
to Help Developers Stay Oriented in Their Code

Mauro Cherubini
CRAFT

École Polytechnique Fédérale de Lausanne
Station1, CH-1015 Lausanne, Switzerland

mauro.cherubini@epfl.ch

Gina Venolia, Rob DeLine
Microsoft Research

One Microsoft Way, Redmond, WA 98052

{gina.venolia, rob.deline}@microsoft.com

Abstract

This paper presents the creation, deployment, and

evaluation of a large-scale, spatially-stable, paper-
based visualization of a software system. The
visualization was created for a single team, who were
involved systematically in its initial design and
subsequent design iterations. The evaluation indicates
that the visualization supported the “onboarding”
scenario but otherwise failed to realize the research
team’s expectations. We present several lessons
learned, and cautions to future research into large-
scale, spatially-stable visualizations of software
systems.

1. Introduction

Developers form elaborate mental models of their code
[9], which are always incomplete and are often wrong. Being
this a well-known issue for the community, some researchers
suggest that we should create visualizations of the code to
help developers to stay oriented in their problem solving
activities.

Like other researchers [2, 11], we can imagine a team-
scale visualization that is always “on” and is spatially stable,
yet adapts to the evolving source code. We might hope that
such a visualization could give each team member a spatial
foundation on which to build their mental model, give a
visual common ground to the team when engaging in
discussions, and provide a starting point for interactive
exploration of the code. Given the complexity of professional
code, the visualization would have to be presented on a very
large, high-resolution display.

Rather than diving straight into the implementation of
such a visualization and display device, we wanted to do a
low-cost, paper prototype to help us understand the factors
that might influence its design. Rather than deciding up front
what the visualization should contain, we wanted to work
with a development team to create it to their requirements.
This paper describes our efforts to do just that. We call the
result a “code map” by analogy to the familiar cartographic
map.

In this paper we report our effort to use participatory
design techniques to create an ecologically-valid [8] code
map for a software development team. We created and
maintained this code map in the team space for a one-month
period, during which we solicited feedback to both refine the
design and understand which features were necessary to

support the team’s activities.
Our hypothesis was that a code map would be used for

three scenarios: understanding the new features of the code,
re-engineering parts of the code, and transferring relevant
information of the code to a new developer (that we called
“onboarding”).

2. Related Work

Software artifacts and the social practices that produce
them are intrinsically intertwined. As noted by de Souza et al.
[5], we can find two sorts of dependencies in software
development: a technological reliance between software
elements and a social one between developers.

Configuration management tools were developed to solve
dependencies at technological level but, as noted by de Souza
et al. [5], these have the opposite effect at social level,
creating a distinction between private and public aspect of
the work. The same phenomenon was observed by LaToza et
al. [9]: an escalating fracture, rooted in code ownership,
which creates black boxes in the code. A developer and his
code become deeply intertwined [1, 4, 9, 10].

Recent studies proposed solutions to support collaborative
development through increasing the group’s awareness, an
understanding of the activities of the others [5]. As noted by
Storey et al. [14], different proposed solutions mimic existing
face-to-face awareness mechanisms. However, software
development does not involve the manipulation of physical
objects, so it is not usually possible to ascertain a developer’s
activity just by observing at which part of the code he is
looking at.

Another source of awareness in software development is
the artifacts themselves. Configuration Management tools are
used to map the history of authorship and changes to the
system [2].

Many prototypes for software visualization have been
proposed with the aim of supporting awareness and
collaboration (e.g., SeeSoft, VRCS, Tukan, ADVIZOR,
Xia/Creole, Palantìr, etc., reviewed in [14], FastDASH [2],
the War Room Command Console [11], and Relo [13]).
Evolution Matrix [6] also goes in this direction, using
program analysis to calculate various metrics based on a set
of releases of the software. However, and as noted by Storey
[14], there is generally a lack of empirical work on the
desirable features that should be provided by such tools.

Most of these systems provide visualizations which are
intended to foster greater coordination. Few studies, though,
validated this assumption with theories from cognitive
science or with empirical data from controlled experiments.
And yet after more than a decade of these prototypes, recent

Building an Ecologically valid, Large-scale Diagram

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.19

157

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.19

157

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.19

157

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:20 from IEEE Xplore. Restrictions apply.

field studies show little adoption of tools for automatic
visualization of software or for reverse-engineering [3]. We
still know little about the practices around collaborative
software development and the mechanisms that relate
productivity, awareness, and externalized mental imagery
[12]. This study is an attempt to gain some insights in this
domain.

3. Method

We studied a product team at Microsoft Corporation
called Pandora (a pseudonym). We chose this group because
the 300-file code base was neither too large or two small, the
code base was mostly new code, the team was already using
printed visualizations (of UI features and schedules, but not
code) placed in the hallways, and the project manager was
shared our enthusiasm for the potential benefits of visualizing
the code base. The group was composed of 8 software
engineers, 5 test engineers, and 5 user interface designers.
Team members occupied individual offices of a single floor
within an office building. Their documentation was minimal,
and most of it was purely textual. Offices were connected by
several long hallways. For the period we worked with the
group they were in the second sprint of a new product,
working on implementing and then testing some new
features.

We conducted an initial observation during the first week
of July 2006, and then we intensified our observations during
the following four weeks. We focused our observations on
the core development team, as they were more concerned
with the architecture of the system and they frequently
interacted with one another.

Predeployment Observations. During the initial week we
conducted non-intrusive observations in the team area, to
understand the characteristics of the group. We were
interested in the current use of visualizations, and particularly
the ways these were used to maintain awareness in the group.

Initial Design. To create an initial map design for the
Pandora group we invited each developer to draw from
memory important elements of the architecture of the
Pandora application. We gave each developer a large, blank
piece of paper (about 36×60 inches, or ~90×150 cm) and a
set of markers of various colors. We asked them to identify
and represent the elements that they considered important for
coordination with other developers on the team.

We analyzed and merged these initial drawings to
produce the first version of the diagram. We printed the
diagram using an industrial plotter with rolled paper stock,
60 inches (150 cm) wide. We then presented the initial
design to the group and collected their suggestions for
improving its appearance and usefulness.

Deployment. We used automated tools to create and
update the elements of the drawing that represented classes
and methods. We manually positioned these elements and
added other graphics and text.

During the daily informal meetings, we collected
information on the ways the developers used the map and
other forms of visualizations that they created for themselves
during the same period. We asked the developers to annotate
the map with felt pens and stickers. We were particularly
interested in whether and how the developers would

personalize and adapt the map to support the specific needs
of their work. Each day we took a snapshot of the annotations
on the map and of the relevant drawings produced in the
team area and in each developer’s office.

Each day we updated the map to incorporate the
annotations and the changes to the Pandora code base,
printed the updated map, and posted it in the team space.

Final Interviews. The last step of our protocol was an
interview with each developer to gather the developer’s final
thoughts about the code map. We structured these interviews
following a list of questions targeting the design of the map,
asking each developer to recall a particular episode in which
the map played an important role for his/her work, and the
developer’s opinion on the presence of the map in the group
space.

Figure 1. Whiteboard captures reproducing the

basic elements of the Pandora architecture

4. Results
Predeployment Observations. During the initial week of

observations we could see that developers used transient
forms of diagrams, like sketches on whiteboards, scrap paper
or notebooks, for exploration activities. The majority of their
diagrams were sketched on whiteboards during ad-hoc
meetings.

We observed many instances of whiteboard sketches
where the developers reproduced the same basic elements of
the architecture of the Pandora system (see Figure 1).

Initial Design. In their initial drawings, none of the
developers used a formal notation to represent the
architecture of the system. While each developer depicted the
same basic architectural elements in the same basic
configuration, there were notable differences between the
drawings.

Across the different depictions, we identified four
recurring modules that were always present. These
corresponded to the general elements of an application: a
data layer (STORE), an interface for the persistence of data;
a domain object module layer (DOM), needed for the upper
levels to interact with the Store; a user interface layer (UI);
and a module named CAB, a framework for dependency
injection that was adopted by the core team. We gave the
CAB module particular attention as its representation varied
greatly between the drawings. We asked the developers
specific follow-up questions and learned that the framework
was borrowed from another group at Microsoft. Only one
developer in Pandora participated in the development of the
CAB module; the others tended to treat it as a “black box.”
Finally, each initial drawing contained elements absent from
the others. Developers tended to show more detail in the area
that they “owned,” which typically occupied a central place
in the depiction (see Figure 2).

At the end of this phase we engaged a group discussion to

158158158

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:20 from IEEE Xplore. Restrictions apply.

understand the reasons behind these differences and to find
better ways to depict these elements on the code map.

Following the findings of the initial observations we
decided that the code map should depict the types (classes,
interfaces, etc.) and their members (methods, fields, etc.)
situated within an architectural block diagram. The types and
members represented the microscopic structure of the project,
while the block diagram represented the macroscopic
structure.

Therefore, our initial design was quite simple. We created
an initial architectural diagram by manually synthesizing the
developers’ initial drawings (Figure 2, gray box) and then
rendered it. We examined the directory structure of the
source code to find and depict additional architectural
structure. There were approximately 200 types represented in
the initial code map. We manually positioned the types
according to the organization of the project’s source code
directories. The developers observed that the initial result
was not really readable.

Deployment. During the three-week deployment phase,
the developers suggested many changes to improve the
readability of the map: Corrections. Some of the architectural
clues that we had extracted from the directory structure of the
source code were outdated or simply wrong. Sub-layers.
There was additional architectural structure that was not
represented in either the source code directory or the
developers’ initial drawings. Labeling. The labels that we had
found by examining the source code structure were often
wrong or outdated. Categorical hiding. Developers told us
that some categories of types could be omitted from the
drawing. In particular exception classes, enumerated types,
and iterators were omitted. Banding. There were hints in
some of the developers’ initial drawings that there were
architectural concepts that cut across the traditional notion of
hierarchical grouping. For example the concept of a
“reminder” occurred in the UI, DOM and STORE layers.
While the traditional hierarchical architectural layering
proceeded horizontally, we rendered these concepts as
vertical bands perpendicular to the horizontal layers.
Relationships. In response to developers’ requests we added
lines representing the inheritance and reference relationships
between types.

We initially posted the code map on the wall of a hallway
located near the group’s meeting space, but not particularly
close to any of the developers’ offices.

We observed little interaction in front of the map. Few
developers reported using the map for ad-hoc or group
meetings. When asked, some explained that the map was
“too far” from their offices and having a technical
conversation in the hallway was “too exposed.” At the end of
the first week we tried to overcome this problem moving the
position of the map from its initial position to a hallway that
was closer to the core of the developers’ offices and farther
from the major traffic patterns.

Finally, the developers said that the initial map had too
much detail for the needs of informal meetings. To address
these last two issues, we produced several copies of a
reduced-version of the map, that we called the MiniMap. The
MiniMap contained the same boxes in the same layout as the
large code map, but we replaced the detailed class interfaces
with just the class name. Consequently we could print the

MiniMap much smaller (38×22 inches, or 95×55 cm), and
place a copy in each developer’s office, hoping to make them
seem more convenient and less “precious” than the hallway
map. In addition we broadened our scope to include the test
engineers, so they received copies too. We positioned the
MiniMap close to each participant’s whiteboard, in hopes of
supporting ad-hoc conversations.

The final full-sized code map was at or beyond the limit
of ergonomic usability. The 60 inch height was awkward for
tall people to see the bottom of, and impossible for short
people to see the top of. The smallest font size, used for type
members, was about 5 points, which some (but not all)
participants considered too small to be readable.

During the deployment period, the developers continued
intensively using their office whiteboards.

Final Interviews. We found little evidence of interaction
on either size of the code map. The notable exceptions were
two new hires in the group that used their MiniMaps
extensively to support their “onboarding” process. They
carefully studied the maps and annotated them, adding
missing details such as the name of the Dynamic Link
Libraries containing the classes represented on the maps.

The rest of the core team reported mixed feelings about
the map. Participants gave three main reasons for not using
the maps. First, the maps contained too few or too many
details in relation to the scope of the discussion in which it
would be used. Second, the information contained in the
maps was not dynamic. For instance, as one tested wanted
the diagram to show the call graph among the classes instead
of inheritance relationships. Finally, the layout of the
elements depicted on the map was static, and couldn’t be
changed to adapt it to the scope of the conversation.

5. Discussion

We had several aspirations for the code map. We hoped to
stimulate and ground discussions by providing a common
visual referent. We hoped that by providing the architectural
elements that every developer sketches over and over during

Figure 2. Simplified model of the individual

contributions of each developer in the core team to
the first assignment. The gray box contains the

synthesis that we proposed as the initial design of
the code map

159159159

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:20 from IEEE Xplore. Restrictions apply.

informal meetings, a code map could facilitate the
developers’ interaction on implementation details
maintaining the “big picture” in mind. We also hoped that by
reifying the architecture and by incorporating the developers’
suggested changes to the map design, that the code map
would stimulate architectural insights and improvements. We
hoped that we could shift some of the cognitive burden of
code understanding to the spatial domain.

We do not have conclusive evidence that these aspirations
were realized. Developers had very few interactions in front
of the map and in almost all the cases they did not annotate
the map. Additionally, the level of details of the map did not
reflect the dynamism and focus required by most of the
meetings: the map simultaneously contained too much and
not enough detail.

Plasticity and Adaptability. In the final interviews we
asked the participants about their continued, intensive
whiteboard use despite the availability of the code map. They
explained that the whiteboard was more flexible than the
code map or the MiniMap because it was easy to represent
exactly the right amount of detail. Additionally, they told us
that during ad-hoc meetings they only needed to reconstruct
only a few details of the architecture to be able to situate their
discussion. One of the developers said: “It will be cool to
have a dynamic code map with an interface like [the movie]
Minority Report.”

In our understanding, the map was lacking plasticity and
adaptability to different situations. The static arrangement of
the elements did not allow changing the perspective on the
system to suit the conversation at hand.

Customization. The developers also suggested that could
have been important for them to be able to personalize and
customize the map according to their necessities and
specificities. The suggested, for instance, the possibility to
center the map on their methods, or to highlight the methods
they owned or they worked on a map that could act, in this
case, as a visual reminder.

Location. The position of the MiniMap seemed to have an
important role in its use. The developers, in fact, wanted to
have the map close to the whiteboard and in the line of sight
from their desks. In this way, while working on the code,
they could refer to the map and to the discussion that
happened on the board to offload some of their cognitive load
while working on the code.

6. Conclusions

The validity of our findings is constrained by the length
of our chosen observation period, which might have been too
short to observe longer-term dynamics. Additionally, the
same techniques should have been tested on different group,
maybe not following agile work practices, or in different
companies with a different culture.

One of the most evident conclusions is that a static, paper
display might be not enough for testing different graphical
solution and observe their impact on the work practices.
Conversely, the resolution and size needed greatly exceeds
current display technology (see for instance [7, 15]).

This study should serve as a cautionary tale to researchers
who are trying to build large-scale visualizations of code to
support team work. The physical and social characteristics of

the work environment can be as significant as the design of
the visualization in its success or failure.

7. Acknowledgments
We would like to thank Andrew J. Ko, Andrew Begel and
Jacob Biehl for their precious advices.

8. References
[1] V. Bellotti and S. Bly. Walking away from the desktop
computer: Distributed collaboration and mobility in a product
design team. In Proc. CSCW 1996.
[2] J. Biehl, M. Czerwinski, G. Smith, and G. Robertson.
FASTDash: A Visual Dashboard for Fostering Awareness in
Software Teams. In Proc. CHI 2007.
[3] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s go to the whiteboard: How and why software
developers use drawings. In Proc. CHI 2007.
[4] U. Dekel. Supporting distributed software design
meetings: What can we learn from co-located meetings? In
Proc. HSSE 2005.
[5] C. de Souza, J. Froehlich, and P. Dourish. Seeking the
source: Software source code as a social and technical
artifact. In Proc. of GROUP 2005.
[6] S. Ducasse and M. Lanza. The class blueprint: Visually
supporting the understanding of classes. IEEE ToSE,
31(1):75–90, January 2005.
[7] K. M. Everitt, S. R. Klemmer, R. Lee, and J. A.
Landay. Two worlds apart: Bridging the gap between
physical and virtual media for distributed design
collaboration. In Proc. CHI 2003.
[8] E. M. Huang, E. D. Mynatt, and J. P. Trimble.
Displays in the wild: Understanding the dynamics and
evolution of a display ecology. In Proc. Pervasive 2006.
[9] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In ICSE
2006.
[10] D. W. McDonald and M. S. Ackerman. Just talk to me:
A field study of expertise location. In Proc. CSCW 1998.
[11] C. O’Reilly, D. Bustard, and P. Morrow. The war room
command console, shared visualizations for inclusive team
coordination. In Proc. Softviz 2005.
[12] D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
People, organizations and process improvement. IEEE
Software, pages 36–45, July 1994.
[13] V. Sinha, D. Karger, and R. Miller. Relo: Helping
users manage context during interactive exploratory
visualizations od large codebases. In OOPSLA’05 Eclipse
Technology eXchange (ETX) Workshop.
[14] M. D. Storey, D. Cubranic, and D. M. German. On the
use of visualization to support awareness of human activities
in software development: a survey and a framework. In Proc.
SoftVis 2005.
[15] Ron B. Yeh, Joel Brandt, Scott R. Klemmer, Jonas
Boli, Eric Su, Andreas Paepcke. Interactive Gigapixel Prints:
Large Paper Interfaces for Visual Context, Mobility, and
Collaboration. Stanford University Computer Science
Department Technical Report. October, 2006.

160160160

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:20 from IEEE Xplore. Restrictions apply.

