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ABSTRACT
In feed-following applications such as Twitter and Facebook, users
(consumers) follow a large number of other users (producers) to get
personalized feeds, generated by blending producers’ feeds. With
the proliferation of Cloud-connected smart edge devices such as
smartphones, producers and consumers of many feed-following ap-
plications reside on edge devices and the Cloud. An important de-
sign goal of such applications is to minimize communication (and
energy) overhead of edge devices. In this paper, we abstract dis-
tributed feed-following applications as a view maintenance prob-
lem, with the goal of optimally placing the views on edge devices
and in the Cloud to minimize communication overhead between
edge devices and the Cloud. The view placement problem for gen-
eral network topology is NP Hard; however, we show that for the
special case of Cloud-edge topology, locally optimal solutions yield
a globally optimal view placement solution. Based on this power-
ful result, we propose view placement algorithms that are highly
efficient, yet provably minimize global network cost. Compared
to existing works on feed-following applications, our algorithms
are more general—they support views with selection, projection,
correlation (join) and arbitrary black-box operators, and can even
refer to other views. We have implemented our algorithms within
a distributed feed-following architecture over real smartphones and
the Cloud. Experiments over real datasets indicate that our algo-
rithms are highly scalable and orders-of-magnitude more efficient
than existing strategies for optimal placement. Further, our results
show that optimal placements generated by our algorithms are of-
ten several factors better than simpler schemes.

1. INTRODUCTION
Feed-following applications [26, 27] such as Facebook, Twitter,

iGoogle, and FourSquare have become extremely popular in recent
years. In these applications, users “follow” a large number of other
users (or entities) and get personalized feeds produced by blending
streams of events generated by (or associated with the activities
of) these users/entities. Producers generate time-ordered events
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Figure 1: Architecture of Cloud-Edge applications.
of a particular followable interest, such as their locations/check-
ins, tweets, facebook status, etc. Feeds from multiple producers
are then blended into feeds for consumers. A consumer retrieves
his feed on demand (e.g., when he visits iGoogle) or gets notified
whenever his feed satisfies certain predicates (e.g., when a friend
checks in a nearby place).

In this paper, we focus on feed-following Cloud-Edge applica-
tions, that run on Cloud-connected smart edge devices (edge de-
vices for short) such as smartphones, consumer electronics devices
(e.g., Xbox and Google TV), and in-car dashboards (Figure 1).
These devices are equipped with sensors that produce, in addi-
tion to user generated feeds, digitally born feeds such as GPS lo-
cation, speed, user activity, and battery usage. Consider a social
Foursquare application (e.g., Loopt app on iPhone, Android, and
Windows Phone) that notifies a user whenever any of her friends
checks in or visits a nearby location. Enabling this application
requires blending fast-changing location feeds from users’ smart-
phones as well as slowly changing reference data such as a social
network (defining the friend relationship). The list of existing feed-
following Cloud-Edge applications is quite long; examples include
Twitter-like applications (e.g., NanoTwitter on Android phones)
that notify a smartphone user when any of his friends tweets on a
similar topic he has tweeted on, context-aware notifiers (e.g.,OnX
on Android) that notify a user when, for example, his wife leaves
office or his friends gather together for a movie, location-aware
coupon services (e.g., GeoQpons on Android and iPhone) that no-
tify a user when she is close to a business offering coupons that she
might like, online multiplayer games (e.g., iMobsters on Android
and Halo : Reach on Xbox 360) that monitor players’ mutual in-
teractions and status, and in-car dashboard apps that provide online
route and gas station recommendations.

As discussed in [26], the core functionality of a feed-following
application can be formalized as a type of view materialization
problem. For example, the final output of the social Foursquare ap-
plication can be thought of a trigger on a logical nearby friends

view, consisting of many physical nearby friends x y views,
maintained one per every pair of friends (x, y). The view
nearby friends x y maintains current distance between two
friends x and y if they are nearby, i.e., if their distance is within
a threshold and is empty if the x and y are not nearby. The views
are maintained by a continuous query correlating (or joining) loca-
tion feeds from various users and their friend relationships. Even



though the views are conceptually simple, typical feed-following
applications have high skews in feed update rates and follow-
relationship fanout. Moreover, popular streams have high fanout
(e.g., many followers). As discussed in [26], these factors make
view selection, scheduling, and placement extremely challenging.

Almost all existing feed-following Cloud-Edge applications blend
data feeds from various edge devices at the Cloud—data updates
from edge devices are periodically sent to the Cloud, which then ag-
gregates data, updates its views, and pushes notifications (or takes
other actions). This “views-at-the-Cloud” strategy, while it greatly
simplifies the application logic, can be expensive. To illustrate this,
suppose Alice is working in her office and her friend Bob is driv-
ing in a nearby neighborhood. Then, an existing social Foursquare
application will require Bob to upload his location frequently (say,
once every 10 seconds) so that the Cloud knows his up-to-date lo-
cation to correlate with Alice’s location in order to maintain the
nearby friends Alice Bob view. Alice, however, can upload
her location infrequently (say, once an hour) since she is not mov-
ing much.1 In this example, the total communication overhead of
Alice and Bob will be 361 messages per hour (ignoring final noti-
fications). This can be prohibitively expensive, especially when a
user has many friends or runs many such applications. Note that
we focus on efficiency only in terms of communication overhead
(which is correlated to energy consumption of edge devices) be-
tween devices and the Cloud, because network bandwidth and en-
ergy are two of the most valuable resources in edge devices.

We observe that the inefficiency can be addressed easily in the
above example. Instead of using views-at-the-Cloud, we could
send Alice’s location to Bob once an hour (via the Cloud), perform
the correlation and compute the nearby friends Alice Bob view
in Bob’s device. This way, Bob would not need to send his loca-
tion anywhere and the total cost would become only 2 messages per
hour (one from Alice to the Cloud, and one from the Cloud to Bob),
compared to 361 messages per hour with the views-at-the-Cloud
strategy. Note that depending on where the correlation computa-
tion is done, physical views involving Alice maybe be distributed
among her device, her friends’ devices, and the Cloud.
Challenges. Given the above observations, why do existing Cloud-
Edge applications compute/maintain the views at the Cloud instead
of distributing them among edge devices? One main reason is that
the decision of how to distribute the views (i.e., what computation
to push, and to which edge device) is non-trivial. The decision
requires solving an optimization problem that depends on various
factors such as the network topology, update rates of the data, data
upload/download costs, what data sources need to be correlated,
etc. Moreover, since some parameters such as feed rates can change
over time, the decision needs to be dynamically updated. The com-
plexity of implementing such optimizations often outweighs the
cost of developing the core functionality of a Cloud-Edge app.

In this paper, we propose efficient algorithms to distribute views
of feed-following applications in a way that provably optimizes
communication between edge devices and the Cloud. Unlike pre-
vious works [26, 27], we allow feeds to be blended with expen-
sive query operators (e.g., multi-way joins) and general black-box
operators. We incorporate the algorithms in Race (for Real-time
feed-following Applications over Cloud-Edge), a novel architec-
ture and platform that leverages existing database engines to ef-
ficiently execute feed-following applications, as continuous sub-
queries on edge devices and in the Cloud. Race allows specifying
feed-following applications as logical view templates written in a

1The rates may depend on other factors such as users’ explicit set-
tings, connectivity status, distance between friends, etc.

declarative language; it then automatically instantiates necessary
physical views and distributes the views among edge devices and
the Cloud to minimize communication costs.

To achieve an optimal partitioning and placement of
feed-following views, our algorithms first transform the logical view
template of an application into a view graph, a directed acyclic
graph of computation vertices (views) connected by queues. Such
a transformation can also leverage existing optimization strategies
such as view/query rewriting and join reordering [10, 12, 13, 15].
Given a view graph, we next pose the decision of which view to
run at which location as a view placement problem with a goal
of minimizing the total communication overhead. The problem
is NP-Hard for general communication graphs [19, 22]. Previous
work has shown how to address this in polynomial time for tree-like
communication networks (by using a min-cut algorithm) [22]. Our
experimental results show that existing algorithms do not scale to
graph sizes observed in feed-following applications. For example,
for a social Foursquare application with 20,000 users, the min-cut
based algorithm in [22] takes 4.75 hours (more details in Section 5).
This is clearly impractical for applications with dynamic data rates
and churn.
Our solution. Race addresses the above challenges by exploiting
two observations. First, even though the general network topology
given by edge devices and computing nodes on the cloud can be
very complex, edge devices, which significantly outnumber cloud
nodes, are connected in a much simpler way. More specifically,
edge devices are typically connected to the Cloud only (though
WiFi, cellular network, etc.) and they communicate with one an-
other only through the Cloud. This reflects the dominant form of
communication between mobile-phones today. Second, since we
focus on efficiency only in terms of the communication between
edge-devices and the Cloud, we can treat the “Cloud” as one single
box (providing a centralized service running on a Cloud platform
or at provider’s servers).2 These two observations result in the star
topology underlying Cloud-Edge applications (see Figure 1).

A key contribution of this paper is to show that for such a star
topology, locally optimal view placement solutions obtained by each
device independently using an efficient greedy algorithm yield a
globally optimal placement solution. This powerful result enables
Race to find the provably optimal placement in a very efficient,
scalable, and possibly distributed way, without using expensive
centralized algorithms such as graph partitioning (as is done in
[22]) or linear programming (as is done in [19]). Race can handle
multi-level composition of views, with cross-view sharing, asym-
metric network link costs, and more general view graphs with black-
box operators.

Note that even though we treat the Cloud as a black-box in this
paper, our techniques can be composed with existing techniques
for an arbitrary network topology inside the Cloud. For example,
one could first use our efficient technique to optimally place views
among edge devices and the Cloud, and then use existing expensive
techniques in [22] or [19] to optimally distribute the operators as-
signed to the Cloud among its compute nodes. Since our technique
can efficiently handle all edge devices, which significantly outnum-
ber Cloud nodes that need to be handled by expensive techniques,
this two step process is much more scalable and faster than ap-
plying expensive techniques on the entire network topology (con-
sisting of all edge devices and Cloud nodes). Interestingly, if the

2Optimizing the Cloud to address challenges such as partitioning
and balancing computation among multiple servers are orthogonal
to this work and part of our future work.
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Figure 2: The Race architecture.
placement algorithm for the Cloud is optimal, this two step process
yields a globally optimal placement, as we show in Section 4.2.

Several recent works proposed various optimizations for feed-
following applications [18, 26, 27]. In [26], authors give an
overview of various challenges, including the view placement prob-
lem we address in this paper, related to feed-following applications
and explain why prior works on pub/sub systems, caching, and ma-
terialized views are inadequate to address these challenges. Feed-
ing Frenzy [27] proposes a view selection algorithm to optimally
choose between two types of views (consumer-pivoted views and
producer-pivoted views); in contrast we consider the view place-
ment problem. All these works assume that final feeds to con-
sumers are produced by applying simple selection and union op-
erations; in contrast, our algorithms are more general—they sup-
port views with selection, projection, correlation (join) and arbi-
trary black-box operators, and can even refer to other views. Fi-
nally, unlike prior works, we consider feed-following applications
distributed over a large number of edge devices and the Cloud.

We have implemented a full-fledged prototype of Race, running
over smartphones and the Cloud. Experiments with real datasets
show that Race is scalable and can find optimal solutions orders-
of-magnitude faster than current strategies. Further, our placements
are several factors better than simpler solutions such as views-at-
the-Cloud.

Contributions In summary, we make the following contributions:

• We propose (§ 2) a general view placement paradigm for feed-
following apps, and design Race, a platform for Cloud-Edge
apps that leverages compute engines on devices and the Cloud to
share the computation of logical views for the application.

• We develop (§ 3, 4) efficient algorithms that generate provably
optimal view placements for Cloud-Edge apps on Race, while
handling network links with asymmetric costs and multi-level
view graphs with correlations and black-box operators.

• We implement and evaluate (§ 5) a full-fledged prototype of Race.
We report results using the social Foursquare application over
realistic social network and location data, demonstrating scala-
bility, efficiency, and utility of Race and its optimizer.

2. Race MODEL AND ARCHITECTURE
Race exposes a set of input data sources to a feed-following ap-

plication. Inputs can be continuous feeds such as location, checkin,
or tweet streams generated by individual edge devices, as well as
static (or slow-changing) reference data such as social network re-
lationship tables. The application specifies a set of physical views
over these inputs. Race supports more expressive views than dis-
cussed in [26]; specifically, a view can correlate (join) multiple
data sources, and support selects, projects, and black-box opera-
tors. Further, views can reference other views as input, allowing

multi-level queries over the data sources. For example, a social
Foursquare app may wish to compute a logical view
nearby friends that consists of all pairs of nearby friends. To
compute this logical view, it may generate a set of physical views
nearby friends x y for each pair of friends x and y, each of
which is placed at some edge device or in the Cloud3.

Figure 2 shows the overall system architecture of Race. An ap-
plication may need millions of physical views. Therefore, Race
uses logical view templates to allow applications to succinctly spec-
ify a large number of physical views. A View Generator module
compiles these logical view templates into a single large physical
view graph, with physical views as nodes in the graph. The view
graph is passed to an Optimizer module that computes the optimal
placement of views across the Cloud and edge devices. Finally,
physical views are shipped to their destination, where a Compute
Engine performs the actual view computation and maintenance.
Race handles the data communication necessary to provide each
physical view with all the inputs that it needs (either feeds or other
physical views). End subscribers (e.g., Foursquare users) can con-
struct their required logical views by accessing the relevant phys-
ical views, as needed by the application. These components are
discussed below.

In this paper, we assume that all edge devices are capable of
computing views4. For simplicity, we limit our discussion to cases
where devices are always connected (i.e., no failures) and sub-
scribers require all view updates (no on-demand delivery). These
assumptions are relaxed in Sections 4.4 and 4.5 respectively.

2.1 View Graph Generator
Since there can be millions of views needed by an application,

Race offers a succinct way to automatically generate them using
logical view templates that define views in terms of logical inputs.
For example, one may specify a view template V1 that joins a log-
ical location stream with a logical social network stream. Race
detects that the social network input is reference data, and materi-
alizes the relationship to generate one physical view for each user-
friend pair. Logical views can be composed: one can correlate V1

with the location stream to get one physical nearby friends x y

view for every relationship in the social network. Reference data
can be slow-changing; Race handles this by periodically updating
the set of active physical views in the system.

The logical view template represents the template or skeleton
for generating the expanded view graph. Figure 3(a) illustrates the
view template for our social Foursquare query. Assuming that the
social network is as shown in Figure 3(b), Figure 4 shows the cor-
responding instantiated physical views5. Note that in order to al-
low information sharing and avoid duplicated edges in the graphs,
the instantiated sources and physical views are named carefully, as
shown in the figure.

The final step is to stitch the instantiated physical views into a
complete physical view graph. Figure 5 shows the final view graph
derived from the instantiated views from Figure 4. Note that when
combining the instantiated graphs, the vertices (in the instantiated
patterns) with the same name are mapped to the same vertex in the

3The number of physical views is linear in the number of edges in
the social network graph
4This restriction can be relaxed by adding constraints for specific
edge devices; we can still produce feasible placements in this case.
5Note that materialization of the social network would actually
convert the view template into a set of single-level joins; we leave
them as multi-level joins with a partitioned social network input to
illustrate how we can leverage opportunities for sharing intermedi-
ate view results.
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Figure 3: Logical view template and social network.

view graph. For instance, the Join<GPS-P, SNP > vertex is shared
by the instantiated patterns for edges (P,R) and (P,Q).

2.2 Optimizer
The Optimizer module accepts the view graph as input, and de-

cides where to execute each physical view so that the total com-
munication cost of the application is minimized. With thousands
or even millions of users participating the Cloud-Edge system, the
view graph could be huge – containing millions of physical views.
For such a large view graph, the optimal view placement is non-
trivial. In Section 3, we describe novel and efficient solutions used
within the Race Optimizer module. Race performs periodic re-
optimization to adjust the placement to changes in the view graph
and/or statistics.

2.3 Compute Engines
Race hosts a compute engine on every edge, as well as at the

Cloud. The compute engine is responsible for executing the view
and keeping it up to date. Given an optimizer decision, Race sends
each view to the corresponding compute engine via a control plane.
The compute engines merge similar views into a single query plan
when possible, so that a fewer number of queries are executed at a
node. A complication is that edge devices (e.g., phones) are usually
not directly reachable or addressable from Race. Instead, Race
maintains a server to which the edge devices create and maintain
persistent connections in order to receive management commands
that are forwarded to the DSMS instances on the edges.

During view maintenance at compute engines, data needs to flow
between edge devices and the Cloud. Race uses a data plane that
is exposed as a server at the Cloud, and to which the edge devices
connect. The data plane routes data from the Cloud to devices and
vice versa. Note that in the Cloud-Edge topology, the data flow
between two devices is indirect (via the Cloud), i.e., devices do not
communicate directly with one another.

3. OPTIMAL VIEW PLACEMENT
The view graph for a typical feed-following Cloud-Edge appli-

cation can be huge, with millions of views6 in the view graph.
Since feed sources are distributed (e.g., user location data origi-
nates from edge-devices), the placement of every intermediate view
has an impact on view maintenance overhead. As there are ex-
ponentially many view placement choices, a naı̈ve approach that
searches the whole design space is not feasible. In addition, we
consider the sharing of intermediate results, which makes the prob-
lem even harder.

3.1 Summary of Theoretical Results
As mentioned earlier, we leverage the “star” topology of Cloud-

Edge systems to find the provably optimal placement efficiently.
Table 1 summarizes the theoretical results and time complexities

6For brevity, when it is clear from the context, we use term “view”
as the abbreviation for physical view.

Condition Local Complexity
Select None O(N), N = # of friends

Conditions Sampling O(N logN), N = # of friends
Condition Global Complexity

Graph Single-level Parallelizable local algorithm
Complexity Multi-level Local algorithm in top-down fashion
Asymmetric Cu ≤ Cd Parallelizable local algorithm

Costs Cu > Cd DP with acyclic residual graph

Table 1: Summary of the view placement algorithm. Global
optimality is achieved in all cases.

for our placement algorithm, for various combinations of the com-
plexities of view graphs, select conditions, and upload/download
cost ratios. Note that we focus on correlations/joins (with sampling
filters) in this section; the extension to more general view graphs
with black-box operators is covered in Section 4.

In Section 3.4, we first establish a formal relationship between
view placement and the assignment problem, which decides whether
a vertex in the demand graph (defined in Section 3.3) should push
subsets of its data to the Cloud.

We first focus on symmetric network links, where the per-unit
cost of uploading (Cu) and downloading (Cd) data are equal. In
Section 3.5, we cover view graphs with single-level joins, with and
without sampling filters. Here, an important result is that locally
optimal choices are globally consistent and optimal. This gives us
a parallelizable placement algorithm for optimal placement. We
further propose efficient greedy algorithms for computing locally
optimal choices in this case. In Section 3.6, we extend our solutions
to more complex view graphs with multi-level joins, where we can
still derive the provably optimal placement by treating intermediate
views in a view graph as virtual vertices, and computing the local
optimality for each individual vertex in a top-down fashion.

We cover asymmetric links in Section 3.7, where we observe that
our earlier results directly hold when Cu ≤ Cd. When Cu > Cd,
we show that in the common case where the residual graph (see
Section 3.7) is acyclic, there is an efficient dynamic programming
(DP) algorithm to find the optimal view placement.

3.2 Assumptions
As is common in content-delivery and publish/subscribe sys-

tems [7], we ignore the cost of the “final hop” notification sent to
end subscribers, as this is usually negligible compared to the cost of
in-network view maintenance. We further make two assumptions:

Assumption 1 For any correlation/join A 1 B (where A and B
are the input feeds of the correlation), its resulting view is located
either at the Cloud or on the nodes where A or B originated.
This assumption of restricting possible placement locations of a
view is practical due to privacy and efficiency reasons. As the data
may include sensitive private information (e.g., location and con-
text), an edge device may want to ship its data only to the devices
(e.g., a friend) that register its feed data. Moreover, since comput-
ing a view consumes energy and other resources on an edge device,
a device may want to maintain only views that involve its data. The
assumption does not simplify the placement problem; there are still
an exponential number of possible view placements.

Assumption 2 A feed from a given edge device appears in no more
than one subtree of any view in the view graph.
This is a reasonable assumption, since one can simply combine
feeds from the same edge device into a single feed, or locally per-
form the necessary computation that these feeds are involved in.
Note that this assumption does not preclude sharing of source or
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Algorithm 1 Generate Demand Graph from View Graph

1: func DemandGraph(GQ = (V Q, EQ))
2: V D ← φ; ED ← φ
3: for ∀ v1 ∈ V Q do
4: Suppose e1 = (v2, v1) ∈ EQ, e2 = (v′2, v1) ∈ EQ

5: V D ← V D + {v1}
6: ED ← ED + {e′1 = (v2, v

′
2), e

′
2 = (v′2, v2)}

7: return GD = (V D, ED)

intermediate results, and in particular, it always holds in case the
view template (that defines the local view) is a left-deep tree over
different feed sources.

3.3 Demand and Demand Graph
Before presenting our proposed algorithm, we introduce the fol-

lowing graph-based denotations to facilitate the discussion.

Definition (Demand) We denote, as a pair (v1, v2), that a feed
data source v2 “demands” (i.e., needs to correlate with) the data
generated by another source v1.

Definition (Demand Graph) Given a feed-following Cloud-Edge
application, the demand graph G = (V,E) is defined as follows:
the vertex set V = {v|v is a feed data source }, and
E = {(v1, v2)|(v1, v2) is a demand pair}. Each edge e = (i, j) ∈
E is associated with a rate ri,j , indicating the rate of vi’s feed that
is demanded by vj .

Figure 6 shows the corresponding demand graph for the
nearby friends logical view, given the social network shown in
Figure 3(b). The edges in the graph illustrate the demand relation-
ships, for instance, the edge (GPS-P, SNP) indicates that the GPS
reading from P (GPS-P) needs to be correlated with the social net-
work (SNP). Each edge is associated with a rate r indicating the
update rate of the feed data.

In a demand graph, intermediate views (resulted from join oper-
ations) are treated as virtual feed data sources in the demand graph
(as they are producing join results as feeds). Actually, there is
a one-to-one mapping between demand graphs and view graphs.
Given a view graph GQ = (V Q, EQ), Algorithm 1 generates the
corresponding demand graph GD = (V D, ED); the view graph
can be re-engineered from the demand graph by following a simi-
lar algorithm.

3.4 Assignment: Download vs. Upload
In general, deciding optimal view placement for distributed view

maintenance is a classic research topic in database community, and

is known to be a hard problem. The essence of our proposed al-
gorithm is rooted in leveraging a special network property of the
Cloud-Edge architecture: edge devices cannot communicate with
each other directly; to exchange information, they have to upload
or download data through the Cloud-side servers.

Definition (Upload and Download) Given a demand graph G =
(V,E), for an edge (vi, vj) ∈ E, we say that vi is “uploading”
on (vi, vj), if, regardless of where vi is located (either at an edge
device or the Cloud server), vi transmits the corresponding feed
(demanded by vj) to the Cloud server; otherwise, we say that vi is
“downloading” on (vi, vj).

Intuitively, once a vertex decides to upload on an edge (which rep-
resents a required feed data correlation), there is no reason for it to
download any data for this correlation from the Cloud-side server,
because the correlation can be simply performed at the Cloud (as
the feed data needed for the correlation has been made available at
the Cloud).

Given a demand graph G = (V,E), a view placement for G can
be mapped to a set of upload vs. download decisions (called an
assignment) made on each vertex.

Definition (Assignment) Given a demand graph G = (V,E), an
assignmentA : E → {D,U} is defined as follows: Avi,vj = U if
vertex vi decides to upload its feed data on edge (vi, vj), otherwise,
Avi,vj = D.

We denote the optimal placement and its corresponding assignment
as Popt and Aopt. Figure 7 shows the optimal placement (Popt)
for the demand graph of Figure 6, and Figure 8 shows the corre-
sponding assignment (Aopt). In the optimal view placement, the
resulting view for the correlation between GPS-P and SNP is per-
formed at node P, which means that the partitioned social network
graph SNP should be shipped to node P, i.e., SNP is “uploaded” to
the Cloud, and GPS-P is not. This is consistent with the assignment
given in Figure 8.

It is natural to ask the questions 1) whether there exists a reverse
mapping fromAopt toPopt, and 2) whether there exists an efficient
algorithm to find Aopt for a given demand graph. We next present
our conclusion for first question, and gradually develop the answer
for the second question in the rest of this section.

Not all assignments can be mapped to a viable evaluation plan.
There is a fundamental constraint: join requires the colocation of
all its inputs. Therefore, for any join that takes inputs from different
feed sources (edge devices), at most one device is downloading.

Definition (Viability and Conflict) Given a demand graph G =
(V,E), an assignment A is viable if it satisfies the following con-



Algorithm 2 Compute Placement from Assignment

1: func Placement(GQ = (V Q, EQ), Assign)
2: // Initialize the placement of leaf vertices (i.e., raw sources)
3: Placement← {}
4: for ∀ v ∈ V Q do
5: if !∃ e = (v′, v) ∈ EQ then Placementv ← v
6: // Determine view placement in a bottom-up fashion
7: TopoOrder ← V Q sorted by topology sort.
8: for ∀ v ∈ TopoOrder in the bottom− up order do
9: Suppose e1 = (v1, v) ∈ EQ, e2 = (v2, v) ∈ EQ

10: if Assigne1 = D then Placementv ← Placementv1
11: else
12: if Assigne2 = D then Placementv ← Placementv2
13: else Placementv ← Cloud
14: return Placement

dition: ∀e = (vi, vj) ∈ E,Avi,vj 6= D∨Avj ,vi 6= D. We call an
edge that breaks this condition a conflict edge.

For example, Figure 8 illustrates a viable assignment given the de-
mand graph shown in Figure 6, as for any correlation, at most one
data source is deciding to download. If theASNP,GPS-P is changed to
download, it will invalidate the assignment, as the edge (SN,GPS-C)
is a conflict edge.

Lemma 1 Given a viable assignment A, A can be mapped, by
applying Algorithm 2, to a corresponding view placement P , in
which the feed data flow is compatible with the upload / download
decisions in A. (We say, A is consistent with P .) 7

Lemma 2 A viable assignment A is consistent with only one view
placement P .

Theorem 1 The optimal view placement problem can be reduced
to finding viable assignment with optimal cost (directly from
Lemma 1 and Lemma 2).

3.5 View Graphs with Single-level Joins
We start with a simple scenario, where feed-following Cloud-

Edge applications are specified as view graphs with only single-
level joins. We will extend the discussion to view graphs with
multi-level joins in the following section.

3.5.1 Same Demand Rate
We first consider a special case of the view graphs with single-

level joins, in which, for any vertex i in a demand graph, the feed
data rates for all outgoing edges are the same, namely, ∀(vi, vj) ∈
E, rvi,vj = rvi . Basically, a join operation requires the full feed
data from each data source. This corresponds to the queries where
no filtering (such as projection or selection) is performed before the
join operation.

Instead of directly considering the cost of an assignment, we
compute the gain of switching upload and download (which could
be positive or negative) compared to a base viable assignment – a
naı̈ve solution that all vertices decide to upload their feed data. By
switching a vertex vi from uploading to download, the gain can be
computed as follows: gainvi = rvi −

∑
(vi,vj)∈E rvj , namely the

benefit of not uploading vi’s feed data at a cost of downloading all
the feed data that are correlated with vi’s feed data.

Definition (Global optimality) Given a demand graphG = (V,E),
the global optimal assignment is a viable assignment A that maxi-
mizes the total gains.
7Proofs for all the lemmas are presented in a technical report [6].

To find an assignment Aopt that gives the global optimality, we
consider a greedy approach where each vertex in a demand graph
locally decides the assignment for its own benefit:

Definition (Local optimality) Given a demand graphG = (V,E),
for each vertex v ∈ V , the local optimal assignment for v is a local
decision onAv that maximize the local gain. Specifically,Av = D
if and only if gainv > 0.
We then prove that the local optimality is actually consistent with
the global optimality, which has two implications: First, the over-
head for computing the local optimality is low, which is linear to the
number of degree of the vertex in the demand graph. Second, we
can partition the assignment problem and solve it in parallel. This
is particularly important in cases where the demand graph is huge,
as we can leverage the vast computation resources at the Cloud to
solve it efficiently.

Theorem 2 Given a demand graph G = (V,E), the assignment
A = {Av|Av = local optimality at v, v ∈ V } is viable.

Proof. Suppose there exists a conflict edge e = (i, j), that is,
Ai = D and Aj = D. We have, from Ai = D, that gainvi =
rvi −

∑
(vi,vj)∈E rvj > 0. Therefore, rvi > rvj . Similarly, we

can derive rvj > rvi from Aj = D. Contradiction. 2

Theorem 3 Local optimality is consistent with global optimality,
namely, global optimality can be derived by individually applying
local optimality.

Proof. Theorem 2 shows that the assignment derived by individu-
ally applying local optimality is viable. Also, note that each local
optimality is computing the maximal gain for an isolated physi-
cal link. Therefore, the global optimality is simply addition of the
gains on the physical links. 2

3.5.2 Different Demand Rates
We now extend the discussion to consider the scenario where, for

a given vertex i, the feed data rates demanded by each of the other
vertices may be different. For example, in the nearby friends

logical view, the feed rates for a particular user may be different
with respect to each of its friends. Here, we assume that the feed
data with a lower rate can be constructed using one with a higher
rate, which corresponds to application of sampling filters. In other
words, a filter that needs to sample x events/sec can be provided
by another filter that samples y events/sec, for any y ≥ x. In such
a scenario, decisions on uploading vs. downloading are made for
each edge (instead of each vertex) in the demand graph.

Assuming the rates rvi,vj are sorted at vertex vi, such that rvi,v1 <
rvi,v2 < ... < rvi,vp , it is not hard to see that an optimal assign-
ment for the p sorted edges must have the pattern [U, ..., U,D, ...,D]
(because a lower-rate stream can be sampled from a stream with a
higher rate, that is, the lower-rate feed data has been made available
at the Cloud for “free”).

Definition (Local optimality) Consider the gain in an assignment
∀j ≤ k,Avi,vj = U,∀j > k,Avi,vj = D: gainvi,vk = rvi,vp −
rvi,vk−

∑
k+1≤s≤p rvs,vi . We select k = argmax0≤j≤pgainvi,vj ,

and configure the assignment according to the [U, ..., U,D, ...,D]
pattern described above.
It is not difficult to see, based on the similar reasoning, that the
consistency theorem (Theorem 3) still hold. We next show that the
viability theorem (Theorem 2) also hold.

Lemma 3 After applying local optimality at vertex vi, we have that
Avi,vj = D implies rvi,vj > rvj ,vi .



Theorem 4 Given a demand graph G = (V,E), the assignment
A = {Avi,vj |Avi,vj = local optimal assignment at e = (vi, vj),
e ∈ E} is viable.

Proof. Suppose there exists a conflict edge e = (v1, v2). Applying
Lemma 3, we have rv1,v2 > rv2,v1 from Av1,v2 = D. Similarly,
we have rv2,v1 > rv1,v2 from Av2,v1 = D. Contradiction. 2

3.6 View Graphs with Multi-level Joins
In the case of view graphs with multi-level joins, we cannot

naı̈vely apply the algorithm developed for view graphs with single-
level joins: For single-level joins, the communication cost of the
final resulting views is not considered (as the final notification cost
is negligible). However, this is not the case for multi-level joins.
For example, when naı̈vely applying the algorithm presented in the
prior section, an edge device may individually decide to download
other feed data and perform the computation locally. However, if
the edge device is aware of the fact that the resulting view is then
required as an input for the maintenance of a higher-level view
(whose optimal placement is at the Cloud side), it may make a dif-
ferent decision. We next present how this challenge is resolved
optimally by extending the single-level join algorithm.

3.6.1 View Placement in a Top-down Fashion
The intermediate views in the view graph can be considered as

virtual feed sources, except that their locations need to be decided.
Intuitively, given a view graph, we can make the upload vs. down-
load decisions for the views in the top-down fashion: for a given
vertex v1 that corresponds to an intermediate view, as long as we
know where it should be shipped to (based on the placement de-
cision made by its parent view), the algorithm for the single-level
joins can be straightforwardly extended by additionally considering
the communication cost of the resulting views.

Note that the only destination we should consider is the Cloud
side. Even if the destination is another edge device (as the interme-
diate view is required by another vertex v2 located at the edge de-
vice), we should not consider the downloading part of the shipping
cost (i.e., the cost of sending the output stream from Cloud side to
that edge device), as this downloading cost is already considered
in calculating the gain for v2. Note that Assumptions 1 and 2 en-
sure that when considering vertex v1, we can disregard the actual
placement decision for its destination, as it will definitely be placed
either at the Cloud or at some other edge that v1 (or its subtree) do
not overlap with. This key observation makes the extension of the
algorithm possible, and it can be shown that the extended algorithm
still guarantees a viable and optimal assignment.

3.6.2 Upload vs. Download in a Top-down Fashion
Our previous approach (for view graphs with single-level joins)

derives the placement of views in the bottom-up fashion (see Sec-
tion 3.5.1) after the upload vs. download decisions are made. We
need to tweak the algorithm presented in Section 3.6.1 to decide the
upload vs. download assignment, based on the parents’ assignment
instead of their placement.

Once we know the decision of the parent vertex v1, we consider
what decision should be made for a child vertex v2. Again, v2 has
two choices – either upload or download.

• If the decision of the parent vertex v1 is download, it means
that there is no need to communicate the resulting view to the
Cloud server. Therefore, when finding the local optimality for
v2, the cost of communicating the resulting view is not consid-
ered in computing the gains. Instead, we should consider the cost
of downloading the corresponding feeds for performing v1 (i.e.,

Algorithm 3 Compute Optimal Assignment

1: func Assignment(GQ = (V Q, EQ), GD = (V D, ED))
2: TopoOrder ← V Q sorted by topology sort.
3: for ∀ vi ∈ TopoOrder in the top-down order do
4: EStart← {ei = (vi, v

′
i)|ei ∈ ED}

5: Sort EStart according to rvi,v′
i

6: rmax ← max(vi,v
′
i)∈EStart rvi,v′

i

7: for ∀ ek = (vi, vk) ∈ EStart do
8: gaink ← rmax − rvi,vk
9: for k + 1 ≤ s ≤ p do

10: gaink ← gaink − rvs,vi
11: // Next, consider the cost of join output
12: vovs,vi ← the parent of vs and vi in G

Q

13: if ∃vj such that Assignvo
vs,vi

,vj = U then
14: rovs,vi ← the rate of join output stream
15: gaink ← gaink − rovs,vi
16: kopt ← argmax0≤k≤pgaink

17: for ∀1 ≤ k ≤ kopt do Assignvi,vk ← U
18: for ∀kopt < k ≤ p do Assignvi,vk ← D
19: return Assign

the other input feeds for v1). This is because, if v2 chooses to
download, v1 will need to be colocated with v2.

• If the decision of the parent vertex v1 is upload, it means that
the resulting view of v2 should be made available at the Cloud
server. Therefore, when finding the local optimality for v2, the
cost of communicating the resulting view should be considered.

Algorithm 3 takes a view graph GQ and its corresponding demand
graph GD as the input, and computes the optimal assignment. The
algorithm applies to a generic scenario where it assumes a view
graph with multi-level joins, and per-edge demand rates (i.e., the
rates associated with the demand edges starting from a given vertex
might be different). We show that the assignment generated by
Algorithm 3 is viable and optimal.
Theorem 5 Given a view graph GQ = (V Q, EQ) and its demand
graph GD = (V D, ED), the assignment A generated by Algo-
rithm 3 is viable (directly from Lemma 3).

Lemma 4 Given a view graph GQ = (V Q, EQ) and its
corresponding demand graph GD = (V D, ED), the assignment
A generated by Algorithm 3 is consistent with the optimal view
placement POPT .

Theorem 6 The assignment A generated by Algorithm 3 is glob-
ally optimal (directly from Lemma 4 and Lemma 2).

3.7 Asymmetric Upload / Download Costs
So far we have assumed that the upload cost and the download

cost are the same. However, in reality, it might not be the case. For
example, the per-unit prices of bandwidth utilization for uploading
and download might be different (e.g., a Cloud service provider
may introduce asymmetric costs to encourage users to feed data
into the Cloud); also, an edge device might exhibit different battery
consumptions for uploading and downloading.

In this section, we further extend our discussion to consider asym-
metric upload / download costs. We denote the per-unit cost for
uploading and downloading as Cu and Cd. For scenarios where
Cu < Cd, the results for Cu = Cd presented in the previous
sections still hold – the key viability theorem (Theorem 2) holds.

On the other hand, deciding optimal view placement is a harder
problem for cases where Cu > Cd. For a special case where



Cd = 0, we can show that the optimal view placement problem
is provably hard by reduction from the classic weighted min vertex
cover (WMVC) problem. Essentially, the viability theorem breaks
in these cases, therefore, having edge devices individually apply
local optimality may result in conflicts. However, a viable assign-
ment can still be obtained, if we can resolve the conflicts by setting
some vertices in the demand graph to upload with higher rates.

Assume that given a demand graphG, after applying Algorithm 3,
we remove the demand edges (vi, vj) if Assignvi,vj is consistent
with Assignvj ,vi (i.e., not both are D). We call the left-over graph
as the residual graph, where switching the assignment of any edge
results in increased cost. The problem reduces to the WMVC prob-
lem in the residual graph, which lacks an efficient general solution.
In the rest of the section, we discuss a condition that if satisfied, the
optimal view placement problem can be solved efficiently.

Definition (Skew) Given a demand graph G = (V,E), the skew
of a vertex v ∈ V , Sv is defined as the ratio between the maxi-
mum and minimum rate associated with the outgoing edges from v.
Namely, Sv = max(v,i)∈E rv,i/min(v,j)∈E rv,j .
The skew of G is defined as the maximum skew among the nodes in
G. Namely, S = maxv∈V Sv .

Lemma 5 Given the skew S of a graph G, if Cd < Cu < (1 +
1/S) ·Cd, after applying local optimality on all vertices, the resid-
ual graph G′ that consists of the conflict edges is acyclic (i.e., sep-
arated trees).

Theorem 7 If Cd < Cu < (1 + 1/S) · Cd, the optimal view
placement can be found in P-time.

Proof. By applying Lemma 5, we can conclude that G′ is acyclic.
We show that, for each tree in the residual graph G′, we can find
its weighted minimal vertex cover in linear time, using a dynamic
program algorithm:

Starting from leaf vertices, for each vertex v, consider the cost
of the vertex cover for the subtree (rooted by v), having (or not
having) v in the cover set. For any inner vertex v, if v is not in
the cover set, then all the children of v should be in the cover set:
Cost−v =

∑
i∈child(v) Cost

+
i . On the other hand, if v is in the

cover set, then each subtree can independently choose its vertex
cover: Cost+v = cv +

∑
i∈child(v) min(Cost−i , Cost

+
i ). 2

Note a special case where the stream rates required by different
friends are the same, we have that the optimal placement can be
found in P-time, if Cd < Cu < 2 · Cd (which holds in most prac-
tical scenarios). Empirically, even if Cu ≥ 2 · Cd, the conflicting
edges still form isolated trees.

4. DISCUSSION AND EXTENSIONS
Section 3 focused on view templates with multi-level joins with

sampling filters. We next discuss extensions that are beyond our
current prototype implementation, including how our algorithms
also support general view templates (§ 4.1, 4.2) and offline dis-
tributed view maintenance (§ 4.3). We also cover other issues such
as node failures, runtime changes in the query graph and event
rates, and device constraints (§ 4.4, 4.5 and 4.6).

4.1 Handling General View Templates
General view templates can be specified as a query graph [22, 8]
G, a directed acyclic graph (DAG) over a set of black-box operators
(denoted as O), where the leafs in G are called sources, and the
roots are called sinks. Each operator in O may take zero (for the
sources) or more inputs, and its output may be used as an input to

other operators. Operators may be single-input (e.g., selection) or
multi-input (e.g., multi-way join).

Interestingly, the high-level intuitions of our placement algo-
rithm from Section 3 continue to hold for general view templates—
each (virtual) vertices in the view graph individually decides (in a
top-down order) whether it should upload or download its output to
optimize its local cost. The viability of the assignment is still guar-
anteed as before. Moreover, given that operators are black-boxes,
there exist no further opportunities to exploit sharing across the dif-
ferent views in the view graph (as was done in Section 3.5.2). A
similar reasoning as Theorem 3 shows that consistency between lo-
cally optimal choices and the globally optimal solution still holds.
Thus, the problem can again be reduced to finding the optimal up-
load/download assignments, and our proposed local optimality al-
gorithms can be used.

4.2 Handling General Network Topologies
We have focused on the Cloud-Edge star topology in this paper.

In a Cloud setting, the overall network graph G has two compo-
nents: a “core graph” Gc which is an arbitrary graph of machines
within the Cloud; and an “edge graph” Ge that treats the Cloud as
a single vertex with edge devices hanging off of this vertex in a
star topology. General view placement for a large graph such as G
is very expensive [22, 19]. However, we can still find the optimal
solution as follows:
• First, we solve the cloud-edge view placement problem on graph
Ge in linear time as shown earlier.
• Next, for views placed at the virtual “Cloud vertex”, perform

view placement on Gc using prior techniques [22, 19] for arbi-
trary graph or tree topologies. This is more expensive, yet feasi-
ble because ‖Gc‖ � ‖G‖ (usually by orders-of-magnitude).

We show in Theorem 8 that this two-level approach does not vio-
late global view placement optimality in the full graph (G), in the
common case where network costs within the Cloud are symmetric.

Lemma 6 The view placement P(Ge) for the edge graph is com-
patible with the view placement P(Gc) for the core graph, that is,
a view placed at an edge device v in P(Ge) is placed at its corre-
sponding node v′ (which v′ is directly connected to) in P(Gc).

Lemma 7 The view placement P(Ge) for the edge graph is con-
sistent with the view placement P(G) for the complete graph, that
is, a view is placed at an edge device A′ in P(Ge) iff it is placed at
the same edge device in P(G).

Theorem 8 View placement P(Ge) ∪ P(Gc) is globally optimal.

Proof. By applying Lemma 6 and 7. Once the P(Ge) is decided,
the problem reduced to optimized the cost of the communication
within the cloud, which is exactly what P(G) achieves. 2

4.3 Offline View Maintenance
The algorithms presented in Section 3 are not specific to online

feed-following applications. It applies to offline distributed view
mainenance in Cloud-Edge structured databases as well. For in-
stance, service providers such as Facebook, Microsoft, Twitter, and
Yahoo perform offine analytics to build user profiles and better tai-
lor the services for the users. When performing the analytics based
on data that is distributed across machines in one of several data
centers, finding a low-bandwidth economic query plan is of great
importance for better cluster utilization. Instead of naı̈vely fetching
distributed data and collectively performing the analytics on dedi-
cated machines in the Cloud, the Race system can be leveraged to
compute the optimal view placement based on the data sizes (in-
stead of feed rates in feed-following applications).



4.4 Fault Tolerance
Fault tolerance is easily achieved at the Cloud using techniques

proposed in previous work [3]. We next discuss robustness to edge
failures. Intermittent connection losses are handled in the data
plane by logging data (either at the Cloud or edge) and sending
them as a batch once connectivity is re-established. The engine can
use application time for query semantics, such that query correct-
ness is not affected except for some delay in result computation. In
case of a permanent failure of some edgeE, we guarantee that only
queries that use data from E are affected (this cannot be avoided
since such queries use data from E). This useful result guarantees
that the effect of edge failures are localized, and follows directly
from our restriction (see Assumption 1) that an edge E may only
process parts of view maintenance that process data from E.

4.5 Handling Dynamism
The Race optimizer expects the availability of the view graph

as well as rate statistics for all streams as input. However, the
view graph may change over time, for example, due to the addition
and removal of edges in the social network. We model on-demand
queries by the addition and subsequent removal of a view, which
requires support for a dynamically changing view graph. Similarly,
event rates may also change as each edge device periodically re-
ports the monitored feed rates to the optimizer. It is necessary to
adapt to these changes during runtime. Since our optimizer is very
efficient (it takes only 3.2 seconds to optimize for 186K edges; see
Section 5), periodic re-optimization and adjustment of view place-
ment is viable.

However, re-optimization may encounter deployment overhead
(e.g., sending query definitions to edges). If we re-optimize fre-
quently, the re-optimization overhead may overshadow the benefits
of optimization. One solution is to use a cost-based online algo-
rithm [4]: estimate and maintain the accumulated loss due to not
performing re-optimization, and perform re-optimization only if
the accumulated loss exceeds the overhead of re-optimization. A
nice property of this approach is that it is 3-competitive—it is guar-
anteed that the overall cost is at most three times as much as the
optimal (even with a priori knowledge of the changes).

4.6 Device Constraints
Consider the case where some individual devices have constraints

on how much computation can be placed on them. These con-
straints may, for example, be based on battery life, device capa-
bilities, and connectivity. Assume that each view Vi is associated
with a cost ci of maintaining the view. Each vertex (device) has a
constraint on how much computation can be performed on the ver-
tex. We proceed as follows: first, we find the optimal solution as
before without considering these constraints. Then, for each vertex
whose constraint is violated, we switch some subset of download
decisions for that vertex to upload. Note that this modification is
localized; it does not affect any other Cloud-Edge link. The chal-
lenge of determining the set of decisions to switch from download
to upload to minimize the increase in network cost while meeting
the device constraint is equivalent to the 0-1 knapsack problem, for
which we can use well-known greedy approximations.

5. EVALUATION
We answer the following questions on a real large-scale deploy-

ment of Race: (1) how necessary and efficient is our optimizer,
for realistic workloads and as compared to current solutions? (2)
how well does our real deployment of Race in a data center be-
have during runtime? (3) what is the cost of redeployment after
reoptimization due to changing statistics?

var query0 = from e1 in location
from e2 in socialNetwork
where e1.UserId==e2.UserId
select new { e1.UserId, e1.Latitude,

e1.Longitude, e2.FriendId };
var query1 = from e1 in query0

from e2 in location
where e1.FriendId == e2.UserId &&

Distance(e1.Latitude, e1.Longitude,
e2.Latitude, e2.Longitude) < THRESHOLD

select new { User1 = e1.UserId, User2 = e2.UserId };

Figure 15: Specification of the nearby friends logical view.

5.1 Implementation Details
We have implemented the Race system in C# with Microsoft

StreamInsight [25] as the DSMS running at the Cloud and on edge
devices. For edges, we built a lightweight version of StreamInsight
that runs as a Silverlight service for Windows Phone and similar
devices (which is demonstrated in [5]).
Specification. We adopt LINQ [30] as the specification language
for Race. CQ languages such as LINQ and StreamSQL [17] en-
able a declarative expression of time-oriented operations such as
temporal joins and windowed aggregations over streaming tempo-
ral data. The declarative nature of CQs allows app developers to
express their core application logic in a network-topology-agnostic
manner, where they can focus on “what” their apps do, instead of
“how” they are implemented.

Recall that the nearby friends logical view finds all user pairs
(User1, User2) that satisfy the conditions: 1) User2 is a friend
of User1, and 2) the two users are geographically close to each
other at the same time. There are two inputs to the view mainte-
nance of nearby friends, namely the location feeds (location)
reported by the edge devices, and the social network reference data
(socialNetwork). The locations are actively collected at runtime,
whereas the social network data is relatively slow-changing and is
available at the Cloud. The nearby friends logical view can be
defined as a two-stage temporal join query (see Figure 15). The
first query (query0) joins locations with the social network, while
the second query (query1) correlates friend locations.

The query specification in Figure 15 operates over conceptually
unified location and social network feeds, and is thus network-
topology-agnostic. As another example, suppose we want to find
friends who visited our location (e.g., a restaurant) within the last
week. We can simply replace the location input in query1 with
location.AlterLifetime(TimeSpan.FromDays(7)). This ex-
tends the “lifetime” of location events to 7 days, allowing the
join to consider events from friends within the last week.
Query Processing. The DSMS accepts query and metadata speci-
fication in XML format. Hence, the Race processor intercepts and
parses XML documents describing the view templates, necessary
adapters, and event types. The outputs of the view placement opti-
mizer are also encoded as XML documents so that the DSMS can
seamlessly execute them.

5.2 Setup, Query, and Datasets
We run the Race optimizer on the Cloud, which consists of a

single quad-core Intel 2.8GHz machine running 64-bit Windows 7
Enterprise. In order to stress-test the server with real client connec-
tions, we use 10 client machines (on a different data center from
the Cloud server), each running up to 50 instances of the client ap-
plication. Windows OS restrictions allow us to only run 50 client
application instances per client machine; this limits our “real de-
ployment” experiments to 500 real clients. However, other exper-



Parameter Value
# users in real social network 957K

# friends per user [5, 4956]
download/upload cost ratio 1

Synth. friend dist. (N users) min(0.1N,
4956)

Zipf parameter 2
# real client connections [100− 500]
# users in real GPS trace 167

distance threshold for meeting 100 meters

Figure 9: Experimental parameters.
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Figure 10: Cost improvement vs. Cd/Cu.
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Figure 14: Bandwidth vs. #clients.

iments (such as those testing our optimizer’s scalability) use up to
200K edge devices.

We use the social Foursquare application (defined by the
nearby friends logical view described above) as the declarative
query submitted by the end user in LINQ. We use both real and syn-
thetic datasets in our experiments (default experimental parameters
are summarized in Figure 9).
Social Network Data. We use a Facebook social graph dataset [21],
that contains 957K users obtained Facebook-wide by 28 indepen-
dent Metropolis-Hastings random walks [24]. For synthetic data,
we use the same distribution for number of friends as seen in the
real data. We also experiment with a Zipf distribution (z = 2) for
number of friends between 1 and min(4956, 0.1 ·N), where N is
the number of users and 4956 is the maximum number of friends
for a user in our dataset.
Location Data. For each user in the social network, we syntheti-
cally generate its GPS location updates drawn from the distribution
of speeds in a real-life data set. We use a GPS trajectory dataset
collected in the MSR Geolife project [36] by 167 users from 2007
to 2010. It contains 17, 355 trajectories with a total distance of
about 1 million kilometers and a duration of 48, 000+ hours.
Demand Rate. Finally, the demand between two friends (which
determines the sampling rate) is drawn from a probability distribu-
tion of two users meeting (coming within 100 meters of each other)
in the Geolife trace.

5.3 Experiments and Results
We evaluate Race in a combination of simulation and deploy-

ment experiments. We study the effectiveness (in reduction of com-
munication cost) and efficiency of Race’s view placement algo-
rithm at scale in simulation (Bullet 1 and 2), and evaluate the actual
system performance in deployment on the StreamInsight DSMS
platform (Bullet 3, 4 and 5). We next present our observations in
these experiments.
1) Need for Optimization. We use a social network with 100K
users and 8.6M edges, where the distribution of number of friends
uses the distribution found in the Facebook dataset. The base loca-
tion data generation rates at all edge devices is set to 1, while each

node independently samples from the “probability of meeting” dis-
tribution (see Section 5.2) derived from real data, to arrive at the
actual sampling rate for each of its neighbors in the social graph.

We vary the ratio between the download and upload costs, i.e.,
Cd/Cu ranges from 0.2 to 2.0, and report the improvement (fac-
tor) as compared to All-Upload, the baseline approach of perform-
ing all computations at the Cloud. Compared to the baseline, we
observe consistent and significant improvement in the full range of
Cd/Cu ratios: Race’s optimal placement improves performance
(i.e., aggregate communication cost) by 3.5X to 7.3X over All-
Upload. Our algorithms give greater benefit if the ratio Cd/Cu

is small because with smaller Cd, an edge is more likely to bene-
fit from choosing to download data. Note that on existing mobile
phones, Cd/Cu ≤ 1, which favors Race’s optimizations.

Our algorithm provides a conflict-free assignment in all cases.
Note that there are no unresolvable conflicts, even in the extreme
case of Cd/Cu = 0.2 in which case 7836 residual graphs are left.
However, all these residual graphs are acyclic, and thus the dy-
namic programming algorithm is able to resolve all conflicts and
find the optimal solution in linear time. This observation empiri-
cally shows that we can find the optimal solution efficiently even in
highly skewed scenarios.
2) Optimizer Efficiency. We now compare the efficiency of our
optimizer with the current state-of-the-art min-cut-based algorithm
for trees from [22]. We set u = d as this algorithm does not di-
rectly address asymmetric networks. We implement min-cut using
the max-flow algorithm in the QuickGraph library8. We include
the overhead for constructing the demand and query graphs from
a LINQ query (cf. Section 2) and optimization (cf. Section 3).
The cost of deploying query fragments to edge devices is evaluated
separately below.

We use a synthetic social network, with friends chosen from a
Zipf distribution (z = 2) as in Figure 9. We assume that the distri-
bution of feed rates (events/sec) follows a Zipf (z = 2) in the range
[1, 10], and vary the number of edge devices.

Figure 11 and Figure 12 show the execution time and memory
overhead of the Race optimizer vs. the min-cut algorithm. As

8http://quickgraph.codeplex.com/

http://quickgraph.codeplex.com/
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Figure 16: CPU utilization vs. #clients.
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Figure 17: Query deployment time CDF.
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Figure 18: Deployment traffic vs. #clients.

shown, Race runs several orders of magnitude faster than min-cut
(e.g., 3.2 seconds for Race compared to 4.75 hours for min-cut, on
a social network with 20K nodes and 186K edges), making it suit-
able for our applications. Race also consumes less memory than
min-cut. The memory utilization and completion time for Race are
proportional to the size of the demand (or query) graph. Note that
in addition to running faster and consuming less memory than min-
cut [22], the Race algorithm also optimally handles the sharing of
intermediate results and asymmetric networks.
3) Runtime Behavior with Reoptimization. We set the number of
edge clients to 100 (distributed across 10 physical machines) and
connect to the Race server to demonstrate runtime performance
and reoptimization. Edge devices generate location updates at a
rate drawn from a Zipf distribution (z = 2) between 1 and 10.
Figure 13 shows the incoming, outgoing, and total bandwidth (in
KBps) incurred at the Cloud server (at the data plane) during the
course of the experimental run. The system initially finds a good
placement, incurring an average bandwidth cost of around 28KBps.
After two minutes, the rates of half the edge devices are increased
by a factor of 5, while the rates of the remaining devices are de-
creased by a factor of 2.33. As a result, the total bandwidth usage
increases to around 51KBps. We next initiate re-optimization, and
find that the newly deployed placement costs around 40KBps. We
see that redeployment is dynamic, i.e., it does not result in any
downtime in terms of bandwidth usage at the Cloud.
4) Bandwidth, CPU, and Memory in Deployment. We vary the
number of clients (running on physical machines and connecting
to the Cloud server) from 100 to 500, and plot incoming/outgoing
bandwidth and memory usage at the Cloud server. Location event
rates are chosen from a Zipf as before.

We observe from Figure 14 that server bandwidth increases with
increasing number of clients as expected, but is quite low (less than
140KBps) even for 500 clients. Figure 16 plots server CPU uti-
lization in terms of percentages, where 100% corresponds to one
CPU core fully utilized. We found that with 500 active clients,
actively generating events and running queries, the CPU load at
the server was less than 42% of one core (the load was distributed
evenly across 4 cores). Further, memory usage at the server was
found to be less than 350MB. Thus, we expect a typical modern
server to easily handle tens of thousands of active clients (or more,
since in practice, many clients are likely to be inactive). Note that
the Cloud server runs many query fragments. Since the query frag-
ments are independent, the Cloud server can easily be scaled out by
distributing the fragments across a farm of machines using simple
(e.g., round robin) load balancing schemes.
5) Query Deployment Cost. We investigate the time taken by
Race to deploy metadata objects (e.g., types, query templates, and
query instances) to the DSMS engines located at the subscribed
edges as well as at the Cloud. Metadata deployment is done in par-
allel threads (one for each destination), but needs to be serial for a

given engine since any metadata object may reference items in pre-
vious objects. Figure 17 shows the cumulative distribution function
— for a given time duration, we show the percentage of engines for
which deployment has been completed within that time. We see
that even for 726 objects (on 100 nodes) and 4625 objects (on 500
nodes), more than 95% of nodes complete their deployment within
2secs and 5.5secs respectively. Figure 18 shows aggregate network
traffic due to deployment; we see that even for 500 nodes (11205
objects), the total traffic due to deployment is only around 5.5MB.

6. RELATED WORK
Feed-following Applications. Several recent works proposed vari-
ous optimizations for feed-following applications [18, 26, 27].
In [26], authors gives an overview of various challenges, includ-
ing the view placement problem we address in this paper, related
to feed-following applications and explains why prior works on
pub/sub systems, caching, and materialized views are inadequate
to address these challenges. Feeding Frenzy [27] proposes a view
selection algorithm using two types of views: producer pivoted
views, which maintain the latest k events from every producer, and
consumer-pivoted views, which incrementally maintain the result of
a consumer feed. Feeding Frenzy selects either a producer-pivoted
or a consumer-pivoted view for every edge in the communication
network such that the sum of event and query processing cost is
minimized. In contrast, we consider the view placement problem
for many edge devices connected to the Cloud. All prior works as-
sume that final feeds to consumers are produced by applying simple
selection and union operations; in contrast, our algorithms are more
general—they support views with selection, projection, correlation
(join) and arbitrary black-box operators, and can even refer to other
views. Finally, unlike prior works, we consider feed-following ap-
plications that are distributed over a large number of edge devices
and the Cloud.
Publish/subscribe Systems. In publish/subscribe systems [9, 16,
11], the goal is to efficiently match events from a set of publishers to
a set of relevant subscribers. Compared to feed-following Cloud-
Edge systems, pub/sub systems are usually limited in expressive-
ness, often perform matching at the cloud, and usually have disjoint
sets of publishers and subscribers. Distributed pub/sub systems fo-
cus on routing in a general network topology with heuristics; in
contrast we provide optimal placement algorithms for a star-like
topology formed by many edge devices and the Cloud.
Databases and Streams. Distributed database query optimization
is a classic research topic (See the survey [20]). Most research
in this field has focused on minimizing total communication cost
for executing a database query by carefully choosing join orders
and possibly the places to execute various join operations [10, 12,
13, 20]. Stream processing research has also considered operator
placement in a network-aware manner [2, 29, 35, 37]. As in pre-
vious work, we separate join order optimization from placement.



Unlike these systems, however, we optimize multiple queries to-
gether, find a globally optimal solution, handle asymmetric links,
and scale to millions of data sources.

Wolf et al. (SODA [33]), Li et al. [22] (which we refer as LI)
and Kalyvianaki et al. (SQPR [19]) propose multi-query optimiza-
tion techniques for more general network topologies. Unlike Race,
SODA does not provide any optimality guarantee. Both LI and
SQPR provide optimal solutions; LI uses a hypergraph min-cut al-
gorithm for a tree topology, while SQPR uses linear programming.
Unfortunately, these solutions are impractical for Cloud-Edge apps
with millions of users in large dynamic scenarios where reopti-
mization must be done frequently due to user churn and data rate
changes. In contrast, Race is an end-to-end system that exploits the
special star topology of Cloud-Edge systems and provides very ef-
ficient and scalable yet optimal solutions for our applications. Note
that even though solutions designed for more general networks can
be used for a star topology, our solutions in this paper are several
orders of magnitude faster (see Section 5).

There is a great deal of view materialization literature on choos-
ing the right set of views in the OLAP [14] and SQL [1] settings.
As discussed in [26], they do not provide a complete solution for
feed-following applications. Traditional materialized views tend to
be static, in that we analyze the query workload, choose a set of
views, and maintain them. In feed-following, however, the query
workload changes quickly, the number of possible views is huge,
and each is a small list of events. Moreover, existing works on
view materialization deal mostly with view selection and schedul-
ing problem; while we focus on view selection problem.
Sensor Networks. Several papers consider the problem of simul-
taneously optimizing multiple queries. In the context of sensor net-
works, the problem has been studied for aggregate queries [28,
31, 34]. These works do not consider general SQL operations
over millions of nodes. Moreover, they assume that data trans-
ferred between nodes are of the same size, aggregates have a con-
stant size, and upload/download costs are equal. None of these
assumptions hold for Cloud-Edge apps in our setting, which makes
these techniques unsuitable for our purposes. Our results on local-
optimization leading to global-optimization have a similar flavor to
results shown by Silberstein et al. [27, 28]; however, the problems
and solutions are fundamentally different.
Other Related Work. The use of database techniques to opti-
mize distributed systems has been explored before for multi-player
games [32] and network systems [23]. Race focuses on differ-
ent applications (e.g., mobile apps), topologies (cloud-edge), scale
(millions of devices), and optimization types (operator placement).

7. CONCLUSION
We proposed a new system called Race to support a broad class

of feed-following Cloud-edge applications. We modeled general
feed-following applications as a view maintenance problem, and
developed novel algorithms that are highly efficient yet provably
minimize global communication overhead. Our algorithms are
widely applicable to general view graphs, asymmetric networks,
and consider sharing of intermediate results. We implemented Race
that leverages a Data Stream Management System (DSMS) as the
computing engine for distributedly executing different portions of
the application logic on edge devices and the Cloud. Experiments
over real datasets indicated that the Race optimizer is orders-of-
magnitude faster than state-of-the-art optimal techniques. Further,
our placements incurred several factors lower cost than simpler
schemes for a social Foursquare application (defined by the
nearby friends logic view) over a realistic social network graph
with 8.6 million edges. While Race is easily parallelizable within

the Cloud, experiments with a real deployment showed that is also
scales very well using just a single server machine.
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