
Keeping Up With Your Friends: Function Foo,
Library Bar.DLL, and Work Item 24

Andrew Begel
Microsoft Research
Redmond, WA, USA

andrew.begel@microsoft.com

Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

ABSTRACT
Development teams who work with others need to be aware of
what everyone is doing in order to manage the risk of taking on
dependencies. Using newsfeeds of software development activities
mined from software repositories, teams can find relevant infor-
mation to help them make well-informed decisions that affect the
success of their endeavors. In this paper, we describe the archi-
tecture of a newsfeed system that we are currently building on top
of the Codebook software repository mining platform. We discuss
the design, construction and aggregation of newsfeeds, and include
other important aspects such as summarization, filtering, context,
and privacy.

Categories and Subject Descriptors:
D.2.9 [Software Engineering]: Management—productivity H.5.2
[Information Systems]: User Interfaces—User-centered design

General Terms: Management, Human Factors

Keywords: Knowledge management, Social networking, Mining
software repositories, Inter-team coordination, Regular expression,
Regular language reachability

1. INTRODUCTION
Large-scale software development requires many teams to work

together in order to successfully build a product. Dependencies
between the software components that make up the product link
the teams together and form the foundation of their communica-
tion network. Ideally, each team should regularly keep one an-
other informed of their status, and communicate about changes to
specifications, designs, APIs, component ownership, and sched-
ules. However, many studies have shown that this does not hap-
pen [1, 4, 5, 6, 7, 8, 10, 11, 14, 15]. Miscommunication, mis-
trust, unmet expectations, and dysfunctional relationships between
teams [1] can result in increased team anxiety and hinder good
decision-making by product managers who lack complete and cor-
rect information to manage the risk of depending on others.

If each software team could have transparent access to the infor-
mation held by the others, much of this anxiety and risk could be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web2SE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-975-6/10/05 ...$10.00.

ameliorated. The most sought-after information [4] relates directly
to the work actions of the teams’ software engineers, such as their
code checkins, bug report updates, test executions, status reports
and explanatory documents. Fortunately, records of these activities
are already captured in software development-related repositories,
such as version control systems, bug databases, test harnesses, and
Sharepoint document repositories. Using our Codebook software
repository mining platform [3, 2], we can reveal these actions as
events reported in a newsfeed.

Consider this scenario. A program manager, Klaus, is trying to
determine if his team will meet their ship date. From the status
reports emailed directly to him by every developer and tester on his
own team, he determines that his team’s code will ship on time, but
they have an external dependency on the team that is working on
Sort.DLL. Klaus missed the last Sort.DLL team status meeting, and
has no idea if they are running behind or will ship on time.

Klaus pulls up the Codebook home page for Sort.DLL, shown in a
mockup in Figure 1. On the left side of the page, he reads through
the newsfeed of recent activity on the Sort.DLL library. He scans
through the latest builds and sees that they are successfully passing
all of their tests; for a few days the Quicksort had performance is-
sues, but they have been resolved in the most recent build. While
that is a good sign, he wants to reassure himself that the code churn
is slowing down, which since code churn inversely correlates with
code quality, would indicate that the team is getting closer to ship-
ping their code as high-priority bugs are the final blocks to go. [12,
13]. He scans through the newsfeed for all the checkins and notices
that Chuck, a developer on the team, is still checking in new fea-
tures at the end of 2009. Darn. The product is probably going to be
late. Klaus resolves to contact the team’s program manager (listed
in the Team section on the right side of the page) to negotiate a new
expected ship date.

The newsfeed Klaus read was mined automatically from the soft-
ware development repositories of the Sort.DLL team, repositories
that are publicly accessible within the company. No private emails
are crawled, nor are private shares where the team stores sensitive
information, such as its financial reports. In addition, one team
member, Johanna, is not found in the Codebook page for her team
because she has not opted in to allow her data to be collected for
this purpose.

Codebook newsfeeds can be created for any type of artifact in
the Codebook database. There are activity newsfeeds for artifacts
such as bug reports, functions in the code, people, builds, and spec-
ification documents. News rolls up hierarchically, so any news that
is generated by a member of a team is rolled up together to form
the news for the team. The news for a class is the sum of the news
for the class itself and the news of all of its lexically enclosed mem-
bers. News can also be generated through transitive relationships.

Figure 1: A mockup of a Codebook home page for Sort.dll. On the left is a newsfeed of activity affecting Sort.dll. On the right is
information about where Sort.dll’s development takes place, the library’s contributors and users (inside and outside the company),
and a list of dependencies.

For example, Caroline, a developer who recently joined the team,
can see a new event on her own newsfeed when Xin files a bug
against her code, even though this team’s bug database does not
have a place for indicating source code relationships.

Newsfeeds can help make product teams’ work practices more
transparent to one another. With this information available, Klaus
can avoid having to pester Sort.dll’s project manager for constant
status and change notifications. If Klaus needs to speak to some
developer about a questionable piece of code, he can quickly find
out who to speak to by going to the Codebook newsfeed page for
the code and looking at its recent modification activity.

In the rest of this paper, we quickly review the Codebook in-
frastructure and describe the architecture of the newsfeed system
we are currently building on top of it. We discuss various design
choices we have made along the way to ensure that newsfeeds are
usable and useful by the lay software development teams here at
Microsoft. We close with some thoughts on future work.

2. CODEBOOK AND ITS NEWSFEEDS
Codebook is a repository data mining and analysis platform [3]

inspired by the field of social networking. In popular social net-
working applications like Facebook and MySpace, individuals are
connected to one another in an undirected network graph. News
generated by anyone in the graph is propagated along “friend” links
to all individuals one hop away, and appears in their newsfeeds
(e.g., “Cheryl is relieved that her son didn’t get H1N1 this winter”).

Codebook is also built on a graph of relationships, but the nodes
are generalized to be not just people, but also bugs, code, tests,
builds, specifications, and other work artifacts related to the soft-
ware development process. The edges between Codebook nodes
describe relationships and activities that have occurred. For ex-
ample, “Todd committed checkin 34,” “Mary closed bug 2333,”
or “Unit test CanConnectToDatabase() has passed.” Codebook’s
graph is extensible with new repository crawler plugins. Currently
there are 11 node types and 18 edge types, for a total of 28 unique
node-edge-node triple types (e.g., WorkItem IsLinkedTo WorkItem,
Person IsManagerOf Person, and Checkin Contains RevisedFile).

Transitively connected pathways in the Codebook graph reveal
distantly connected, yet related, nodes. For example, one graph
might indicate that a tester named Mary closed bug 2333, which
included a stack trace, that names a function Foo, which was mod-
ified in checkin 34, which was committed by a developer named
Todd. Therefore, Mary’s action to close the bug is connected to
Todd’s checkin.

Our Codebook platform consists of several repository crawlers
which create the graph, a set of analyses to discover interesting re-
lationships between nodes in the graph, and an API for applications
to access the discovered relationships. In the remainder of this sec-
tion, we describe how we are building a newsfeed infrastructure on
top of this infrastructure.

2.1 Newsfeed construction
Similar to social networking applications, any work artifact (or

person) node in the Codebook graph can generate its own kinds of
news. For example, when Sarah checks in a change to a method
Mergesort(), a news event is triggered:

Checkin: “Improved the performance of Mergesort.”
November 21, 2009 by Sarah.

All of the “friends” of Sarah and the Mergesort() function will re-
ceive this news and see it on their newsfeeds. In addition, friends
of the class SortingAlgorithms, Mergesort()’s parent class, also re-
ceive the news, since a change to a method is also a change to the

class that contains it. We call this concept “news rollup.” For items
that lexically or logically contain others (e.g. nested scopes, folders
and files, DLLs and code, public mailing lists and messages, teams
and their members, etc), we define their news to be their own news
plus the sum of the news of their parts.

News can also propagate along “interesting” paths (i.e. tran-
sitively connected pathways) of nodes and edges in the graph. For
example, Chuck, the developer who wrote the Quicksort() function,
receives news items about bugs that are filed against Quicksort, as
indicated by stack traces mentioning the Quicksort function. In
Codebook, these paths are expressed as regular expressions of node
and edge types. A possible regular expression for this example is

Person Committed Checkin Modified File Modified Source-
Code MentionedBy StackTrace IncludedIn BugReport
(DuplicateOf BugReport)*

Note the repeated DuplicateOf BugReport at the end of the regu-
lar expression propagates the pathway to all duplicates of the bug
which contained the stack trace.

News events in Codebook can occur anytime a node or edge is
created or modified. When a new path satisfies a regular expres-
sion, news is generated from the node or edge change that caused
the regular expression to be satisfied, propagated to all of the nodes
in the path, and then further reported to those nodes’ friends’ news-
feeds.

2.2 Newsfeed aggregation
Depending on the number of artifacts to which each person sub-

scribes, the amount to read might become overwhelming. For ex-
ample, if Bill Gates wanted to keep tabs on everything that hap-
pens at Microsoft Research, he probably does not wish to see every
checkin that I or my co-author make to our Codebook source code
repository. Mr. Gates might instead enjoy a summarization of our
work that tells him that we are making progress on our implemen-
tation and submitted a paper about it to the Web2SE workshop at
ICSE.

A news summarization, filtering, and aggregation service is avail-
able to help Mr. Gates. This service can customize newsfeeds using
a function whose inputs include the news you are getting, what ar-
tifact (or person) generated it, what topic the news is about, and
who you are in relation to where the news comes from. The ac-
tual function used need not take all of these factors into account,
but could. We are currently exploring how to further customize
the function for each individual, based on their role on a project, or
their social relationship to the news source news (as mined from so-
cial networking applications), such as Bill Gates’ relationship with
the authors in the example above.

We have placed a simple news filtering service into the mockup
in Figure 1. At the top of the newsfeed are checkboxes correspond-
ing to each news type. Unchecking a box will hide news of that
type from the feed, making it easier to concentrate on what you
might be looking for.

News aggregation algorithms can also help with overload. A
simple algorithm might roll up individual updates to a bug report
into a single news item, “Cheryl closed 3 bugs,” and provide a link
to see the individual bugs that Cheryl worked on. There is a danger
with designing this kind of aggregation, however. What if the algo-
rithm produced comparative results? “Cheryl closed 3 bugs, which
was 5 less than she closed last week.” Or “Chery closed 3 bugs out
of the 105 closed by her team this week.” A worry we have with
this kind of system is that individuals might try to game the sys-
tem in order to look good on the newsfeeds. Another worry is that
managers may want to use such a system to help them judge their

employees’ productivity. We plan to conduct a study on various
ways to aggregate news to understand how software engineers and
managers perceive themselves and others when reading newsfeeds.
This will help us create value-sensitive [9], judgment-neutral sum-
marization algorithms that will avoid unfair characterizations of the
people or work artifacts in question.

3. STATUS AND FUTURE WORK
We have built the Codebook backend for mining software repos-

itories, which can build a graph from what was mined, and propa-
gate news along the relationship edges that connect the nodes in the
graph. We have a Codebook search portal called Hoozizat which
helps end-users to find objects in the system through a keyword-
search [3]. We are currently building the Codebook Feed portal
seen in Figure 1.

Although the web portal we have described here concentrates
heavily on newsfeeds, we plan to include a portal page for each hu-
man engineer to keep track of all of their non-human “friends.” To
help users find out what artifacts they should subscribe to, a pro-
gram analysis of the code authored by the user could be enlisted
to identify important dependencies to be “friended.” To avoid list-
ing every single API used, especially common APIs with in base
libraries (e.g. printf(), or File.Read()), we would filter the list by a
source code analysis that eliminates artifacts whose changes would
not have any semantic impact on the user’s code.

An enhancement to the news filtering service will allow the user
to limit his newsfeed to only events that fit his current focus. For ex-
ample, he might only want to read news related to his current task,
a dependent product, or news generated by a particular colleague or
neighoring team. Shrinking the newsfeeds according to these kinds
of foci will help the user identify and read relevant information in
a timely fashion.

4. CONCLUSION
Software projects can fail when teams communicate inefficiently

and suffer dysfunctional relationships with each other. When timely
information about other teams’ work practices is available to soft-
ware engineers and managers, they are better able to manage their
risk and ensure their product’s success. We believe that Codebook’s
newsfeeds can improve the situation by making each team’s inner
work processes more transparent, without requiring the teams to do
any extra work to record or publish their activities. Newsfeeds in-
form colleagues of important events, helping everyone on all of the
software teams become more efficient, productive, and successful.

5. REFERENCES
[1] A. Begel. Effecting change: Coordination in large-scale

software development. In Proceedings of CHASE, May 2008.
[2] A. Begel and R. DeLine. Codebook: Social networking over

code. In Proceedings of ICSE, NIER Track, 2009.

[3] A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook:
Discovering and exploiting relationships in software
repositories. In Proceedings of ICSE, Research Track, 2010.

[4] A. Begel, N. Nagappan, C. Poile, and L. Layman.
Coordination in large-scale software teams. In Proceedings
of CHASE, pages 1–7, 2009.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley. Identification of coordination requirements:
implications for the design of collaboration and awareness
tools. In Proceedings of CSCW, pages 353–362, 2006.

[6] B. Curtis, H. Krasner, and N. Iscoe. A field study of the
software design process for large systems. Communications
of the ACM, 31(11):1268–1287, 1988.

[7] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and
J. Patterson. How a good software practice thwarts
collaboration: the multiple roles of apis in software
development. In Proceedings of FSE, pages 221–230, 2004.

[8] C. R. B. de Souza, D. Redmiles, and P. Dourish. "breaking
the code", moving between private and public work in
collaborative software development. In Proceedings of
GROUP, pages 105–114, 2003.

[9] B. Friedman. Value-sensitive design.
http://depts.washington.edu/vsdesign/, 2010.

[10] P. Hinds and C. McGrath. Structures that work: social
structure, work structure and coordination ease in
geographically distributed teams. In Proceedings of CSCW,
pages 343–352, 2006.

[11] R. E. Kraut and L. A. Streeter. Coordination in software
development. Communications of the ACM, 38(3):69–81,
1995.

[12] L. Layman, G. Kudrjavets, and N. Nagappan. Iterative
identification of fault-prone binaries using in-process
metrics. In ESEM ’08: Proceedings of the Second
ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 206–212, New York,
NY, USA, 2008. ACM.

[13] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 284–292, New York, NY, USA,
2005. ACM.

[14] C. Poile, A. Begel, N. Nagappan, and L. Layman.
Coordination in large-scale software development: Helpful
and unhelpful behaviors. In submission.

[15] R. J. Sandusky and L. Gasser. Negotiation and the
coordination of information and activity in distributed
software problem management. In Proceedings of GROUP,
pages 187–196, 2005.

