The Case for VM-based Cloudlets in Mobile Computing

Mahadev Satyanarayananf, Paramvir Bahl*, Ramon Caceres®, Nigel Davies®

Carnegie Mellon University, “Microsoft Research, * AT&T Research, ®Lancaster University

1 Introduction

Mobile computing is at a fork in the road. After two
decades of sustained effort by many researchers, we have
developed the core concepts, techniques and mechanisms
to provide a solid foundation for this still fast-growing
area. The vision of “information at my fingertips at any
time and place” was only a dream in the mid-1990s. To-
day, ubiquitous email and Web access is a reality that
is experienced by millions of users worldwide through
their BlackBerries, iPhones, Windows Mobile, and other
mobile devices. Continuing on this road, mobile Web-
based services and location-aware advertising opportuni-
ties have begun to appear. Large investments are being
made in anticipation of major profits.

Yet, by staying on this path, mobile computing ignores
its true potential. Awaiting discovery is an entirely new
world in which mobile computing seamlessly augments
the cognitive abilities of users using compute-intensive
capabilities such as speech recognition, natural language
processing, computer vision and graphics, machine learn-
ing, augmented reality, planning and decision-making. By
thus empowering mobile users, we could transform many
areas of human activity. The sidebar speculates on one
example of such a transformation.

This paper discusses the technical obstacles to this
transformation, and proposes a new system architecture
to overcome them. In this architecture, a mobile user ex-
ploits virtual machine (VM) technology to rapidly instan-
tiate customized service software on a nearby cloudlet,
and then uses that service over a wireless LAN. The mo-
bile device typically functions as a thin client with respect
to the service. A cloudlet is a trusted, resource-rich com-
puter or cluster of computers that is well-connected to the
Internet and is available for use by nearby mobile devices.

Our strategy of leveraging transiently-customized prox-
imate infrastructure as a mobile device moves with its
user through the physical world is called cloudlet-based
resource-rich mobile computing. Crisp interactive re-
sponse, which is essential for seamless augmentation of
human cognition, is easily achieved in this architecture
because of the physical proximity and one-hop network
latency of the cloudlet. Using a cloudlet also simplifies
meeting the peak bandwidth demand of multiple users in-

teractively generating and receiving media such as HD
video and high-resolution images. Rapid customization of
infrastructure for diverse applications emerges as a criti-
cal requirement of this architecture. We present results
from a proof-of-concept prototype that suggest that this
requirement can indeed be met through VM technology.

We begin in Section 2 with a discussion of resource lim-
itations in mobile hardware, and then explain in Section 3
why cloud computing is limited in its ability to address
these limitations. Our proposed solution is presented in
Sections 4 and 5, and a proof-of-concept prototype is de-
scribed in Section 6. We conclude with a summary of the
main points in Section 7.

2 Resource-Poor Mobile Hardware

The phrase “resource-rich mobile computing” appears to
be an oxymoron at first glance. It has long been recog-
nized that mobile hardware is necessarily resource-poor
relative to static client and server hardware [15]. At
any given cost and level of technology, considerations of
weight, size, battery life, ergonomics, and heat dissipation
exact a severe penalty in computational resources such as
processor speed, memory size, and disk capacity. From
the viewpoint of a user, a mobile device can never be too
small, too light or have too long a battery life. While
mobile hardware continues to evolve and improve, it will
always be resource-poor relative to static hardware. On
hardware that people carry or wear for extended periods
of time, improving size, weight and battery life are higher
priorities than enhancing compute power. This is not just a
temporary limitation of current mobile hardware technol-
ogy, but is intrinsic to mobility. Computation on mobile
devices will always be a compromise.

Resource poverty is a major obstacle for many appli-
cations with the potential to seamlessly augment human
cognition. These applications typically require process-
ing and energy that far outstrips the capabilities of mo-
bile hardware. In the lab, with ample computing re-
sources, the state of the art for applications such as face
recognition, speech recognition, and language translation
is near-human in performance and quality. For exam-
ple, as shown in Figure 1(a), Spanish-English translation
comparable to human quality was achieved in 2006 on
a 100-node computing engine using large online corpora



0.85
0.8 Human Scoring Range T Computer Computer
07 I s Year | worse than | better than | Indeter- 2’0”8
. etter
& human human | minate
8 051 e 1999 87.5% 42% 83% | 21.0
- _— 2001 87.5% 8.3% 42% | 10.5
!
’ 2003 45.8% 16.7% 37.5% 2.75
0.4-{ 0.3859
. 2005 37.5% 33.3% 29.2% 1.13
0.3
Google  Google  Systran SDL Google ~ CBMT 2006 29.2% 37.5% 33.3% 0.78
Chinese  Arabic Spanish  Spanish  spanish Spanish

(‘06 NIST) (‘05 NIST)

'08 top lang

Based on same Spanish test set

(a) Machine Translation Quality (Carbonell et al [5])

(b) Face Recognition Quality (Adler and Schuckers [1])

Figure 1: Near-Human Quality of Cognitive Augmentation Applications Today

and a context-based machine translation (CBMT) algo-
rithm [5]. For the IBM BLEU metric used in this fig-
ure, scores above 0.7 enter the bilingual human trans-
lator range, and those above 0.8 approach the human
experienced-professional translator range. Face recogni-
tion using computer vision is another area where rapid
progress has occurred over the past decade. Figure 1(b),
adapted from Adler and Schucker’s 2007 comparison of
human and automatic face recognition performance [1],
shows that computers and humans are comparable on
this task today. While several technical improvements
for practical deployment are still needed in such appli-
cations, no giant leaps of faith are needed to recognize
their future potential. The real challenge lies in sustaining
their state-of-the-art performance and quality in the wild:
under highly variable conditions on lightweight, energy-
efficient, resource-impoverished mobile hardware.

3 The Limits of Cloud Computing

An obvious solution to the resource poverty of mobile de-
vices is to leverage cloud computing. A mobile device
could execute a resource-intensive application on a distant
high-performance compute server or compute cluster, and
support thin client user interactions with the application
over the Internet. Unfortunately, as discussed below, long
WAN latencies are a fundamental obstacle.

3.1 Why Latency Hurts

WAN delays in the critical path of user interaction can
hurt usability by degrading the crispness of system re-
sponse. Even trivial user-application interactions incur
these delays in cloud computing. Humans are acutely sen-
sitive to delay and jitter, and it is very difficult to control
these parameters at WAN scale. As latency increases, in-
teractive response suffers. Loosely-coupled tasks such as
Web browsing may continue to be usable, but deeply im-
mersive tasks such as augmented reality become jerky or
sluggish to the point of distraction. This reduces the user’s
depth of cognitive engagement.

Lagar-Cavilla et al [10] have shown that latency can
negatively impact interactive response in spite of ade-
quate bandwidth. Figure 2(a) compares the measured
output frame rate of a visualization application (Quake-
Viz) under two different configurations: local machine
with hardware graphics acceleration (“Thick™), and re-
mote compute server over a 100 Mb/s network with the
output viewed through VNC (“Thin”). A high frame rate
provides the illusion of smoothness to an interactive user.
Figure 2(a) shows that even a modest latency of 33 ms
causes frame rate to drop considerably from the frame rate
experienced with a thick client. The VNC protocol strives
to keep up by dropping frames, resulting in jerky inter-
action. Work-conserving thin client protocols, such as X
windows, preserve frames but offer sluggish interaction.
In both cases, the user experience is considerably poorer
than for local interaction. Figure 2(b) reports measured
Internet2 latencies between representative end points at
planetary scale [10]. The measured figures far exceed the
speed-of-light lower bound in the last column.

Independently, Tolia et al [ 18] have shown that the user-
perceived quality of thin client performance is highly vari-
able, and depends on both the degree of interactivity of
the application and the end-to-end latency of the network.
As Figure 3 illustrates, the usability of a highly interac-
tive task such as photo editing suffers unacceptably even
at moderate network latency (100 milliseconds RTT) and
very good bandwidth (100 Mbps). This in contrast to
tasks such as Web browsing, which are interactively unde-
manding. Figure 3(b) shows the distribution of response
times for individual interactions in a GIMP photo editing
task. The mapping of response times to subjective impres-
sions of quality shown in Figure 3(a) is based on long-
established HCI guidelines that were developed through
empirical studies.

3.2 WAN Latency Is Unlikely to Improve

The current trajectory of Internet evolution makes it
very unlikely that these fundamental considerations will



100
90 ~— Thin
8o Min | Mean | Max | Lower Bound
70 Berkeley — Canberra 174.0 | 174.7 | 176.0 79.9
60 Berkeley — New York 85.0 | 85.0 85.0 27.4
%0 Berkeley — Trondheim | 197.0 | 197.0 | 197.0 55.6
:g Tgﬂ‘gga Pittsburgh — Ottawa 440 | 441 | 620 43
0 Thick Pittsburgh — Hong Kong | 217.0 | 223.1 | 393.0 85.9
10 Pittsburgh — Dublin 115.0 | 115.7 | 116.0 42.0
0 Pittsburgh — Seattle 83.0 | 839 | 84.0 22.9

o] 10 20 30 40 50 60 70 80 90

(a) Frame Rate CDF at 100 Mbps

(b) Measured Internet2 Round Trip Times (milliseconds)

Figure 2: Impact of Network Latency on a Highly Interactive Visualization Application (Lagar-Cavilla et al [10])

change in the forseeable future. The prime targets of net-
working improvements today are bandwidth, security, en-
ergy efficiency, and manageability. Often, the techniques
used for these improvements hurt latency. For example,
firewalls and overlay networks both achieve their goals by
increasing the software path length traversed by packets.
In wireless networks, a common energy-saving technique
is to turn on the mobile device’s transceiver only for short
periods of time to receive and acknowledge packets that
have been buffered at a base station. This increases aver-
age end-to-end latency for packets, and also increases jit-
ter. Bandwidth, on the other hand, may be hardly affected
by these techniques because it is an aggregate rather than
instantaneous measure. Although bandwidth will con-
tinue to improve over time, latency is unlikely to improve
dramatically. In fact, it may worsen.

3.3 Bandwidth-induced Delays Also Hurt

While the discussion above has focused on Internet la-
tency and jitter, there is also a very different source
of user-perceived delay arising from the transmission of
large data items that need to be processed within a tight
user-machine interaction loop. For example, executing
computer vision algorithms on a high-resolution scene
image or on high-definition scene video is a processor-
intensive task that is a natural candidate for offloading to a
high-performance computing engine. The user-perceived
delay in this case is not just the processing time but also
includes the time it takes for bulk data transfer across the
network. This delay is determined by the bandwidth avail-
able in the network.

Wireless LAN bandwidth is typically two orders of
magnitude higher than the wireless Internet bandwidth
available to a mobile device. For example, the nomi-
nal bandwidths of the fastest currently-available wireless
LAN (802.11n) and wireless Internet (HSPDA) technolo-
gies are 400 Mbps and 2 Mbps respectively. From the
viewpoint of user interaction, the difference in transmis-
sion delays at these bandwidths can be very significant:
80 milliseconds instead of 16 seconds for a 4AMB JPEG

image. This is a huge difference for a deeply immersive
application. Even if wireless Internet bandwidth improves
by one order of magnitude, wireless LAN bandwidths are
also poised to improve by a large amount.

4 How Cloudlets Can Help

Can we obtain the benefits of cloud computing without
being WAN-limited? Rather than relying on a distant
“cloud,” the resource poverty of a mobile device can be
addressed by using a nearby resource-rich cloudlet. The
need for real-time interactive response can be met by low-
latency, one-hop, high-bandwidth wireless access to the
cloudlet. The mobile device functions as a thin client,
with all significant computation occurring in the nearby
cloudlet. Physical proximity of the cloudlet is essential:
the end-to-end response time of applications executing in
the cloudlet needs to be fast (few milliseconds) and pre-
dictable. If no cloudlet is available nearby, the mobile
device can gracefully degrade to a fallback mode that in-
volves a distant cloud or, in the worst case, solely its own
resources. Full functionality and performance can return
later, when a nearby cloudlet is discovered.

As Figure 4(a) illustrates, cloudlets are decentralized
and widely-dispersed Internet infrastructure whose com-
pute cycles and storage resources can be leveraged by
nearby mobile computers. A cloudlet can be viewed as a
“data center in a box.” It is self-managing, requiring little
more than power, Internet connectivity, and access control
for setup. This simplicity of management corresponds to
an appliance model of computing resources, and makes it
trivial to deploy on a business premises such as a coffee
shop or a doctor’s office. Internally, a cloudlet may be
viewed as a cluster of multi-core computers, with gigabit
internal connectivity and a high-bandwidth wireless LAN.
For safe deployment in unmonitored areas, the cloudlet
may be packaged in a tamper-resistant or tamper-evident
enclosure with third-party remote monitoring of hardware
integrity. Figure 4(b) summarizes some of the key differ-
ences between cloudlets and clouds. Most importantly, a
cloudlet only contains soft state such as cache copies of



Resp. Time | Subjective Impression RTT | Crisp | Noticeable | Annoying | Unaccep. | Unusable
< 150ms Crisp Ims 3278 40 0 0 0
150ms - Is | Noticeable to Annoying 20ms | 3214 82 4 18 0
Is-2s Annoying

66ms | 2710 572 12 3 21
2s - 5s Unacceptable
> 5s Unusable 100ms | 2296 973 20 6 23

(a) Mapping of Response Times

(b) Response Time Distribution of Individual GIMP Interactions

Figure 3: Usability Impact of Network Latency at 100 Mbps for GIMP over VNC (Tolia et al [18])

data or code that is available elsewhere. Loss or destruc-
tion of a cloudlet is hence not catastrophic.

5 Transient Cloudlet Customization

We imagine a future in which cloudlet infrastructure is
deployed much like Wi-Fi access points today. Indeed, it
would be relatively straightforward to integrate cloudlet
and Wi-Fi access point hardware into a single easily-
deployable entity. A key challenge is to simplify cloudlet
management. Widespread deployment of cloudlet infras-
tructure will not happen unless software management of
that infrastructure is trivial — ideally, it should be totally
self-managing. Tightly restricting software on cloudlets
to simplify management is unattractive because it con-
strains application innovation and evolution. Instead, an
ideal cloudlet would support the widest possible range of
mobile users, with minimal constraints on their software.

Our solution is transient customization of cloudlet in-
frastructure using hardware virtual machine (VM) tech-
nology. The emphasis on “transient” is important: pre-use
customization and post-use cleanup ensures that cloudlet
infrastructure is restored to its pristine software state after
each use, without manual intervention. A VM cleanly en-
capsulates and separates the transient guest software en-
vironment from the permanent host software environment
of the cloudlet infrastructure. The interface between the
host and guest environments is narrow, stable, and ubig-
uitous. This ensures the longevity of cloudlet investments
and greatly increases the chances of a mobile user finding
compatible cloudlets anywhere in the world. The mal-
leable software interfaces of resource-rich mobile appli-
cations are encapsulated within the guest environment and
are hence precisely re-created during pre-use customiza-
tion of cloudlets. As a result, a VM-based approach is
less brittle than alternatives such as process migration
or software virtualization [13]. It is also less restrictive
and more general than language-based virtualization ap-
proaches that require applications to be written in a spe-
cific language such as Java or C#.

There are two different approaches to delivering VM
state to infrastructure. One is a VM migration approach
in which an already-executing VM is first suspended; its
processor, disk and memory state are then transferred; fi-

nally, VM execution is resumed at the destination from
the exact point of suspension. The basic feasibility of this
approach has been confirmed by our work on the Internet
Suspend/Resume (ISR) system [8, 16] and SoulPad [4],
and by other work such as the Collective [14] and Xen
live migration [6].

Mobile Device Cloudlet

Preload base VM
[ )
[ )

L]
Discover & negotiate

use of cloudlet

PVate Vi g

rivate iy o
verlay (base + overlay) — launch VM

Execute launch VM

Use user-driven .
cloudlet device-VM L]
interactions b

Finish use

done
Create VM residue

W Discard VM

Depart \
Figure 5: Dynamic VM Synthesis Timeline

The other approach, which is the focus of this paper,
is called dynamic VM synthesis. A small VM overlay
is delivered by a mobile device to cloudlet infrastructure
that already posseses the base VM from which this over-
lay was derived. The infrastructure applies the overlay to
the base to derive the launch VM, which starts execution
in the precise state from which the overlay was derived.
Figure 5 illustrates the steps of this approach. In a lan-
guage translation application, for example, the software
in the launch VM could be a server that receives captured
speech from a mobile device, performs speech recogni-
tion and language translation, and returns the output for
speech synthesis. If the cloudlet is a cluster, the launch
VM could be rapidly cloned to exploit parallelism, as de-
scribed by Lagar-Cavilla et al [11].

We anticipate that a relatively small number of base
VMs (perhaps a dozen or so releases of Linux and
Windows configurations) will be popular worldwide in



Qympus Cloudlet Cloud
Mobile Eye Trck State | Only soft state Hard and soft state
Computer Y . . .
X Management | Self-managed; little to no | Professionally administered,
. professional attention 24x7 operator
Distant cloud . . . .
Anﬁroid Low-latency’, on Internet Environment | “Datacenter in a box” at | Machine room with power
Phone high-bandwidith *, business premises conditioning and cooling
wireless % . . . . .
_ network % Ownership | Decentralized ownership | Centralized ownership by
N°k'aT’ng|1§- o by local business Amazon, Yahoo!, etc.
gtk Cofee shop Network | LAN latency/bandwidth Internet latency/bandwidth
oudle . . .
WeaGrﬁJti/lg W Sharing | Few users at a time 100s-1000s of users at a time

(a) Cloudlet Concept

(b) Key Differences: Cloudlet vs. Cloud

Figure 4: What is a Cloudlet?

cloudlets at any given time. Hence, the chances will be
high that a mobile device will find a compatible base for
its overlays even far from home.

It is useful to contrast dynamic VM synthesis with
the alternative approach of assembling a large file from
hash-addressed chunks. Variants of the alternative ap-
proach have been used in systems such as LBFS [12],
Casper [19], Shark [3], the Internet Suspend/Resume sys-
tem [9], the Collective [14], and KeyChain [2]. All
of these variants have a probabilistic character to them:
chunks that are not available nearby (in the local cache,
on portable storage, and so on, depending on the specific
variant) have to be obtained from the cloud. The band-
width to the cloud and the hit ratio on chunks are the
dominant factors affecting speed of assembly. Dynamic
VM synthesis differs in two key ways. First, its perfor-
mance is determined solely by local resources: bandwidth
to cloudlet and compute power of the cloudlet. Local
hardware upgrades can thus translate directly to faster VM
synthesis. Second, WAN failures do not affect synthesis.
Even a cloudlet that is totally isolated from the Internet
can be used, since the overlay is delivered from the mo-
bile device. In this case, the provisioning of the cloudlet
with base VMs could be done through physical storage
media.

6 Feasibility of Dynamic VM Synthesis

We have built a proof-of-concept prototype called Kim-
berley to explore the feasibility of dynamic VM synthe-
sis. The mobile device in this prototype is a Nokia N810
Internet tablet running Maemo 4.0 Linux. Cloudlet in-
frastructure is represented by a standard desktop running
Ubuntu Linux. We briefly describe the prototype and ex-
perimental results from it below. Wolbach et al provide
more details in a 2008 workshop paper [20].

6.1 VM Overlay Creation

Kimberley uses VirtualBox, a hosted VMM for Linux. A
tool called kimberlize is used to create VM overlays,
using baseVM, install-script, and resume-script
as inputs. baseVM is a VM in which a minimally-
configured guest OS has been installed. There are
no constraints on the choice of guest OS, except
that it must be compatible with install-script and
resume-script. The tool first launches baseVM, and
then executes install-script in the guest OS. The re-
sult is a VM that has been configured for use by the mo-
bile device. Next, the tool executes resume-script in
the guest OS. This launches the desired application, and
brings it to a state that is ready for user interaction. This
VM, called launchVM, is now suspended. It can be re-
sumed rapidly at runtime without the delays of guest re-
boot or application launch. After creating launchVM,
kimberlize differences its memory and disk images
with those of baseVM to obtain the VM overlay. The final
step is to compress and encrypt this overlay.

6.2 Binding to Cloudlet Infrastructure

Figure 6 shows the key runtime components of Kimberley.
The controller of the transient binding between mobile de-
vice and cloudlet is a user-level process called Kimberley
Control Manager (KCM). An instance of KCM runs on
the device and on the cloudlet, and they together abstract
service discovery and network management from the rest
of Kimberley. KCM supports the browsing and publish-
ing of services using the Avahi mechanism in Linux.

The first step in the binding sequence is the establish-
ment of a secure TCP tunnel using SSL between KCM
instances on a device and a cloudlet. This tunnel is then
used by the rest of the binding sequence, which typically
involves user authentication and optional billing interac-




user

Launch interaction
VM ,
'
Server|| Launcher m (\:/I:igt
KCM

Avahi

‘ Infrastructure Server ’

(Avahil KCM ]

wireless ; i
Imk[ Mobile Device ]

140 - O Other
|Largest standard deviation is 5.3% of mean| B Resume VM
120 4 B Apply VM overlay
O Decompress VM overlay
100 4 Transfer private data

& Compress private data

Figure 6: Runtime Binding in Kimberley 80 1 W Transfer VM overlay
60 -
Application Compressed Uncompressed Install
VM Overlay VM Overlay Package 401
Size (MB) Size (MB)  Size (MB)
20 -
AbiWord 119.5 364.2 10.0
GIMP 141.0 404.7 16.0 0-
Gnumeric 165.3 519.8 16.0 AbiWord ~ GIMP  Gnumeric Kpresenter PathFind SnapFind Null
Kpresenter 149.4 426.8 9.1 Figure 7: VM Synthesis Time at 100 Mbps (seconds)
PathFind 196.6 437.0 36.8
SnapFind 63.7 222.0 8.8 .
Null 50 08 0.0 6.4 Improving Performance

Table 1: VM Overlay Sizes for 8 GB Virtual Disk

tion. Kimberley supports the Simple Authentication and
Security Layer (SASL) framework, which provides an
extensible interface for integrating diverse authentication
mechanisms. After successful authentication, the cloudlet
KCM executes a dekimberlize command. This fetches
the VM overlay from the mobile device or a Web site,
decrypts and decompresses it, and applies the overlay to
the base VM. The suspended VM is then launched, and is
ready to provide services to the mobile device.

6.3 Speed of VM Synthesis

Table 1 shows that VM overlay size is 100-200 MB for a
sample collection of Linux applications. This is an order
of magnitude smaller than the full VM size of over 8GB.
The row labelled Null in Table 1 shows that the intrinsic
overhead of Kimberley is modest.

For use in cloudlets, rapid VM synthesis is important.
Mobile users who rely on cloudlet services will find ex-
tended delays for service initiation at a new location to be
unacceptable. In addition, cloudlet handoffs should be as
rapid, invisible and seamless as Wi-Fi access point hand-
offs are today — a good potential use of VM migration
after initial VM synthesis.

Figure 7 presents the measured VM synthesis time in
Kimberley for six Linux applications, when the VM over-
lay is delivered to the cloudlet at 100 Mbps. The times
range from under a minute to just over a minute and a
half. These figures are likely to improve over time since
Kimberley is an unoptimized initial prototype, with many
performance optimizations possible.

Synthesizing a VM in 60 — 90 seconds is acceptable for an
unoptimized proof-of-concept prototype, but significant
improvement is needed for real-world deployment. Ex-
ploring these performance improvements is part of our fu-
ture work. We conjecture that synthesis times in the small
tens of seconds is a desirable and practically achievable
goal, requiring about a factor of five improvement. As
shown in Figure 7, the major contributors to VM synthesis
time are (a) overlay transmission and (b) decompressing
and applying the overlay on the cloudlet.

Overlay transmission time can be improved by using
a higher-bandwidth short-range wireless network. Rela-
tive to the 100 Mbps network used in our experiments,
wireless LAN bandwidths are poised to improve through a
number of new wireless technologies that are on the brink
of commercial relevance. Examples of such technolo-
gies include: 802.11n (300-600 Mbps), Ultra-wideband
(UWB) (100-480 Mbps), and 60 GHz radio (1-5 Gbps).
We anticipate significant development effort in translating
these nominal bandwidth improvements into true end-to-
end improvements, especially since one of the end points
is a mobile device that is not optimized for high perfor-
mance. However, this is a challenge that has been suc-
cessfully met in the past with each major improvement in
networking technology. We are confident of eventual suc-
cess, although the path to getting there may be convoluted.

To reduce decompression and overlay application
times, one can exploit parallelism. Since these operations
are performed on the cloudlet, not the mobile device, there
is ample opportunity to take advantage of multi-core com-
puting resources. For example, partitioning the VM im-
age into four parts and generating four (smaller) overlays
will allow a four-core cloudlet to synthesize the parts in
parallel to achieve close to a 4X speedup. The overall de-



compression and overlay application workload is embar-
rasingly parallel, allowing higher degrees of parallelism to
be exploited quite easily. In addition, it may be possible
to pipeline this step with overlay transmission.

Another approach is to use caching, speculative syn-
thesis, and prefetching techniques to eliminate VM syn-
thesis delay. Temporal locality of user mobility patterns
suggests that persistent caching of launch VMs may be
valuable in eliminating the need for VM synthesis on re-
turn visits by a user to a cloudlet. Other users may also
benefit, if they use the same launch VM. An idle cloudlet
and a mobile device could cooperate in speculative VM
synthesis if there is a strong hint of a visit to that cloudlet
in the near future. The hints needed for speculative syn-
thesis may be obtained from high-level user information
such as location tracking, context information, online cal-
endar schedules, and history-based sources. The cost of
erroneous speculation can be kept acceptable by execut-
ing the synthesis at low priority.

Synthesis can be applied recursively to generate a fam-
ily of overlays. Creating a launch VM would then involve
pipelined application of these overlays, with intermedi-
ate results cached for reuse. Earlier stages of the pipeline
would tend to involve larger overlays that are more widely
used across applications and are hence more likely to be
found in a persistent cache. Conceptually, we seek a
“wavelet”-like decomposition of VM state into a sequence
of overlays that decrease in size but increase in specificity.
A tradeoff is that each overlay introduces some delay in
pre-use customization of infrastructure. The cost of gen-
erating overlays is not a factor, since it occurs offline.

6.5 Deployment Challenges

Many practical considerations need to be addressed be-
fore the vision described in this paper becomes reality.
One obvious question pertains to the business model for
cloudlet deployment. Is deployment driven bottom-up by
business owners installing cloudlets for the benefit of their
customers, much as they install comfortable furniture to-
day? Or is it driven top-down by service providers who
share profits with the retail businesses on whose premises
cloudlets are deployed? In the latter case, how should
pricing plans be structured to attract users while leaving
room for profit? These are only two examples of many
possible business models, and it is difficult to predict at
this early stage which of them will prove to be successful.

A different set of deployment questions pertain to siz-
ing of cloudlets. How much processing, storage, and net-
working capacity should a cloudlet possess? How do
these resource requirements depend on the specific ap-
plications supported? How do they vary over time in
the short term and long term, taking into account nat-
ural clustering of users? How do cloudlet resource de-
mands vary across individual users and groups of users?

How sparse can cloudlet infrastructure be, yet provide a
satisfactory user experience? What management policies
should cloudlet providers use to maximize user experi-
ence while minimizing cost?

Trust and security issues are also major factors in
cloudlet deployment. The thick VM boundary insulates
a cloudlet from software executed by careless or mali-
cious users. However, a user’s confidence in the safety of
cloudlet infrastructure rests on more fragile assumptions.
For example, a malicious VMM could subtly distort the
execution of language translation within a VM, and thus
sabotage an important business transaction without the
user being aware of the damage. One approach to coping
with this problem is trust establishment, where the user
performs some pre-use action to check the host software
on a cloudlet. Examples of this approach have been de-
scribed by Garriss et al [7] and Surie et al [17]. A different
approach is reputation-based trust, in which the user ver-
ifies the identity of the cloudlet service provider and then
relies on legal, business or other external considerations
to infer trust. The first approach is more defensive and
robust, but also more cumbersome. The second approach
is more fragile, but also more usable because it is fast and
minimally intrusive. A useful everyday metaphor is drink-
ing water from a faucet. One can boil the water before
drinking (trust establishment), or one can infer safety be-
cause one lives in a first-world country (reputation-based
trust). Time will tell which of these approaches proves
more viable in real-world deployments.

7 Conclusion

Resource poverty is a fundamental constraint that severely
limits the class of applications that can be run on mo-
bile devices. This constraint is not just a temporary limi-
tation of current technology, but is intrinsic to mobility.
In this paper, we put forth a vision of mobile comput-
ing that breaks free of this fundamental constraint. In
this vision, mobile users seamlessly utilize nearby com-
puters to obtain the resource benefits of cloud comput-
ing without incurring WAN delays and jitter. Rather than
relying on a distant “cloud,” a mobile user instantiates a
“cloudlet” on nearby infrastructure and uses it via a wire-
less LAN. Crisp interactive response for immersive appli-
cations that augment human cognition is then much eas-
ier to achieve because of the proximity of the cloudlet.
We confirm that a critical untested aspect of this vision,
namely rapid customization of cloudlet infrastructure, is
achievable through dynamic VM synthesis. While much
remains to be done, the concepts and ideas introduced
here open the door to a new world of mobile computing
in which seamless cognitive assistance of users occurs in
diverse ways at any time and place.



Acknowledgements

We acknowledge Roy Want for his many contributions
to the ideas expressed in this paper, and for helping to
write its early drafts. We would like to thank the re-
viewers for their constructive feedback and suggestions
for improvement. This research was supported by the
National Science Foundation (NSF) under grant num-
ber CNS-0833882. Any opinions, findings, conclusions
or recommendations expressed here are those of the au-
thors and do not necessarily reflect the views of the NSF,
Carnegie Mellon University, Microsoft, AT&T or Lan-
caster University. Internet Suspend/Resume is a registered
trademark of Carnegie Mellon University.

References

[1] ADLER, A., AND SCHUCKERS, M. E. Comparing Hu-
man and Automatic Face Recognition Performance. IEEE
Transactions on Systems, Man, and Cybernetics — Part B:
Cybernetics 37, 5 (October 2007).

ANNAMALAI, M., BIRRELL, A., FETTERLY, D., AND
WOBBER, . Implementing Portable Desktops: a New Op-
tion and Comparisons. Tech. Rep. MSR-TR-2006-151,
Microsoft Research, October 2006.

ANNAPUREDDY, S., FREEDMAN, M. J., AND
MAZIERES, D. Shark: Scaling File Servers via Co-
operative Caching. In Proceedings of the 2nd Symposium
on Networked Systems Design and Implementation (NSDI)
(Boston, MA, May 2005).

CACERES, R., CARTER, C., NARAYANASWAMI, C., AND
RAGHUNATH, M. Reincarnating PCs with Portable Soul-
Pads. In Proc. of the 3rd Intl. Conference on Mobile Sys-
tems, Applications, and Services (Seattle, WA, June 2005).

(2]

(3]

(4]

[5] CARBONELL, J., KLEIN, S., MILLER, D., STEINBAUM,
M., GRASSIANY, T., AND FREY, J. Context-based Ma-
chine Translation. In Proc. of the 7th Conf. of the Assoc.
for Machine Translation in the Americas (Cambridge, MA,

August 2006).

CLARK, C., FRASER, K., HAND, S., HANSEN, J. G.,
JuL, E., LIMPACH, C., PRATT, 1., AND WARFIELD, A.
Live Migration of Virtual Machines. In Proc. of the 2nd
USENIX Symposium on Networked Systems Design and
Impl. (NSDI) (Boston, MA, May 2005).

GARRISS, S., CACERES, R., BERGER, S., SAILER, R.,
VAN DOORN, L., AND X.ZHANG. Trustworthy and Per-
sonalized Computing on Public Kiosks. In Proc. of Mo-
bisys 2008 (Breckenridge, CO, June 2008).

KozucH, M., SATYANARAYANAN, M. Internet Sus-
pend/Resume. In Proc. of the Fourth IEEE Workshop on
Mobile Computing Systems and Applications (Calicoon,
NY, June 2002).

KozUCH, M., SATYANARAYANAN, M., BRESsouD, T.,
HELFRICH, C., SINNAMOHIDEEN, S. Seamless Mobile
Computing on Fixed Infrastructure. I[EEE Computer 37,7
(July 2004).

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

LAGAR-CAVILLA, H. A., ToLIA, N., DE LARA, E.,
SATYANARAYANAN, M., AND O’HALLARON, D. In-
teractive Resource-Intensive Applications Made Easy. In
Proceedings of Middleware 2007: ACM/IFIP/USENIX
8th International Middlewae Conference (Newport Beach,
CA, November 2007).

LAGAR-CAVILLA, H. A., WHITNEY, J., SCANNELL, A.,
PATCHIN, P., RUMBLE, S., DE LARA, E., BRUDNO, M.,
AND SATYANARAYANAN, M. SnowFlock: Rapid Virtual
Machine Cloning for Cloud Computing. In Proceedings of
EuroSys 2009 (Nuremberg, Germany, March 2009).

MUTHITACHAROEN, A., CHEN, B., MAZIERES, D. A
Low-Bandwidth Network File System. In Proceedings of
the 18th ACM Symposium on Operating Systems Princi-
ples (Banff, Canada, Oct. 2001).

OSMAN, S., SUBHRAVATI, D., SU., G., NIEH, J. The
Design and Implementation of Zap: A System for Migrat-
ing Computing Environments. In Proc. of the 5th Sym-
posium on Operating Systems Design and Impl. (Boston,
MA, Dec. 2002).

SAPUNTZAKIS, C., CHANDRA, R., PFAFE, B., CHOW,
J., LAM, M., ROSENBLUM, M. Optimizing the Migration
of Virtual Computers. In Proc. of the 5th Symposium on
Operating Systems Design and Impl. (Boston, MA, Dec.
2002).

SATYANARAYANAN, M. Fundamental Challenges in Mo-
bile Computing. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (1996).

SATYANARAYANAN, M., GILBERT, B., TouPs, M., To-
LIA, N., SURIE, A., O’'HALLARON, D. R., WOLBACH,
A., HARKES, J., PERRIG, A., FARBER, D. J., KOZUCH,
M. A., HELFRICH, C. J., NATH, P., AND LAGAR-
CAVILLA, H. A. Pervasive Personal Computing in an In-
ternet Suspend/Resume System. IEEE Internet Computing
11,2 (2007).

SURIE, A., PERRIG, A., SATYANARAYANAN, M., AND
FARBER, D. Rapid Trust Establishment for Pervasive Per-
sonal Computing. /IEEE Pervasive Computing 6, 4 (2007).

ToLIA, N., ANDERSEN, D., SATYANARAYANAN, M.
Quantifying Interactive Experience on Thin Clients. /EEE
Computer 39, 3 (Mar. 2006).

ToLIA, N., KOZUCH, M., SATYANARAYANAN, M.,
KARP, B., BRESSOUD, T., PERRIG, A. Opportunistic Use
of Content-Addressable Storage for Distributed File Sys-
tems. In Proceedings of the 2003 USENIX Annual Techni-
cal Conference (San Antonio, TX, June 2003).

WOLBACH, A., HARKES, J., CHELLAPPA, S., AND
SATYANARAYANAN, M. Transient Customization of Mo-
bile Computing Infrastructure. In Proc. of the MobiVirt
2008 Workshop on Virtualization in Mobile Computing
(Breckenridge, CO, June 2008).



Sidebar
Help for the Mentally Challenged

Imagine a future in which there are extensive deployments of dense cloudlet infrastructure based on open standards,
much like Wi-Fi access points today. What kind of new applications can we envision in such a world?

Ron has recently been diagnosed with Alzheimer’s disease. Due to the sharp decline in his mental acuity, he is often
unable to remember the names of friends and relatives. He also frequently forgets to do simple daily tasks. He faces
an uncertain future that is clouded by a lack of close family nearby, and limited financial resources for professional
caregivers. Even modest improvements in his cognitive ability would greatly improve his quality of life, while also
reducing the attention demanded from caregivers. This would allow him to live independently in dignity and comfort
for many more years, before he has to move to a nursing home.

Fortunately, a new experimental technology may provide Ron with cognitive assistance. At the heart of this technol-
ogy is a lightweight wearable computer with a head-up display in the form of eyeglasses. Built into the eyeglass frame
are a camera for scene capture, and earphones for audio feedback. These hardware components offer the essentials
of an augmented-reality system to aid cognition when they are combined with software for scene interpretation, face
recognition, context awareness and voice synthesis. When Ron looks at a person for a few seconds, that person’s
name is whispered in his ear along with additional cues to guide Ron’s greeting and interactions; when he looks at
his thirsty houseplant, “water me” is whispered; when he look at his long-suffering dog, “take me out” is whispered.
Ron’s magic glasses travel with him, transforming his surroundings into a helpful smart environment.

In this example, low-latency, high-bandwidth wireless access to cloudlet resources is an essential ingredient for the
“magic glasses” to be able to execute computer vision algorithms for scene analysis and face recognition at real-time
speeds. This is only one of many new applications that we can imagine.



