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ABSTRACT
Online learning to rank methods for IR allow retrieval systems to
optimize their own performance directly from interactions with users
via click feedback. In the software package Lerot, presented in this
paper, we have bundled all ingredients needed for experimenting
with online learning to rank for IR. Lerot includes several online
learning algorithms, interleaving methods and a full suite of ways to
evaluate these methods. In the absence of real users, the evaluation
method bundled in the software package is based on simulations of
users interacting with the search engine. The software presented
here has been used to verify findings of over six papers at major
information retrieval venues over the last few years.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords
Information retrieval, experimentation, software, interleaved com-
parisons, learning to rank

1. INTRODUCTION
Adapting IR systems to a specific user, group of users, or deploy-

ment setting has become possible and popular due to learning to
rank techniques [20]. Generally speaking, a learning to rank method
learns the weights of a function that maps a document-query pair de-
scribed by a feature vector to a value that is used to rank documents
for a given query. We refer to such a function with instantiated
weights as a ranker. Most current approaches learn offline, i.e.,
before deployment rankers are estimated from manually annotated
training data.

In contrast, an online learning to rank method learns directly from
interactions with users, e.g., using click feedback. For instance,
the current state-of-the-art online learning to rank approach uses
dueling bandit gradient descent (DBGD) [14, 25] to find a high
quality ranker. In each step, the current best ranker is perturbed, and
then both the original and perturbed rankers are compared using
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an interleaved comparison method [23]: the rankings proposed by
the two rankers are interleaved and presented to the user, whose
clicks determine which ranker wins the comparison. If the perturbed
ranker wins, the original ranker is adjusted slightly in its direction.

Lerot, the framework presented in this paper, offers a solution
for evaluating and experimenting with online learning to rank al-
gorithms in living labs and simulations. Living labs represent a
user-centric research methodology that seeks to test and evaluate
emerging technologies in real-world contexts. Therefore, they form
the ideal environment for prototyping and assessing online learning
to rank methods. Lerot is designed to support such experiments
with online learning to rank algorithms, or with components of such
algorithms in a living lab setup. Lerot also offers the next best thing:
simulations of users interacting with a search engine. In contrast to
experiments run in a full-blown living lab environment, simulation
experiments make it possible to generate a wide range of candidate
result lists, without the risk of adversely affecting user experience
in a production system. Thus, simulation experiments with Lerot
may complement or precede experimentation in a living lab setup
for online learning to rank.

While there are several other libraries and frameworks for learning
to rank such as SVMRank1 [18], RankLib2 and Sofia-ml3 [24], these
all focus on offline learning to rank. By contrast, Lerot focuses
on online learning to rank, implementing DBGD and extensions
of DBGD such as candidate preselection (CPS) [13] in an easily
decomposable fashion.

In this paper, we present all the components that are included
in Lerot. The framework has all batteries included (except for the
data), to replicate experiments; no code needs to be written.

Lerot and its predecessors have been used to verify the findings
in numerous publications [4, 9–14] at major venues. The framework
is easily extensible to compare the implemented methods to new
online evaluation and online learning approaches.

2. FRAMEWORK
In broad terms, Lerot can be used to run two types of experi-

ments: learning experiments and evaluation experiments. Learning
experiments operate in a continuous space of possible solutions
and evolve rankers over time to find the optimal one. Evaluation
experiments, on the other hand, operate on a fixed set of rankers
and are designed to identify the best ranker among this set using,

1http://www.cs.cornell.edu/people/tj/svm_
light/svm_rank.html
2http://people.cs.umass.edu/~vdang/ranklib.
html
3https://code.google.com/p/sofia-ml/
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Listing 1: Minimal example of an online learning experiment
that uses a list wise learning algorithm and a cascade user
model to simulate clicks.
import sys, random
import retrieval_system, environment, evaluation,

query
learner = retrieval_system.ListwiseLearningSystem(

[...])
user_model = environment.CascadeUserModel([...])
evaluation = evaluation.NdcgEval([...])
train = query.load_queries(sys.argv[1], [...])
test = query.load_queries(sys.argv[2], [...])
while True:

q = train[random.choice(train.keys())]
l = learner.get_ranked_list(q)
c = user_model.get_clicks(l, q.get_labels())
s = learner.update_solution(c)
print evaluation.evaluate_all(s, test)

for instance, interleaved comparisons. This paper mostly focuses on
describing the learning experiments.

A minimal example4 of a learning algorithm embedded in a simu-
lation with a user model is shown in Listing 1. The example defines
a learner (see Section 2.1), a user model (see Section 2.3), an evalu-
ation method (see Section 2.4), and lists of training and test queries
with labels. If real users are available, they are the source of the
training queries and the clicks. In their absence, the queries come
from a dataset and the clicks from a click model that uses relevance
judgements. The queries q are observed in a random order, a ranked
list l is produced by the learner, this ranking is sent to the click
model and the clicks c it produces, in turn, are observed by the
learner so that it can update the solution. The updated solution s is
then evaluated on the test queries. In theory, this process continues
indefinitely.

2.1 Learning Algorithms
The learner in Listing 1 can be instantiated in many ways. Our

framework has implementations for (1) learning from document-
pairwise feedback [9, 17, 24, 26]; (2) learning from listwise feed-
back, such as dueling bandit gradient descent (DBGD) [25]; and
(3) extensions of DBGD, such as candidate pre-selection (CPS) [13].

All these methods have the exact same interface; they implement
three functions, two of which are called in Listing 1.

• l = get_ranked_list(q)

Returns a list l of documents in response to query q.

• s = update_solution(c)

Updates the current solution using clicks c and returns the
updated solution s.

• s = get_solution()

Returns the updated solution s.

Listing 2 shows the implementation of the learning algorithm used
by DBGD.5 During initialization (which we omitted from the listing)
self.ranker is randomly initialized. When query q is observed, it
arrives at get_ranked_list(). In DBDG this function creates a
candidate ranker that is a variation of self.ranker. Both these
4This code mainly serves as an illustration (but is included in Lerot
in src/scripts/run-example.py), a version that interprets the
configuration files explained in Section 3.2 should be preferred.
5The actual implementation of DBGD included in Lerot is slightly
more involved as it is configurable.

Listing 2: Listwise learning algorithm, that in combination
with Listing 1 constitutes DBGD [25].
class ListwiseLearningSystem(AbstractLearningSystem):

def __init__(self): [...]

def get_ranked_list(self, q):
u = utils.sample_unit_sphere()
candidate = self.ranker + self.delta * u
l, a = self.comparison.interleave(

self.ranker, candidate, q, self.n)
self.l, self.a, self.q, self.u = l, a, q, u
return l

def update_solution(self, c):
o = self.comparison.infer_outcome(

self.l, self.a, c, self.q)
if o > 0:

self.ranker += self.alpha * self.u
return self.ranker

def get_solution(self):
return self.ranker

rankers are given to an interleaved comparison method (see Sec-
tion 2.2) and after storing all intermediate results, the interleaved
list l is returned. As soon as the user interacts with this list, the
clicks c arrive at the function update_solution(). This function
delegates the computation of the outcome o of the interleaved com-
parison to the interleaving method. Based on o, self.ranker is
updated towards the candidate.

2.2 Interleaved Comparison Methods
In recent years, several methods for interleaved comparisons have

been developed. They can be viewed as online evaluation methods
that can be applied—as opposed to TREC style evaluation—without
manual labeling of relevant documents. Instead, the clicks of real
users (or, in our case, simulated clicks) of the search engine are
interpreted to compare two ranking algorithms. In the context of
online learning, interleaved comparisons are mainly used to decide
whether a candidate ranker is an improvement over the current best
ranker or not. In comparison to absolute click metrics typically used
in A/B testing, interleaved comparison methods reduce variance
(briefly, this is because they perform within-subject as opposed to
between-subject comparisons) [23], and make different assumptions
about how clicks should be interpreted (as relative, as opposed to
absolute feedback) [9].

In the Lerot framework, we have implemented the following
interleaving methods: (1) balanced interleave (BI) [19, 23]; (2) team
draft interleave (TD) [23]; (3) document constraints interleave (DC)
[8]; (4) probabilistic interleave (PI) [11]; (5) optimized interleave
(OI) [22]; and (6) vertical aware team draft interleave (TD-VA) [4].

These methods also have the exact same interface; they implement
the two functions that are called in Listing 2.

• l, a = interleave(A, B, q, n)

Returns an interleaved list of documents l with length n of
rankings produced by systems A and B for query q. The return
value a can be used to store, for instance, team assignments
in the case TD is used.

• o = infer_outcome(l, a, c, q)

Returns the outcome o in (−1, 1) of the interleaved compari-
son based on clicks c for query q, and interleaved list l. If o
< 0 then system A wins the comparison, else if o > 0 then B

wins the comparison, otherwise the systems tie.



The PI method requires the ranking systems to be probabilistic; the
others expect a deterministic ranker. The TD-VA method requires
documents to be annotated with the vertical to which they belong.

2.3 User Models
A user model is used to simulate user’s clicking behavior. These

models are aimed at predicting what users would click on given
a result list with relevance judgments in response to a query. The
models thus need datasets that are annotated with relevance. In Sec-
tion 3.2 we list some datasets that are suited. We have implemented
the following click models: (1) dependent click model (DCM) [6, 7],
a generalization of the cascade click model [5]; (2) random click
model (RCM); and (3) federated click model (FCM) [3], in particu-
lar the attention bias model.

These models implement the user_model in Listing 1 and, again,
these models all have the exact same interface; they implement the
following function.

• c = get_clicks(l, r)

Returns a list of clicks c on documents in result list l given a
list of relevance labels r for these documents.

Like TD-VA, the FCM requires documents to be annotated with their
vertical. The click models only model the assumptions regarding
how users examine result pages. They still have to be instantiated to
match the situation that has to be simulated. For several instantia-
tions of DCM, see [9] and for instantiations of FCM, see [4].

2.4 Evaluation
Evaluation can be done both online and offline. Online evaluation

measures what a user experiences; i.e., the quality of interleaved
lists that the user (or user model) interacts with. It is measured as
a discounted sum over time. Offline evaluation measures how the
current best ranker would perform on a held-out dataset. Imple-
mented metrics are NDCG [1] and a slight variation LetorNDCG
[15]. Listing 1 illustrates how and when offline metrics would be
calculated in a learning setting. Extending Lerot with more metrics
is a matter of creating a new class that implements the following
two functions.

• score = evaluate_ranking(l, q)

Returns a score for the ranking l with respect to query q.

• mean_score = evaluate_all(s, queries)

Returns the mean_score for all queries if they where ranked
with solution s.

3. IMPLEMENTATION
Lerot is implemented in python and consist of several packages

(retrieval_system, comparison, evaluation, etc). Each packages has
an abstract class that defines the expected interface (as described
in Section 2) of the classes that implement it. Extending the frame-
work is a matter of implementing such a class and changing the
configuration file (see Section 3.2) to point to the new class. Lerot
is available under the GNU Lesser General Public License.

3.1 Installation
Prerequisities for Lerot are:

• Python 2.7;

• PyYaml;

• Numpy;

• Scipy;

Listing 3: Example configuration file for a learning experiment.
training_queries: data/MQ2007/Fold1/train.txt
test_queries: data/MQ2007/Fold1/test.txt
feature_count: 46
num_runs: 1
num_queries: 10
query_sampling_method: random
output_dir: outdir
output_prefix: Fold1
user_model: environment.CascadeUserModel
user_model_args:

--p_click 0:0.0,1:0.5,2:1.0
--p_stop 0:0.0,1:0.0,2:0.0

system: retrieval_system.ListwiseLearningSystem
system_args:

--init_weights random
--sample_weights sample_unit_sphere
--comparison comparison.ProbabilisticInterleave
--delta 0.1
--alpha 0.01
--ranker ranker.ProbabilisticRankingFunction
--ranker_arg 3
--ranker_tie random

evaluation:
- evaluation.NdcgEval

• Celery (when MetaExperiment is used to distribute over sev-
eral machines, see Section 3.3); and

• Gurobi6 (when OI is used as the interleaved comparison
method).

Once Python (and pip) have been installed, Lerot can be installed
using these commands:

$ pip install PyYAML numpy scipy celery
$ git clone https://bitbucket.org/ilps/lerot.git
$ cd lerot
$ python setup.py install

This will copy the source of Lerot into a directory called lerot in
your current working directory and it will be available system wide
to import into python.

3.2 Configuration
Lerot can be flexibly configured using yaml files. A full example

of a configuration file can be found in Listing 3. For instance, to
pick DCM as the user model, user_model can be pointing to the
environment.CascadeUserModel class.

Lerot requires training and test query files in SVMLight format
(plain or gzipped) [16]. The framework has been shown to run with
the LETOR 3.0 and LETOR 4.0 collections [21], and the Yahoo!
Learning to Rank Challenge [2] and MSLR-WEB30k data sets.
These data sets all consist of a number of query-documents pairs,
each represented by a sparse feature vector and the relevance for
each document with respect to the query is judged by professional
human annotators. Relevance scales can be binary or graded.

The data set mentioned in Listing 3, e.g., MQ2007 from the
LETOR 4.0 collections, can be downloaded and unpacked as fol-
lows:

$ mkdir data
$ wget http://research.microsoft.com/en-us/um/

beijing/projects/letor/LETOR4.0/Data/MQ2007.rar
-O data/MQ2007.rar

$ unrar x data/MQ2007.rar data/

6Download from http://www.gurobi.com with a free aca-
demic trial license.

http://www.gurobi.com


3.3 Running
After a configuration file is created and the data is prepared, a

learning experiment can be run as follows:

$ python src/scripts/learning-experiment.py
-f config/config.yml

With --help, we can see all the options it accepts. Settings from
the configuration file can be overwritten using the command line.
When Lerot is run, a backup copy of the actual configuration it runs
is always kept alongside the results it produces.

Running experiments with many repetitions over several data sets
and user models is computationally very expensive. With Lerot, it
is possible to distribute computation over many machines. Lerot
uses Celery to handle the bookkeeping of the distribution. The con-
figuration file has to be extended with some additional information
regarding the data sets and user models over which the experiment
should be run. An example configuration is included.

$ python src/scripts/meta-experiment.py
-f config/meta-config.yml

Again, we can see all the options it accepts with --help. In order
to rerun the last experiment, e.g., in case some parts failed, we can
specify --rerun.

4. CONCLUSION
Online learning to rank is a rapidly evolving area in information

retrieval. While several libraries exist for offline learning to rank,
Lerot is the first framework for online learning to rank. The frame-
work has been used in many recent publications and reproducing
results from those papers only requires a user of the framework to
run it with the appropriate configuration file. In sum, Lerot is easy
to use and extensible. We have described all functions that need to
be implemented in order to do so.

In the context of living labs, Lerot supports two directions of
development. First, it allows for experiments with simulated users.
The user models it currently implements reflect our current under-
standing of user behavior; they can easily be extended or replaced by
evaluations under different sets of assumptions. Second, Letor pro-
vides components that implement complete online learning to rank
solutions for use as part of complete living lab evaluation setups.
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