(s|qu)eries: Visual Regular Expressions for Querying and
Exploring Event Sequences

Emanuel Zgraggen'~, Steven M. Drucker', Danyel Fisher', Robert DeLine'

Microsoft Research!
Redmond, WA, United States

[sdrucker, danyelf, rob.deline] @ microsoft.com

Direct

' 2.8% Sessions
" 6.4% Users

searchengine.com

' 2.0% Sessions
" 41% Users

AddToCart
ViewProduct
ViewCategory

Search

=
2
2
&
<

Checkout

RemoveFromCart

Across Us

EnterCouponCode

Action Browser

Checkout

Brown University?
Providence, RI, United States
ez@cs.brown.edu

Search

> 18.8% Sessions
) 36.1% Users

Across Users Across Sessior Across Matche

Iy

Category

Figure 1. Two queries on a fictional shopping website web log. Left: Query to explore checkout behaviors of users depending on direct referral versus
users that were referred from a specific website. Right: Query to view geographical location of customers that used the search feature.

ABSTRACT

Many different domains collect event sequence data and rely
on finding and analyzing patterns within it to gain meaning-
ful insights. Current systems that support such queries either
provide limited expressiveness, hinder exploratory workflows
or present interaction and visualization models which do not
scale well to large and multi-faceted data sets. In this pa-
per we present (s|qu)eries (pronounced “Squeries™), a visual
query interface for creating queries on sequences (series) of
data, based on regular expressions. (s|qu)eries is a touch-
based system that exposes the full expressive power of regu-
lar expressions in an approachable way and interleaves query
specification with result visualizations. Being able to visu-
ally investigate the results of different query-parts supports
debugging and encourages iterative query-building as well as
exploratory work-flows. We validate our design and imple-
mentation through a set of informal interviews with data sci-
entists that analyze event sequences on a daily basis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2015, April 18-23, 2015, Seoul, Republic of Korea.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3145-6/15/04 ...$15.00.
http://dx.doi.org/10.1145/2702123.2702262

Author Keywords
Visual query languages; event sequences; query interfaces;
visual analytics; gesture interfaces

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: Miscella-
neous

INTRODUCTION

Event sequence data sets are collected throughout different
domains: electronic health records in medical institutions,
page hits on websites, personal data from “Quantified Self”
technologies, eye tracking and input device logs during us-
ability studies or program execution logs through telemetry
systems to name just a few. The ability to efficiently explore
and analyze such sequential data can generate deep insights
and support informed decision making. Examples range from
understanding application usage patterns, optimizing market-
ing campaigns, detecting anomalies, to testing of research
driven hypotheses. HCI researchers and practitioners in par-
ticular can benefit from event sequence analysis, since usabil-
ity issues and user performances can be identified and ex-
tracted from telemetry data or other logs [8]. The complexity
and size of such data sets is continuously increasing and in-
sights might be hidden within the natural ordering or relation-
ships between events, at different levels of detail and in differ-
ent facets of the data. For example, consider a smart phone

application that logs user interactions. A usability manager
might want to see high-level aggregations of user flows to un-
cover possible UX related issues, whereas an engineer might
be interested in what led to the triggering of an obscure error
code in the few specific sessions where it happened.

While the types of questions analysts and researchers might
want to pose vary drastically across domains and scenarios,
they often can be reduced to finding patterns of events and
being able to inspect the results of such queries. Visualiza-
tions are a great way of leveraging the human visual system
to support pattern finding. However, for large data sets it is
hard to detect insights that are hidden within sub-populations
or even single instances or to spot patterns with some degree
of variation. Other systems that support querying more di-
rectly are either not well suited for this type of sequential data
(i.e., SQL), offer limited expressiveness, are hard to learn, or
discourage fluid, iterative and interactive exploration.

In this paper we introduce (s|qu)eries, a system that trans-
forms the concepts of regular expressions into a visual query
language for event sequences. By interleaving query specifi-
cation with result visualizations, this integrated interface al-
lows users to incorporate the output from an existing query
into the parameters for the next query. We developed
(s|qu)eries with a touch-first mindset which resulted in a de-
sign where visual elements are a direct component of the in-
terface and indirection is kept to a minimum. Queries, such as
the ones in Figure 1, can be built and manipulated fluidly with
direct manipulation based touch gestures. While our sample
application and users focused on telemetry data, the concepts
translate to other domains where users need to both spot and
investigate patterns.

We started off by analyzing the results of a recent internal
study that interviewed 10 data analysts across different func-
tions (UX designers and researchers, program managers, en-
gineers and business stakeholders) from a telemetry group,
discussing common formats for log data, understanding the
tools that they currently use and, most importantly, finding
the types of questions that they typically attempt to answer
from their logs. From this point, we iteratively designed the
(s|qu)eries system to ensure that it was flexible enough to an-
swer their questions, but also fit into their current workflow.

We validated our approach through detailed interviews with
members of five different data science groups within a large
data-driven software company. All of the participants analyze
event sequences frequently as part of their function within the
company. During the interviews we asked the participants
to explore their own data through (s|qu)eries. Even though
questions, data and backgrounds varied greatly between those
teams, we found that all of them were able to uncover previ-
ously unknown insights after minimal initial training.

The contributions of this paper are three-fold. First, we
present a design for a visual query language for event se-
quences based on the full power of regular expressions. Sec-
ond, we incorporated visualizations that allow users to in-
teractively explore the results of both their overall queries
as well as individual parts of the queries. These visualiza-

tions can be used, in turn, to further add to or refine their
queries. Third, we investigate the effectiveness of the sys-
tem through an informal study with five different data science
groups within a large, data-driven software company.

RELATED WORK

We relate and contrast this work to research efforts in the
areas of Event Sequence analysis, Temporal Data Visual-
izations, Query Languages for Event Sequence & Temporal
Data, and Touch-based Interfaces for Visual Analytics.

Event Sequence & Temporal Data Visualizations

Much of the work on event sequences visualization is in the
domain of electronic health records. Work in this area is ap-
plicable to other event sequence domains like telemetry data,
where the payloads of events are different but the visualiza-
tion strategies are not. While in the medical domain, ques-
tions might be about what combination of treatments even-
tually lead to a stroke, in software telemetry, data scientists
might pose similar questions about what events lead to a crash
of the application. They both require users to find and analyze
sequential patterns within event sequences.

LifeLines [20, 21] is seminal work on how to depict the med-
ical history of a single patient. The tool allows users to vi-
sually spot trends and patterns within a single patient’s his-
tory, or a session when looking at telemetry data. Many other
systems [13, 9, 3] have used analogical time-line based rep-
resentations to visualize single event sequences. By ordering
pattern-parts from left to right, (s|qu)eries visualizes sequen-
tial patterns in a way that is similar to time-lines, but aggre-
gates across multiple event sequences.

LifeLines2 [26] extends this concept to multiple patient
records. Spotting patterns within the data can be achieved
by aligning all records according to a sentinel event. How-
ever, users are still burdened with visually scanning the entire
data set, which often makes pattern detection across large data
sets, a cumbersome and error prone task. Other systems [27]
address this issue by offering time or category based aggrega-
tion techniques. While these approaches scale better to mod-
erately sized data sets, they might hide interesting outliers or
pattern variations within the aggregations and are susceptible
to noisy input. (s|qu)eries aggregates based on patterns and
therefore allows users to explore event sequences at different
levels of detail (i.e., from high-level aggregates to individual
event sequences) and to capture and hide noise within single
nodes.

Sankey diagrams [22] statically illustrate flows and sequen-
tial dependencies between different states, however aggrega-
tion and alignment techniques are needed to make Sankeys
useful for spotting patterns and to reduce visual complexity.
(s|qu)eries uses aspects of Sankeys (such as scaling the width
of links between nodes) to help visualize queries as well as
the results.

Commercial products for web log analysis or log analysis in
general such as Google Analytics' or Splunk® are built to

http://www.google.com/analytics
“http://www.splunk.com/

scale to big data sets and to accommodate data from vari-
ous sources. Their aggregated dashboard-like visualizations
often hide patterns of sub populations and hinder exploratory
and interactive workflows. SessionViewer [15] proposes a
multiple coordinate-view approach to bridge between differ-
ent levels of web log aggregations and supports state-based
pattern matching through a textual language. However, Ses-
sionViewer’s pattern language does not support simultaneous
exploration of multiple queries nor is it directly coupled to
result viewing.

Query Languages for Event Sequence & Temporal Data
While some systems rely on the human visual system to spot
patterns in sequential data, others take a more query driven
approach. The expressiveness of query systems varies greatly
and is dependent on the type of supported data (point or in-
terval events). Most work in this area is based on the concept
of temporal logic proposed by Allen [2], which introduces
13 unique operators that describe temporal relationships be-
tween intervals. Currently, unlike other systems, (s|qu)eries
focuses on sequences of point events (e.g., “a happens af-
ter b”) instead of temporal queries (e.g., “a happens within x
minutes of b”).

Jensen et. al. [10] and Snodgrass et. al. [24] both propose
extensions to SQL to support predicates for querying time
periods. While offering a high degree of expressiveness, their
command-based query languages come with a steep learning
curve and are not well suited to exploratory workflows.

Jin et. al [11, 12] have addressed some of those problems by
proposing a visual query language that is easily understood
and specified by users. However, their comic strip metaphor
is not well suited for expressing longer repetitions or parallel
(alternate) paths. Numerous efforts [7, 16, 18, 19, 4] origi-
nated from work in the domain of electronic health records
and present visual query languages with varying degrees of
expressiveness and for different tasks. For example, Pat-
ternFinder [7] describes temporal patterns through events and
time spans and visualizes the result in a ball-and-chain visu-
alization. Others, such as Lan et. al. [16] propose extensions
to Monroe’s et. al. query language [18], including repetition
and permutation constraints on point and interval events and
absences thereof. Query specification in all of those systems
is done through dialog heavy user interfaces and none of them
directly interleaves query specification with result viewing.

In a complementary approach from the data mining commu-
nity, work by Agrawal and Srikant [1, 25] in this domain in-
troduces algorithms to automatically extract common sequen-
tial patterns from logs, rather than using user specified pat-
terns to query the data. Such extracted patterns could serve
as a starting points for further interactive exploration within
(s|qu)eries.

Touch-based Interfaces for Visual Analytics

While we have not deeply explored the potentials for touch
first interaction in this paper, their influence on the design
came up numerous times. This "touch-first’ mindset (keep in-
direction at a minimum, animate changes to the U, and make

sure that interactive visual elements can be interacted with di-
rectly) was inspired by the work of Elmqvist et. al. [6] and
Lee et. al. [17], who emphasize the importance of interaction
for information visualization and visual analytics and propose
to investigate new interaction models that go beyond tradi-
tional WIMP (windows, icons, menus, pointers) interfaces.
“Fluid” interfaces, as proposed by [6], are not only subjec-
tively preferred by users, but also enhance their performance
(speed and accuracy) for certain data related tasks [5].

(s|q)ueries’s visual query language makes extensive use of the
direct manipulation paradigm [23]. Nodes, the main visual
element in (s|qu)eries, can be manipulated to build queries
as well as to analyze query results - they are direct handles
to specify input as well as to interact with output. All in-
teractions within the system are made through simple touch
gestures. For example, in order to update a pattern, a user
simply adjusts the physical layout of nodes by dragging on
the node. Other such interactions include using the visualiza-
tions to constrain or build new queries or inspecting nodes to
investigate the match set at various positions.

THE (s|qu)eries SYSTEM

We started the design process of (s|qu)eries by analyzing the
results of a recent internal study at a large software firm.
The study included 10 data analysts across different functions
(UX designers and researchers, program managers, engineers
and business stakeholders) from a telemetry group. It dis-
cuses common formats for log data, tools or combination of
tools that are being used, and, most importantly, lists ques-
tions that stakeholders would like to answer from their logs.
A portion of these are shown in Table 1.

The two key findings we extracted from analyzing questions
like the ones in Table 1 are:

e Providing answers to questions is a two step process. First,
the pattern of interest must be found across the full data
set. Second, the relevant attributes of pattern matches need
to be presented in an interpretable way.

e Question come in batches. Questions are often related to
each other and / or are built upon answers from the previous
ones.

These two findings manifest themselves directly within
(s|q)ueries’s design. (s|qu)eries exposes the power of regu-
lar expressions as a pattern finding language for sequential
data through a visual language and interaction design such
that users can interactively explore results of matches and use
them as starting points for successive queries.

Introductory Use Case

We motivate our approach through an introductory use case
that is based on some of the sample questions. Adam is a
data scientist at a big e-commerce firm. The company just re-
leased a new smart phone application where users can search
and browse for products and buy them directly. Adam wants
to check if the company’s expectations in terms of acquir-
ing new customers were met and if there were any problems
with the application. He got a dump of last week’s client

Question

What is the typical first interaction when users open the application?

What is the most/least often used component of the application?

What is the frequency with which the different features are accessed?

What is the frequency for feature X per user?

How many users perform workflow X?

How long does it take users to perform workflow X?

What are common technical problems?

What leads to common technical problems?

What are common attributes about users of the system that exploit a par-
ticular feature?

Table 1. Sample of common questions gathered by interviewing data
scientists who explore software telemetry data.

side telemetry data that the application logs. The sessions, or
event sequences, within this data set look something like this:

Session,User, TimeStamp,Attributes

4,3,8/1/14 3:01,action=AppStart

4,3,8/1/14 3:02,action=Search&query=Helmets
4,3,8/1/14 3:11,action=ViewProduct&query=Red Bottle
4,3,8/1/14 3:13,action=AppClose

Adam starts (s|qu)eries on his touch-based laptop, double-
taps the background to create an unconstrained query node
that matches any type of events and inspects the node by
opening up its result view (Figure 2a). Adam sees a histogram
showing the most common actions in the data set. Since he is
interested in customers who buy products, he decides to drag
out the “Checkout” action (Figure 2b). The system creates
a new node pre-constrained on “Action = Checkout”. Imme-
diately, he sees that 14.2% of sessions resulted in successful
checkouts.

Checkout

100.0% Sessions
100.0% Users

8

ViewProduct

ViewCategory

Across Users Across Sessio

EnterCouponCodd

4 Action Category Produ@ Query Referral
T

Figure 2. Opening up visualization view of a node and dragging from
histogram to create a new constrained node.

Naturally he wants to know what led to users successfully
checking out. He creates another node and links the two
nodes together. This query allows him to look at all the events
that happened immediately before people checked out.

 14.2% Sessions
 233% Users

Fl,_) Checkout

100.0% Sessions.
100.0% Users

Figure 3. Linking of two nodes.

He opens up the visualization view again. Most commonly
people added something to their shopping cart before they
checked out which seems reasonable.

Checkout

* 142% Sessions
 233% Users

A

Figure 4. Inspecting part part of a sequential two node query.

But what about after checking out? Did users perform any
other actions after they bought something? He switches the
ordering of the two nodes and the visualization updates.

A

Figure 5. Rearranging nodes to create a new query.

Interestingly enough, there are some people that added other
items to their cart even though they already checked out -
that seems odd. He selects the “AddToCart” item, which in
turn constrains the second node and allows Adam to further
explore this unexpected user pattern to check if it is an error
in the application or some other anomaly. This leads to more
fruitful exploratory analyses.

Figure 6. Selecting item in histogram to constrain a node.

Data Model

Like Splunk and other systems, (s|qu)eries operates on event
sequences, broken into sessions by user. A single user re-
flects a logical user of the system: in a telemetry log, for
example, a user might be a single login to the system. A
user, however, may log in and out of the system; it can be

valuable to break a users events into sessions, which repre-
sent the time from login to logout. A single session, then, is
made of a sequence of events. Each event is associated with
a user id, a session id, a single time-stamp, and a series of
attribute-value pairs, which describe that event.

In the use case above, the event sequence represents all the
logged actions on the phone application; sessions begin when
the user started the app, and end when they close it. An event
holds all the information needed to perform its action. For
example, when the user adds an item to the cart, the system
might log the following three attribute-value pairs: (‘“action”,
“AddItemToCart”), (“timestamp”, “12/21/2014 21:12:44”),
(“item”, “city bike”). (s|qu)eries builds its internal data model
on the fly from the input file by aggregating along attribute-
value pairs. While our current prototype expects a time-
stamp, user and session information, which are particular to
telemetry data, the data model is flexible enough to accom-
modate data from many domains as long as events can be
represented as a collection of attribute-value pairs.

Query Language

In order to find answers to questions like those in Table 1
users need an efficient way to query sequential data. Such
queries can be thought of as patterns over event sequences,
where different parts of the pattern can be more or less con-
strained. Log data often contains a large amount of noise and
a query language therefore needs to provide support to ex-
press variations and fuzziness.

The same applies to extracting patterns from character se-
quences. Regular expressions are widely used for that task.
While they present a powerful language for finding sequential
patterns, their text-based representation can be hard to under-
stand and they do not offer support to explore results without
additional tools.

By defining our patterns in terms of regular expressions, we
leverage an extensive literature of what can and cannot be
done within this framework and, if necessary, users can use
the literature to form particularly complicated expressions.
However, we designed the system such that users do not need
to be intimately familiar with regular expressions in order to
use the system effectively.

In the following sections we formally describe regular expres-
sions and its base operations. We then discuss how these base
operations manifest themselves in our visual query language
and how users can specify and interact with them. Further-
more, we show how these visual primitives can be combined
to create sophisticated queries over event sequences and serve
as direct handles to view results and as starting points to in-
crementally build up and modify queries.

Regular Expressions

Regular expressions are a well known formal language, intro-
duced by Kleene [14]. In popular tools like grep, regular
expressions are used for matching patterns within text strings.
Before describing how (s|qu)eries uses regular expressions to
describe events, here is a short review of the constructs of
regular expressions, in the familiar domain of text matching:

1. Concatenation : A way of specifying that character follows
another character. For example, abcd matches “abed”, but
not “abdc”.

2. Alternation: A way of expressing choices. For example,
a|b can match either the string “a” or “b”.

3. Grouping: A way of defining the scope and precedence of
operators. For example, gray|grey and gr (ae)y are
equivalent patterns which both describe the strings “gray”
and “grey”.

4. Quantifiers: A way of indicating how many of the previous
element is allowed to occur. The most common quantifiers
are:

e The question mark ? matches O or 1 of the preced-
ing element, For example, colou?r matches both

“color” and “colour”.)
e The asterisk » matches O or more of the preceding

element. For example, abc matches “ac”, “abc”,

“abbc’ and so on.
e The plus sign + matches 1 or more of the preceding

element. For example, ab+c matches “abc”, “abbc”,
“abbbc”, and so on, but not “ac”.

In addition to these fundamental constructs, tools like grep
also provide handy shorthand notations for wordy alterna-
tions.

1. Wildcard: A way of expressing a choice of any character.
The wildcard . is shorthand for an alternation that includes
every character in the alphabet.

2. Ranges: A way of expressing a choice based on the order
of characters. For example, the wildcard [a—z] is short-

hand for alb|. . .|z. Negation (set complement) is also
common, e.g. [“0-9] represents any character except a
digit.

3. Backreferences: A way repeating previously matched pat-
terns. For example, the wildcard ([a-c])X\1 is short-
hand for aXa|bxb|cXc.

For normal text matching, the alphabet contains all characters
from a known set like ASCII or Unicode. Sophisticated text
matching expressions can be built out of a combination of
the above patterns. For example, the following expression
matches email addresses:

[a—zA-Z20-9._—-1+Q@[a—zA-Z0-9-]+[.] [a—zA-Z.]+

In (s|qu)eries, instead of directly matching characters in
the log file, we represent each event as a unique char-
acter in a large alphabet based on attribute-value pairs.
Each “character” in this alphabet is a fully described
event with concrete values for every attribute. For exam-
ple {(“action”, “search”), (“query”, “city bike”)} is a single
character in the alphabet. An event’s user id and session id
are not part of its character representation; rather, they are
metadata about that character, much as the line number and
column number of a character X in a file are metadata about
the X and not used in matching. The events’ time-stamps de-
fine the ordering of event characters, just as textual characters
appear in an order in a text file. Even though the characters of
this event alphabet are more complicated than text characters,
the regular expression constructs above are well defined for
them.

(= 1) (b Y& O (@)

Search
Search

™ 18.8% Sessions)
["abc] 3 s01% Users ViewProduct
Search ViewPromotion
Firefox 32.0.1
IE11.0
0% Sesions

1% Users

 196% Sessions

O (@) 0 v =

-

Figure 7. Shows nodes in different configurations, with their similar
regular expression syntax. a) Constrained node that matches one event,
with attribute Action = Search. b) Unconstrained node that matches
none or one event of any type. c¢) Unconstrained node that matches 0 or
more events of any type. d) Constrained node that matches one event,
with not (white line indicates negation) attribute Action = Search and
attribute Browser = Firefox 32.0.1 or IE 11.0. e) Matches sequences that
start with one or more events with Action = Search, followed by a one
wild card that matches one event. f) Matches event sequences that start
with either an event where Action = Search or Action = ViewPromotion,
followed by an event with Action = ViewProduct. This pattern is en-
capsulated in a group (gray box). g) Backreferencing: the chain icon
indicates that this pattern matches sequences where some product was
added to the cart and then immediately removed again.

Visual Query Language

Unlike in string-based regular expressions, (s|qu)eries uses
a visual language to describe patterns. The main visual el-
ements are nodes, drawn as rounded rectangles. In terms
of regular expressions, a node is a character wildcard with
a quantifier. The character wildcard is drawn in the middle of
the rounded rectangle and the quantifier in the lower-left cor-
ner. We call a node constrained when some attribute-value
pairs are specified and unconstrained otherwise. Figure 7b
shows an example of an unconstrained node that matches any
event; whereas Figure 7a shows a node that matches any event
with the attribute-value pair (“Action”, “Search”). Nodes can
be constrained on multiple attributes and multiple values per
attribute (Figure 7d). Constraints on nodes are specified ei-
ther through a menu-like dialog by tapping on a node or
through selections in visualizations.

Nodes can be linked together to create more complex pat-
terns by dragging a node’s link handle (white semicircle on
the right side of a node) to another node. When linking nodes
together, vertical and horizontal placement are both signifi-
cant: left-to-right placement describes the concatenation of
individual nodes; top-to-bottom placement expresses prece-
dence in alternations. The pattern formed by Figure 7f shows
both of these.

Each node has a quantifier applied to it, whose notation is in-
tended to be more intuitive than the standard quantifiers: “1”
matches exactly one event (£), “0/1” matches none or one
event (E/?), “0O+” matches zero or more events (£«) and “1+

matches one or more events (£+). Quantifiers are represented
textually as well as visually (transparency and node-stacks).
Users can change a node’s quantifier by tapping on the quan-

tifier label in the lower left corner. Figure 7 shows examples
of these quantifiers and their visual style.

Additionally, (s|qu)eries supports two common shortcuts:
negation and backreference. The former is used to match
events that do not comply to the specified constraints (Fig-
ure 7d shows an example). The latter is used to find matches
where an attribute has the same value across two or more
nodes (Figure 7g). Furthermore, nodes that are linked can be
arranged into groups®. (s|qu)eries displays such groups with
gray boxes around the node collections (Figure 7f).

(s|qu)eries features an unbounded pan and zoomable 2D can-
vas where users can lay out nodes in a free-form fashion. The
concepts outlined above, such as constraints on nodes, quan-
tifiers as well as linkage and position of nodes, can be com-
bined to form arbitrary complex regular expressions over the
input event sequence data to find patterns.

Result Visualization

The system runs patterns, formed by the visual language,
against the underlying event sequence data set and will re-
turn event sequences or parts of event sequences that match
it. For example, the pattern formed by Figure 7e will match
all sub event sequences where one or more sequential events
have an attribute-value pair of (“Action”, “Search”) and are
followed by any other event. We will call this retrieved set of
sub event sequences the match set.

Most regular expression implementations offer a concept
called capturing groups. It enables extraction of the charac-
ters that matched a specific part of the entire regular expres-
sion pattern. We use this concept to assign events of the match
set to nodes within the visual query pattern. Each node (and
group) acts as a capture group and therefore knows which
events of the match set it was responsible for matching. The
nodes thus become visual handles to explore the results of the
pattern query they build up. This represents a powerful tool
for event sequence analysis, because users can now explore
questions like what happens after a sequence of “Searches”
by directly inspecting a node (rightmost node in Figure 7e).

The match set of each node (and group) can be inspected by
pulling out its bottom right corner through a drag interaction
(Figure 8a). Depending on the amount of pullout the user
performed, the pullout view either shows a detailed view of
match percentages and absolute numbers or it shows a full
visualization view (Figure 8b and c).

Figure 8. A node can be inspected to analyze its match set.

3While our design supports grouping of nodes, it is not fully im-
plemented in our current prototype. Within the prototype, groups
around entire queries are supported, while nesting of groups is not.

This second view acts as a portal to explore different di-
mensions of the match set. It is structured into three main
tabs (Figure 9a) which allows users to switch between vi-
sualizations of attribute-value pairs, time dependent infor-
mation and user information. The first one displays his-
tograms of different and specific attribute-value pairs of the
match set. The user can toggle between these histograms
by using the attributes on the bottom of the view (Figure
9c). The number of attributes that are explorable is depen-
dent on the payload of the matched events. A node that is
constrained to the attribute-value pair (“Action”, “Search”),
will display different attributes than one that is constrained
to (“Action”, “AddToCart”). Events that match the former
might have an associated query term, while the latter might
have a product name. From analyzing the questions data sci-
entists posed, we found that results oftentimes needed to be
aggregated in different ways. A pattern can occur multiple
times within a session and a user can be associated with mul-
tiple sessions. Therefore, aggregating either across matches,
sessions or users (Figure 9b) can reveal different insights. An
application feature might seem to be used frequently only be-
cause a few select users constantly use it, whereas across all
users, it might not be that popular.

In order to encourage exploratory behavior and to allow users
to seamlessly switch between query specification and result,
these histograms are interactive. Tapping on an item in the
histogram view constrains the node to the selected attribute-
value pair, while dragging out an item creates a new pre-
constrained node.

The second main tab displays time stamp related information
of the match set, such as a heat map of hours of the day and
day of the week of matches (Figure 9) or a histogram of match
durations (from time-stamp of the first event to time-stamp
of the last event). It also shows views of the list of actual
events sequences that were matched, grouped by length of
the matched sequence. And finally, the third tab visualizes
information about the associated users of matches like their
home states (Figure 1 right) if geocoded data is available.

Additionally, some high level aggregates of the match set are
overlaid right within the visual query language itself. Quick
previews of match percentage are displayed at the bottom of
nodes as well as line thicknesses are adjusted to show flow
amongst branches (Figure 7f).

100.0% Sessions
1000% Users

Figure 9. The visualization view has three tab navigators to inspect dif-
ferent attributes and aspects of the match set.

Visualizations are currently hard coded: any attribute can be
interpreted as a histogram; “TimeStamp” and “UserLocation”
can be interpreted for temporal views, timelines and map-
views. For now, the source code must be updated to accom-
modate new visualization types which might be based on cer-
tain types of attribute-value pairs or to incorporate visualiza-
tions targeted towards a different data domain (e.g., electronic
health records).

Implementation & Scalability

Our prototype is developed in C# and WPF and runs on both
touch-enabled as well as mouse and keyboard Windows 8
devices. All computation and pattern matching is done in-
memory. The system parses the visual pattern into text based
regular expressions and utilizes C#’s regular expression en-
gine to extract pattern matches from the input data set. In
order to do so, the system also converts all input sequences
into long string representations. After extracting matches and
linking them back to the in-memory representation of events,
the system computes all aggregated statistics that are used for
the visualizations. Pattern matching and aggregation is out-
sourced to a separate thread to guarantee interactivity while
processing queries.

Our prototype works at interactive speeds for real world
telemetry logs with up to 30, 000 sessions, with an average
length of 150 events, each with payload of around 20 dimen-
sions. While our in-memory approach does not scale to large
data sets, the visual language and visualizations do, and the
nature of the data makes the required computations an intrin-
sically good fit for parallelization. These are especially ap-
propriate for map-reduce frameworks, where in the map-step
we can compute the regular expression matches and then con-
struct aggregations for the visualizations in the reduce step.

EVALUATION

To evaluate our approach, we invited five people, all of whom
analyze event sequences frequently, and encouraged them to
bring a colleague along with them for detailed interview ses-
sions. We felt that having colleagues there would help stim-
ulate discussion about the tool. Two of them ended up bring-
ing a colleague along with them. The participants were re-
cruited from five different teams form a large software com-
pany. While all of the participants work with telemetry data,
we ensured that we had broad coverage with different back-
grounds as well as varying goals for potential insights from
the tool. To create a familiar scenario and to test (s|q)ueries’s
ability to operate on different real-world data sets, we asked
our participants to send us a sample of their data beforehand.
We required the data to be sessionized in a form that made
sense to them and limited the number of sessions to 1,500
with no more than 200 events per session.

We initially gathered some background data on the subjects
including their programming expertise, tools they currently
exploit in their job and what kinds of insights they were trying
to gain from the log data. These are summarized in Table 2.

After a 10 minute introduction and demo of the system on a
synthetic test data set, we asked them to answer some ques-
tions by creating queries on the same test data set to familiar-

User(s) Background/experience Product

Current Techniques Insights Sought

gramming and familiar with regular ex- | application 1
pressions but not an expert programmer

Alice A Product Manager comfortable with pro- | Online productivity

R, Python, SQL Test coverage of features within the appli-
cation and current application shortcom-
ings.

supplying analytics for data scientists lytics Service

Brigitte | Brigitte was a non-programmer while | Online productivity | R, Python, SQL for matching | Reproducing crashes from the log data.

and Charlie had a background in programming | application 2 sequences, Excel and R for vi-

Charlie and Information Retrieval sualization and modeling

Dorinda | Data scientists without strong program- | Online source con- | SQL Services, SQL query | Understanding end-to-end usage, justify-

and Eric | ming backgrounds trol repository analyzer, dashboard in SQL | ing business cases for separating out fea-
Server Reporting Services tures.

Frank Developer on the backend server system | Social Media Ana- | SQL, Hadoop, Sumologic Understanding performance problems in

the system from telemetry data.

experience, not deeply familiar with regu- | form
lar expressions

Gabriella | Product manager with a little programming | Web Analytics Plat-

C#, homegrown visualization | Exploring navigation confusion in current
tools offerings, trying to find features to add to
their own web analytics platform.

Table 2. Summary of users from evaluation

ize themselves with the tool. Some example questions were
of the form: What was the most common event that occurred
immediately before “AddToCart”? How many people used
“Search” more than once? What was the most common query
term for “Search”?

In the second part of the interviews, we encouraged them to
use the system to look at their own data. Since we were in-
terested in seeing if they could create queries that reveal pre-
viously unknown insights, we instructed our participants to
explain to us what kind of queries they were constructing and
if the results confirmed some already known fact or not. This
also ensured that we could check if their mental model was
matching with what the queries actually expressed. All the
sessions were voice-recorded and were conducted on a 55”
vertical multi-touch display.

Results

Overall

All the users were able to grasp the system and answer ques-
tions after the 10 minute introduction. There was univer-
sal positive reaction to the tool with quotes like Charlie’s,
“This has big potential!” or Gabriella’s, “Can we ship this
now?”. While people with strong programming background
were quicker at learning the tool, even those without a pro-
gramming background were able to use it to extract insights
from the test data set as well as from their own data. One
user (Brigitte) commented that anything that she was able to
understand to this extent in 10 minutes was easy enough for
her to use more often, unlike formulating raw queries in SQL
or other tools which she tended to avoid using.

The users that came in pairs commented that they particu-
larly enjoyed the touch, large display aspects of the tool since
it was well suited to collaboratively exploring the data. Typ-
ically each would take a turn getting hands-on with the data
queries while the other sat back and made suggestions.

All the users needed to be interrupted in the exploration of
their own data after 30 minutes, and all requested to use the
tool on their own.

Insights
There were several specific insights that users had while
working with their own data.

Alice was able to use (s|qu)eries to find out what preceded
or followed events that were important to her, for instance
she noticed that one of the common events that happens be-
fore an “undo” was copy. That was not an undoable action, so
she was concerned that this was not a path that they had tested
for. Another common action after “undo” was another “undo”
so she went on to explore what were common circumstances
that occurred before multiple “undos”. This lead her to real-
ize that pasting was often undone, even after several actions
occurred. Both of these situations were surprising insights to
her.

Bridget and Charlie used constraints to isolate an excep-
tional case - they showed that one feature crashed only on
one version of the product. This confirmed a hypothesis that
they had previously made. They explained that this had been
recently added to that version of the produt and were not com-
pletely surprised.

Dorinda and Eric were able to explore behaviors across
longer, “end-to-end”, sequences of actions. They found
that nearly half of the people used the “Work Item Tracker”
without using the Version Control System. This was signifi-
cantly more than they expected and was a good justification
for unbundling the two features from each other. They had
suspected this, but had not gotten clear proof of this before.

Gabriella identified a potential broad audience of users -
web analytics managers, who ask questions like these fre-
quently, but were often frustrated in trying to answer things
beyond those put into standard, regular dashboards or reports.

Problems and Challenges
There were also some problems or challenges encountered.

Data sets were not always well formed for extracting in-
sight. For instance, Brigitte and Charlie’s log data included
events that they wished to ignore. While this could have been
preprocessed out of the file, they did not realize this until too
late. Queries could be constructed that specifically ignored
those events, but this was somewhat tedious using the current
interface. They requested a feature that would allow them to
selectively filter out events or combine certain multiple events
into a single event.

Occasionally, regular expression rules could lead to some
confusion over the results. Frank discovered that when a

wildcard was used between two different events, he assumed
that this meant that the event did not occur between the two
events as opposed to matching the longest sequence possi-
bile between the two events. For instance, if the pattern was
A.*B, then this would match AAAAAB or ABBBBB or even
ABCDAABCBAAB.

Everybody wanted the system to scale to support bigger
event sets since most had data sets hundreds or thousands of
times larger than those they explored in the tool.

DISCUSSION & FUTURE WORK

While the current prototype has already proved itself useful
both to practitioners in the informal user study and in continu-
ing analysis efforts, there are a number of limitations that can
be addressed in future work. Some of which involve small,
iterative improvements in the design, and some which would
involve more major changes.

Basing the system on regular expressions, which are well-
understood in the literature, makes its capabilities and limi-
tations predictable. Regular expressions, unlike push-down
automata, can not keep track of state, and therefore certain
questions can not be answered if they are not explicitly con-
tained as payloads in the event stream. For instance, while a
log might contain events where items are added to the cart, the
user can not retrieve the total contents of a cart unless there is
an explicit representation of the contents within the payload
of the event stream. Furthermore, regular expressions them-
selves can be notoriously confusing. This is somewhat miti-
gated in the system by not requiring a cryptic textural stream,
(e.g., the email matching regular expression mentioned pre-
viously). It also helps that the contents of various nodes in
the query can be explicitly examined and the patterns that
they match can be explored with the visualizations. In the
(s|qu)eries system, the only confusions that came about were
because of the greedy nature in the regular expression match-
ing (as discussed in the results above). This also occurred
when using alternations - when the top node was a wild card,
by definition, no matches were left for nodes lower in the list.
One user (Gabriella) did not even realize that the system was
based on regular expressions until after we discussed it with
her towards the end of the session. She was only vaguely fa-
miliar with them and was still completely capable of using
the system to answer our test questions and questions on her
own data.

The system at this time lacks the ability to add a temporal
element to the queries. This would be an exciting and power-
ful additional capability but has not yet been addressed in the
current prototype. Temporal constraints would interact with
the regular expressions in an interesting fashion, but could
probably be added as a further post-process on the results of
a set of matched events.

From the interview with Dorinda and Eric, it became clear
that logs often have erroneous or lower level events that need
to either be completely filtered out or combined into single,
higher level events. Search and replace capability, similar
to [16], could add great power to the (s|qu)eries system.

One of the current benefits of the (s|qu)eries system is that the
results of the queries can easily be constrained to help create
more queries. We want to further expand this interaction so
that the system could either automatically display commonly
pathways, or so that multiple paths can be interactively con-
structed by dragging out several results from a node to create
separate queries.

Many, small usability improvements could also be made.
People did not like starting with a blank canvas, so pre-
populating the canvas with at least a single node that shows
the most common events in the log would be useful. We wish
to allow for saving and loading of queries so that sessions can
be shared or continued.

Finally, expanding the capabilities of the visualizations can be
done in many different ways. Specific vertical visualizations
that explore certain payloads or combine the results of a query
with other tables (like geocoding from IP lookup or heat maps
of features used in a program) could be added. Several users
wanted to contrast the results of multiple queries (e.g., What
were the differences between what people added to a cart for
those people that used search and those people that didn’t?)

CONCLUSION

As sequential logs across numerous domains explode in avail-
ability, we see that there is great potential in enabling domain
experts who may be non-programmers. Requiring a program-
mer in the loop greatly limits the exploratory possibilities that
the readily available data facilitates. We plan on continuing to
expand the capabilities of the (s|qu)eries system as we apply
it to other users, other questions, and other domains.

We introduced (s|qu)eries, a touch-based system that fea-
tures a visual query language building upon the full power
of regular expressions. Our system incorporates visualiza-
tions that allow users to interactively explore the results of
both their overall queries as well as individual parts of the
queries. These visualizations can be used, in turn, to further
add to or refine their queries. We investigate the effectiveness
of the system through an informal study with five different
data science groups within a large software company.

ACKNOWLEDGMENTS

The authors wish to thank Dan Zhang for his input on teleme-
try analysis, the reviewers for their suggestions, as well as all
our participants for their time and invaluable feedback.

REFERENCES
1. Agrawal, R., and Srikant, R. Mining sequential patterns.
In Data Engineering, 1995. Proceedings of the Eleventh
International Conference on, IEEE (1995), 3-14.

2. Allen, J. F. Maintaining knowledge about temporal
intervals. Communications of the ACM 26, 11 (1983),
832-843.

3. Bade, R., Schlechtweg, S., and Miksch, S. Connecting
time-oriented data and information to a coherent
interactive visualization. In Proceedings of the SIGCHI

conference on Human factors in computing systems,
ACM (2004), 105-112.

10.

11.

12.

13.

14.

15.

16.

. Chittaro, L., and Combi, C. Visualizing queries on

databases of temporal histories: new metaphors and
their evaluation. Data & Knowledge Engineering 44, 2
(2003), 239-264.

. Drucker, S. M., Fisher, D., Sadana, R., Herron, J., and

schraefel, m. Touchviz: A case study comparing two
interfaces for data analytics on tablets. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2013), 2301-2310.

. Elmqvist, N., Vande Moere, A., Jetter, H.-C., Cernea,

D., Reiterer, H., and Jankun-Kelly, T. Fluid interaction
for information visualization. Information Visualization

10, 4 (2011), 327-340.

. Fails, J. A., Karlson, A., Shahamat, L., and

Shneiderman, B. A visual interface for multivariate
temporal data: Finding patterns of events across multiple
histories. In Visual Analytics Science And Technology,
2006 IEEE Symposium On, IEEE (2006), 167-174.

. Fourney, A., Mann, R., and Terry, M. Characterizing the

usability of interactive applications through query log
analysis. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM (2011),
1817-1826.

. Harrison, B. L., Owen, R., and Baecker, R. M.

Timelines: An Interactive System for the Collection and
Visualization of Temporal Data. In Graphics Interface
(1994).

Jensen, C. S., and Snodgrass, R. T. Temporal data
management. Knowledge and Data Engineering, IEEE
Transactions on 11,1 (1999), 36-44.

Jin, J., and Szekely, P. Querymarvel: a visual query
language for temporal patterns using comic strips. In
Visual Languages and Human-Centric Computing,
2009. VL/HCC 2009. IEEE Symposium on, IEEE
(2009), 207-214.

Jin, J., and Szekely, P. Interactive querying of temporal
data using a comic strip metaphor. In Visual Analytics
Science and Technology (VAST), 2010 IEEE Symposium
on, IEEE (2010), 163-170.

Karam, G. M. Visualization using timelines. In
Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis, ACM
(1994), 125-137.

Kleene, S. C. Representation of events in nerve nets and
finite automata. Tech. rep., DTIC Document, 1951.

Lam, H., Russell, D., Tang, D., and Munzner, T. Session
viewer: Visual exploratory analysis of web session logs.
In Visual Analytics Science and Technology, 2007. VAST
2007. IEEE Symposium on (Oct 2007), 147-154.

Lan, R., Lee, H., Fong, A., Monroe, M., Plaisant, C.,
and Shneiderman, B. Temporal search and replace: An
interactive tool for the analysis of temporal event
sequences. HCIL, University of Maryland, College Park,
Maryland, Tech. Rep. HCIL-2013-TBD (2013).

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Lee, B., Isenberg, P., Riche, N. H., and Carpendale, S.
Beyond mouse and keyboard: Expanding design
considerations for information visualization interactions.
Visualization and Computer Graphics, IEEE
Transactions on 18, 12 (2012), 2689-2698.

Monroe, M., Lan, R., Morales del Olmo, J.,
Shneiderman, B., Plaisant, C., and Millstein, J. The
challenges of specifying intervals and absences in
temporal queries: A graphical language approach. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2013),
2349-2358.

Monroe, M., Wongsuphasawat, K., Plaisant, C.,
Shneiderman, B., Millstein, J., and Gold, S. Exploring
point and interval event patterns: Display methods and
interactive visual query. Tech. rep., Citeseer, 2012.

Plaisant, C., Milash, B., Rose, A., Widoff, S., and
Shneiderman, B. Lifelines: visualizing personal
histories. In Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM (1996),
221-227.

Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D.,
and Shneiderman, B. Lifelines: using visualization to
enhance navigation and analysis of patient records. In
Proceedings of the AMIA Symposium, American
Medical Informatics Association (1998), 76.

Riehmann, P., Hanfler, M., and Froehlich, B. Interactive
sankey diagrams. In Information Visualization, 2005.
INFOVIS 2005. IEEE Symposium on, IEEE (2005),
233-240.

Shneiderman, B. Direct manipulation: A step beyond
programming languages. In ACM SIGSOC Bulletin,
vol. 13, ACM (1981), 143.

Snodgrass, R. T., Ahn, L., Ariav, G., Batory, D. S.,
Clifford, J., Dyreson, C. E., Elmasri, R., Grandi, F,,
Jensen, C. S., Kifer, W., et al. Tsql2 language
specification. Sigmod Record 23, 1 (1994), 65-86.

Srikant, R., and Agrawal, R. Mining sequential patterns:
Generalizations and performance improvements.
Springer, 1996.

Wang, T. D., Plaisant, C., Quinn, A. J., Stanchak, R.,
Murphy, S., and Shneiderman, B. Aligning temporal
data by sentinel events: discovering patterns in
electronic health records. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
ACM (2008), 457-466.

Wongsuphasawat, K., Guerra Gémez, J. A., Plaisant, C.,
Wang, T. D., Taieb-Maimon, M., and Shneiderman, B.
Lifeflow: visualizing an overview of event sequences. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2011),
1747-1756.

	Introduction
	Related Work
	Event Sequence & Temporal Data Visualizations
	Query Languages for Event Sequence & Temporal Data
	Touch-based Interfaces for Visual Analytics

	The (s|qu)eries System
	Introductory Use Case
	Data Model
	Query Language
	Regular Expressions
	Visual Query Language

	Result Visualization
	Implementation & Scalability

	Evaluation
	Results
	Overall
	Insights
	Problems and Challenges

	Discussion & Future Work
	Conclusion
	Acknowledgments
	REFERENCES

