, while discovering a route
with low delay can improve the routing of the future packets.

Another application is in marketing and advertising. A
store would like to display and advertise the products that
sell best, but it needs to display and advertise various prod-
ucts to learn how good they sell. Similarly, a web search
engine tries to optimize its revenue by displaying advertise-

1In this paper the total reward is simply the sum of the rewards,
following the line of work in [21, 2, 3] and many other papers. Al-
ternatively, many papers consider the time-discounted sum of re-
wards, e.g. see [5, 12, 29] and references therein.



ments that would bring the largest number of clicks for a
given web content. The company needs to experiment with
various combinations of advertisements and page contents in
order to find the best matches. The cost of these experiments
is the loss of advertisement clicks when trying unsuccessful
matches [25].

The above examples demonstrate the practical applica-
tions of the ”explore and exploit” paradigm captured in the
MAB model. These examples also point out the limitation
of the static approach to the problem. The delay on a route
is gradually changing over time, and the router needs to con-
tinuously adapt its routing strategy to the changes in route
delays. Taste and fashion change over time. A store can-
not completely rely on information collected in the previous
season to optimize for the next one. Similarly, a web search
engine continually updates their content matching strategies
to account for the changing customers’ response.

A number of models have been proposed for capturing
the dynamic aspect of the MAB problem. Motivated by task
scheduling, Gittins [13] considered the case where only the
state of the active arm (the arm currently being played) can
change in a given step, giving an optimal policy for the Bay-
sean formulation with time discounting. This seminal result
gave rise to a rich line of work (e.g. [11, 12, 32, 31, 30, 6,
29]), a proper review of which is beyond the scope of this
paper. In particular, Whittle [33] introduced an extension
termed restless bandits [33, 7, 24], where the states of all
arms can change in each step according to a known (but ar-
bitrary) stochastic transition function. Restless bandits are
notoriously intractable: e.g. even with deterministic transi-
tions the problem of computing an (approximately) optimal
strategy is PSPACE-hard [26]. Guha et al. [14, 15] have re-
cently made a progress on some tractable special cases of
the restless MAB problem.2 Their motivations, the actual
problems they considered, and the techniques they used, are
very different from ours. In [14] they gave a constant-factor
approximation for the special case of the problem in which
arms move stochastically between two possible states. This
result was improved to a 2-approximation in [15], and ex-
tended to arms assuming a number of possible states, but
with a very strict set of transition probabilities that are not
compatible with the stochastic processes discussed here.

Auer et al. [3] adopted an adversarial approach: they de-
fined the adversarial MAB problem where the reward distri-
butions are allowed to change arbitrarily in time, and the goal
is to approach the performance of the best time-invariant pol-
icy. This formulation has been further studied in [1, 20, 17,
22, 10, 9, 19, 8]. Auer et al. [3, 1] also considered a more
general definition of regret, where the comparison is to the
best policy that can change arms a limited number of times.
Due to the overwhelming strength of the adversary, the guar-
antees obtained in this line of work are relatively weak when
applied to the setting that we consider in this paper.

We propose and study here a somewhat different approach
to addressing the dynamic nature of the MAB problem. We
note that in a variety of practical applications the time evo-
lution of the system, in particular of the reward functions, is
gradual. Obvious examples are price, supply and demand

2These papers were published after the initial technical report
version of this paper appeared.

in economics, load and delay in networks, etc. A gradual
stochastic evolution is traditionally modeled via a random
walk or a Brownian motion; for instance, in Mathematical
Finance the (geometric) Brownian motion (Wiener process)
is the standard model for continuous-time evolution of a stock
price. In line with this approach, we describe the state of
each arm – its expected reward at time t – via a Brownian
motion.3 The actual reward at a given time is an independent
random sample from the reward distribution parameterized
by the current state of this arm, e.g. a 0-1 random variable
with an expectation given by the state of the arm (in the web
advertising setting this corresponds to a user clicking or not
clicking on an ad).

We are interested in systems that exhibit a stationary,
steady-state behavior. For this reason instead of the usual
Brownian motion on a real line (which diverges to infinity)
we consider a Brownian motion on an interval with reflecting
bounds. Following the bulk of the stochastic MAB literature,
we assume that the evolution of each arm is independent (in
fact, we conjecture that regret is maximized in the case of
independently evolving arms).

Our goal here is to characterize the long-term average
cost of adapting to such changing environment in terms of
the stochastic rate of change – the volatility of Brownian mo-
tion. The paradigmatic setting for us is one in which each
arm’s state has the same stationary distribution and, there-
fore, all arms are essentially equivalent in the long term. In
such setting the standard benchmark – the best time-invariant
policy – is uninformative. Instead, we optimize with respect
to a more demanding (and also more natural) benchmark – a
policy that at each step plays an arm with the currently max-
imal expected reward.

We consider two versions of the dynamic MAB problem
described above. In the state-informed version an algorithm
not only receives a reward of the chosen arm but also finds
out the current state of this arm. This is the setting in the rest-
less MAB problem as defined in Whittle [33] and the follow-
up literature. In the second, state-oblivious, version an al-
gorithm receives its reward and no other information. This
formulation generalizes the static MAB problem to stochas-
tically changing expected rewards.

1.1 The Dynamic MAB problem

Let {D(µ) : µ ∈ [0; 1]} be a fixed family of probability dis-
tributions on [0; 1] such that D(µ) has expectation µ. Time
proceeds in rounds. Each arm i at each round t has a state
µi(t) ∈ [0; 1] such that the reward from playing arm i in
round t is an independent random sample from D(µi(t)).
At each round t an algorithm chooses one of the k alterna-
tive strategies (”arms”) and receives a reward. In the state-
oblivious version, the reward is the only information that the
algorithm receives in a given round. In the state-informed
version, the algorithm also finds out the current state of the
arm that it has chosen. The distributions D(·) are not re-
vealed to the algorithm (and are not essential to the analysis).

3As we only sample arms at integer time points, we can equiv-
alently describe the state as a sum of t i.i.d. normal increments.
In fact, we allow the increments to come from a somewhat more
general class of distributions.



The state µi(·) varies in an interval with reflecting bound-
aries. To clarify the concept of reflecting boundaries, con-
sider an object that starts moving on an interval I = [0; 1],
reversing direction every time it hits a boundary. If the object
starts at 0 and traverses distance x ≥ 0, its position is

fI(x) =
{
x′, x′ ≤ 1
1− (x′ − 1), x′ > 1,

(1)

where x′ = x (mod 2) = x− 2 bx/2c. Similarly, we define
fI(x), x < 0 as the position of an object that starts moving
from 1 and traverses distance |x|.

For concreteness we focus here on the case when each
arm’s state follows a Brownian motion. Similar results hold
for related stochastic processes such as discrete random walks
(see the Extensions Section).

The state of each arm i undergoes an independent Brow-
nian motion on an interval with reflecting boundaries. Specif-
ically, we define µi(t) = fI(Bi(t)) where I = [0; 1] is
the fundamental interval and Bi is an independent Brown-
ian motion with volatility σi. Since we only sample µi(·) at
integer times, we can also define it as a Markov chain:

µi(t) = fI ( µi(t− 1) +Xi(t) ) , (2)

where each Xi(t) is an i.i.d. sample from N (0, σi). The
stochastic rate of change is thus given by σi, which we term
the volatility of arm i.

We assume that for each arm i the initial state µi(0) is
an independent uniformly random sample from I . This is a
reasonable assumption given our goal to study the stationary
behavior of the system. Indeed, the uniform distribution on I
is the stationary distribution of the Markov chain 2 to which
this Markov chain eventually converges.4

In the dynamic MAB problem, we measure the perfor-
mance of a MAB algorithm with respect to a policy that at
every step chooses a strategy with the highest expected re-
ward. This policy changes in time, and thus it is a more
demanding benchmark than the time-invariant regret that is
often used in the MAB literature.

Definition 1.1. Consider an instance of the dynamic MAB
problem. For a given MAB algorithm A, let WA(t) be the
reward received by algorithmA in round t. Let Ø be an algo-
rithm that in every round chooses a strategy with the highest
expected reward. The dynamic regret in round t is

RA(t) = WØ(t)−WA(t).

Define the steady-state regret as

R̄A = lim sup
t

sup
t0

E

[
1
t

t0+t∑
s=t0+1

RA(s)

]
. (3)

4The convergence follows from the ergodic theorem. It should
be noted that the rate of convergence for Markov chains with infi-
nite state spaces is a rather delicate matter, e.g. see Rosenthal [28].
In this paper the rate of convergence is non-essential. Moreover, the
convergence itself does not appear in the proofs: it is used only as
intuition and an (additional) justification for assuming the uniform
distribution of the initial state.

Thus, for any fixed R > R̄A the expected average dy-
namic regret of algorithm A over any sufficiently large in-
terval is at most R, and it is the best possible upper bound
of this form. Our goal is to bound R̄A in terms of the arms’
volatility.

We use the following notation throughout the paper. The
state of arm i at time t is µi(t). The maximal state at time t
is µ∗(t) = maxi∈[k] µi(t). An arm i is maximal in round t if
µi(t) = µ∗(t).

1.2 Results: the state-informed case
We present an algorithm whose steady-state regret is optimal
up to a poly-log factor.

Theorem 1.2. Consider the state-informed dynamic MAB
problem with k arms, each with volatility at most σ. Assume
that k < σ−γ for some γ < 1

2 . Then there exists a MAB
algorithm whose steady-state regret is at most Õ(kσ2).

The algorithm is very intuitive. An arm with the highest
last-observed state is called a leader and is played often, e.g.
at least every other round. Suppose the last time some other
arm i was observed was t rounds ago. By Azuma inequality
the state of this arm changed by at most ∆µ = Õ(σ

√
t) since

then, with high probability. If µi(t) + ∆µ is smaller than the
state of the leader, then there is no point yet in trying arm i
again. Else, we mark this arm suspicious and enqueue it to
be played soon.

The main technical contribution here is the analysis, which
is quite delicate since we need to deal with the complicated
dependencies in the algorithm’s behavior induced by the stochas-
tically changing environment. Essentially, we manage to re-
duce the stochastic aspect of the problem to simple events in
the state space. We achieve it as follows. Every time each
arm is played, we spread the corresponding dynamic regret
evenly over the corresponding idle time. This way we ex-
press the cumulative dynamic regret as a sum over the con-
tributions of each arm in each round. We prove a uniform
bound on the expectation of each such contribution. To this
end, we identify a useful high-probability behavior of the
system, derive deterministic guarantees conditional on this
behavior (which is the tricky part), and then argue in terms
of the corresponding conditional expectations.

Surprisingly, the steady-state regret of our algorithm es-
sentially matches a lower bound based on a very simple idea:
if in a given round the states of the best two arms are within
σ
4 from one another, then in the next round with constant
probability either one of them can be σ

4 above another, so
any algorithm incurs expected dynamic regret Ω(σ).5

Theorem 1.3. Consider the state-informed dynamic MAB
problem with k arms of volatility σ. Then the steady-state
regret of any MAB algorithm is at least Ω(kσ2).

1.3 Results: the state-oblivious case
Our algorithm for the state-oblivious case builds on an algo-
rithm from [2] for the static MAB problem. That algorithm
implicitly uses a simple ”padding” function that for a given

5The former event happens with probability Ω(kσ), so the
steady-state regret is Ω(kσ2). This is the entire proof!



arm bounds the drift of an average reward from its (static)
expected value. We design a new algorithm UCBf which re-
lies on a novel ”padding” function f that accounts for the
changing expected rewards. The analysis is quite technical:
the specific results from [2] do not directly apply to our set-
ting; instead, we need to ”open up the hood” and combine
the technique from [2] with some new ideas.

Theorem 1.4. Consider the state-oblivious dynamic MAB
problem with k arms such that each arm i has volatility at
most σi. Then there exists a MAB algorithm whose steady-
state regret is Õ(k σav), where σ2

av = 1
k

∑k
i=1 σ

2
i .

Note that (unlike the guarantee in Theorem 1.2), the guar-
antee here is in terms of an average volatility rather than the
maximal one.

1.4 Using off-the-shelf MAB algorithms?
We ask whether similar results can be obtained using off-
the-shelf MAB algorithms. Specifically, we investigate the
following idea: take an off-the-shelf algorithm, run it and
restart it every fixed number of rounds.

For the state-informed version we consider the obvious
”greedy” approach: probe each arm, choose the best one,
play it for a fixed number m of rounds, restart. The greedy
algorithm is parameterized by the phase length m which can
be tuned depending on the number of arms and their volatil-
ity. We show that the greedy algorithm is indeed suboptimal
as compared to Theorem 1.2: the dependence on volatility
(which is smaller than one) is linear rather than quadratic;
we provide both upper and lower bounds.

For the state-oblivious version one can leverage on the
existing work for the adversarial MAB problem [3]. This
work assumes no restrictions on the state evolution, but pro-
vides guarantees only with respect to the best time-invariant
policy, or a policy that switches arms a bounded number of
times. We consider the following algorithm: run a fresh
instance of algorithm EXP3 from [3] for a fixed number m
of rounds, then restart. Using the off-the-shelf performance
guarantees for EXP3 and fine-tuningm, one can (only) bound
the steady-state regret by Õ((kσav)2/3), which is inferior to
the result in Theorem 1.4. It is an open question whether
one can obtain improved guarantees by tailoring the analysis
in [3] to our setting.

1.5 Extensions and open questions
We extend our results in several directions. First, we gener-
alize the Markov-chain formulation (2) to allow the random
incrementsXi(t) to come from other distributions which has
a certain ”light-tailed” property, such as the discrete random
walk. Second, we consider the setting in which each arm has
a distinct fundamental interval. Third, we relax the assump-
tion that the upper bound(s) on volatilities are known to the
algorithm.

The main question left open by this paper is to close
the gap between the upper and lower bounds for the state-
oblivious dynamic MAB problem. The only lower bound we
have is Theorem 1.3. We conjecture that one may obtain a
better bound based on the relative entropy-based technique
from [3]. It is also possible that the algorithmic result can

be improved, possibly via a more refined mechanism for dis-
counting information with time.

Another open question is whether one can obtain the op-
timal Õ(kσ2) steady-state regret for the state-informed ver-
sion in the case when k ≥ σ−1/2. Note that the greedy algo-
rithm mentioned in Section 1.4 achieves steady-state regret
Õ(kσ) which is non-trivial for any k ≤ σ−1.

1.6 Organization of the paper
In Sections 2 and 3 we present our main results for the state-
informed and the state-oblivious versions, respectively. Sec-
tion 4 discusses using off-the-shelf MAB algorithms. Sec-
tion 5 covers the extensions.

2 The state-informed dynamic MAB problem
We consider the state-informed dynamic MAB problem where
the volatility of each arm is at most σ. Recall that the state
of arm i at time t is denoted µi(t).

For arm i and time t, the last-seen time τi(t) is the last
time this arm has been played strictly before time t; the last-
seen state νi(t) = µi(τi(t)) is the corresponding state.

Definition 2.1. The leader in round t is the arm with a larger
last-seen state, among the arms played in rounds t − 1 and
t− 2; break ties in favor of the arm played in round t− 1.

In our algorithm, the leader is our running estimate for
an arm with the maximal state. We alternate rounds in which
we always exploit – play the leader, with rounds in which
we may explore other options. Since we define the leader in
terms of the last two rounds only, our knowledge of its state
is essentially up-to-date.

Let ν∗(t) be the last-seen state of the leader in round t.
Let csusp = Θ(log 1

σ )1/2 be the factor to be defined later.

Definition 2.2. An arm i is called suspicious at time t if

ν∗(t)− νi(t) ≤ csusp σ
√
t− τi(t). (4)

If an arm i is not suspicious at time t, then with high
probability its current reward is less than ν∗(t). If no arm is
suspicious then, intuitively, the best bet is to play the leader.
Roughly, our algorithm behaves as follows: if the time is
even it plays the current leader, and if the time is odd it plays
a suspicious arm if one exists, and the leader otherwise. To
complete the description of the algorithm, we need to specify
what it does when there are multiple suspicious arms. In
particular, we need to guarantee that after an arm becomes
suspicious, it is played eventually (and preferably soon).

Definition 2.3. An arm i is active at time t if it is not the
leader and it has been suspicious at some time t′ > τi(t).
The activation time τ act

i (t) is the earliest such time t′.

An arm becomes active when it becomes suspicious. It
stays active until it is played. The idea is to play an active
arm with the earliest activation time.

Algorithm 2.4. For bootstrapping, each arm is played once.
At any later time t do the following. If t is even, play the cur-
rent leader. If t is odd play an active arm (with the earliest
activation time) if one exists, else play the leader.



We will use a slightly more refined algorithm which al-
lows for a more efficient analysis. Essentially, we give prior-
ity to arms whose state is close to the leader’s.

Definition 2.5. Arm i is high-priority at time t if it is active
at this time and moreover τ act

i (t)− τi(t) ≤ 4k.

Algorithm 2.6. For bootstrapping, each arm is played once.
At any later time t do the following. If t is even, play the
current leader. If t is odd play an active arm if one exists,
else play the leader. If there are multiple active arms:

• if t ≡ 1 (mod 4) then play an active arm with the ear-
liest activation time; break ties arbitrarily
• if t ≡ 3 (mod 4) then play a high-priority arm with

the earliest activation time if one exists; else, play any
active arm; break ties arbitrarily.

The analysis of these two algorithms are very similar,
except that Algorithm 2.4 has inefficiencies which lead to an
extra k2 factor in its regret. We focus on Algorithm 2.6.

Theorem 2.7. Consider the state-informed dynamic MAB
problem with k arms, each with volatility at most σ. Assume
that k < σ−γ for some γ < 1

2 . Then Algorithm 2.6 achieves
steady-state regret O(k σ2 log2 1/σ).

In the rest of this section we prove Theorem 2.7.
Let R̄A(t) be the average dynamic regret up to time t.

Then, letting Ti(t) be the set of times arm i was played be-
fore and including time t, we have

E
[
R̄A(t)

]
=

1
t

∑
i∈[k]

∑
t′∈Ti(t)

E [µ∗(t′)− µi(t′)] . (5)

Let us spread contributions of individual arms evenly over
the corresponding idle time. Specifically, let us define

∆µi(t) = µ∗(t)− µi(t),
∆τi(t) = τ+

i (t)− τi(t),

where τ+
i (t) is the next time arm i is played after time τi(t).6

Then we can re-write (5) as follows:

E
[
R̄A(t)

]
=

1
t

∑
i∈[k]

∑
t′∈[t]

E

[
∆µi(τi(t′))

∆τi(t′)

]
. (6)

We define the contribution of arm i in round t as

Ci(t) =
∆µi(τi(t))

∆τi(t)
.

A crucial idea is that we upper-boundE[Ci(t)] for each round
t separately. Namely, we will prove that

E[Ci(t)] < O(σ2 log2 1
σ ). (7)

We identify the high-probability behavior of the processes
{µi(t)}i∈[k]. Specifically, we consider the Õ(

√
t) bound

on deviations, and an O(1) bound on the number of near-
optimal arms. A large portion of our analysis is deterministic
conditional on such behavior.

6In other words, τi(t) and τ+
i (t) are the two consecutive times

arm i is played such that τi(t) < t ≤ τ+
i (t).

Definition 2.8. A real-valued function f is well-behaved on
an interval [t1; t2] if for any t, t+ ∆t ∈ [t1; t2] we have

|f(t+ ∆t)− f(t)| < cwell σ
√

∆t. (8)

where cwell = Θ(log 1
σ )1/2 will be chosen later.

Definition 2.9. An instance of the dynamic MAB problem
is well-behaved on a time interval I if

(i) functions µ1(t), . . . , µk(t) are well-behaved on I;
(ii) at each time t ∈ I there are at most cnear = O(1) arms i

such that ∆µi(t) < (8k + 15
√
k) cwell σ. 7

A problem instance is well-behaved near time t it is well-
behaved on the time interval [t− 3σ−2; t+ σ−2].

Choosing the parameters. The factors cwell and cnear are cho-
sen so that for any fixed t a problem instance is well-behaved
near time t with probability at least 1 − σ−3. In Defini-
tion 2.1, define csusp = 5 cwell.

Our conditionally deterministic guarantees (conditional
on the problem instance being well-behaved) are expressed
by the following lemma.

Lemma 2.10 (The Deterministic Lemma). Suppose a prob-
lem instance is well-behaved near time t. Fix arm i and let
δ = ∆µi(t). Then:

(a) If δ = 0 and Ci(t) > 0 then

Ci(t) ≤ O(σ log 1
σ )/
√
t− τi(t), (9)

and moreover for some arm j 6= i we have

∆µj(t) < O(σ log 1
σ )
√
t− τi(t). (10)

(b) If δ > 0 then Ci(t) ≤ O(σ2/δ) log2 1
σ .

Let us use Lemma 2.10 to derive the main result.

Proof of Theorem 2.7: It suffices to prove (7). Let E(t) de-
note the event that the problem instance is well-behaved near
time t. By Lemma 2.10(a), letting x =

√
t− τi(t) and sup-

pressing the log 1
σ factors under the Õ(·) notation,

E[Ci(t) |∆µi(t) = 0, E(t)]

≤ Õ(σ/x) Pr[∃j 6= i : ∆µj(t) < Õ(σx)]

≤ Õ(σ2). (11)

By Lemma 2.10(b) for any δ > 0 we have

E[Ci(t) |∆µi(t) ≥ δ, E(t)] ≤ Õ(σ2/δ) (12)

Pr[∆µi(t) ≤ δ |∆µi(t) > 0, E(t)] ≤ Õ(δ). (13)

Now (7) follows from (11-13) via a simple computation.

In the rest of this section we prove Lemma 2.10.
7This expression is tailored to (16) in the subsequent anal-

ysis. The event in question happens with probability at least
1 − O(cwell k

2 σ)cnear . Recall that we assume k < σ−γ for some
γ < 1

2
. Thus, a (large enough) constant cnear suffices to guarantee a

sufficiently low failure probability.



2.1 Deterministic bounds for the leader
We will argue deterministically assuming that the problem
instance is well-behaved. We split our argument into a chain
of claims and lemmas. The proofs are quite detailed; one can
skip them for the first reading. For shorthand, let E [t1; t2]
denote the event that the (fixed) problem instance is well-
behaved on the time interval [t1; t2].

First, we argue that the leader’s last-seen state, ν∗(·),
does not decrease too much in one round.

Claim 2.11. If E [t− 2; t] then

ν∗(t+ 1) ≥ ν∗(t)− 2 cwell σ.

Proof. Assume that t is even (if t is odd the proof proceeds
similarly). Recall that the leader in round t is some arm i
played in one of the previous two rounds. It follows that

ν∗(t) = νi(t) ≤ µi(t) + 2 cwell σ.

Moreover, the leader (i.e. arm i) is played in round t and
therefore ν∗(t+ 1) ≥ µi(t), claim proved.

Second, each arm becomes active eventually.

Claim 2.12. Any arm i becomes active at most σ−2 rounds
after it is played: τ act

i (t)− τi(t) ≤ σ−2 for any time t.

Proof. If t− τi(t) ≥ σ−2 then (4) is trivially true.

Third, we show that a currently maximal arm has been
activated within 4k rounds from its last-seen time, and there-
fore it has been played in the previous 8k rounds. The proof
of this lemma is one of the crucial arguments in our analysis.

Lemma 2.13. Suppose E [t − σ−2; t] and arm i is maximal
at time t. Then

τ act
i (t)− τi(t) ≤ t− τ act

i (t) ≤ 4k.

Proof. Note that t − τ act
i (t) ≤ 4k, since otherwise after be-

coming active at time τ act
i (t) arm i would have been played

strictly before round t, contradiction.
Let τ = τi(t). For the sake of contradiction assume that

τ act
i (t)− τ > t− τ act

i (t). (14)

Since arm i is not suspicious at time t′ = τ act
i (t) − 1, by

Definition 2.2 we have

ν∗(t′)− νi(t′) ≥ csusp σ
√
t′ − τ . (15)

By Claim 2.12 the problem instance is well-behaved on [τ ; t].
It follows that

νi(t′) = µi(τ) ≥ µi(t)− cwell σ
√
t− τ

ν∗(t′) = µj(t′′) ≤ µj(t) + cwell σ
√
t− t′′,

where arm j is the leader in round t′, and t′′ is one of the two
rounds preceding t′. Plugging this into (15) and using (14),
we see that µj(t) > µi(t), contradiction.

Fourth, we show that the leader’s last-seen state is not
much worse than the maximal state.

Claim 2.14. If E [t− σ−2; t] then

µ∗(t)− ν∗(t) ≤ (8k +
√

8k) cwell σ.

Proof. Let µ∗(t) = µi(t) for some arm i, and let τ = τi(t)
be the last time this arm was played. By Lemma 2.13 we
have t− τ ≤ 8k. Therefore

ν∗(τ + 1) ≥ µi(τ) ≥ µi(t)− cwell σ
√

8k,

and the claim follows by Claim 2.11.

Fifth, we show that high-priority arms are played very
soon after they become active.

Claim 2.15. Suppose arm i is a high-priority active arm at
time t. Assume E [t− σ−2; t]. Then t− τ act

i (t) ≤ 4 cnear.

Proof. Fix time t and let t′ = τ act
i (t) be the activation time

of arm i. Then by Definition 2.4 and Definition 2.3

ν∗(t′)− νi(t′) ≤ csusp σ
√
t− t′ ≤ csusp σ

√
4k.

Using Claim 2.14 to relate ν∗(t′) and µ∗(t′), and using the
fact that νi(t′) = µi(τ) and that µi(·) is well-behaved, we
obtain

∆µi(t′) ≤ (8k + 15
√
k) cwell σ. (16)

Lemma follows by Definition 2.9(ii) which is, in fact, tai-
lored to (16).

Now we have the tools needed to prove a stronger version
of Claim 2.14: µ∗(t)− ν∗(t) ≤ Õ(σ).

Lemma 2.16. If the problem instance is well-behaved on
[t− σ−2; t] then µ∗(t)− ν∗(t) ≤ O(cwell σ).

Proof. Let i be an active arm at time t. By Lemma 2.13
τ act
i (t)−τi(t) ≤ 4k, so at time τ act

i (t) arm i is a high-priority
active arm. By Claim 2.15 t − τ act

i (t) ≤ 4 cnear = O(1). By
Lemma 2.13 it follows that t− τi(t) ≤ O(1).

Now ν∗(τ + 1) ≥ µi(τ) by definition of the leader;
ν∗(t) ≥ ν∗(τ + 1) − O(cwell σ) by Claim 2.11; and also
µ∗(t) ≤ µ∗(τ) + O(cwell σ) since the problem instance is
well-behaved. Putting it together, we obtain the lemma.

2.2 Proof of The Deterministic Lemma
Let τ = τi(t) and recall that we denote δ = ∆µi(t).

By Lemma 2.13 we have t− τ ≤ 8k. Since the problem
instance is well-behaved on [t − 8k; t], it follows that µ∗(·)
is well-behaved, too, and therefore

|∆µi(t)−∆µi(τ)| ≤ 2 cwell σ
√
t− τ , (17)

which immediately implies (9). To obtain (10) note that (17)
in fact applies to any arm j, in particular to an arm j that is
maximal at time τ .

To prove Lemma 2.10(b), it suffices to prove the follow-
ing two inequalities:

∆τi(t) ≥ Ω(δ/σ)2/ log 1
σ , (18)

∆µi(τ) ≤ O(δ + σ log 1
σ ). (19)

Proof of (18): We consider two cases.
First, if we have ∆µi(τ) < δ/2 then by (17) we obtain

2 cwell σ
√
t− τ ≥ |∆µi(t)−∆µi(τ)| ≥ δ/2,

and (18) follows since ∆τi(t) ≥ t− τ .



Second, assume ∆µi(τ) ≥ δ/2. Then by Lemma 2.16
for any time t′ ∈ (τ ; t+ σ−2) we have

ν∗(t′)− µi(τ) ≥ µ∗(t′)−O(cwell σ) + ∆µi(τ)− µ∗(τ)

≥ δ/2− cwell σ
√
t′ − τ +O(1).

This is at least ≥ csusp σ
√
t′ − τ as long as it is the case that

t′ − τ ≤ (12 cwell σ/δ)−2. So for any such t′ arm i is not
suspicious, proving (18).

Proof of (19): First, note that if τ act
i (t) − τi(t) ≤ 4k then

by Definition 2.5 arm i is a high-priority active arm at time
τ act
i (t), so by Claim 2.15 we have t− τ act

i (t) ≤ O(1) and so
t− τi(t) ≤ O(1) by Lemma 2.13. It follows by (17) that

∆µi(τ) ≤ ∆µi(t) +O(σ),

and we are done. In what follows we will assume that

τ act
i (t)− τi(t) > 4k. (20)

Note that for any time t′ we have

ν∗(t′) ≤ max(µ∗(t′ − 1), µ∗(t′ − 2))

≤ µ∗(t′) + 2 cwell σ.

Let t′ = τ act
i (t)− 1 be the round immediately preceding the

activation time. Since arm i is not suspicious at time t′,

csusp σ
√
t′ − τ ≤ ν∗(t′)− µi(τ)

≤ µ∗(t′)− µi(τ) + 2 cwell σ.

≤ ∆µi(t′) + cwell σ(2 +
√
t′ − τ).

Since csusp = 5 cwell, it follows that

∆µi(t′) + 2 cwell σ ≥ 4 cwell σ
√
t′ − τ . (21)

Combining (17) and (21), we obtain

∆µi(τ) ≤ ∆µi(t′) + 2 cwell σ
√
t′ − τ

≤ 3
2 ∆µi(t′) + 2 cwell σ.

Finally, by (17), (20) and (21) we obtain

∆µi(t′) ≤ ∆µi(t) + 2 cwell σ
√
t− t′

≤ ∆µi(t) + 1
2 ∆µi(t′) + 2 cwell σ.

∆µi(t′) ≤ 2 ∆µi(t) + 4 cwell σ.

∆µi(τ ′) ≤ 3 ∆µi(t) + 6 cwell σ.

3 The state-oblivious dynamic MAB problem
We consider the state-oblivious dynamic MAB problem with
k arms where the volatility of each arm i is at most σi.

Definition 3.1. For each arm i, Ni(t) is the number of times
it has been played in the first t− 1 rounds, and W i(t) is the
corresponding average reward. Let W i(0) = 0 if Ni(t) = 0.
For shorthand, let µi = µi(0) be the initial state.

Definition 3.2. Consider an instance of the state-oblivious
dynamic MAB problem. A function fi : N × N → R+ is a
padding for arm i if the following two properties hold:

• fi(t, ti) is increasing in t and decreasing in ti,

• for any time t, letting ti = Ni(t) we have

Pr
[
|W i(t)− µi(0)| > fi(t, ti)

]
< O(t−4). (22)

The family {fi}i∈[k] is a padding for the problem instance.

We build on an algorithm UCB1 from [2] for the static
MAB problem. We define a generalization of UCB1, which
we call UCBf , which is parameterized by a padding f =
{fi}i∈[k].

Algorithm 3.3 (UCBf ). In each round t play any arm

i ∈ argmax
i∈[k]

[
W i(t) + fi(t, Ni(t))

]
.

The original UCB1 algorithm is defined for a specific
padding f , and in fact does not explicitly uses the notion of
a padding. We introduce this notion here in order to extend
the ideas from [2] to our setting.

We incorporate the analysis from [2] via the following
lemma which, essentially, bounds the number of times a sub-
optimal arm is played by the algorithm.

Lemma 3.4 (Auer et al. [2]). Consider an instance of the
state-oblivious MAB problem with a padding f = {fi}i∈[k].
Consider the behavior of algorithm UCBf in the first t rounds.
Then for each arm i and any ti < t we have

fi(t, ti) ≤ 1
2 ∆µi(t) ⇒ E[Ni(t)] ≤ ti +O(1). (23)

This lemma is implicit in Auer et al. [2], where it is the
crux of the main proof. That proof considers the static MAB
problem and (implicitly) a specific padding f .

We will use UCBf where f = {fi}i∈[k] is defined by

fi(t, ti) =
√

2 ln(t)/ti + σi
√

8t log t. (24)

Define the average dynamic regret of an algorithm A
R̄A(t) = 1

t

∑
s∈[t]RA(s). We prove the following guaran-

tee for algorithm UCBf :

Theorem 3.5. Consider the state-oblivious dynamic MAB
problem with k arms. Suppose the volatility of each arm i is
at most σi. Then there exists time t0 such that

E[R̄UCBf
(t0)] ≤ O(k σav) log3/2(σ−1

av ), (25)

where σ2
av = 1

k

∑k
i=1 σ

2
i .

To obtain Theorem 1.4 from Theorem 3.5, we start a
fresh instance of algorithm UCBf after every t0 steps. We
take advantage of the facts that (i) the ”restarting times” are
deterministic and, in particular, independent of the past his-
tory, and (ii) in any fixed round each µi(t) is distributed in-
dependently and uniformly on [0; 1].

In the rest of this section we prove Theorem 3.5. We start
with a very useful fact about the state evolution µi(t). In
general, if µi(0) > 1

2 then due to the influence of the upper
boundary the expected state E[µi(·)] drifts down from its
initial value. The following claim upper-bounds such drift.

Let us use a shorthand for the second summand in (24):

δi(t) = σi
√

8t log t.



Claim 3.6. Fix arm i and integer times t ≤ t∗. Then

Pr[ |µi(t)− µi | > δi] < t−3
∗ (26)

where µi = µi(0) and δi = δi(t∗), and therefore

E[µi(t) |µi] ≥ min(µi, 1− δi)− t−2
∗ . (27)

Proof. Recall that the state µi(t) is defined as fI(Bi(t)) where
Bi is a Brownian motion with volatility σi, and fI is the
”projection” (1) into the interval I = [0; 1] with reflective
boundaries. Note that µi = Bi(0).

It follows that |µi(t)−µi| > δi only if |Bi(t)−µi| > δi.
We know that for any c > 1 we have

Pr[ |Bi(t)− µi| > cσi
√
t] < 2 e−c

2/2.

We obtain (26) setting c =
√

6 log t∗.
Now let us prove (27). Define

f(µ) = E[µi(t) |µi].

Note that if µ < 1
2 then f(µ) > µ. Also, note that f(µ) is

increasing and f( 1
2 ) = 1

2 by symmetry. Therefore, it suffices
to prove (27) under the assumption that 1

2 < µi ≤ 1− δi.
Consider T = min(t, TB), where

TB = min{s ∈ N : Bi(s) 6∈ (0; 1)}.

Then Zs = µi(min(s, T )) is a martingale such that Z0 = µ
and T is a bounded stopping time. By the Optional Stopping
Theorem it follows thatE[ZT ] = µ. By (26) we have TB ≥ t
with probability at least 1 − t−2

∗ , in which case T = t and
µ = ZT = µi(t). Thus (27) follows.

Using Claim 3.6, let us argue that (24) is indeed a padding.
Essentially, the first summand in (24) is tuned for an applica-
tion of Chernoff-Hoeffding Bounds, whereas the second one
corrects for the drift.

Lemma 3.7. The family f defined by (24) is a padding.

Proof. We need to prove (22). Fix arm i and time t. Let
{tj}∞j=1 be the enumeration of all times when arm i is played.
Let Xj = µi(tj) be the state of arm i in round t. Let X̂j

be the actual reward collected by the algorithm from arm i
in round tj . Let us define the sums S =

∑
j∈[n]Xj and

S∗ =
∑
j∈[n] X̂j , where n = Ni(t) is the number of times

arm i is played before time t. Let µ = µi(0) and δ = δi(t).
We can rewrite (22) as follows:

Pr[|S∗ − µn| >
√

2n ln t+ δn] < O(t−4). (28)

Let F be the failure event when |µi(s) − µ| > δ for some
s ∈ [t]. Recall that by Claim 3.6 the probability of F is at
most t−4. In the probability space induced by conditioning
on X̂1, . . . , X̂j−1 and the event F̄ , we have

E[X̂j ] = E
[
E[X̂j |tj , Xj ]

]
= E [E[Xj |tj ] ]

= E[Xj ] ∈ [µ− δ, µ+ δ].

Going back to the original probability space,

E[X̂j | X̂1 . . . X̂j−1, F̄ ] ∈ [µ− δ, µ+ δ]. (29)

The Chernoff-Hoeffding bounds (applied to the probability
space induced by conditioning on F̄ ) say precisely that the
condition (29) implies the following tail inequality:

Pr
[
|Ŝ − µm| > δm+ a | F̄

]
≤ 2 e−2a2/m

for any a ≤ 0. We obtain (28) by taking a =
√

2m lnT .

To argue about algorithm UCBf , we will use the follow-
ing notation:

Definition 3.8. We will use the following notation:{
ρi(t) = min(µi, 1− δi(t)), µi = µi(0),

∆i = µ∗ − µi, µ∗ = µ∗(0)
S(t) = {arms i : ∆i ≥ 4δi(t)}.

Lemma 3.9. Consider any algorithm for the state-oblivious
dynamic MAB problem. Then for each arm i and time t ≥ k

E
[
Ni(t)W i(t) | µi

]
≥ ρi(t)E[Ni(t)]− t−2. (30)

The left-hand side of (30) is the total winnings collected
by arm i up to time t. If the bandit algorithm always plays
arm i, then Ni(t) = t and the left-hand side of (30) is simply
equal to

∑
sE[µi(s)], so the lemma follows from Claim 3.6.

In this sense, Lemma 3.9 is an extension of Claim 3.6. The
proof of (30) is a rather intricate exercise in conditional ex-
pectations and martingales. We defer it to Section 3.1.

We combine Lemma 3.9 and Lemma 3.4 to derive a con-
ditional bound on R̄UCBf

(t):

Corollary 3.10. For any time t we have

E
[
R̄UCBf

(t) |µ1, . . . , µk
]

≤ k

t2
+O(1)

 ∑
i6∈S(t)

µ∗ − ρi(t)


+ O( 1

t log t)

 ∑
i∈S(t)

1
∆i

 . (31)

Proof. Fix time t and let W i = W i(t), ρi = ρi(t) and Ni =
Ni(t). Let R(t) be the left-hand side of (31). Using (30),

tR(t) =
∑
i∈[k]

E[(µ∗ −W i)Ni]

≤
∑
i∈[k]

E[Ni] (µ∗ − ρi) + t−2.

For each i ∈ S(t) we have µ∗−ρi ≤ 2∆i and by Lemma 3.4

E[Ni(t)] ≤ 32 ln(m)/∆2
i +O(1).

We obtain Theorem 3.5 by integrating both sides of (31)
with respect to µ1 . . . µk.

Proof of Theorem 3.5: Fix time t and let δi = δi(t) and
ρi = ρi(t). Note that (31) is, essentially, the sum over all
arms. We partition the arms into three sets and bound the
three corresponding sums separately.



Note that the following holds for any fixed γ > 0: given
µ∗ and the event {∆i > γ}, the random variable µi is dis-
tributed uniformly on the interval [0;µ∗ − γ). We will use
this property in the forthcoming integrations.

First, we consider the set S = S(t). Conditional on µ∗,

E

[∑
i∈S

∆−1
i

]
=
∑
i∈[k]

E
[
∆−1
i | ∆i > 4δi

]
Pr[∆i > 4δi]

≤
∑
i∈[k]

lnσ−1
i ≤ O(k lnσ−1

av ). (32)

Second, let us consider the set S+ of all arms i such that
0 < ∆i < 4δi. Conditional on µ∗, we obtain

E

[∑
i∈S+

µ∗ − ρi

]
≤
∑
i∈[k]

O(δi) Pr[∆i < 4δi |∆i > 0]

≤
∑
i∈[k] O(δi) min(1, δi/µ∗).

Integrating over µ∗, we obtain

E
[∑

i∈S+ µ∗ − ρi
]
≤
∑
i∈[k] O(δ2

i )

≤ O(k σ2
av t log t). (33)

Third, we consider the set S∗ of all maximal arms, i.e.
the set of all arms i such that ∆i = 0. We show the main
steps of the argument, omitting the details of some straight-
forward integrations:

Zi := I{∆i=0} (µ∗ − ρi)
E[Zi] = E[E[Zi|µ∗]] = 1

k E[µ∗ − ρi] = O(δ2
i )

E

[∑
i∈S∗

µ∗ − ρi

]
=
∑
i∈[k]

E[Zi] ≤ O(k σ2
av)(t log t). (34)

Finally, using( 32-34), we take expectations in (31):

E
[
R̄UCBf

(t)
]

= O(kt log t)((σav t)2 + log σ−1
av ).

The theorem follows if we take t0 = σav

√
log σ−1

av .

3.1 Proof of Lemma 3.9: conditional expectations
Fix arm i and time t. Let us introduce a more concise no-
tation which gets rid of the subscript i. Let µ = µi(0) and
δ = δi(t), and denote N = Ni(t). For every time s, let
Ys = µi(s), and let Xs be the winnings from arm i at time s
if it is played by the algorithm.8 Let ζs be equal to 1 if arm i
is played at time s, and 0 otherwise.

To prove (30), we will show that

E
[∑

s∈[t] ζsXs

]
= E

[∑
s∈[t] ζs Ys

]
(35)

≥ min(µ, 1− δ)E[N ] + t−2. (36)

Note that ζs and Xs are conditionally independent given
Ys. It follows that

E [ζsXs |Ys] = E [ζs |Ys] E [Xs |Ys] = E [ζs |Ys] Ys
= E [ζs Ys |Ys] .

8That is,Xs is an independent random sample from distribution
D(Ys), as defined in Section 1.1.

Taking expectations on both sides, we obtain
E[ζsXs] = E[ζs Ys],

which proves (35).
Going from (35) to (36) is somewhat more complicated.

In what follows we denote S =
∑
t∈[m] ζs Ys.

Claim 3.11. If µ ≤ 1− δ then E[S] ≥ µE[N ]− t−2.

Proof. As in Claim 3.6, we recall the definition µi(s) =
fI(Bi(s)) where Bi is a Brownian motion with volatility σi,
and fI is the ”projection” (1) into the interval I = [0; 1] with
reflective boundaries. Note that µi = Bi(0).

For brevity, denote Ŷs = Bi(s), and define the corre-
sponding shorthand Ŝ =

∑
s∈[t] ζs Ŷs. Let F be the failure

event when Ŷs ≥ 1 for some t ≤ m. Note that if this event
does not occur, then Ys ≥ Ŷs for every time t ∈ [m] and
therefore S ≥ Ŝ. We use this observation to express E[S]
in terms of E[Ŝ]. Let p := Pr[F ] and note that it is at most
m−4. Then:

E[Ŝ] = (1− p)E[Ŝ | not F ] + pE[Ŝ |F ]

≤ (1− p)E[Ŝ | not F ] + p(µ+ tσi)
E[S] ≥ (1− p)E[S | not F ] + pE[S |F ]

≥ (1− p)E[Ŝ | not F ]

≥ E[Ŝ]− ptσi − p.
To prove the claim, it remains to bound E[Ŝ].

Let {sj}∞j=1 be the enumeration of all times when arm i

is played. Note thatN = max{j : sj ≤ t}. Define Ẑj = Ŷsj

for each j. We would like to argue that {Ẑj}∞j=1 is a martin-
gale andN is a stopping time. More precisely, claim that this
is true for some common filtration. Indeed, one way to de-
fine such filtration {Fj}∞j=1 is to define Fj as the σ-algebra
generated by sj+1 and all tuples (sl, Zl, Z∗l , Ẑl) such that
l ≤ j. Now using the Optional Stopping Theorem one can
show that

E[Ŝ] =
∑
j∈[N ]Zj = E[N ]E[Ẑ0],

which proves the claim since Ẑ0 = µ.

To prove (36), it remains to consider the case µ > 1− δ.

Claim 3.12. if µ > 1− δ then
E[S] ≥ (1− δ)E[N ]− t−2.

Proof. Let T be the smallest time s such that Ys ≤ 1 − δ.
Let {sj}∞j=1 be the enumeration of all times when arm i is
played, and let J = max j : tj ≤ T . Conditioning on T and
J , consider the entire problem starting from time T+1. Then
by Claim 3.11 we have:

E

[
m∑

s=T+1

ζs Ys |T, J

]
≥ (1− δ)(E[N ]− J)− t−2.

Let ST =
∑t
s=T+1 ζs Ys. It follows that

S = ST +
∑
t∈[T ] ζs Ys ≥ ST + (1− δ) J

E[S] = E[ST ] + (1− δ)E[J ]
≥ (1− δ)E[N − J ]− t−2 + (1− δ)E[J ]
≥ (1− δ)E[N ]− t−2.



4 Using off-the-shelf algorithms
In this section we investigate the following idea: take an off-
the-shelf MAB algorithm, run it, and restart it every fixed
number of rounds. We consider both the state-informed and
state-oblivious versions of the dynamic MAB problem.

We use the following notation: there are k arms, each
arm i has volatility σi, and the average volatility σav is de-
fined by σ2

av = 1
k

∑k
i=1σ

2
i . We rely on the following lemma:

Lemma 4.1. Let µ∗ = µ∗(0) and let i∗ ∈ argmaxµi(0),
ties broken arbitrarily. Then for any times t ≤ t∗

E[µ∗ − µi∗(t)] ≤ O(k)(t−4
∗ + σ2

av t∗ log t∗). (37)

More generally, we can consider arbitrary fixed times

0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ t ≤ t∗
and define µ∗ = maxµi(ti) and i∗ ∈ argmaxµi(ti).

The lemma is obtained, essentially, by combining Claim 3.6
and (34); we omit the details of the proof.

Remark. The intuition is that each arm i is probed in round
ti, so that µi(ti) is the expected value of the corresponding
probe. This lemma is similar to Claim 3.6 in that it bounds
the downwards drift ofE[µi(·)] which is caused by the prox-
imity of the upper boundary. The difference is that here we
specifically consider a ”maximal” arm, e.g. when ti ≡ 0 we
consider an arm which is maximal at time 0.

4.1 State-informed version: greedy algorithm
For the state-informed version we consider a very simple,
”greedy” approach: probe each arm once, choose one with
the largest state, play it for a fixed number m− k of rounds,
restart. Call this a greedy algorithm with phase length m.

Theorem 4.2. Consider the state-informed dynamic MAB
problem with k arms such that the volatility of each arm i is
σi. With phase length m = σav

√
log σ−1

av , the steady-state
regret of the greedy algorithm is at most

O(k σav log σ−1
av ), where σ2

av = 1
k

∑k
i=1σ

2
i .

Proof. For the algorithmic result, fix phase length m > k
and consider a single phase of the greedy algorithm. Assume
without loss of generality that in the first k rounds of the
phase our algorithm plays arm i in step i. Let µi = µi(i) be
the corresponding rewards, and let µ∗ be the largest of them.
Then the greedy algorithm chooses arm i∗ ∈ argmaxi∈[k] µi
and plays it for m − k rounds. Consider the t-th of these
m− k rounds and let Yt = µi∗(t+ k) be the state of arm i∗

in this round. By Lemma 4.1 we have E[Yt] ≥ E[µ∗] − z,
where z is the right-hand side of (37). Therefore, letting W
be the per-round average reward in this phase, we have

E[W ] ≥ 1
m

∑m−k
t=1 Yt ≥ m−k

m (E[µ∗]− z)
E[µ∗ −W ] ≤ z + k

m E[µ∗]

≤ O(kmσ2
av logm) + k

m (1 + 1
m )

= O(k σav)
√

log σ−1
av

for m = σav

√
log σ−1

av .

We provide a matching lower bound.

Theorem 4.3. Consider the setting in Theorem 4.2. Then
the steady-state regret of the greedy algorithm is Ω̃(k σav).

Proof Sketch. For simplicity assume σi ≡ σ. It is known
that in time t a Brownian motion with volatility σ drifts by at
least ∆ = Ω̃(σ

√
t) with high probability. Thus for each arm

i with high probability µi(t) ≤ 1 − ∆/2, regardless of the
initial value µi(0). Now we can obtain a lower bound that
corresponds to Lemma 4.1: letting µ∗ = maxµi(i) and i∗ ∈
argmaxµi(i) be the arm chosen by the greedy algorithm,

E[µ∗ − µi∗(t)] ≥ Ω̃(k σ2t), (38)

for any t > k. Now consider a given phase of the greedy
algorithm. In the first k rounds the algorithm accumulates
regret Ω(k), and in each subsequent round t the regret is the
left-hand side of (38). The theorem follows easily.

4.2 State-oblivious version via adversarial MAB
For the state-oblivious dynamic MAB problem, we use a
very general result of Auer et al. [3] for the adversarial MAB
problem. For simplicity, here we only state this result in
terms of the present setting.

Let WA(t) be the average reward collected by algorithm
A during the time interval [1; t].

Theorem 4.4 (Auer et al.[3]). Consider the state-oblivious
dynamic MAB problem with k arms. Let Ai be an algorithm
that plays arm i at every step. Then there exists an algorithm,
call it EXP3, such that for any arm i and any time t

E[W EXP3(t)] ≥ E(WAi
(t))−O(kt log t)1/2.

For our problem, we restart EXP3 every m steps, for
some fixed m; call this algorithm EXP3(m).

Theorem 4.5. Consider the state-informed dynamic MAB
problem with k arms such that the volatility of each arm i is
at most σi. Then there existsm such that algorithm EXP3(m)
has steady-state regret

O(k σav log σ−1
av )2/3, where σ2

av = 1
k

∑k
i=1σ

2
i .

Proof. Let use shorthandA = EXP3(m). Let µ∗ be the max-
imal expected reward at time 0, and suppose it is achieved by
some arm i∗. Let A∗ be the algorithm that plays this arm at
every step. Let Yt = µi∗(t) the state of arm i∗ in round t.
Then by Lemma 4.1 we have E[Yt] ≥ E[µ∗] − zm, where
z(m) is the right-hand side of (37). Therefore:

E[WA∗(m)] = E
[
E[WA∗(m) |Y1 , . . . , Ym]

]
= 1

m E [
∑m
t=1 Yt ]

≥ µ∗ − z(m) (39)

E[R̄A(m)] = E
[
µ∗ −WA∗(m)

]
+ E

[
WA∗(m)−WA(m)

]
Now using (39) and Theorem 4.4 we obtain

E[R̄A(m)] ≤ z(m) +O( km logm)1/2. (40)

We choosem that minimizes the right-hand side of (40).



We note in passing that we can also get non-trivial (but
worse) guarantees for the state-oblivious dynamic MAB prob-
lem using two other off-the-shelf approaches:

• a version of the greedy algorithm which probes each
arm a few times in the beginning of each phase,

• a version of Theorem 4.4 in which the benchmark algo-
rithm is allowed to switch arms a few times [3].

Essentially, the first approach is too primitive, while the sec-
ond one makes overly pessimistic assumptions about the en-
vironment. In both cases we obtain guarantees of the form
Õ(kσav)γ , γ < 2

3 , which are inferior to Theorem 4.5.

5 Extensions
Recall that the state evolution of arm i in the dynamic MAB
problem is described by (2), where the i.i.d. increments µi(t)
are distributed with respect to some fixed distribution Xi.
Can we relax the assumption that Xi is normal?

Definition 5.1. Random variable X is stochastically (ρ, σ)-
bounded if its moment-generating function satisfies

E[er(X−E[x])] ≤ er
2σ2/2 for |r| ≤ ρ.

This is precisely the condition needed to establish an Azuma-
type inequality: if S is the sum of t independent stochasti-
cally (ρ, σ)-bounded random variables with zero mean, then
with high probability S ≤ Õ(σ

√
t). Specifically, for any

λ ≤ 1
2 ρ σ
√
t we have

Pr
[
S > λσ

√
t
]
≤ exp(−λ2/2). (41)

Note that a normal distribution N (0, σ) is (∞, σ)-bounded,
and any distribution with support [−σ, σ] is (1, σ)-bounded.

We can recover all of our algorithmic results if we as-
sume that each distribution Xi has zero mean and is stochas-
tically (ρ, σi)-bounded for some σi, where ρ > 0 is a fixed
absolute constant. We re-define the volatility of arm i as the
infimum of all σ such that Xi is (ρ, σ)-bounded.

It is appealing to tackle a more general setting when the
only restriction on each distribution Xi is that it has mean
0 and variance σ2

i . We can extend our analysis (at the cost
of somewhat weaker guarantees) if we further assume that,
essentially, the absolute third moment of Xi is comparable
to σ3

i . Then instead of (41) we can use a weaker inequality
called the non-uniform Berry-Esseen theorem [23]:

Pr
[∑t

s=1µi(s) > σi t
γ
]
≤ O

(
( ρi

σi
)3 t1−3γ

)
, (42)

for any γ > 1/2, where ρ3
i = E[ |µi(s)|3 ]. We omit further

discussion of this extension from the present version.
Let us discuss one other direction in which our setting

can be generalized. Recall that in the dynamic MAB prob-
lem the state of each arm evolves on the same interval I =
[0; 1] (see Section 1.1) which we term the fundamental in-
terval. What if we allow each arm to have a distinct funda-
mental interval? All our algorithms fit this extended setting
with little or no modification. The performance guarantees

should look like a weighted sum of contributions from differ-
ent arms, where the weights depend (perhaps in rather com-
plicated way) on the respective fundamental intervals. To
illustrate this point, we worked out the guarantees for the
two algorithms discussed in Section 4, see Appendix A for
details. It is an open question to derive similar closed-form
guarantees for the other algorithms in this paper.

Recall that in all our results we assumed that the volatil-
ities are known to the algorithm. In fact, this assumption
is not necessary: we are interested in the stationary perfor-
mance of our algorithms and, as it turns out, we can afford to
learn the static parameters of the model. Roughly, the argu-
ment goes as follows. It suffices for our analysis if for each
arm an algorithm knows a 2-approximate upper bound on
volatility σi, rather than the exact value. One can learn such
bound by playing arm i for O(log2 σi) rounds, with failure
probability as low asO(σ−10

i ), and repeat this learning phase
every σ−1

i rounds (we omit the details).
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A Distinct fundamental intervals
Recall that in the dynamic MAB problem the state of each
arm evolves on the same interval I = [0; 1] (see Section 1.1)

which we term the fundamental interval. In this section we
consider a generalization in which we allow each arm to have
a distinct fundamental interval. We work out the guarantees
for the two algorithms discussed in Section1.4.

The main contribution of this appendix is that we find a
way to upper-bound the steady-state regret of the respective
algorithms in terms of reasonably defined averages of the
arms’ properties. The actual derivations are rather tedious
but not that illuminating; we omit them from this version.

A.1 The setting and notation
We consider the following setting. There are k arms. Each
arm has volatility σi and fundamental interval [ai; bi]. With-
out loss of generality we assume that b1 ≤ . . . bk and that
max ai < min bi. (If the latter fails then we can always
ignore the arm with the smallest upper boundary bi.) To sim-
plify the derivation we assume that maxσi ≤ 1

3 .
Define the weight of arm i as

wi =
k∏
l=i

bi − al
bl − al

,

Define the average volatility σav by

σ2
av =

∑
i∈[k] wi(bi − ai)σ2

i∑
i∈[k] wi(bi − ai)

Define the average length as

dav = 1
k

∑
i∈[k] wi(bi − ai).

To see that the quantities we defined above are reasonable
as averages, note that if all arms have the same fundamental
interval [a; b] then all weights are 1 and dav = b − a and,
moreover, the average volatility σav coincides with the one
defined in the body of the paper.

A.2 Results
We present two results that extend, respectively, Theorem 4.2
and Theorem 4.5 to the setting from Section A.1. In both
cases the algorithms are exactly the same. The main tool
is a version of Lemma 37, where the guarantee (37) looks
exactly the same in our notation, except the right-hand side
is multiplied by dav.

Theorem A.1. Consider the deterministic dynamic MAB prob-
lem in the setting from Section A.1. Let amin = min ai. Then
for phase length

m = σ−1
av

√
(bk − amin)/ log σ−1

av

the greedy algorithm has steady-state regret

O(k σav)
√

(bk − amin) dav log σ−1
av .

Theorem A.2. Consider the state-informed dynamic MAB
problem in the setting from Section A.1. Then there exists m
such that algorithm EXP3(m) has steady-state regret

O(dav)1/3(k σav log σ−1
av )2/3.


