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ABSTRACT

While many public cloud providers offer pay-as-you-go comput-
ing, their varying approaches to infrastructure, virtualization, and
software services lead to a problem of plenty. To help customers
pick a cloud that fits their needs, we develop CloudCmp, a system-
atic comparator of the performance and cost of cloud providers.
CloudCmp measures the elastic computing, persistent storage, and
networking services offered by a cloud along metrics that directly
reflect their impact on the performance of customer applications.
CloudCmp strives to ensure fairness, representativeness, and com-
pliance of these measurements while limiting measurement cost.
Applying CloudCmp to four cloud providers that together account
for most of the cloud customers today, we find that their offered ser-
vices vary widely in performance and costs, underscoring the need
for thoughtful provider selection. From case studies on three rep-
resentative cloud applications, we show that CloudCmp can guide
customers in selecting the best-performing provider for their appli-
cations.

Categories and Subject Descriptors

C.4 [Performance of Systems]: General—measurement techniques,

performance attributes; C.2.3 [Computer-Communication Net-

works]: Network Operations—network monitoring, public networks;
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications, distributed databases

General Terms

Measurement, Design, Performance, Economics.

Keywords

Cloud computing, comparison, performace, cost.

1. INTRODUCTION
Internet-based cloud computing has gained tremendous momen-

tum in recent years. Cloud customers outsource their computation
and storage to public providers and pay for the service usage on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’10, November 1–3, 2010, Melbourne, Australia.
Copyright 2010 ACM 978-1-4503-0057-5/10/11 ...$10.00.

demand. Compared to the traditional computing model that uses
dedicated, in-house infrastructure, cloud computing offers unprece-
dented advantages in terms of cost and reliability [22, 27]. A cloud
customer need not pay a large upfront cost (e.g., for hardware pur-
chase) before launching services, or over-provision to accommo-
date future or peak demand. Instead, the cloud’s pay-as-you-go
charging model enables the customer to pay for what she actually
uses and promises to scale with demand. Moreover, the customer
can avoid the cost of maintaining an IT staff to manage her server
and network infrastructure.

A growing number of companies are riding this wave to pro-
vide public cloud computing services, such as Amazon, Google,
Microsoft, Rackspace, and GoGrid. These cloud providers offer
a variety of options in pricing, performance, and feature set. For
instance, some offer platform as a service (PaaS), where a cloud
customer builds applications using the APIs provided by the cloud;
others offer infrastructure as a service (IaaS), where a customer
runs applications inside virtual machines (VMs), using the APIs
provided by their chosen guest operating systems. Cloud providers
also differ in pricing models. For example, Amazon’s AWS charges
by the number and duration of VM instances used by a customer,
while Google’s AppEngine charges by the number of CPU cycles
consumed by a customer’s application.

The diversity of cloud providers leads to a practical question:
how well does a cloud provider perform compared to the other

providers? Answering this question will benefit both cloud cus-
tomers and providers. For a potential customer, the answer can help
it choose a provider that best fits its performance and cost needs.
For instance, it may choose one provider for storage intensive ap-
plications and another for computation intensive applications. For
a cloud provider, such answers can point it in the right direction
for improvements. For instance, a provider should pour more re-
sources into optimizing table storage if the performance of its store
lags behind competitors.

Despite the practical relevance of comparing cloud providers,
there have been few studies on this topic. The challenge is that
every provider has its own idiosyncratic ways of doing things,
so finding a common ground needs some thought. A few efforts
have characterized the performance of one IaaS provider (Amazon
AWS) [24,34]. Some recent blog posts [6,15,36] compare Amazon
AWS with one other provider each. These measurements are lim-
ited in scope; none of them cover enough of the dimensions (e.g.,
compute, storage, network, scaling) to yield meaningful conclu-
sions. Further, some of the measurement methodologies do not ex-
tend to all providers, e.g., they would not work for PaaS providers.

In this paper, we consider the problem of systematically com-
paring the performance of cloud providers. We identify the key re-
quirements for conducting a meaningful comparison (§2), develop



a tool called CloudCmp, and use CloudCmp to evaluate a few cloud
providers (§3– §4) that differ widely in implementation but together
dominate the cloud market. Our results (§5) provide a customer
with the performance-cost trade-offs across providers for a wide
set of metrics. For providers, the results point out specific areas for
improvement in their current infrastructures.

Several technical challenges arise in realizing a comparator for
cloud providers. The first is the choice of what to measure. Rather
than focusing on the nitty-gritty such as which virtualization tech-
nology a provider uses or how it implements its persistent stor-
age, we take an end-to-end approach that focuses on the dimen-
sions of performance that customers perceive. Doing so has the
advantage that the measurement methodology remains stable even
as the implementations change over time or differ widely across
providers. To this end, we identify a common set of services of-
fered by these providers, including elastic computing, persistent
storage, and intra-cloud and wide-area networking (§3.2).

The second challenge is the choice of how to measure customer
perceived performance of these services. For each service, we fo-
cus on a few important metrics, e.g., speed of CPU, memory, and
disk I/O, scaling latency, storage service response time, time to
reach consistency, network latency, and available bandwidth (§3.3).
We leverage pre-existing tools specific to each metric. However,
when applying the tools, we had to be careful along several axes,
such as using variable number of threads to test multi-core, piecing
apart the interference from colocated tenants and the infrastructure
itself, and covering the wide set of geographically distributed data
centers offered by the providers. The individual tools per se are
simple, but this specific collection of them that enables comparing
cloud providers is novel.

Third, as with all significant measurement efforts, we trade off
development cost to the completeness of the study. We skip func-
tionality that is specific to small classes of applications but are
comprehensive enough that our benchmark results allow predict-
ing the performance of three representative applications: a storage
intensive e-commerce web service, a computation intensive scien-
tific computing application, and a latency sensitive website serving
static objects. By deploying these applications on each cloud, we
demonstrate that the predictions from CloudCmp align well with
the actual application performance. CloudCmp enables predicting
application performance without having to first port the application
onto every cloud provider.

Finally, unlike other measurement efforts, we are constrained
by the monetary cost of measuring the clouds and the acceptable
use policies of the providers. We note that the results here were
achieved under a modest budget by judicious choice of how many
and how often to measure. CloudCmp complies with all acceptable
use policies.

We used CloudCmp to perform a comprehensive measurement
study over four major cloud providers, namely, Amazon AWS, Mi-
crosoft Azure, Google AppEngine, and Rackspace CloudServers.
We emphasize that the infrastructure being measured is ephemeral.
Providers periodically upgrade or regress in their software or hard-
ware and customer demands vary over time. Hence, these results
are relevant only for the time period in which they were gener-
ated. To keep the focus on the value of this comparison method
and its implications rather than rank providers, our results use la-
bels C1 − C4 instead of provider names.

From the comparison results, we find that the performance and
price of the four providers vary significantly with no one provider
standing out (§5). For instance, while the cloud provider C1 has the
highest intra-cloud bandwidth, its virtual instance is not the most
cost-effective. The cloud provider C2 has the most powerful virtual

instances, but its network bandwidth is quite limited. C3 offers the
lowest wide-area network latency, but its storage service is slower
than that of its competitors. We highlight a few interesting findings
below:

• Cloud instances are not equally cost-effective. For example,
while only 30% more expensive, C4’s virtual instance can be
twice as fast as that of C1.

• C2 in our study allows a virtual instance to fully utilize the
underlying physical machine when there is no local resource
competition. Hence, an instance can attain high performance
at low cost.

• The performance of the storage service can vary significantly
across providers. For instance, C1’s table query operation is
an order of magnitude faster than that of the others.

• The providers offer dramatically different intra-datacenter
bandwidth, even though intra-datacenter traffic is free of
charge. For instance, C1’s bandwidth is on average three
times higher than C2’s.

The measurement data we collected is available at http://www.
loud
mp.net.
We believe that this is the first study to comprehensively char-

acterize the performance and cost of the major cloud providers in
today’s market. Though we present results for four providers in
this paper, we believe the techniques in CloudCmp can be extended
to measure other providers. In future work, we plan to build per-
formance prediction models based on CloudCmp’s results to enable
fast and accurate provider selection for arbitrary applications (§7).

2. GOALS AND APPROACH
In this section, we highlight the design goals of CloudCmp and

briefly describe how we meet them.

1. Guide a customer’s choice of provider: Our primary goal
is to provide performance and cost information about vari-
ous cloud providers to a customer. The customer can use
this information to select the right provider for its applica-
tions. We choose the cost and performance metrics that are
relevant to the typical cloud applications a customer deploys.
These metrics cover the main cloud services, including elas-
tic computing, persistent storage, and intra-cloud and wide-
area networking.

2. Relevant to cloud providers: We aim to help a provider
identify its under-performing services compared to its com-
petitors. We not only present a comprehensive set of mea-
surement results, but also attempt to explain what causes the
performance differences between providers. This enables a
provider to make targeted improvements to its services.

3. Fair: We strive to provide a fair comparison among vari-
ous providers by characterizing all providers using the same
set of workloads and metrics. This restricts our comparative
study to the set of common services offered by all providers.
The core functionality we study suffices to support a wide
set of cloud applications. However, we skip specialized ser-
vices specific to some applications that only a few providers
offer. While support for functionality is a key decision factor
that we will consider in future work, our focus here is on the
performance-cost trade-off.

4. Thoroughness vs. measurement cost: For a thorough com-
parison of various cloud providers, we should measure all
cloud providers continuously across all their data centers.

http://www.cloudcmp.net
http://www.cloudcmp.net


Provider Elastic Cluster Storage Wide-area Network

Amazon AWS Xen VM SimpleDB (table), S3 (blob), SQS (queue) 3 DC locations (2 in US, 1 in EU)
Microsoft Azure Azure VM XStore (table, blob, queue) 6 DC locations (2 each in US, EU, and Asia)
Google AppEngine Proprietary sandbox DataStore (table) Unpublished number of Google DCs
Rackspace CloudServers Xen VM CloudFiles (blob) 2 DC locations (all in US)

Table 1: The services offered by the cloud providers we study. The intra-cloud networks of all four providers is proprietary, and are omitted from

the table.

This, however, incurs significant measurement overhead and
monetary costs. In practice, we periodically (e.g., once an
hour) measure each provider at different times of day across
all its locations. The measurements on different providers are
loosely synchronized (e.g., within the same hour), because
the same measurement can take different amount of time to
complete in different providers.

5. Coverage vs. development cost: Ideally, we would like
to measure and compare all cloud providers on the market.
Achieving this goal, however, can be cost and time pro-
hibitive. We cover a representative set of cloud providers
while restricting our development cost. We choose the cloud
providers to compare based on two criteria: popularity and
representativeness. That is, we pick the providers that have
the largest number of customers and at the same time rep-
resent different models such as IaaS and PaaS. Our mea-
surement methodology, however, is easily extensible to other
providers.

6. Compliant with acceptable use policies: Finally, we aim
to comply with cloud providers’ use policies. We conduct
experiments that resemble the workloads of legitimate cus-
tomer applications. We do not overload the cloud infrastruc-
tures or disrupt other customer applications.

3. MEASUREMENT METHODOLOGY
In this section, we describe how we design CloudCmp to conduct

a fair and application-relevant comparison among cloud providers.
We first show how we select the providers to compare, and discuss
how to choose the common services to ensure a fair comparison.
Then for each type of service, we identify a set of performance
metrics that are relevant to application performance and cost.

3.1 Selecting Providers
Our comparative study includes four popular and representative

cloud providers: Amazon AWS [2], Microsoft Azure [12], Google
AppEngine [7], and Rackspace CloudServers [14]. We choose
Amazon AWS and Rackspace CloudServers because they are the
top two providers that host the largest number of web services [19].
We choose Google AppEngine because it is a unique PaaS provider,
and choose Microsoft Azure because it is a new entrant to the cloud
computing market that offers the full spectrum of computation and
storage services similar to AWS.

3.2 Identifying Common Services
Despite the complexity and idiosyncrasies of the various cloud

providers, there is a common core set of functionality. In this sec-
tion, we focus on identifying this common set, and describe the
experience of a customer who uses each functionality. We defer
commenting on the specifics of how the cloud achieves each func-
tionality unless it is relevant. This allows us to compare the clouds
from the end-to-end perspective of the customer and sheds light
on the meaningful differences. The common set of functionality
includes:

• Elastic compute cluster. The cluster includes a variable
number of virtual instances that run application code.

• Persistent storage. The storage service keeps the state and
data of an application and can be accessed by application
instances through API calls.

• Intra-cloud network. The intra-cloud network connects ap-
plication instances with each other and with shared services.

• Wide-area network. The content of an application is deliv-
ered to end users through the wide-area network from multi-
ple data centers (DCs) at different geographical locations.

These services are offered by most cloud providers today be-
cause they are needed to support a broad spectrum of applications.
For example, a web application can have its servers run in the elas-
tic compute cluster, its data stored in the persistent storage, and its
content delivered through the wide-area network. Other cloud ap-
plications such as document translation, file backup, and parallel
computation impose different requirements on these same compo-
nents. A few providers offer specialized services for specific ap-
plications (e.g., MapReduce). We skip evaluating these offerings
to focus on the more general applications. Table 1 summarizes the
services offered by the providers we study.

3.3 Choosing Performance Metrics
For each of these cloud services, we begin with some back-

ground and describe the performance and cost metrics we use to
characterize that service.

3.3.1 Elastic Compute Cluster

A compute cluster provides virtual instances that host and run a
customer’s application code. Across providers, the virtual instances
differ in their underlying server hardware, virtualization technol-
ogy, and hosting environment. Even within a provider, multiple
tiers of virtual instances are available, each with a different con-
figuration. For example, the instances in the higher tier can have
faster CPUs, more CPU cores, and faster disk I/O access. These
differences do impact the performance of customer applications.

The compute cluster is charged per usage. There are two types
of charging models among the providers we study. The IaaS
providers (AWS, Azure, and CloudServers) charge based on how
long an instance remains allocated, regardless of whether the in-
stance is fully utilized or not. However, the PaaS provider (Ap-
pEngine) charges based on how many CPU cycles a customer’s
application consumes in excess of a few free CPU hours per appli-
cation per day.

The compute cluster is also “elastic” in the sense that a customer
can dynamically scale up and down the number of instances it uses
to withstand its application’s varying workload. Presently, there are
two types of scaling mechanisms: opaque scaling and transparent
scaling. The former requires a customer herself to manually change
the number of instances or specify a scaling policy, such as creating
a new instance when average CPU usage exceeds 60%. The latter
automatically tunes the number of instances without customer in-
tervention. AWS, Azure, and CloudServers support opaque scaling
whereas AppEngine provides transparent scaling.



Service Operation Description

Table

get fetch a single row using the primary key
put insert a single row
query lookup rows that satisfy a condition on a

non-primary key field

Blob
download download a single blob
upload upload a single blob

Queue
send send a message to a queue
receive retrieve the next message from a queue

Table 2: The operations we use to measure the performance of each

storage service.

We use three metrics to compare the performance of the com-
pute clusters: benchmark finishing time, cost per benchmark, and
scaling latency. These metrics reflect how fast an instance can run,
how cost-effective it is, and how quickly it can scale.

Benchmark finishing time. Similar to conventional computa-
tional benchmark metrics for computer architectures [18], this met-
ric measures how long the instance takes to complete the bench-
mark tasks. The benchmark has tasks that stress each of the main
compute resources (CPU, memory, and disk I/O).

Cost. This is the monetary cost to complete each benchmark task.
Because we use the same tasks across different instances provided
by different clouds, customers can use this metric to compare the
cost-effectiveness of the instances regardless of their prices and
charging models. Together with the above metric, this provides
customers with a view of the performance-cost trade-offs across
providers. These metrics correspond to the criteria that customers
use when choosing, such as best performance within a cost budget
or lowest cost above a performance threshold.

Scaling latency. This is the time taken by a provider to allocate
a new instance after a customer requests it. The scaling latency of
a cluster can affect the performance and cost of running an appli-
cation. An application can absorb workload spikes more quickly
and can keep fewer number of instances running continuously if it
can instantiate new instances quickly. With this metric, a customer
can choose the compute cluster that scales the fastest or design bet-
ter scaling strategies. She can also make more nuanced decisions
based on what it would cost to provide good performance when the
workload of her application varies.

There are a few other metrics, such as the customizability of a
virtual instance and the degree of automation in management, that
capture vital aspects of cloud providers. However, these are harder
to quantify. Hence, we focus on the performance and costs of run-
ning an application and defer considering other metrics to future
work.

3.3.2 Persistent Storage

Cloud providers offer persistent storage for application state and
data. There are currently three common types of storage services:
table, blob, and queue. The table storage is designed to store struc-
tural data in lieu of a conventional database, but with limited sup-
port for complex queries (e.g., table join and group by). The blob
storage is designed to store unstructured blobs, such as binary ob-
jects, user generated data, and application inputs and outputs. Fi-
nally, the queue storage implements a global message queue to pass
messages between different instances. Most storage services are
implemented over HTTP tunnels, and while not standardized, the
usage interfaces are stable and similar across providers.

The cloud storage services have two advantages over their con-
ventional counterparts: scalability and availability. The services
are well-provisioned to handle load surges and the data is repli-

cated [1] for high availability and robustness to failures. However,
as a trade-off, cloud storage services do not offer strong consis-
tency guarantees [25]. Therefore, an application can retrieve stale
and inconsistent data when a read immediately follows a write.

There are presently two pricing models for storage operations.
The table services of AWS and AppEngine charge based on the
CPU cycles consumed to run an operation. Thus, a complex query
costs more than a simple one. Azure and CloudServers have a fixed
per-operation cost regardless of the operation’s complexity.

We use three metrics to compare the performance and cost of
storage services: operation response time, time to consistency, and
cost per operation.

Operation response time. This metric measures how long it takes
for a storage operation to finish. We measure operations that are
commonly supported by providers and are popular with customers.
Table 2 summarizes these operations. They include the basic read
and write operations for each storage service. For table storage
service, we also use an SQL-style query to test the performance
of table lookup. In §6.1, we show that these operations account for
over 90% of the storage operations used by a realistic e-commerce
application.

Time to consistency. This metric measures the time between when
a datum is written to the storage service and when all reads for the
datum return consistent and valid results. Such information is use-
ful to cloud customers, because their applications may require data
to be immediately available with a strong consistency guarantee.
Except for AppEngine, cloud providers do not support storage ser-
vices that span multiple data centers. Therefore, we focus on con-
sistency when the reads and writes are both done from instances
inside the same data center.

Cost per operation. The final metric measures how much each
storage operation costs. With this metric, a customer can compare
the cost-effectiveness across providers.

3.3.3 Intra-cloud Network

The intra-cloud network connects a customer’s instances among
themselves and with the shared services offered by a cloud. The
performance of the network is vital to the performance of dis-
tributed applications. Within a cloud, the intra-datacenter network
often has quite different properties compared to the inter-datacenter
network. Providers vary in the type of network equipment (NICs,
switches) as well as in their choice of routing (layer 2 vs. layer
3) and configuration such as VLANs. All providers promise high
intra-datacenter bandwidth (typically on the order of hundreds of
Mbps to Gbps), approximating a private data center network.

To compare the performance of intra-cloud networks, we use
path capacity and latency as metrics. We use TCP throughput as a
measure of path capacity because TCP is the dominant traffic type
of cloud applications. Path capacity impacts data transfer through-
put and congestion events can lead to errors or delayed responses.
Path latency impacts both TCP throughput [30] and end-to-end re-
sponse time. Together, these metrics provide insight into how a
provider’s intra-cloud network is provisioned.

None of the providers charge for traffic within their data centers.
Inter-datacenter traffic is charged based on the volume crossing the
data center boundary. Since all providers charge similar amounts,
comparing cost of network transfers becomes a moot point.

3.3.4 Wide-area Network

The wide-area network is defined as the collection of network
paths between a cloud’s data centers and external hosts on the In-
ternet. All the providers we study offer multiple locations to host



customer applications. Requests from an end user can be served
by an instance close to that user to reduce latency. Uniquely, Ap-
pEngine offers a DNS-based service to automatically map requests
to close-by locations. The others require manual configuration.

We use the optimal wide-area network latency to compare
providers’ wide-area networks. The optimal wide-area network la-
tency is defined as the minimum latency between a vantage point
and any data center owned by a provider. We use locations of Plan-
etLab nodes as vantage points. The more the data centers offered by
a provider and the closer they are to population centers, the smaller
the optimal network latency. The metric is useful for customers
because it corresponds to the network latency an application may
experience given an ideal mapping. For AppEngine, which pro-
vides automatic mapping of requests to locations, we also measure
how close its automatic mapping is to the optimal mapping.

4. IMPLEMENTATION
In this section, we describe the implementation details of Cloud-

Cmp and highlight the practical challenges we address.

4.1 Computation Metrics

Benchmark tasks. As described above, we would like a suite
of benchmark tasks that stresses various aspects of the compute
infrastructure offered by cloud providers. In traditional computa-
tion performance measurement, any benchmark suite, such as the
SPEC CPU2006 benchmarks [16], would fit this bill. However,
the context of cloud computing poses new constraints. For exam-
ple, AppEngine only provides sand-boxed environments for a few
cross-platform programming languages, and applications have to
be singled-threaded and finish within limited time.

To satisfy those constraints and be fair across different
providers, we modified a set of Java-based benchmark tasks from
SPECjvm2008 [17], a standard benchmark suite for Java virtual
machines. We choose Java because it is supported by all cloud
providers. The benchmark suite includes several CPU intensive
tasks such as cryptographic operations and scientific computations.
We augment it with memory and I/O intensive tasks. Each bench-
mark task runs in a single thread and finishes within 30 seconds so
as to be compatible with all providers.

Benchmark finishing time. We run the benchmark tasks on each
of the virtual instance types provided by the clouds, and measure
their finishing time. Some instances offer multiple CPU cores for
better parallel processing capability. For these instances, we also
evaluate their multi-threading performance by running instances of
the same benchmark task in multiple threads simultaneously, and
measuring the amortized finishing time of the task. The number
of threads is set to be equivalent to the number of available CPU
cores.

Cost per benchmark. For cloud providers that charge based on
time, we compute the cost of each benchmark task using the task’s
finishing time and the published per hour price. For AppEngine that
charges by CPU cycles, we use its billing API to directly obtain the
cost.

Scaling latency. We write our own scripts to repeatedly request
new virtual instances and record the time from when the instance
is requested to when it is available to use. We further divide the
latency into two segments: a provisioning latency and a booting
latency. The former measures the latency from when an instance is
requested to when the instance is powered on. The latter measures
the latency from the powered-on time to when the instance is ready
to use. The separation of the two is useful for a cloud provider to
pinpoint the performance bottleneck during instance allocation.

4.2 Storage Metrics

Benchmark tasks. Along with each storage service, comes an API
to get, put or query data from the service. Most APIs are based on
HTTP. To use the APIs, we wrote our own Java-based client based
on the reference implementations from the providers [3,9,21]. The
client has a few modifications over the reference implementations
to improve latency. It uses persistent HTTP connections to avoid
SSL and other connection set up overheads. It also skips a step in
some implementations in which a client first sends a request header
and waits an RTT until the server returns an HTTP 100 (Continue)
message before proceeding with the request body. For comparison,
we also tested other non-Java-based clients such as wget and C#-
based clients. To avoid the potential impact of memory or disk bot-
tlenecks at the client’s instance, our clients mimic streaming work-
load that processes data as it arrives without retaining it in memory
or writing it to disk.

Regarding the benchmark workload, we vary the size of the data
fetched to understand the latency vs. throughput bottlenecks of the
storage service. We vary the number of simultaneous requests to
obtain maximum achievable throughput as well as measuring per-
formance at scale. We vary the size of the working sets to observe
both in- and out-of-cache performance. Because performance will
be impacted by load on the client and in the network, we repeat
each experiment at different times across different locations to get
representative results. We also study the impact of the different
client implementations described above.

Response time. The response time for an operation is the time
from when the client instance begins the operation to when the last
byte reaches the client.

Throughput. The throughput for an operation is the maximum
rate that a client instance obtains from the storage service.

Time to Consistency. We implement a simple test to estimate the
time to consistency. We first write an object to a storage service
(the object can be a row in a table, a blob, or a message in a queue).
We then repeatedly read the object and measure how long it takes
before the read returns correct result.

Cost per operation. Similar to cost per benchmark task, we use
the published prices and billing APIs to obtain the cost per storage
operation.

4.3 Network Metrics
We use standard tools such as iperf [8] and ping to measure the

network throughput and path latency of a provider. To measure
intra-cloud throughput and latency, we allocate a pair of instances
(in the same or different data centers), and run those tools between
the two instances. Some providers further divide instances within
the same data center into zones for a finer-grained control of in-
stance location (e.g., not placing all instances in the same failure
domain). In this case, we also deploy inter-zone and intra-zone
instances respectively to measure their throughput and latency.

To prevent TCP throughput from being bottlenecked by flow
control, we control the sizes of the TCP send and receive windows.
Our measurements show that with a 16MB window, a single TCP
flow is able to use up the available capacity along the paths mea-
sured in this paper. Larger window sizes do not result in higher
throughput. For comparison, we also measure the throughput ob-
tained by TCP clients that use the default window size configured
by the instance’s operating system.

To measure the optimal wide-area network latency, we instanti-
ate an instance in each data center owned by the provider and ping
these instances from over 200 vantage points on PlanetLab [13].
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Figure 1: The finishing time of benchmark tasks on various cloud instances. The time values are normalized using the longest finishing time to
emphasize each provider’s relative performance. We show both single-threaded and multi-threaded results. The multi-threaded and I/O results are

missing for C3 because it does not support multi-threading or accessing the local disk.

For each vantage point, the optimal latency to a provider is the
smallest RTT to a data center of the provider. AppEngine automat-
ically replicates our application to multiple instances at different
data centers. By querying the DNS name corresponding to our ap-
plication from each of the PlanetLab vantage points, we collect the
IP addresses of the instance that AppEngine’s automatic mapping
service maps the request from each vantage point. Each of these
IP addresses, we conjecture, corresponds to the virtual IP address
of the front-end load balancer at a data center. We then ping all
of these IP addresses from each of the PlanetLab vantage points to
identify the best mapping that AppEngine might have achieved.

5. RESULTS
In this section, we present the comparison results between the

four providers: AWS, Azure, AppEngine, and CloudServers. Due
to legal concerns, we anonymize the identities of the providers in
our results, and refer to them as C1 to C4. The data was collected
over a two-month period from March to May 2010. We have made
the data available for download from the project website [4].

5.1 Elastic Compute Cluster
We first measure the computation performance of different types

of instances offered by cloud providers. Our naming convention
refers to instance types as provider.i where i denotes the tier of
service with lower numerals corresponding to lower cost and com-
putational speed. For instance, C1.1 is the cheapest and slowest
instance type offered by C1.

Table 3 summarizes the instances we measure. We test all in-
stance types offered by C2 and C4, and the general-purpose in-
stances from C1. C1 also provides specialized instances with
more memory or CPU or high bandwidth network, which we do
not include in this study, as they have no counterparts from other
providers. C3 does not offer different instance types, so we use its
default environment to run the benchmark tasks.

Cloud Instance Number Price
Provider Type of Cores

C1

C1.1 < 1 $0.085 / hr
C1.2 2 $0.34 / hr
C1.3 4 $0.68 / hr

C2

C2.1 4 $0.015 / hr
C2.2 4 $0.03 / hr
C2.3 4 $0.06 / hr
C2.4 4 $0.12 / hr
C2.5 4 $0.24 / hr
C2.6 4 $0.48 / hr
C2.7 4 $0.96 / hr

C3 default N/A $0.10 / CPU hr

C4

C4.1 1 $0.12 / hr
C4.2 2 $0.24 / hr
C4.3 4 $0.48 / hr
C4.4 8 $0.96 / hr

Table 3: Information of the cloud instances we benchmark. With C3,
the first six CPU hours per day per application are free.

Some providers offer both Linux and Windows instances with
the latter being slightly more expensive due to licensing fees. For
experiments that depend on the type of OS, we compare instances
from both OSes. For others, we choose Linux instances to reduce
the cost of our experiment.

Figure 1 shows the finishing time of a CPU intensive task, a
memory intensive task, and a disk I/O intensive task. Each bar
shows the median and the 5th/95th percentiles of the measured
samples. The same convention is used for all other figures with-
out special notice. We omit the results of other benchmark tasks
that show similar trends. For each instance type, we instantiate 10
instances and repeat each task 20 times per instance, i.e., a total of
200 samples per task per instance type. We only show the first four
instance types of C2 because the others have similar performance
for the reason we soon describe. The I/O and multiple-threaded re-
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Figure 2: The per-task monetary cost on each type of cloud instance.

sults are not available for C3 because it does not support local disk
access or multi-threading.

From the results, we can see that price-comparable instances of-
fered by different providers have widely different CPU and memory
performance. For example, C4.1 and C1.1 are in the same pricing
tier with the former being only 30% more expensive per hour per
instance, but twice as fast as the latter. Alternatively, C1.2 and C1.3
offer better performance than their counterparts from C4 and are on
average 50% more expensive.

Note that across providers the instance types appear to be con-
structed in different ways. For C1, the high-end instances (C1.2
and C1.3) have shorter finishing times in both single and multiple
threaded CPU/memory tests. This is perhaps due to two reasons.
First, besides having more CPU cores, the high-end instances may
have faster CPUs. Second, the low-end instance may suffer from
higher resource contention, due to high load and poor resource mul-
tiplexing techniques (e.g., CPU time sharing) that open a tenant to
interference from other colocated tenants.

In contrast, for C4, the finishing times do not improve signif-
icantly for the single threaded tests when we alter the instances
from low-end to high-end, while the amortized running times of
the multi-threaded tests are greatly reduced. This suggests that all
the C4 instances might share the same type of physical CPU and
they either have similar levels of resource contention or are better
at avoiding interference.

Interestingly, instances of C2 have the same performance re-
gardless of their prices. This might be explained by the work-
conserving CPU sharing policy of C2, where a virtual instance can
fully use all physical CPUs on a machine if there is no contention,
and when colocated instances compete for CPUs, the high-end in-
stances are given larger weight in the competition. Under such
policy, we expect to observe interference and poor performance at
times of high load. However, we found this to never happen in our
experiments, suggesting that C2’s data centers were lightly loaded
throughout our experiment period.

Unlike CPU and memory intensive tasks, the disk I/O intensive
task exhibits high variation on some C1 and C4 instances, probably
due to interference from other colocated instances [22]. Further, the
multi-threaded I/O performance is worse than the single-threaded
performance, perhaps because interleaved requests from multiple
threads are harder to optimize than requests from the same thread.
On the contrary, instances from C2 are much more stable perhaps
due to better I/O scheduling techniques or lightly loaded physical
machines.

5.1.1 Performance at Cost

Figure 2 shows the monetary cost to run each task. We see that
for single-threaded tests, the smallest instances of most providers
are the most cost-effective compared to other instances of the same
providers. The only exception is C1.1, which is not as cost-

 0

 100

 200

 300

 400

 500

 600

 700

 800

C1
Linux

C1
Win

C2
Linux

C2
Win

C4
Win

T
im

e 
(s

)

Provisioning Latency
Booting Latency
Total Latency

Figure 3: The scaling latencies of the lowest end instance of each cloud
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effective as C1.2, because the latter has much higher performance
due to faster CPU or lower contention.

Surprisingly, for multi-threaded tests the high-end instances such
as C1.3 and C4.4 with more CPU cores are not more cost-effective
than the low-end ones. There are two possible reasons. First, the
prices of high-end instances are proportional to the number of CPU
cores, and thus do not provide any cost advantage per core. Sec-
ond, although high-end instances are assigned more CPU cores,
they still share other system resources such as memory bus and I/O
bandwidth. Therefore, memory or I/O intensive applications do not
gain much by using high-end instances as long as the applications
do not run out of memory or disk space. This suggests that for
parallel applications it might be more cost-effective to use more
low-end instances rather than fewer high-end ones.

5.1.2 Scaling Latency

Finally, we compare the scaling latency of various providers’ in-
stances. To save cost, we only measure the scaling latency for the
smallest instance of each provider. For providers that support both
Linux and Windows instances, we test both choices to understand
how different OSes affect the scaling latency, especially the boot-
ing latency. We run Ubuntu 9.04 for Linux instances and Windows
Server 2008 for Windows ones. For each cloud and each OS type,
we sequentially allocate 20 instances and measure the time between
the request for a new instance and when that instance becomes
reachable. We attribute the kernel uptime of the instance once it
becomes available to be the time to boot and the remaining latency
as the time to provision or otherwise set up the VM. We drop C3

here because it does not allow manual requests for instances.
Figure 3 shows the scaling latencies for three clouds and dif-

ferent OS types. All cloud providers can allocate new instances
quickly with the average scaling latency below 10 minutes. C1

and C2 can even achieve latency within 100 seconds for Linux in-
stances. The latency of C4 is larger. We see that across providers,
Windows instances appear to take longer time to create than Linux
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Figure 4: The cumulative distribution of the response time when using the large table with 100K entries. Note that for the query operation, the
x-axis is in a logarithmic scale, due to the significant performance gaps between different services.

ones, but for different reasons. For C1, the provisioning latency is
similar for both instances, but the Windows ones have larger boot-
ing latency, possibly due to slower CPUs of the smallest instances.
Windows Server 2008 R2 instances based on the Win7 code base
can boot faster. For C2, the booting latency is similar, while the
provisioning latency of the Windows instances is much larger. It
is unclear but likely that C2 may have different infrastructures to
provision Linux and Windows instances.

We note that a few other factors impacting scaling agility have
not been considered here. Rather than focusing just on allocat-
ing instances quickly, some providers make it easy to update active
instances or provide extensive monitoring and automatic recovery
from faults during running. Another common goal is to create in-
stances consistently within an SLA deadline even when they are
brought up in large batches.

5.2 Persistent Storage
We measure and compare three types of storage services: table,

blob, and queue, offered by various cloud providers.

5.2.1 Table Storage

We first compare three table storage services offered by C1, C3,
and C4. C2 does not provide a table service. Here we only show
the results obtained using our Java-based client, as other non-Java
clients achieve similar performance, because the table operations
are lightweight on the client side. For each table service, we test
the performance of three operations: get, put, and query (see
Table 2). Each operation runs against two pre-defined data tables:
a small one with 1K entries, and a large one with 100K entries. Theget/put operations operate on one table entry, while the query
operation returns on average 10 entries. For storage benchmarks,
unless otherwise specified, we use instance types that occupy at
least one physical core to avoid excessive variation due to CPU
time sharing.

Figure 4 shows the distributions of response time for each type
of operation on the large table. We repeat each operation several
hundred times. The results of using the small table show similar
trends and are omitted to save space. From the figure, we can see
that all table services exhibit high variations in response time. For
example, the median response time of the get operation is less than
50ms, while the 95th-percentile is over 100ms for all services. The
three services perform similarly for both get and put operations,
with C3 slightly slower than the other two providers. However, for
the query operation, C1’s service has significantly shorter response
time than the other two. C4’s service has a very long response time,
because unlike the other providers, it does not appear to maintain
indexes over the non-key fields in a table. In contrast, C1 appears
to have an indexing strategy that is better than the others.
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Figure 5: The cumulative distribution of the time to consistency for

C1’s table service.

Provider Cost per Operation (milli-cents)

get put query

C1 0.13 0.31 1.47
C3 0.02 0.23 0.29
C4 0.10 0.10 0.10

Table 4: The average cost per operation for all three table services.
The cost is in the unit of milli-cent, i.e., one-thousandth of a cent.

We also measure how well each table service scales by launching
multiple concurrent operations. None of the services show notice-
able performance degradation when up to 32 operations are issued
at the same time. This suggests that all these table storage services
appear to be reasonably well provisioned. Testing at higher scale is
deferred to future work.

We then evaluate the time to reach consistency for the table ser-
vices by using the mechanism described in §4.2. We discover that
around 40% of the get operations in C1 see inconsistency when
triggered right after a put, and do not return the entry just inserted
by the put. Other providers exhibit no such inconsistency. Fig-
ure 5 shows the distribution of the time to reach consistency for
C1. From the figure, we see that over 99% of the inconsisten-
cies are resolved within 500ms, with the median resolved within
80ms. The long duration of the inconsistency opens up a sizable
window for race conditions. C1 does provide an API option to re-
quest strong consistency but disables it by default. We confirm that
turning on this option eliminates inconsistencies and surprisingly
does so without much extra latency for get or put. We conjec-
ture that the performance overhead of enforcing consistency might
be visible only when more users request it or during failure cases
because otherwise C1 would have enabled it by default.

Finally, we compare the cost per operation for different table ser-
vices in Table 4. We can see that, although the charging models of
the providers are different, the costs are comparable. Both C1 and
C3 charge lower cost for get/put than query, because the former



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300
C

um
ul

at
iv

e 
F

ra
ct

io
n

Response Time (ms)

C1
C2
C4

(a) Download 1KB Blob

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
um

ul
at

iv
e 

F
ra

ct
io

n

Response Time (ms)

C1
C2
C4

(b) Upload 1KB Blob

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000

C
um

ul
at

iv
e 

F
ra

ct
io

n

Response Time (ms)

C1
C2
C4

(c) Download 10MB Blob

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000

C
um

ul
at

iv
e 

F
ra

ct
io

n

Response Time (ms)

C1
C2
C4

(d) Upload 10MB Blob

Figure 6: The cumulative distribution of the response time to download or upload a blob using Java-based clients.

operations are simpler and consume less CPU cycles to serve. C4

charges the same across operations and can improve its charging
model by accounting for the complexity of the operation. This is
an example of how CloudCmp’s benchmarking results can help the
providers make better choices.

A comparison with the compute costs in Table 3 indicates that
the cost of table storage is comparable to that of compute instances
for workloads that trigger about 1000 operations per instance per
hour. Applications that use storage at a lower rate can choose their
provider based on their computation costs or performance.

5.2.2 Blob Storage

We compare the blob storage services provided by C1, C2, and
C4. C3 does not offer a blob store.

Figure 6 shows the response time distributions for uploading and
downloading one blob measured by our Java-based clients. We
consider two blob sizes, 1KB and 10MB, to measure both latency
and throughput of the blob store. The system clock of C2’s in-
stances have a resolution of 10ms, and thus its response time is
rounded to multiples of 10ms. We see that the performance of blob
services depends on the blob size. When the blob is small, C4 has
the best performance among the three providers. When the blob
is large, C1’s average performance is better than the others. This
is because blobs of different sizes may stress different bottlenecks
– the latency for small blobs can be dominated by one-off costs
whereas that for large blobs can be determined by service through-
put, network bandwidth, or client-side contention. Uniquely, C2’s
storage service exhibits a 2X lower performance for uploads com-
pared to downloads from the blob store. It appears that C2’s store
may be tuned for read heavy workload.

Figure 7 illustrates the time to download a 10MB blob measured
by non-Java clients. Compared to Figure 6(c), in every provider,
non-Java clients perform much better. Markedly C4’s performance
improves by nearly 5 times because it turns out that the Java imple-
mentation of their API is particularly inefficient.

We then compare the scalability of the blob services by sending
multiple concurrent operations. As per above, we use non-Java
clients to eliminate overheads due to Java. Figure 8 shows the
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Figure 7: The cumulative distribution of the time to download a 10MB
blob using non-Java clients.

Provider Maximum throughput achieved by one instance (Mbps)
Smallest instance with
at least one core

Largest instance from
a provider

C1 773.4 782.3
C2 235.5 265.7
C4 327.2 763.3

Table 5: The maximum throughput an instance obtains from each
blob service when downloading many 10MB blobs concurrently.

downloading time with the number of concurrent operations rang-
ing from 1 to 32. We omit the results for uploading because they
are similar in trend. When the blob size is small, all services ex-
cept for C2 show good scaling performance. This suggests that C1

and C4’s blob services are well-provisioned to handle many con-
current operations. When the blob is large, C4 and C1 continue to
scale better though all three providers show certain scaling bottle-
necks. The average time to download increases with the number of
concurrent operations, illustrating a throughput bottleneck.

We compute the maximum throughput of the blob service that
one instance can obtain by increasing the number of simultaneous
operations until the throughput stabilizes. Table 5 shows the re-
sults for two types of instances – the smallest instance that has at
least one full core and the largest instance from each provider. The
former data point eliminates CPU time sharing effects [35] while
the latter minimizes contention from colocated VMs. We report
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Figure 9: The cumulative distributions of the response time to send or retrieve a message from a queue, and the propagation delay of a queue.
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Figure 8: The blob downloading time from each blob service under
multiple concurrent operations. The number of concurrent requests
ranges from 1 to 32. Note that the x-axes are on a logarithmic scale.

results with non-Java clients to eliminate overheads due to client
side inefficiency. As we will soon show, C1 and C2’s blob service
throughput is close to their intra-datacenter network bandwidth (see
Figure 10), suggesting that the bottleneck in throughput is unlikely
within the blob service itself. This is also true for C4’s blob service
throughput of a large instance, which more than doubles that of the
single core instance that we were using earlier. It appears that the
impact on an instance’s throughput due to other VMs colocated on
the machine is non trivial in C4.

In summary, we observe that client implementation and con-
tention from other VMs or along network paths significantly impact
the perceived storage service performance (across the three cloud
platforms we study). Therefore, a more efficient client implemen-
tation or less contention may improve the results in this paper.

We tested the consistency property of the blob services, and did
not find inconsistency problems in the three providers. The charg-
ing models are similar for all three providers and are based on the
number of operations and the size of the blob. We omit these results
for brevity.

5.2.3 Queue Storage

We compare the queue services of C1 and C4. Similar to ta-
ble services, we only show the results from our Java-based client.

Cloud Data Location Region

Provider Center Name

C1

C1.DC1 North Virginia US
C1.DC2 North California US
C1.DC3 Ireland Europe

C2

C2.DC1 Dallas/Fort Worth, Texas US
C2.DC2 Chicago, Illinois US

C4

C4.DC1 Chicago, Illinois US
C4.DC2 Amsterdam, Netherlands Europe
C4.DC3 San Antonio, Texas US
C4.DC4 Singapore Asia
C4.DC5 Dublin, Ireland Europe
C4.DC6 Hong Kong Asia

Table 6: The geographical location of the cloud data centers.

Figure 9(a) and 9(b) show the distributions of the response time of
sending and retrieving a message. The queue services are designed
to transfer only small messages up to 8KB. Thus, we choose a mes-
sage size of 50B in our measurement. The results show that both
services have large variations in response time. C4 is slightly faster
at sending messages while C1 is faster at retrieving messages. We
test the scalability of the queue services, up to 32 concurrent mes-
sages, and no significant performance degradation is found, mostly
due to the small message size.

It is interesting to note that the response time of the queue ser-
vice is on the same order of magnitude as that of the table and blob
services. This suggests that although the queue service is simpler
and designed to be more efficient compared to the other storage
services, the performance gain is insignificant. One may use the
table or blob service to implement a simple signaling framework
with similar functionality as the queue service without much per-
formance degradation.

We then measure the propagation delay of a queue. The delay
is defined as the time between when a message is sent to an empty
queue and when it is available to be retrieved. A queue with shorter
propagation delay can improve the responsiveness of an applica-
tion. Figure 9(c) shows the distribution of the propagation delay
of the two services. We see that roughly 20% of the messages for
C1 take a long time (>200ms) to propagate through the queue,
while C4’s queue service has a similar median propagation delay
but lower variation. Finally, both services charge similarly–1 cent
per 10K operations.

5.3 Intra-cloud Network
In this section, we compare the intra-cloud network performance

of different providers. As of April 27th, when we conducted this
measurement, we found a total of 11 data center locations from
three providers: 6 for C4, 3 for C1, and 2 for C2. Similar to in-
stance types, we name each data center as provider.DCi. Table 6
summarizes the geographic locations of the data centers. We do not
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Figure 10: The intra-datacenter TCP throughput between two in-
stances in all data centers we measure.
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Figure 11: The TCP throughput between two different US data cen-
ters of a cloud provider.

consider C3’s intra-cloud network performance because it does not
allow direct communication between instances.

When measuring the intra-cloud bandwidth and latency, we
choose the instance types that can at least fully occupy one CPU
core. This is to avoid the network performance degradation due to
CPU time sharing introduced by virtualization [35].

5.3.1 Intra-datacenter Network

Figure 10 shows the TCP throughput between two instances in
the same data center. In rare cases, a pair of instances are colocated
on the same machine and obtain a throughput larger than 1Gbps
which is the speed of the NIC. We filter out such pairs as they do
not measure actual network performance. We combine the results
for intra-zone and inter-zone cases, because the difference between
them is not significant. From the figure, we see that the network
bandwidth of providers differs significantly. C1 and C4 provide
very high TCP throughput which is close to the limit of the NIC
(1Gbps) and the variation is low. C2 has much lower throughput,
probably due to throttling or under-provisioned network.

In terms of latency, all data centers achieve low round trip time
(< 2ms) for all pairs of instances we test. This result is not sur-
prising, because the instances located in the same data center are
physically proximate. We omit the results to save space.

5.3.2 Inter-datacenter Network

Next, we show the performance of network paths between data
centers of the same provider. Because most providers focus on the
US market (and some only have US data centers), we only show
the results for data centers within the US. Figure 11 shows that
the throughput across datacenters is much smaller than that within
the datacenter for all providers. Both C1 and C4 have their me-
dian inter-datacenter TCP throughput higher than 200Mbps, while

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
um

ul
at

iv
e 

F
ra

ct
io

n

Round Trip Time (ms)

C1
C2
C3

C3 actual
C4

Figure 12: This figure shows the cumulative distribution of the op-
timal round trip time (RTT) to the instances deployed on a cloud
provider from 260 global vantage points. For C3 we also show the ac-
tual RTT from a vantage point to the instance returned by the cloud’s
DNS load balancing.

C2’s throughput is much lower. Further, the variation in throughput
across datacenters is higher since the wide-area traffic may have to
compete with much other traffic.

We also compare the above result with the inter-datacenter
throughput obtained by a vanilla client that uses one TCP flow
with the default send and receive window sizes configured by the
provider. All providers see a smaller throughput with this vanilla
client. This is because the network paths across data centers have
a high bandwidth-delay product (e.g., 50ms × 800Mbps = 5MB)
and the default window sizes are not configured appropriately. We
find that the degradation is less with Linux instances, since mod-
ern Linux kernels auto-tune the size of the TCP receive buffer [11]
which can grow up to 4MB in the default setting. However the
degradation is far worse in the non-Linux instances since either
auto-tuning is not turned on or is configured poorly.

We find that the latencies between data centers largely corre-
spond to the geographical distance between the data centers. The
latencies across providers are incomparable because their data cen-
ters are at different locations. Hence, we omit these results.

5.4 Wide-area Network
In this section, we compare the wide area network performance

of different providers. Figure 12 shows the distribution of the
optimal wide-area latency observed from a diverse set of vantage
points. We also show the actual latency of C3 which is the latency
to the instance returned by its DNS load balancing system. From
the figure, we can see that both the optimal and actual latency distri-
butions of C3 are lower than that of other providers. This could be
explained by the provider’s widely dispersed presence – we observe
48 unique IP addresses simultaneously serving our test application.
These IP addresses likely correspond to the virtual IPs of front-end
load balancers at distinct locations. Furthermore, the gap between
the optimal and actual latency of C3 is less than 20ms, suggesting
that its load balancing algorithm works very well in practice.

C1 and C4 have similar latency distributions: they are worse
than C3, but much better than C2. A main difference is that C1

has a larger fraction of vantage points that have an optimal la-
tency higher than 100ms. Closer examination of our data reveals
that these high latency vantage points are mostly in Asia and South
America, where C1 does not have a presence (Table 6).

C2 has the worst latency distribution because it has the smallest
number of data centers. The flat curve between 50ms and 100ms
corresponds to the latency differences between two groups of van-
tage points: the North American nodes and those in other conti-
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Figure 13: The page generation time of TPC-W when deployed on all

three cloud providers that support it. The y-axis is in a logarithm scale.

nents. Because all C2’s data centers reside within the US, there is
a latency jump for vantage points outside North America.

6. USING CLOUDCMP: CASE STUDIES
In this section, we deploy three simple applications on the cloud

to check whether the benchmark results from CloudCmp are con-
sistent with the performance experienced by real applications. If
they are, it validates our conjecture that CloudCmp’s results can
be used by customers to choose cloud providers in lieu of porting,
deploying, and measuring their applications on each cloud. The ap-
plications include a storage intensive e-commerce website, a com-
putation intensive application for DNA alignment, and a latency
sensitive website that serves static objects. This study is a first step.
We do not claim to represent all the existing cloud applications and
defer the design of a generic tool for estimating the performance of
arbitrary applications to future work (§7).

6.1 E-commerce Website
The first application we choose is TPC-W [20], a standard bench-

mark for transactional web services. TPC-W itself is a fully
functional e-commerce website where customers can browse and
purchase books online. It is advantageous for such applications
to migrate to a cloud computing utility, because the cloud pro-
vides highly scalable and available storage services and free intra-
datacenter bandwidth.

We use a Java implementation of TPC-W [10] and port it to vari-
ous cloud providers by redirecting the database operations to use
each cloud’s table storage APIs. However, not all database op-
erations used in TPC-W map directly to the APIs offered by the
cloud. Specifically, there is no equivalent for JOIN and GROUP
BY. We disable pages that use these operations. Out of the original
16 pages in TPC-W, we had to disable four pages. The three opera-
tions we benchmarked (put, get, and query) account for over 90%
of TPC-W’s storage operations. Other operations include delete
and 
ount.

One major performance goal of TPC-W, similar to other dy-
namic web applications, is to minimize the page generation time.
The performance bottleneck lies in accessing table storage. From
CloudCmp’s comparison results of table storage service, shown in
Figure 4, we see that cloud C1 offers the lowest table service re-
sponse time among all providers. That benchmark appears relevant
because the table size it uses (100K) is on the same order as that
of the TPC-W tables (100K - 400K), and because it covers most of
the storage operations used by the ported version of TPC-W. There-
fore, from the benchmarking results, a customer may guess that C1

will offer the best performance for TPC-W.
To verify this, we deploy TPC-W on the three providers that of-

fer table storage service: C1, C3, and C4. We use instances that
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C1.1 and C4.1. We show the results for five example jobs.

occupy a physical core to avoid interference due to CPU sharing.
Figure 13 shows the page generation time for all twelve pages. We
see that C1 indeed has the lowest page generation time among all
three providers, consistent with our benchmarking result. Further-
more, C4 has lower generation time than C3 for most pages except
for pages 9 and 10. These pages contain many query operations
and are consistent with CloudCmp’s results in Figure 4, where C4

has a much higher query response time but lower get and put
response time than C3.

6.2 Parallel Scientific Computation
We then test Blast, a parallel computation application for DNA

alignment. We choose Blast because it represents computation-
intensive applications that can take advantage of the cloud com-
puting utility. The application is written in C#, with one instance
running a web service to accept job input and return job output,
and multiple worker instances responsible for executing the jobs
in parallel. Blast instances communicate with each other through
the queue storage service, which serves as a global messaging sys-
tem. The application also leverages the blob storage service to store
computation results.

We consider two cloud providers for Blast: C1 and C4. The oth-
ers do not support queue service. The performance goal of Blast
is to reduce job execution time given a budget on number of in-
stances. CloudCmp’s computational benchmark results shown in
Figure 1 suggest that at a similar price point, C4.1 performs better
than C1.1.

To check this prediction, we deploy Blast on both types of in-
stance (C1.1 and C4.1) and compare the real execution time of five
example jobs. Figure 14 shows the results. For all five jobs, Blast
running on C4.1 takes only a portion of the time it takes when run-
ning on C1.1. This suggests that C4.1 indeed offers better perfor-
mance than C1.1 for real applications at similar price point, consis-
tent with CloudCmp’s benchmarks.

6.3 Latency Sensitive Website
We choose a latency sensitive website for our third case study.

We configure a simple web server to serve only static pages, and
download the pages from PlanetLab nodes around the world. The
performance goal is to minimize the page downloading time from
many vantage points, and the main performance bottleneck is the
wide area network latency. We choose this application because
many existing online services such as web search and online gam-
ing depend critically on network latency [28]. Due to TCP seman-
tics, shorter latency also often leads to higher throughput [30].

We deploy our website on all providers and use wget to fetch
web pages from PlanetLab nodes. Each vantage point fetches from
the instance with the minimum network latency to emulate a per-
fect load balancing scheme. Figure 15 shows the distributions of



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

C
um

ul
at

iv
e 

F
ra

ct
io

n

Page Load Time (s)

C1
C2
C3
C4

(a) 1KB Page

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
um

ul
at

iv
e 

F
ra

ct
io

n

Page Load Time (s)

C1
C2
C3
C4

(b) 100KB Page

Figure 15: The distribution of the page downloading time of our web-
site. We show the results for two different page sizes: 1KB and 100KB.

the page downloading time for various providers. We download
two web pages of sizes 1KB and 100KB. In both cases, C3 has the
smallest page downloading time, consistent with our benchmark-
ing results in Figure 12 that show C3 having the lowest wide-area
network latency distribution.

7. DISCUSSION
In this section, we discuss CloudCmp’s limitations and future re-

search directions.

Breadth vs. depth trade-off. As our main goal is to perform a
comprehensive comparison among cloud providers, in several oc-
casions, we sacrifice depth for breadth. For instance, an in-depth
study that focuses on the storage service of a particular provider
could have used more storage system benchmarks [23] in addi-
tion to the metrics we use, to examine factors such as pre-fetching
and other query optimization techniques. The results presented
in this paper show only the first-order differences among various
providers, and can be complemented with more in-depth measure-
ment results on each individual provider.

Snapshot vs. continuous measurement. The results in this paper
should be viewed as a snapshot comparison among cloud providers
in today’s market. As time goes by, providers may upgrade their
hardware and software infrastructure, and new providers may enter
the market. It is our future work to use CloudCmp to continually
update those results.

Future work. CloudCmp opens at least two venues for future re-
search. First, we can use CloudCmp’s measurement results to make
application-specific performance prediction. A customer who is
interested in selecting a cloud provider for its specific application
may combine the application’s workload traces with CloudCmp’s
results to predict how the application may perform on each cloud
platform. This prediction result will help a customer make an in-
formed decision.

Second, it can be promising to develop a meta-cloud that com-
bines the diverse strengths of various providers. CloudCmp’s results
show that there is no clear winner on the current market. For in-

stance, C1 has fast storage service, C2 has the most cost-effective
virtual instances, and C3 has the smallest wide-area latency. A
meta-cloud that uses C2 for computation, C1 for storage, and C3

for front-end request processing may outperform any standalone
provider. How to build such a meta-cloud is an interesting future
research question.

8. RELATED WORK
Cloud computing has drawn significant attention from re-

searchers in the past several years. Armbrust et al. provide a
comprehensive overview of cloud computing, including the new
opportunities it enables, the potential obstacles to its adoption, and
a classification of cloud providers [22]. Their work motivates this
study on comparing the cloud providers in today’s market.

Wang and Ng show that the virtualization technique in Amazon
EC2 can lead to dramatic instabilities in network throughput and
latency, even when the data center network is lightly loaded [35].
This is mainly caused by CPU sharing among small virtual in-
stances. To avoid such effects, we carefully design our network
measurements to only use virtual instances that can at least fully
utilize one CPU core.

Garfinkel studies the performance of Amazon Simple Storage
Service (S3) and describes his experience in migrating an applica-
tion from dedicated hardware into the cloud [24]. Walker inves-
tigates the performance of scientific applications on Amazon EC2
using both macro and micro benchmarks [34]. Compared to the
work above, CloudCmp evaluates a much more complete set of ser-
vices offered by cloud providers.

CloudStatus continually monitors the status of Amazon AWS
and Google AppEngine [5]. It keeps track of several performance
metrics specific to each of the two providers. In contrast, we iden-
tify a common set of key performance and cost metrics shared by
various providers and conduct a thorough comparison among them
to guide provider selection.

Yahoo! Cloud Serving Benchmark (YCSB) [23] is a framework
to benchmark distributed data serving systems, such as Cassan-
dra, HBase, and PNUTS. The authors present comparison results
from experiments conducted on local clusters. We compare similar
types of table storage operations offered by main commercial cloud
providers in the wild.

Our earlier work argues for the importance of a comprehensive
cloud provider comparison framework, and presents some prelim-
inary results to highlight the wide performance gap among cloud
providers [29]. In this paper, we have taken several significant steps
further to fulfill our earlier vision. First, we measure and compare
more cloud services, such as virtual instance memory and disk I/O,
blob and queue storage, and inter-datacenter network transfer. Sec-
ond, we conduct a more fine-grained study on providers by mea-
suring each data center and virtual instance type separately. Third,
we demonstrate that CloudCmp is useful in guiding provider selec-
tion by comparing CloudCmp’s results with the performance of real
applications deployed in the clouds.

Finally, there is much recent work studying other aspects of
cloud computing platforms, such as how to make cloud platforms
trustworthy and accountable [33, 26], how to enable private cloud
computing environment [37], and how to exploit and remedy in-
terference between colocated virtual instances [32, 31]. Our work
complements previous work by studying an orthogonal aspect of
cloud computing: the cost-performance comparison of today’s
cloud providers.



9. CONCLUSION
Arguably, the time for computing-as-a-utility has now arrived. It

is hard to see a future wherein rapidly growing startups, low foot-
print “mom and pop” companies that want a presence on the web,
and one-off tasks needing large amounts of specialized computa-
tion such as document translation and protein sequencing would
not benefit from public cloud computing services.

In this context, this work presents the first tool, CloudCmp,
to systematically compare the performance and cost of cloud
providers along dimensions that matter to customers. We address
some key challenges with regards to scoping the problem to one
that is manageable given bounded money and time and yet is mean-
ingful to predict the performance of real applications. We observe
dramatic performance and cost variations across providers in their
virtual instances, storage services, and network transfers. We be-
lieve CloudCmp represents a significant first step towards enabling
fast and accurate provider selection for the emerging cloud appli-
cations and towards an end-to-end benchmark suite that can serve
as a progress card for provider’s optimizations.
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