A technique for model-based testing of a class

- - *
Aditya V. Nori
Tata Research Development and Design Centre
Pune, India

nori@csa.iisc.ernet.in

ABSTRACT

Classes form the basic unit of abstraction in the object-
oriented (OO) programming paradigm of software develop-
ment. Therefore, testing of classes is fundamental to testing
an OO software system.

In this paper, we present a technique to automatically test
a class based on an object-model specification. The novelty
of the technique is that it defines a notion of coverage for
specification-based testing. Two forms of coverage are de-
fined: edge coverage and dependence coverage. These cover-
ages guarantee that all methods of the class and all pair-wise
interactions between methods are tested.

Algorithms to generate test-cases from the specification are
presented, and we show that these algorithms guarantee the
two kinds of coverage. The algorithms are polynomial in
the worst-case and therefore, promise good performance in
practice.

1. INTRODUCTION

Object-oriented (OO) programming is currently the most
popular paradigm in use for software development. Classes
form the basic unit of abstraction in an OO system. There-
fore, testing of classes is of fundamental importance to test-
ing such systems.

In the past, [16, 8, 12, 6, 2, 5] have studied the problem of
testing OO systems at different levels of abstraction. Alge-
braic specifications [10] provide a abstract-data type based
formalism for the OO paradigm, and much of the literature
on specification-based testing of OO systems is based on al-
gebraic specifications. However, algebraic specifications are
rarely used in practice to formally specify OO systems. A
(semi-)formal notation that has wide acceptance is object-
modelling, with the UML [17] being very popular.

*Current address: Department of Computer Science and
Automation, Indian Institute of Science, Bangalore, India

Ashok Sreenivas

Tata Research Development and Design Centre

Pune, India
ashoks@pune.tcs.co.in

In this paper, we present a technique to automatically test
a class based on UML-like specifications. We define notions
of coverage over class specifications, including coverage over
interactions of methods in a class. Algorithms which gen-
erate method-sequences to guarantee the defined coverages
are also given.

In Section 2, we present a formal definition of a class speci-
fication, which is based on object-modelling. Section 3 first
presents an ‘ideal’ way to test a class, and then presents a
practical alternative by defining two kinds of coverage over
the specification. Algorithms to generate test-cases based on
the coverages are presented in Section 4. The algorithms are
analysed in Section 5. In Section 6, we discuss related work
in class-testing and compare our technique with others.

2. CLASSSPECIFICATION

The specification of a class can be broken into two compo-
nents: a structural component, and a behavioural compo-
nent. We define each of these below.

DEFINITION 1. The structural specification Sc of a class
C is a three-tuple (A, M, 1) where

o A is set of class attributes {a; : 7;}, where the a; are
the names of attributes and 75 are the corresponding at-
tribute types. A also includes attributes inherited from
the parent class(es) of the class under consideration.

o M is a set of method specifications {(Tm;, m; :: p1 :
TL X - - X Pp ¢ Tn = Ti,¥m;) }. Each triple represents
a method with an associated pre-condition and post-
condition.

m; i p1 : TL X - X Pp t Tp, — T; 48 the signature
of method m; with return type T;, parameters p; and
their associated types ;. Parameters p; : T; are par-
titioned into input parameters, input(m;) and output
parameters, output(ms;).

Tm; 18 the pre-condition of method m;, and is a boolean
ezpression over the attributes A and input parameter-
s input(m;). Each wm,; represents a condition over A
and input(m;) that must be satisfied for a valid invo-
cation of m;.

Pm; 18 the post-condition of method m;, and is a boolean
expression over A, input(m;) and output(m;). VYm;

must be satisfied at the end of a successful invocation
of m;.

e 1 is an invariant over the class state, and must be sat-
isfied before and after the application of each method
m of the class. It is specified as a boolean expression
over the class-attributes A.

This class specification describes the structure of a class in
an object model. The post-conditions 1),, may refer to val-
ues of attributes and (input) parameters both before the in-
vocation of m and after it. To distinguish between the two
values of an attribute or parameter a, we use the notation
@' in a post-condition to refer to its value before invocation
and a to refer to its value after method execution. In a pre-
condition expression, a refers to the value before invocation
of the method.

Note that the above class specification only considers ‘pure’
object-oriented specifications, with no ‘globals’ or ‘class at-
tributes’.

A complete description of a class requires a description of
its behaviour in addition to a structural description (Defi-
nition 1). We now define the behavioural specification of a
class.

DEFINITION 2. The behavioural specification Bc of a class
C s given by a set of four-tuples {{mar;, M, ¥, , L0,)} where

e Each M; is a finite state machine (FSM) (Qs, 2, i, fi, 8)
representing a behavioural scenario of the class. Q; is
the set of states of M; where each state corresponds
to a ‘logical’ state of the class. X is the input alpha-
bet consisting of the set of methods m; defined in the
structural specification. i; € Q; is the unique start s-
tate of M; and f; € Q; is the unique final state of M;.
0 1 B x Qi — 29 s the (possibly non-deterministic)
state transition function. Each transition corresponds
to a method invocation which takes the class from one
logical state to a set of possible logical states.

The graph G defined by M; has nodes corresponding
to states from Q; and edges labelled with methods m;
defined in the structural specification. G is connected,
so that all states are reachable from i; and that f; is
reachable from all states.

o w1, s the pre-condition which must hold true for the
scenario depicted by M; to be valid, and is a boolean
expression over the attributes A of the class.

o), is the post-condition for a scenario that must hold
true at the final state of M;, and is a boolean expression
over the attributes A of the class.

® 1y 1S the tnvariant corresponding to the scenario rep-
resented by M;.

Each FSM M; represents a ‘behavioural scenario’ of the
class, and the set {Mi--- M,} together represent the be-
haviour of the class under all possible scenarios. The set of
strings accepted by the FSM M; is the set of valid method
invocation sequences in the scenario depicted by M;. Thus,
the set of all strings accepted by the FSMs {Mj, -, My}

.. constructor
initial

0]
destructor pop

push

Figure 1: FSM for the unbounded stack example

is the set of all possible valid method invocation sequences
over the class.

DEFINITION 3 (CLASS SPECIFICATION). The specificat-
ion of a class C is a two-tuple (Sc,Bc) where S¢ is the
structural specification (Definition 1) of the class and Bc is
its behavioural specification (Definition 2).

EXAMPLE 1. A simple unbounded stack S may be speci-
fied as:

S =(Ss,Bs)
Ss = (As, Ms,ts)
Bs = {<WM01M0:¢M0’LM0)}
As = {a: list of int, tos: int}
Ms = {m1, ma, m3, ms}
my = (true, constructor :: 1' = 1 ,tos = 0 A a = empty)
ma = (true, destructor 1 — L true)
ms = (true, push sint — 1,
(a=d append(e)) (tos = tos' + 1))
my = (tos #0, pop:: L — int,
(a' = a.append(pop())) A (tos’ = tos + 1))
LS =tru

The graph shown in Figure 1 represents M.

TM, = true
Y, = true
LMy = true
O

3. CLASSTESTING AND COVERAGE

Given the specification of a class C (Definition 3), it may be
tested as follows:

e From the FSMs in B¢, construct the set S of all valid
sequences of method invocations over C.

11 represents the ‘void’ type.

e For each s € S

— Let s = mg - - - my and M; be the FSM from which
sequence s was generated.

— Generate data to satisfy mm, A ;.

— Invoke methods in s and ensure that the following
conditions are satisfied.

— T, is satisfied before execution of m; for all 1 <
1 < m,

— %m; is satisfied after execution of m; for all 0 <
1 < m,

— 1w, is satisfied after execution of s

— tm; N e is satisfied after execution of m; for all
0<i:<n

This form of testing is thorough because it tests every pos-
sible sequence of method invocations over C. However, as a
strategy, it is impractical, because the number of valid se-
quences of method-invocations over a class can be infinitely
large. For example, arbitrarily long method invocation se-
quences can be generated for the stack class of Example 1
by alternating between the push and pop methods.

The above example also illustrates that all possible method
invocation sequences need not be tested for a class to be
tested successfully. A class can be declared to be successfully
tested, if the following can be guaranteed:

Criterion 1 Each method in the class has been tested.

Criterion 2 Different interactions between methods have
been tested.

Therefore, a pragmatic approach to testing a class requires
the selection of an appropriate set of method invocation se-
quences which would ‘exercise’ the class such that the above
criteria can be met.

In the remainder of this section, we formally define ‘interac-
tions’ between methods, and define coverage over the class
specification which enables selection of such a set of method
invocation sequences.

DEFINITION 4 (DEFINITION/USE TRANSITIONS). Given
a class specification C = (Sc,Bc), a transition or method
invocation m in a FSM M € Bc? is said to define an at-
tribute (or parameter) a, iff a occurs in . Similarly m is
said to use a iff a occurs in Tm, or a’ occurs in Ym,.

A method m defines a if the post-condition of m depends
on the value of a after the execution of m. In other words,
a plays a role in the way the state is affected by executing
m.

Similarly, m uses a if the value of a determines whether m
can be invoked correctly, i.e. a occurs in m’s pre-condition

2For notational simplicity, we say FSM M € B to de-
note (war, M, ¥,) € B, when the other elements of the
quadruple are not of interest to us.

or a’ (the value of a before the execution of m) appears in
the post-condition of m. The second condition is required
to account for the situation where the state after execution
of m depends on the pre-invocation value of an attribute
(or parameter); implying that m uses the value that a had
before m was invoked.

DEFINITION 5 (DEPENDENCE PAIRS OF TRANSITIONS).
Given a class specification C = (Sc, Bc), methods m1 and
my form a dependence pair for an attribute a, denoted as

(mla mn)a; Zﬁ

o there exists an FSM M; € Bc with transitions labelled
m1 and My,

e a is defined by m1 and used by my,

o there is at least one sequence of transitions mi, ms - - -
my in M; from my to my, such that none of the tran-
sitions ma - --my_1 defines a.

A dependence pair (mi,m2), indicates that methods m4
and my interact with each other through a in the scenario
of the class represented by machine M;. This is because the
existence of such a dependence pair implies that the value of
attribute a as determined by mi is used unchanged by mo.
A dependence pair of methods (mi,m2), is analogous to
the def-use pairs of data-flow analysis [1], with a ‘definition’
and ‘use’ being as given by Definition 4 and the ‘control flow
graph’ being replaced by a FSM M;.

With this definition of dependence-pairs, we now define two
kinds of coverage over a class specification.

DEFINITION 6 (EDGE COVERAGE). Given a class spec-
ification (Definition 3), C = (Sc, B¢), and a FSM M; € Bc,
a set S of method invocation sequences edge-covers M; iff
every transition m € M; belongs to at least one sequence
s€ES.

In other words, an edge-covering set of sequences S guaran-
tees that all methods involved in a scenario described by M;
belong to at least one of the sequences in S.

DEFINITION 7 (DEPENDENCE COVERAGE). Given C =
(8¢, Be), a class specification, and a FSM M; € Bc, a set
S of method invocation sequences dependence-covers M; iff
for every dependence pair (mj, mp)e of M;, there is some
sequence s € S such that s = mo---mj - -mg---mn traces
a path in M; and none of the transitions in mjy1 -+ mp_1
define a.

A dependence-covering set of sequences S for a scenario M;
guarantees that all pairs of methods (m1, m2) which interact
through any attribute a, belong to at least one sequence
s € S, i.e. S encapsulates all possible pairs of interacting
methods.

We now define a set of covering sequences of a class based
on these coverage criteria.

DEFINITION 8 (COVERING SEQUENCES). Given a class
specification C = (Sc,Bc), a set S of method invocation
sequences covers C iff

e S edge-covers M;,YM; € Bc and

e S dependence-covers M;,VYM; € Bc

We denote the subset of S that edge-covers all M; as Sg
and the subset that dependence-covers all M; as Sp. Note
that Sg and Sp need not be disjoint.

A set of method invocation sequences S that covers a class
C edge-covers all FSMs M; of C, and is guaranteed to test
all methods that appear as transitions in any M;. Therefore,
all methods in the public interface of the class that appear
in at least one scenario are tested. This shows that testing
a class using S satisfies criterion 1 mentioned above about
testing all its methods.

A set of method invocation sequences S that covers a class C
dependence-covers all FSMs M; of C. Therefore, S is guar-
anteed to contain sequences to test all possible dependence-
pairs (Definition 5) of methods for any attribute and in any
scenario. This shows that testing a class using S satisfies cri-
terion 2 mentioned above about testing all possible method
interactions.

Therefore, a set of covering sequences S (Definition 8) sat-
isfies both the pragmatic criteria laid down above, and pro-
vides a good basis to test a class.

4. GENERATING COVERING SEQUENCES

We now present algorithms to generate covering sequences of
method invocations over a class (Definition 8). Algorithm 1
generates a sequence Sg of method invocations guaranteeing
edge-coverage (Definition 6) and Algorithm 2 generates a se-
quence Sp of method invocations guaranteeing dependence-
coverage (Definition 7). These algorithms treat the FSMs
M; of the behavioural specification as graphs, with nodes
representing the states of the FSM and edges, labelled with
the class methods, representing the transitions. To simplify
the presentation of the algorithms, we outline two variants
dfs’ and dfs” of the standard depth-first search (DFS) al-
gorithm dfs over graphs that returns a DFS tree for the
graph.

dfs' is a normal DFS function over a graph (FSM) G which
returns a two-tuple (7, E) where T is the usual DFS tree,
and E is the set of edges in G which are not part of T, i.e.
the set of non-tree edges of G.

dfs"(G,n,a) takes a FSM graph G, a state node n and an
attribute a as parameters, and builds a DFS tree of G rooted
at n but not containing any edge (or transition or method)
which defines a (Definition 4). This ensures that the tree
returned by dfs’’ is ‘definition-clear’ for attribute a, so any
path through this tree does not ‘re-define’ a, and contains
all uses u of a reachable from n.

We also define a function Compute Path. This function ac-
cepts a (DFS) tree, T', a node n in the tree, a ‘direction’ d

which takes values td (for ‘top-down’) or bu (for ‘bottom-
\ A .

up’). If the direction is td, it returns the sequence of edges

from the root of the tree to n. Otherwise, it returns the

sequence of edges from n to the root of the tree.

‘We now present the algorithm to generate the set of method
invocation sequences Sg guaranteeing edge-coverage over a
FSM.

ALGORITHM 1 (EDGE COVERAGE ALGORITHM).

EdgeCovPathGen :: FSM — Set of method invocation
sequences
EdgeCovPathGen(M;)

1. Let M; = (Qs,%, s, fi,0;) and G be the graph corre-
sponding to M;

- (T, E) = df s'(G)
. TR = dfs(GR) // G® is G with its edges reversed
Sg = {ComputePath(T, f;, td)}

. forall e € FE
do

6. Se =8Sg U {
ComputePath (T,source(e), td) .
e.

ComputePath (TR, target(e), bu) }

od

7. return Sg

The function EdgeCovPathGen first uses dfs’ to compute
the DFS tree T" and the set of non-tree edges E of the graph
G corresponding to the FSM M;. It initialises Sg to a simple
tree path going from the root of T (i.e. ;) to the final state
fi- Then, for each non-tree edge e € E, it adds a path to
SE computed as follows:

e an initial segment from ; to the source(e), which is
got from T,

o a middle segment which is the edge e and

e 3 final segment which is the path from target(e) to f;
which is got from T'E.

Thus, all paths added to Sg begin at i; and end at f;. We
present a proof of Algorithm 1 in Appendix A.

The problem of generating a sequence Sp of method invoca-
tions guaranteeing dependence-coverage depends upon iden-
tifying dependence-pairs of transitions. This problem can be
reduced to the def-use data-flow analysis problem [1], with
the FSM M; being the ‘control-flow-graph’, and definitions
and uses are as given by Definition 4. The set of def-uses can
be obtained using any standard data-flow analysis technique
such as the iterative or the elimination techniques. Once
the dependence-pairs of methods have been computed, the
desired sequences of method invocations which guarantee
dependence-coverage can be generated using Algorithm 2
given below.

ALGORITHM 2

DepCovPathGen :: FSM — set of method invocation
sequences
DepCovPathGen(M;)

1. Let M; = (Qi, %, 1, fi, d;) and G be the graph corre-
sponding to M;

T = dfs(G)
TF = dfs(G*)
DU-set = ¢

Gvo e e

forall d € the set of defining transitions in M;
do

>

A = the set of attributes defined by d

7. forall a € A
do

8. DU-set = DU-set U
{(d,a,dfs"(G, target(d), a))}
od
od

9. Sp = ¢

10. forall (d,a, DUq)} € DU-set
do

11. forall n € DUy,) such that n = source(u) and
(d,u)q is a dependence-pair
do

12. Sp=SpU {
ComputePath (T, source(d), td) .
d.
ComputePath (DU q,q4), source(u), td) .
w .
ComputePath (T%,target(u), bu) }
od
od

13. return Sp

Function DepCovPathGen works as follows. Firstly, the
DFS tree for G and G® are computed into T and T® respec-
tively. For all definition-attribute pairs (d, a), it computes a
triple in Step 8 consisting of d, a and a tree DU(q,4). DU(4,q)
is rooted at d and contains definition-clear paths to all us-
es u of d. For each such triple (d,a, DUq,)) constructed,
Step 12 considers all uses u of the definition d and paths are
added to Sp as follows:

e an initial segment from 4; to the source of d obtained
from T,

o followed by the edge d,

o followed by the definition-clear path for attribute a
from target(d) to source(u) obtained from tree DUq),

(DEPENDENCE COVERAGE ALGORITHM).

e followed by edge u, and

e finally a segment from target(u) to f; (obtained from
).

This sequence of segments results in a path from i; to f;
which covers the dependence pair (d, u)q.

Note that the DFS walk of Step 2 need visit only nodes
that are targets of defining transitions, and not all nodes
in G, as we only use T to compute paths to such nodes.
Similarly Step 3 need visit only nodes that are source/target
nodes of use transitions, and the DFS walk in Step 8 may
terminate once all uses of the definition d have been added
to the tree being constructed. Restricting the DFS walks
as mentioned above would make an actual implementation
more efficient than described here, though the worst-case
complexity would remain the same. A proof of Algorithm 2
is presented in Appendix A.

Given a sequence of method invocations s = mg - - - my, gen-
erated by either Algorithm 1 or Algorithm 2 from a FS-
M M € B¢, and some test-data e which satisfies the pre-
conditions of both mo and M, and the invariants of the
FSM and the class i.e.

Tmo (€) A mar(€) A ear(€) A te(e) = true

we present a simple method to test the sequence of method
invocations s.

ALGORITHM 3 (TESTING A SEQUENCE S).

TestASequence :: TESTDATA x sequence of methods —
{success, failure}
TestASequence(e, s)

1. Let s=mo - -mn
2. €0=c¢€

3. forall ¢ from 0 to n

do
4. if —(e; respects Tm; Atm Atc)
then
5. print 7 failure at method m; for e
6. return failure
fi
7. €i+1 = m;(€;) //€i+1 is the ‘state’ after m;
8. if —(€i41 respects Ym; Aim Aee)
then
9. print v failure at method m; for e
10. return failure
fi
od

11. if =(en+1 respects Par Ain A ie)
then

12. print Yy failure for s, e

18. return failure
else

14. return success
fi

Algorithm 3 tests a sequence of method invocations given
an item of test-data that satisfies the pre-conditions for the
sequence and for the first method in the sequence. For a
given test-data e, and sequence s = myg---my,, it returns
success iff all the following conditions are satisfied during
Test ASequence:

1. Vi.l <i<n. 7tm; =true
2. Vi.0 <35 < n. Y, =true

3. ¥Yu = true where M is the FSM for which sequence s
was generated

4. 1pr Ao = true before and after execution of m; for all
0<t<n

Appendix A contains a proof that Algorithm 3 returns suc-
cess iff all the above conditions are met.

Given the specification of a class C (Definition 3), we now
present a method to test C' based on the algorithms Edge-
CovPathGen, DepCovPathGen and Test ASequence.

ALGORITHM 4 (METHOD TO TEST A CLASS).

1. Let C = (Sc,Bs)
2.8, =8p=¢

8. forall M € Bs
do

4. SE = Sk U EdgeCovPathGen(M)

5. Compute dependence pairs of transitions for M

6. Sp = Sp U DepCovPathGen(M)
od
7. S=8SgUSD
8. Fail-set = ¢
9. forall s€ S
do
10. Let s =mo---mp
11. Let M be the FSM from which s was generated
12. Generate a set of test-data Y, all of whose ele-
ments satisfy mu A Tmg A tm A Lo
13. foralle e T
do

14. if TestASequence(e) = failure
then
15. Fail-set = Fail-set U{(e, s)}
fi
od
od

Algorithm 4 first generates the sets of sequences Sg and Sp
which respectively edge-cover and dependence-cover all the
FSMs in Be. For each sequence s in SgUSp, it then gener-
ates a test-data set in Step 12. The data that is generated
represents a valid state of the system to test sequence s, as
it satisfies 7, A mar and the invariants ¢as and ¢o. Details
of generating the data which satisfies these constraints are
outside the scope of this paper and are therefore not dis-
cussed. We only state that this data can be generated from
Sc which contains information about C’s attributes, mo’s
parameters and their associated types. Moreover, this data
can be generated so that interesting cases such as boundary-
values are covered.

For each element ¢ in the test-data set, the function Tes-
tASequence is called which checks whether that data pass-
es the test or not. Any data that fails the test is added to
a failure-set, which can then be used for problem analysis
and bug-fixing. If the failure-set remains empty at the end
of Algorithm 4, then the class may be considered to be ful-
ly tested, according to the edge- and dependence-coverage
criteria.

The correctness of algorithm 4 follows directly from those of
Algorithms 1, 2 and 3.

To summarise, a class C' that has been successfully tested
using Algorithm 4 guarantees the following:

e C has been tested on a set of sequences of method
invocations which guarantee edge-coverage and depe-
ndence-coverage over C. This set of sequences of invo-
cations guarantees that all methods have been tested,
and all pair-wise interactions between methods have
been tested.

e Each such sequence s = mg- - my,, generated from
FSM M has been tested on representative data (with
respect to types, boundaries, partitions etc.) under
the constraint mas A Tmy A tar A Lo

o mn,; of every method m; in every sequence s was sat-
isfied for every item of test-data, €, used.

®)y, of every method m; in every sequence s was sat-
isfied for every item of test-data, €, used.

e 1y was satisfied for every sequence s generated from
FSM M, for every item of test-data, €, used.

® 1y A tc was satisfied before and after every method
m;.

The method outlined above tests the validity of the various
possible invocation sequences ‘operationally’. In principle,

one could attempt to prove the validity of the specification.
That is, for each FSM M, prove that psim, = Tm,, for all
‘adjacent’ transitions®. Showing that such a property holds
for all possible pairs of successive method invocations would
help in model-checking the specification. However, it would
not aid in testing whether the implementation satisfies the
specification. Therefore, it is orthogonal to the discussion
in this paper.

EXAMPLE 2. We exemplify our technique using the class
specification of an unbounded stack given in Ezample 1. The
set of edge- and dependence-covering sequences generated for
the stack specification by Algorithms 1 and 2 are given below.
As all sequences begin with the constructor method and end
with the destructor method, we do not include these in the
sequences below.

e Si = EdgeCovPathGen(M,) = {<>, < push >,
< push, push >, < push, pop >, < push, pop, push >}

e Sp(not in Sg) = DepCovPathGen(M) =
{< push,push,pop >, < push, push, push >,
< push, pop, pop >}

e S=SpUSp =
{<>, < push >, < push, push >, < push, pop >,
< push, pop,push >, < push,push, pop >,
< push, push, push >, < push, pop, pop >}

It can be seen that the above set of sequences includes all
methods and all dependence pairs of methods. For instance,
(push, pop) form a dependence pair for attribute tos, which
is set by push and used by pop. This results in the sequence
< push, push,pop > being generated by DepCovPathGen
for the push and pop methods emanating from the NonEmpty
state. Similarly, the sequence < push,pop > is generated
by EdgeCovPathGen to account for the non-tree edge pop
from the NonEmpty state to the Empty state.

O

A node (or state) of the FSM represents an abstract state
of the class model, to which many concrete states may map.
Thus, in Example 1, any concrete state with a non-zero
top-of-stack value maps to the NonEmpty abstract state. A
method invocation (transition in the FSM) on different con-
crete states which map to the same abstract state, may lead
to concrete states which map to different abstract states.
Thus, in Example 1, a pop method invoked on two differ-
ent NonEmpty states, one with a single element in the stack
and one with more than one elements in the stack, would
lead to concrete states which map to different abstract s-
tates, Empty and NonEmpty respectively. This is the cause
for non-deterministic FSMs being part of B¢.

While generating the set of covering sequences S, Algorithm-
s 1 and 2 only consider transitions between abstract states
as defined by the FSM, and cannot consider the underly-
ing concrete states. Therefore, it is possible that the set of

3m1 and mo are adjacent transitions if the mi transition
ends in a state » and the mo transition begins in state n.

sequences S contains some sequence s = Mg -+ - My, Which
when executed on a test-data results in the failure of some
Tm;- Such a situation may occur because the sequence was
generated assuming that execution of m;—1 leads to a state
where m; is a valid method invocation. However, invocation
of m;_1 may lead to a state where m; is not a valid invo-
cation. In Example 2, the sequence < push, pop, pop > gets
generated because the algorithms are unaware that the first
pop results in a transition to the Empty state and not to the
NonEmpty state.

Therefore, the set S of sequences generated may contain
certain spurious sequences which will never pass the test
on a correct implementation. We currently have no charac-
terisation of such sequences. However, the number of such
sequences is likely to be much smaller than the number of
correct sequences. We claim that S is a conservative set of
method invocation sequences to test class C in the sense that
no possible transitions and dependences are missed, though
it may produce certain spurious sequences.

5. ALGORITHM ANALYSIS

For the purposes of this report, the number of states in an
FSM is referred to by N, the number of transitions by
Eu and the number of defining transitions is represented by
Dur. The number of attributes in the class is denoted by A.
The number of states in all the FSMs of the specification
together is referred to by N and the number of transitions
in all the FSMs together is referred to by £.

Algorithm 1, EdgeCovPathGen, performs two DFS walk-
s over the FSM and one walk over the DFS tree for each
call to ComputePath. ComputePath itself is called twice for
each non-DFS-tree edge of the FSM. In the worst-case, this
amounts to O(BNuy + Nu€u) = O(NuEnr). However, the
number of non-tree edges of the FSM are expected to be
much lesser than €y, and therefore the complexity will be
lower in practice. The number of sequences returned by
EdgeCovPathGen is equal to one more than the number
of non-tree edges, i.e. O(Enmr).

The complexity of computing the dependence-pairs using
the standard iterate-to-saturate algorithm of data-flow anal-
ysis is at worst O(Niy)-

Algorithm 2, DepCovPathGen, performs two DFS walks
over the FSM, and for each defining transition e, it performs
at most A DFS walks. In addition, it also performs three
DFS tree traversals for each use-transition of each <defining
transition, attribute defined by the transition> pair. This
amounts to a worst-case complexity of O(2Nar +Dar AN v+
D AN, or O(NZ AEw) since Dar < Enr. The number
of sequences computed by DepCovPathGen is bounded
by O(NmAEwm), as the number of <defining transition, at-
tribute defined> pairs are (£am.4) at worst, and the number
of sequences added for each such pair is N, at worst. How-
ever, note that these worst case scenarios can only occur
in the rare cases when all transitions define and use all at-
tributes.

The length of each sequence S returned by either Edge-
CovPathGen or DepCovPathGen cannot be more than
O(Em)- This follows from the fact that the maximum length

of a path, in any spanning tree of the graph describing the
FSM, is Eu. Assuming that each method to be tested m
takes constant time, and checking for constraint validity
takes constant time, TestASequence (Algorithm 3) takes
time linear in the sequence S given to it, i.e. O(Enr).

From the above, we see that the total number of sequences
generated by Algorithms 1 and 2 for all the sequences is
ONAE). Moreover, Nar < N and €m < €. Therefore,
Algorithm 4 has a complexity of ONE + N? + N2 AE +
NAE?) = ONAE?) as N < €.

In practice, the numbers and sizes of FSMs defining a single
class are fairly small, as are the number of attributes in a
class. Moreover, all the complexities stated above are re-
ally pathological worst cases which are unlikely to occur in
practice. For instance, the unbounded stack example (Ex-
ample 1) has N = 4, = 7, A = 2. But the number of
sequences generated to achieve edge and dependence cover-
age is 8 as against the worst case figure of 4 x 7 x 2 = 56.

Hence, we claim that the method presented in Algorithm 4
is a pragmatic and practical approach to testing the cor-
rectness of the object-state of a class guaranteeing edge and
dependence coverages.

6. RELATED WORK

[15, 4, 11, 18, 16, 8, 12, 6, 3, 2, 5] is a representative
list of previous research on specification-based testing. Of
these [16, 8, 12, 6, 3, 2, 5] concentrate on specification-based
testing of OO systems. As this paper focuses on testing
of OO systems, we will discuss our work in relationship to
them.

[16] presents an experience of using object-models for test-
ing OO software, and the gains to be had by this approach.
As it is more of an experience paper, it does not present
any details of test-case generation or coverage issues. More-
over, it does not discuss the important area of automatic
verification of test results.

Many of the other papers [8, 12, 6, 2, 5] work on an algebra-
ic specification of the system to be tested, which provides
a strong theoretical basis to discuss properties of testing.
However, algebraic specification-based techniques have not
scaled up to be used in real-life software applications. This
has hindered the adoption of these techniques in the indus-
try.

Doong and Frankl [8] present an approach called ASTOOT
based on state equivalence. They generate pairs of method
invocation sequences from the axioms that are part of the
algebraic specifications. The two elements of a pair of se-
quences are semantically equivalent, i.e. their execution re-
sults in an ‘observably equivalent states’. They assume that
the set of axioms, when viewed as a term-rewrite system,
have the Church-Rosser property and use re-writing as the
means to generate the test-cases. The ASTOOT approach
cleanly divides the problem of automated testing into two
distinct parts, that of deriving test-cases and that of actu-
ally testing the software. This division of concerns enables
a user to take advantage of automatic testing even if the
specifications are not formal. This approach does not in-

clude testing that non-equivalent sequences of methods lead
to non-equivalent states.

Chen et al discuss testing of individual classes in [6] and ex-
tend their technique to test clusters of classes in [5]. Their
technique to test a single class is an extension of the AS-
TOOT work. [5] extends the technique to generate pairs of
non-equivalent sequences of method invocations, to facilitate
testing that non-equivalent sequences of methods do indeed
lead to non-equivalent states. However, the number of such
pairs is very large, and may not be practically feasible. [5]
also presents techniques to test a cluster of classes, rather
than a single class, using the notion of a class’s contract or
interface to define testing of a cluster. This is an interesting
idea which needs further exploration.

Ball et al present an approach in [2] by which container
classes can be tested for correctness. Their approach hinges
on selecting a set of states to be tested, and for each selected
state, ‘taking’ an object to the desired state through a series
of method-invocations, and testing that the object behaves
correctly in the selected state. The selection of the set of
states, and deciding on the set of methods to take objects
to the appropriate state is left to the test-designer. Testing
is then done by checking individual methods in the selected
state, and not a sequence of methods.

[3] presents an approach to testing classes based on specifi-
cations in Object-Z. Their approach is to automatically ex-
tract FSMs from the specification, convert these FSMs into
‘test-graphs’, which are then used to generate test-sequences
using a testing framework called ClassBench. However, as
with algebraic specifications, specifying a system in Object-
Z is not yet a practical option in the industry. The method
invocation sequences as generated by ClassBench achieves
edge-coverage, but there is no equivalent of dependence-
coverage in the ClassBench framework.

Our technique of testing classes has the following advantages
over previous research discussed above.

e It is based on a specification technique that is popular
in the developer community, namely, object-modelling.

e It formally defines coverage over the specification, and
presents algorithms to generate sequences of method
invocations which guarantee the coverage. Different
criteria of coverage have been defined for structural (or
white-box) testing. These include control-flow criteri-
a such as branch-coverage [9], condition-coverage [14],
path-coverage [13], and data-flow criteria such as all-
uses criterion and k-tuples criterion [7]. No such cri-
teria of coverage have been defined for specification-
based testing.

e The definitions of coverage ensure that all methods of
the class and all pair-wise interaction between methods
are tested.

e In the worst case, the algorithms are polynomial in the
size of the class specification, and therefore, practical
to use in real life applications.

7. CONCLUSIONS

This paper presents a technique for automatically testing a
class from its object-model specification. Object-modelling
was the chosen specification mechanism because of its pop-
ularity in the software development community. We defined
two kinds of coverage over the specification, edge-coverage
and dependence-coverage, which guaranteed that all meth-
ods and pair-wise method interactions get tested.

Based on these notions of coverage, we presented algorithms
to generate method sequences over the class which guaran-
tee the coverage. The algorithms have a polynomial worst-
case complexity. Therefore, we believe that our technique
presents an efficient and pragmatic way to test a class, while
guaranteeing coverage.

Testing a class is only the first step towards testing object-
oriented systems. Different relationships may exist between
classes, and different interactions may take place between
classes that form part of a larger system. In addition, dif-
ferent components, each consisting of many classes, may in-
teract with each other in a component-based system. This
work needs to be extended to test the more complex system
specifications mentioned above.

8. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
Mass., 1986.

[2] T. Ball, D. Hoffman, R. W. F. Ruskey, and L. White.
State generation and automated class testing.
Software Testing Verification and Reliability, 10(3):149
- 170, 2000.

[3] D. Carrington, I. MacColl, J. McDonald, J. Murray,
and P. Strooper. From Object-Z specifications to
ClassBench test suites. Software Testing Verification
and Reliability, 10(2):111 - 137, 2000.

[4] J. Chang, D. Richardson, and S. Sankar. Structural
specification based testing with ADL. In ACM
International Symposium on Software Testing and
Analysis, pages 62 — 70. ACM, 1996.

[5] H. Chen, T. Tse, and T. Chen. TACCLE: a
methodology for object-oriented software Testing At
the Class and Cluster LEvels. ACM Transactions on
Software Engineering and Methodology, 10(4), Dec.
2000.

[6] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen.
In black and white: An integrated approach to
class-level testing of object-oriented programs. ACM
Transactions on Software Engineering and
Methodology, 7(3):250 — 295, July 1998.

[7

—

L. Clarke, A. Podgurski, D. Richardson, and S. Zeil. A
formal evaluation of data flow path coverage criteria.
In R. Poston, editor, Automating specification-based
software testing, pages 1565 — 195. IEEE computer
society press, 1996.

[8] R. Doong and P. Frankl. The ASTOOT approach to
testing OO programs. ACM Transactions on Software

Engineering and Methodology, 3(4):101 — 130, Dec.
1994.

[9] N. Gupta, A. Mathur, and M. Soffa. A new approach
to generate test data for branch coverage. In ACM
seventh international symposium on foundations of
software engineering. ACM, 1999.

[10] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch
family of specification languages. IEEE Software,
2(5):24-36, Sept. 1985.

[11] W. Howden. The theory and practice of functional
testing. In R. Poston, editor, Automating
specification-based software testing, pages 49 — 60.
IEEE Computer society press, 1996.

[12] M. Hughes and D. Stotts. Daistish: Systematic
algebraic testing for OO programs in the presence of
side-effects. In ACM International Symposium on
Software Testing and Analysis, pages 53 — 61. ACM,
1996.

[13] B. Korel. Automated software test data generation.
IEEE transactions on software engineering, 16(8):870
- 879, Aug. 1990.

[14] G. Myers. The Art of Software Testing. Wiley, New
York, 1979.

[15] D. Peters and D. Parnas. Generating a test oracle
from program documentation. In ACM International
Symposium on Software Testing and Analysis, pages
58 — 65. ACM, 199%4.

[16] R. Poston. Automated testing from object models.
Communications of the ACM, 37(9):48 — 58, Sept.
1994.

[17] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language User Guide. Addison-Wesley,
Massachusetts, 1999.

[18] E. Weyuker, T. Goradia, and A. Singh. Automatically
generating test data from a boolean specification. In
R. Poston, editor, Automating specification-based
software testing, pages 75 — 85. IEEE Computer
Society Press, 1996.

APPENDI X
A. PROOFSOF ALGORITHMS
A.1 Proof of Algorithm 1

We show that every edge e € M; is part of some sequence
s € Sg returned by EdgeCovPathGen. By Definition 2,
the graph G is connected and therefore, every state belongs
to both T and TE.

Every edge e must be either in T or in E as computed by
Step 2 of the algorithm.

Case ¢ € E. This means e is necessarily covered as a se-
quence is generated for all e € E in Step 6 of the algo-
rithm.

Case e € T. Consider a path eg,---,ex = e,---,e, from
the initial state 4; to the final state f;.

If there exists a path such that all of e - -- e, € T, then
the tree path from ¢; to f; includes e. Therefore, Step 4
of the algorithm generates a sequence for e.

Let all paths be such that at least one of exq1---€en €
E. Let j be the smallest number such that j > k and
ej € E. All edges ey ---ej—1 € T, and the tree path to
source(e;) includes e (= ex). Therefore, the sequence
generated for e; by Step 6 of the algorithm includes e,
because it includes the path from ¢; to source(e;).

A.2 Proof of Algorithm 2

By contradiction. Let there be a dependence pair (d,u)q
that is not covered by the set of paths Sp computed by
algorithm 2. This situation could arise if any of the following
is true.

1. There is no sequence s € Sp containing transition d.
2. There is no sequence s € Sp containing transition wu.

3. There is no sequence s € Sp with a definition-clear
path for attribute a from target(d) to source(u).

If none of the above cases is true, it is easy to see that, for
every dependence-pair (d,u),, there is a sequence s € Sp
which contains a definition-clear path for attribute a from d
to u, thus proving the correctness of Algorithm 2. We refute
each of the above cases below.

1. dis a defining transition which has a corresponding use
transition u for some attribute a, otherwise d is not of
interest. In such a case, DU-set (Step 8) contains a
triple (d, a, DU(q o)), where DU(4 ,) contains the use u.
It is easy to see that step 12 adds a path to Sp which
contains d.

2. Similar to the above case.

3. For a definition and attribute combination (d, a), dfs”
(G, target(d),a) visits all use nodes of the form source(u)
or target(u) where a gets used. This is because, by Def-
inition 5, there must exist a path in G from d to such
uw’s without any intermediate definition of a. Therefore,
the element inserted in Step 8 for the (d,a) combina-
tion, contains a tree DU (4) With a path from target(d)
to the corresponding use node. Therefore, step 12 guar-
antees that a path is inserted into Sp such that it con-
tains a path from d to uw along which no definitions of
a occur.

A.3 Proof of Algorithm 3

We first show that, for each method invocation m; in s, ¢;
represents the corresponding system state. This can easily
be shown by induction on 7. € is the initial state (Step 2),
thus proving the base case. ¢; is set from €;—1 in Step 7,
proving the inductive case. Similarly, €;41 represents the
system state after method m;. We now prove the four con-
ditions to be satisfied by the algorithm.

1. Algorithm 3 checks to see if ¢; respects mm; (Step 4),
else it returns failure. Therefore, it cannot return suc-
cess if any of the m,,; is not satisfied.

2. Algorithm 3 checks if ;1 satisfies ¥m,; in Step 8, and
returns failure if it does not succeed. Therefore, it can-
not return success if any of the v,,; is not satisfied.

3. In Step 11, Algorithm 3 returns failure if the state rep-

resented by €,+1 does not respect 1ar. Therefore, it
does not return success when s is not satisfied.

4. Obvious from Steps 4, 8 and 11 of the algorithm.

From the above, it is clear that Algorithm 3 returns success
iff all the conditions listed in Section 4 are met. If any of
them fails, it returns failure.

