Stochastic Gradient Descent Algorithm in the
Computational Network Toolkit

Brian Guenter, Dong Yu, Adam Eversole, Oleksii Kuchaiev, Michael L. Seltzer
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
{bguenter, dongyu, adame, olekku, mseltzer}@microsoft .com

Abstract

We introduce the stochastic gradient descent algorithm used in the computational
network toolkit (CNTK) — a general purpose machine learning toolkit written
in C++ for training and using models that can be expressed as a computational
network. We describe the algorithm used to compute the gradients automatically
for a given network. We also propose a low-cost automatic learning rate selection
algorithm and demonstrate that it works well in practice.

1 Computational Network Toolkit

A computational network (CN) is a directed graph in which each leaf represents an input value or a
learnable parameter and each node represents an operator. Figure [T]illustrates an example CN of a
log-linear model. Here, each node is identified by a {node name : operator type} pair and takes its
ordered children as the operator’s inputs. For example, in the figure, T = T'imes(W, X) which is
different from T = Times(X, W). A CN can have many root nodes which are used under different
conditions. For example, one root node may represent a cross-entropy training criterion and another
may represent an evaluation criterion. The network in Figure [I|has only one root node {C: Cross
Entropy}. Many machine learning models, such as neural networks, that can be described via a
series of operations, can be converted into a CN.

The computational network toolkit (CNTK) is a general purpose C++ based machine learning toolkit
for models that can be described as CNs. Figure 2] illustrates the architecture of CNTK. The core
of CNTK is an internal representation of a CN which provides two key methods: Evaluate, which
computes the value of a node given its inputs and Compute Gradient, which computes the gradient
of a node with respect to its inputs. These methods are executed using an /ExecutionEngine such as
a CPU, a GPU, or a data flow graph such as pTask [1]]. /ICNBuilder reads the network description
(or language) and creates a CN. IDataReader reads in features and labels stored in different formats.
ILearner optimizes the model parameters with different optimization algorithms. In this paper, we
focus on the well-known stochastic gradient descent (SGD) algorithm. Section [2| describes how
gradients are computed efficiently regardless of the CN architecture. In Section [3|a new learning
rate selection algorithm is proposed and evaluated. Section] provides some practical tricks used in
the toolkit’s implementation.

2 Automatic Gradient Computation

The objective function, £, for training the computational network is of the form f : R™ — R!. The
gradient of this function is
D(f(gi(his-)y gn()) =Y o

i=1 J*

D(g:))

C: Cross entropy

/\ |IExecutionEngine
S: Softmax L: Input

‘ Use
CN " .
Evaluate Compute
T: Times B: Input

Features and
Labels

Gradient
Load IDataReader -Get Data

W: parameter X:Input
Figure 1: A log-linear model repre- Figure 2: Architecture of CNTK.
sented as a computational network

where the g;(. . .) are themselves functions of some %, and so on. Naively applying this recursion to
the function graph will lead to exponential time worst-case behavior as graph nodes will be evaluated
multiple times.

Factoring out the common prefix terms % makes computation linear in the number of compu-
tation nodes in the graph. This is analogous to common subexpression elimination in a conven-
tional expression graph, only here the common subexpressions are the parents of the nodes, rather
than the children. For scalar functions this factorization can be performed with a simple recursive
algorithm[2]]. However, for matrix expressions we need differentiation rules that express partial
derivatives in terms of matrix expressions, rather than as a large scalar function expression graph.

For functions applied per matrix element, such as sigmoid, the differentiation rules are analogous to
the scalar case. Matrix addition is similarly straightforward. The only case that requires some con-
sideration is matrix multiplication. Suppose our objective function is f(C) = ||C|| where C = AB
and ||C]|| is the Frobenius norm of C. Writing the elements of the gradient of f with respect to A

8f o Bf aci,j
aam B zl:zj: 8ci,j 3ak7l (2)

and noticing that

8Ci’j o {blj 1=k

Oay 0 otherwise
we can rewrite eq. [2]as
0 0
U 3)
da, ~ Ock,;j
If we define matrix dC with elements
of
dC, ; =
»J aci,j
then we can write eq. |3|as
dAy, = dCy by ;. 4)

J

Eq. is just the formula for the matrix multiplication JA = dCB™T. A similar derivation shows that
dB = ATdC. A similar approach was used in Theano [3] although the implementation is different.

A simple recursive algorithm for computing the gradient is shown in Algorithm[I] The function is
called on the root node of the computation network, with dC argument set to a 1x1 matrix containing
the value 1. Each node type, such as *, +, or sigmoid, defines its own node.d(child) function.

3 Automatic Learning Rate Selection

The performance of the stochastic gradient descent (SGD) algorithm depends critically on how the
learning rates are chosen. Many researchers have proposed schemes for making learning rates adap-
tive [4]]. These methods typically can be classified into two categories: those based on an estimated

Algorithm 1 Recursive Gradient

function GRAD=GRADIENT(f, dC)
Input: f=root node of computational network, dC'=derivative of parent node
Output: df=new network representing the derivative of f
if timesVisited = parentCount then
foreach child of this node grad(child, node.d(child))
else
node.derivative += dC
timesVisited+ =1
end if
end function

Hessian and those based on an empirical search algorithm. We have found these existing schemes to
be expensive when applied to large datasets. For example, the efficient Hessian estimation algorithm
used in [3]] incurs one additional back-propagation pass or 100% additional computation cost. A full
range empirical search typically requires processing the training data with different learning rates at
least 10 times, even if an efficient algorithm is used to adjust the learning rate based on the sign of
improvement. Such a large expense is not affordable for real-world tasks with millions or billions
of training samples.

We propose a novel method for automatically adjusting learning rates. Similar to that proposed
in [S)], our approach can increase or decrease the learning rate and is suitable for non-stationary
problems. Unlike other empirical methods, however, our algorithm determines the learning rate
before each epoch using a small sample of the training set. This requires only minimal additional
computation. Algorithm [2| describes the steps of the learning rate search algorithm. During the
first epoch, in which the model parameters have typically been randomly initialized, the algorithm
searches for the best learning rate based on a set of n random samples using a grid search which
decreases the learning rate by 0.618 each time (0.5 works equally well). For all subsequent epochs,
the algorithm searches for the largest learning rate that is sufficient to see improvement in the average
training criterion if all IV samples in the epoch are used to update the parameters. Note that when
the learning rate is fixed, the earlier samples typically improve the training criterion more than the
later samples since the error signal becomes smaller over time. We found that we can approximate
this behavior by assuming that the gain is proportional to the square root of the number of samples
seen. The learning rate selection algorithm is typically run on 2-5% (or 200-500 mini-batches) of
the full epoch size.

Note that starting with the second epoch, there are actually two alternative criteria to select the
learning rates: one is to select the best learning rate just as in the first epoch, and one is to select the
largest learning rate that improves over the O learning rate. In practice, we have found that these two
approaches will reduce the learning rate quickly and lead to an inferior final model.

Algorithm 2 Learning Rate Search

function A=SEARCHLEARNINGRATE(N, n, e;_1)
Input: N=total number of samples in an epoch; n=number of samples used to estimate learn-
ing rate; e;_j=training criterion from previous epoch
Output: A=optimal learning rate
if t < 0 then
A=Grid search the best A to minimize e
else
Compute e with learning rate 0 by running SGD over n samples
r = sqrt(n/N)
€pase = (1 —7) X €5+ 7 X ez_1
A=Grid search for the largest A so that 5 < epgse
end ifreturn \
end function

—=—fixed 0.3 fixed 0.4 —— fixed 0.2 —a— fixed0.3 fixed 0.4

fixed 0.8 auto over last fixed 0.6 fixed 0.8

auto over no change
EPOCH NUMBER

—— auto over best —=— auto over no change

EPOCN NUMBER

AdOYLINT SS04D

LYY ONINYYI
o
Y
o

(a) Cross Entropy (b) Learning Rate

Figure 3: Comparison of different learning rate adjustment strategies on MNIST.

Figure 3| (a) and (b) illustrate the training set cross-entropy improvement and the learning rate se-
lected over epochs with different learning rate adjustment schemes on the MNIST data set [6]. In
these experiments, we have used a neural network with 784 input units, 256 hidden units, and 10
output units. The SGD algorithm used a mini-batch size of 32. The total training set has 60,000
samples, of which 3200 samples (or 5%) were used to adjust the learning rate. On average each
epoch required 3 passes through the 3200 samples which increased the total training time by 15%.
In the figure, we can clearly see the inferior performance of other two alternatives. We can also
observe that the proposed approach performs better than the fixed-learning rate search approach in
training set performance. Note that the proposed algorithm may increase the learning rate.

We have applied this algorithm to the speech data and advertisement click prediction data and outper-
formed a hand-tuned learning rate in both cases. For example, on the Switchboard 24-hour training
set with 1502 classes (tied triphone states), the proposed algorithm, which used 1.5% samples and
5% overhead in learning rate search, together with dropout [7]] at a rate of 0.2 to control overfit-
ting, achieved 49.1% frame accuracy on the evaluation set without pretraining, compared to 47.3%
accuracy achieved by the best hand-tuned learning rate strategy with pretraining.

4 Practical Tricks

Most of the work performed in Evaluate and Compute Gradient functions is expressed using ma-
trix operations. Currently, CNTK implements matrix operation using the following BLAS libraries:
ACML math library from AMD and cuBLAS from NVIDIA, for CPU and GPU computations,
respectively. Since cuBLAS doesn’t implement all the functions necessary for CN, we had to
implement many element-wise matrix operations and other functions using custom CUDA ker-
nels. One of the most important considerations when optimizing GPU code is minimizing mem-
ory copies between CPU RAM and GPU RAM. For example, when computing training loss per
minibatch the resulting value is kept on the GPU rather than transferring it to CPU memory to
avoid either synchronization or asynchronous memory copies. We also set cuBLAS pointer mode to
CUBLAS_POINTER_MODE_DEVICE which allows it to keep call results in GPU memory.

When implementing CUDA kernels, making use of shared memory and achieving higher levels of
parallelism is necessary for a good performance. Functions like Max(),Sum(), Frobenius norm(),
etc. are implemented using a reduction-based approach maximizing the use of shared memory
within each thread block. The goal is to split the work among as many threads as possible since
thread overhead is negligible for CUDA. For classification tasks with many output classes (such as
1502 tied triphone states), efficiency of functions such as AssignColumnwiseSoftmax() is important.
In our implementation, we assign a separate CUDA block with many threads to each matrix column
and use a reduction-based approach several times within each column to achieve greater speed.

5 Summary

In this paper we described the SGD algorithm used in the CNTK with a focus on the automatic
gradient computation and the learning rate adjustment algorithm. We confirmed the effectiveness of
the proposed approach in several real-world tasks.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

C. J. Rossbach, J. J. Currey, M. Silberstein, B. Ray, and E. Witchel, “PTask: Operating system abstractions
to manage GPUs as compute devices,” in Symposium on Operating Systems Principles, 2011.

Brian Guenter, “Efficient symbolic differentiation for graphics applications,” in ACM SIGGRAPH 2007
papers, New York, NY, USA, 2007, SIGGRAPH *07, ACM.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio, “Theano: a CPU and GPU math expres-
sion compiler,” in Proceedings of the Python for Scientific Computing Conference (SciPy), June 2010, Oral
Presentation.

Abraham P George and Warren B Powell, “Adaptive stepsizes for recursive estimation with applications in
approximate dynamic programming,” Machine learning, vol. 65, no. 1, pp. 167-198, 2006.

Tom Schaul, Sixin Zhang, and Yann LeCun, “No more pesky learning rates,” arXiv preprint
arXiv:1206.1106, 2012.

Yann LeCun and Corinna Cortes, “The mnist database of handwritten digits,” 1998.

G. E. Hinton, N. Srivastava, A. Krizhevsky, 1. Sutskever, and R. R. Salakhutdinov, “Improving neural
networks by preventing co-adaptation of feature detectors,” http://arxiv.org/abs/1207.0580, 2012.

	Computational Network Toolkit
	Automatic Gradient Computation
	Automatic Learning Rate Selection
	Practical Tricks
	Summary

