
 Trust Me, I’m Partially Right: Incremental Visualization
Lets Analysts Explore Large Datasets Faster

Danyel Fisher
*
, Igor Popov

†
, Steven M. Drucker

*
, mc schraefel

†

*
Microsoft Research

1 Microsoft Way,

Redmond, WA USA

{danyelf, sdrucker}@microsoft.com

†
Electronics and Computer Science

University of Southampton

Southampton, Hampshire, UK SO17 1BJ

{mc+w, ip2go9}@ecs.soton.ac.uk

ABSTRACT

Queries over large scale (petabyte) data bases often mean

waiting overnight for a result to come back. Scale costs

time. Such time also means that potential avenues of

exploration are ignored because the costs are perceived to

be too high to run or even propose them. With

sampleAction we have explored whether interaction

techniques to present query results running over only

incremental samples can be presented as sufficiently

trustworthy for analysts both to make closer to real time

decisions about their queries and to be more exploratory in

their questions of the data. Our work with three teams of

analysts suggests that we can indeed accelerate and open up

the query process with such incremental visualizations.

Author Keywords

Incremental visualizations, large data, exploratory data

analysis, online aggregation.

ACM Classification Keywords

H.5.2. Information interfaces and presentation:

Miscellaneous. H.2.8. Database Applications: Data mining.

General Terms

Experimentation, Human Factors

INTRODUCTION

The increased capacity to capture data from systems and

sensors that generate it, from social networks to highway

traffic flows, gives us an unprecedented opportunity to

interrogate behavior from the individual to the complex

system. Unfortunately, the speed at which this data can be

explored, and the richness of the questions we might ask are

currently compromised by the cost in time and resources of

running our queries over such vast arrays of data. We have

reverted to a batch-job era, where users formulate a query,

wait for some time, and evaluate the results—a step

backwards from the interactive querying that we expect in

exploratory data analysis.

Of course the database community has attempted to reduce

query costs in a variety of ways. Strategies to accelerate

large scale data processing are represented in systems like

Dremel [9] and C-Store [18] that churn through large

collections of data by pre-structuring the data and moving

the computation closer to the data.

So while computational and storage approaches make large

scale queries possible, they still often restrict either the

number and types of queries that might be run, or avenues

that might be explored because the queries must be

designed with such care to be worth the wait and the cost of

queuing for the resource.

One possible technique, proposed by Hellerstein and others

[7], is to query databases incrementally, looking at ever-

larger segments of the dataset. These samples can be used

to extrapolate estimated final values and the degree of

certainty of the estimate. The analyst would get a response

quickly by considering a large, initially unclear range of

values that rapidly converge to more precise values. This

approach may let an analyst iterate on a query with

substantially decreased delay and increased flexibility: if

the way forward is sufficiently clear from the samples, they

can quickly refine queries or explore new parameters.

There is an important interaction issue here. Analysts are

accustomed to seeing precise figures, rather than

probabilistic results, and may not be willing to act on partial

information. Confidence intervals add a degree of

complexity to a visualization, and may simply be confusing.

In order for incremental analysis to be a viable technique, it

will be important to understand how analysts interact with

incremental data.

Most research in incremental queries has gone into the

technical aspects of the back-end [3,6]; we complement that

technical agenda with an investigation of the interaction

design challenges involved. Our exploration presented in

this paper is two-fold: the production of an application with

sufficient fidelity that will allow users to experience

converging iterative estimates of their own data, and, in

particular, to understand how this interaction enables an

exploratory analysis process.

In this paper, we present sampleAction, a tool that allows us

to simulate the effects of interacting with very large

datasets while supporting an iterative query interaction for

large aggregates. Our simulator allows us to examine how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI ‘12, May 5-10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

both user interfaces and data storage concepts may be

effectively redesigned to be amenable to our incremental

interaction approach. In our evaluation, we carried out in-

depth interviews with members of three different teams of

data analysts, working in three different areas. The analysts

reconstructed a series of queries from their own data in our

system. We found that, after they had examined only a

small fraction of the database with our interface, they

overall found our representations of the incremental query

results sufficiently robust that they were prepared either to

abandon that query, refine it further, or create new ones

previously unconsidered. Significantly, they were able to

make these iterations rapidly, in real time.

We contribute, first, a methodology for simulating

aggregate queries against large data back-ends; we hope

that this will allow researchers to more broadly explore the

interaction issues that arise in this area. Second, we

contribute observations of expert analyst behavior in

interacting with approximate queries.

Our paper draws on past research about incremental,

approximate queries [4], as well as visualizations of

uncertainty [15]. We present past work, followed by a

rationale for the design and implementation approach and

an overview and analysis of our sessions with the analysts.

We discuss how our system enables analysts to make their

decisions on incremental samples and the implications of

our design approach for enhancing flexible data

exploration.

BACKGROUND AND RELATED WORK

In this project, we visualize estimates on incremental data.

Incremental analysis is an alternative to other techniques

that are more familiar, but have disadvantages compared to

our method. In this section, we first discuss these

techniques in order to motivate incremental data analysis.

We then discuss techniques for visualizing uncertainty,

which we adapt for our visualization.

Background on Handling Large Data for Visualization

Information visualization is a popular way to help analysts

make sense of large datasets. It allows an analyst to

overview data quickly by seeing summary statistics,

compared easily, through a selection of charts.

Many visualizations are based on aggregate queries against

of datasets. A dataset can be thought of as a table of data,

made up of measures—the values being visualized—and

dimensions, the categories into which the measures are

divided. For example, in a sales database, an analysts might

choose to create a bar chart (the visualization) showing

average sales per customer (the measure) divided by

different products (a dimension). In exploratory data

visualization, it is common to rapidly iterate through

different views and queries about a data-sets. In contrast,

visualizations for reporting or presentations are usually

prepared in advance and allow limited interaction.

In a very large dataset, exploratory visualization becomes

onerous: each query can take hours or days to compute

before a result is ready to be seen on screen. There are

several ways to deal with visualizing very large datasets.

The simplest technique is to wait through a long processing

job, allowing the job to run overnight. This has the virtue of

precision, but loses out on speed. In particular, by waiting

for hours for each query, a user writes off the possibility of

iteratively exploring their dataset.

Dremel [9] and other scale-out architectures have massively

increased the speed of accessing data rows. These

architectures are expensive, though, both in money and

energy. An incremental database can help save computation

costs by looking at fewer rows and spinning fewer disks. In

addition, even large-scale architectures can be

overwhelmed by ever-larger datasets, and datasets where it

is expensive to access rows.

The user can save computation time on queries by building

an OLAP (Online Analytical Processing) cube [1]. An

OLAP cube pre-aggregates a database by specifying

dimensions and measures in advance. This allows users to

explore those aggregated dimensions, at the cost of another

long processing job. The results also limit flexibility, as

users cannot easily add new dimensions after the cube has

been built.

If the dataset is well-organized as tabular data, a user might

take a fixed-size sample and use exploratory visualization

on the sample, using off-the-shelf software like Tableau
1
.

Indeed, Tableau has an ability to handle samples from a

large dataset, selected randomly. Tableau then allows rapid

queries against the in-memory portion of the dataset. These

queries can be interactive, but, as they are based on a

sample, they cannot be precise—and the system does not

provide a way for the user to know how good an

approximation is the sample of the full dataset. Extending

the idea of samples, Infobright [16], has explored the idea

of using approximate SQL to allow for more responsive

queries, although the estimates do not improve

incrementally.

With incremental, approximate analysis we avoid the

difficulties of these approaches. Incremental analysis

collects ever-larger samples in the back-end, and uses them

to estimate the true value of a query. In addition,

approximate queries can present confidence bounds: the

region in which the final value is likely to fall.

The system can respond quickly and flexibly as it acts on

samples; over time it gains accuracy. Because the system is

based around samples, it computes estimated values, rather

than definitive results. In addition to the estimate, the

system can compute a confidence interval for many types of

1
 http://www.tableausoftware.com/

aggregate queries. This interval predicts the possible range

of the true value.

The CONTROL project initiated the area of online

incremental data analysis; in the course of a series of papers

[3,4,5], the project laid out an agenda for incremental

analysis and laid out a technical infrastructure. Later

projects by Jermaine and colleagues further explored

incremental database queries [6,7]. All of these projects

produce output including estimates and confidence

intervals; several have prototyped possible visualizations,

although none of them evaluate these visualizations.

Incremental Visualization

This project uses uncertainty visualization techniques to

monitor estimates on incremental data. Neither of these

component ideas are new individually: both Olston and

Mackinlay [11] and Fisher [2] argue that uncertainty

visualization would be a valuable output for incremental

techniques. Neither paper on this work, however, offers an

implementation nor examines how users would respond to

the combined system.

Uncertainty Visualization

The research community has had a standing interest in

visualizing uncertain data: researchers have addressed data

that is uncertain in its values, quality, provenance, and even

in its structure [15,20]. Researchers have experimented with

a number of different visualizations of uncertainty,

including error bars, translucency and fuzzy regions [8,18].

However, several evaluations [14,20,21] have found that

more exotic schemes can be difficult for users to interpret.

The most applicable approach from this work is

‘statistically uncertain visualization.’ Both Olston and

Mackinlay [11] and Sanyal et al [14] refer specifically to

uncertain data values that have known properties, such as

bounds or probability ranges. In an original CONTROL

paper [4], the authors suggest both a bar chart with error

bars, and a “cloud” plot to represent multidimensional data.

We leverage these past approaches by representing

confidence intervals as error bars: both confidence intervals

and error bars refer to an expected range of values, and

error bars are familiar representations in statistics.

METHOD

The purpose of the work we present here has been to

understand whether data-intensive users would be willing to

make decisions on the fly using incremental visualizations

in order to engage in exploratory data analysis. We wanted

to understand whether they found the concept of dealing

with confidence bounds confusing, and at what point a

visualization’s bounds are “good enough” to act upon. We

also wanted to understand whether providing an interactive

exploratory front-end encouraged them to learn about their

datasets in new ways.

Our hypothesis is that users working with incremental

visualizations will be able to interpret the confidence

intervals comfortably. We further hypothesize that this will

allow them to act rapidly on their queries. Last, we

hypothesize that incremental results will allow users to

carry out exploratory queries.

Experimentation

To interrogate our hypotheses, we do not need to implement

an incremental database system at full scale. Rather, we

need to produce a realistic experience that allows users to

understand what using an incremental database would be

like. The system must, of course, incrementally update

samples, showing ever-larger portions of the dataset and the

estimates that emerge from them. In order to maintain

ecological validity, the system should work with data that is

familiar to the analyst, and should allow the analyst to

experiment with a broad assortment of queries.

To that end, we have created a tool that allows us to

simulate the experience of using a very large dataset.

Analysts provide us with a table of data. In turn, we enable

the analysts to execute a variety of queries, while

incrementally displaying results based on ever-larger

portions of the dataset. This allows users to work with their

own data while exploring our interface. We called this

system sampleAction. sampleAction allows a user to

formulate a query visually. The system responds with a

partial result, displaying a bar chart with confidence

bounds; as the analyst waits, the system increases its sample

size, narrowing the confidence intervals and producing

more precise results (Figure 1).

sampleAction uses estimators that produce error bounds to

predict the final values; these estimators base their results

on the size of the sample, rather than the size of the

database, and so can scale up with the data.

System Implementation

In the following sections we first describe the front end

interaction that drives the queries and represents the

incremental responses. We next describe the statistical

reasoning used to present the confidence in the samples

presented and close this section with the description of the

database implementation supporting the simulation.

Interface for Formulating Queries

The front-end interface of sampleAction allows users to

execute basic aggregate queries (averages, sums, counting)

typically used in exploratory data analysis, in an

environment that resembles analytics tools like Tableau.

The user can connect to arbitrary database tables, and,

without any knowledge of the underlying query language,

use the graphical user interface to create visual summaries

of database queries with filters, sorting, and groups.

An initial screen allows users to connect to an SQL server,

select a table from that database and open a dashboard over

which analytics over the data in the table can be performed.

The major screen in sampleAction is the Analytics panel

(Figure 1), which allows users to compose aggregate

queries over the data table. An analyst can drop one or more

dimensions onto the column box, and a measure onto the

rows box (Figure 1-1). The “filter” box allows an analyst to

create a filter on either a dimension or measures. In Figure

1, for example, the analyst performs a query over an FAA

(US Federal Aviation Administration) database of flight

delays, showing the average arrival delay by day of the

week.

Visualization of Queries

When a query is issued, the system sends it to the back-end,

which computes and returns an estimate and confidence

bounds; the front-end displays a chart of the results. The

estimate and bounds are updated every second with more

rows of data.

sampleAction displays all aggregates with a column chart.

We chose column charts for their familiarity and versatility.

The column charts is annotated with error bars (Figure 1)

which are shown around each column. The error bars show

the confidence bounds around the resulting data value. The

error bars show the range of values that may occur at the

confidence levels, while column height itself shows the

current estimated value. For example, in Figure 1, an

analyst can conclude that—with 90% probability—the true

average delay on Friday (day=5) is somewhere between 6

and 12 minutes, while on Saturday is between 2 and 8

minutes. These conclusions are drawn by looking at 56000

rows, just 0.32% of the full database.

sampleAction uses error bars to show the values of the

estimate. However, there are new parameters that are not

common in standard exploratory data visualization systems,

which sampleAction is able to show (Figure 1). The display

shows the number of rows of data examined so far, and how

much of the total dataset this represents. A tooltip (Figure

1-2) allows the user to know the number of datapoints that

were used to compute a given estimate. Last, sampleAction

shows how the bounds are changing over time (Figure 2);

this can help an analyst decide how much longer it is worth

waiting for more data.

An analyst can pause or stop the incremental process at any

time; in the current implementation, analysts can also start

additional queries while the previous ones are still running.

Figure 1. The Analytics panel in sampleAction showing an incremental visualization in progress. The analyst is looking at flight delays

by day of week. (1) Selecting columns to be shown in (2) the visualization. Dark blue bars show current estimates; pale blue dots show

the expected range of values. This prototype interface includes multiple selectable bounding algorithms. (3) A progress indicator

showing that 0.32% of the database has been seen so far.

All queries will continue to add samples and slowly

converge.

Bounded uncertainty based on samples

The back-end of sampleAction computes responses based

on queries from the front-end. In order to supply the

information in the UI, the responses that it sends back are

somewhat more complex than standard SQL query result

sets: in addition to returning a set of values, queries also

return confidence bounds and the number of rows seen.

The choice of appropriate bounds is at the heart of the

sampleAction system. Bounds should appropriately bound

the data—that is, they need to represent the highest and

lowest likely values of the true value. If the bounds are too

wide, users will gain little information about the estimate. If

bounds converge too slowly, incremental visualization will

be little better than waiting overnight for a precise value.

Computing statistically accurate bounds requires random

samples from the dataset in order to ensure that the sample

is unbiased. As a result, incremental results need to be

selected from a randomly-ordered stream. The efficient

computation of random samples from a database is a well-

known problem (Olken and Rotem [10] survey techniques

from 1990). This sampling can be accomplished by

selecting randomly from the table, which is computationally

expensive. Alternately, we can randomly order the

database, which potentially interferes with index structures

or requires a redundant copy of the data. These tradeoffs are

active areas of research in the database community. For the

goals of this project, we randomly ordered the dataset.

Given its stream of samples, sampleAction computes an

estimate of the expected value of an aggregate of the

stream. The tool uses the rows processed so far in order to

make an estimate of the value based on the full dataset, as

illustrated in Figure 3. For the purposes of estimating a

value, we treat each category of a group-by query as

separate. For example, if we are querying for total sales,

grouped by state, then sampleAction will estimate fifty

different values. The tool attempts to estimate the true value

of all rows that match the query (Figure 3-2); however, it

has only seen a subset of rows (Figure 3-4). The estimate is

based therefore on those rows which it has seen already and

that match the query (Figure 3-3), which can be a much

smaller subset. In a fixed-size sample, this fraction could

mean that the estimated values might be very inaccurate; in

an incremental system, it means that the user interested in a

rare phenomenon can choose to wait for more samples.

For a tool like sampleAction to work against very large

datasets we want the formula that provides the confidence

bounds to be scalable. In particular, even for very large

databases (that is, where (Figure 3-1) is large), we would

not want that size to generate very broad confidence

bounds. We also want an estimator in which the confidence

bounds narrow monotonically as the sample size increases:

as the number of rows that the stream has processed (Figure

3-3) grows, we expect the bounds to tighten.

The computation of appropriate bounds is an active area of

research in probability theory, and different bounds are

appropriate under different circumstances. In general,

though, some estimators gain their strength by using

additional information from the dataset beyond the sampled

values. For example, it is common to examine the minimum

and maximum values in the data column. The pace at which

bounds shrink is determined by the size and variance of the

sample: the bounds expand with the variance of the sample,

and tighten in proportion to the square root of the number

of samples. As a result, the choice of estimators, combined

with the distribution in the results can produce very

different bounds, changing at very different speeds.

In the sampleAction protoype, we computed several

different sets of bounds in order to learn about their

Figure 2. Convergence of confidence bounds for a given column as the database reads in more columns based on two

different formulae. We experimented with different bounds in order to better understand convergence behavior.

convergence properties. These bounds are displayed in the

captions of Figures 1 and 2, and were selectable by the user.

We do not expect that this variety of bounds would be

available, or desirable, in a final product; our user study did

not emphasize multiple bound types.

Figure 3. Schematic view of sampling against filters. A

restrictive query, joined with a small sample, can make for a

very small set of rows to inform estimates.

The Back-End Database

Industrial database management systems do not currently

support incremental queries of the type required to test our

hypotheses. Therefore, we constrained this initial evaluation

to deploying sampleAction on a database small enough to

query interactively: sampleAction takes samples from a

database with several millions of records. We used a

standard SQL database system to store the data. While these

datasets are still relatively small in comparison with “big

data” systems, they are nevertheless sufficiently large for

our purposes: it is possible to extract samples, run aggregate

statistics, and compute probability bounds over them. These

smaller databases have the virtue that they are easy to query

and return rapid results. Therefore, sampleAction is able to

interactively run complete queries over the entire dataset,

collect metadata, and compare estimates with ground truth

results.

sampleAction stores data in its back-end SQL database in a

randomized order. Putting the data in random order allows

sampleAction to perform collection of random samples,

merely by querying for the first few thousand rows. To

simulate incremental results, we simply executed repeated

queries of increasing size. For example, the first initial

query requests results based on the first 5000 records; the

second query based on the top 10000, and so on. Each of

these queries could be resolved quickly and returned to the

user. This scheme allows us to prototype the effects of an

incremental query against a randomized dataset.

We note that because the queries for different groups are

drawn from the same sample, the estimates are not fully

independent. For the experiments we conducted, we found

the sample sizes were typically large enough for these

effects to be negligible.

We note that our sample is far from using SQL to its

capacity: we would expect that in a production system,

users might see updates of millions of rows at a time.

USER STUDY

To evaluate the effectiveness of our technique, we recruited

three sets of experts who analyze data on a regular basis.

All three work for a large, data-intensive corporation. We

selected three very different groups of analysts, with very

different types of data to see how they would respond to

incremental visualization in their work. One team runs

system operations on a large network, looking for network

and server errors. The second team is part of a marketing

organization looking at the marketing and use of network-

connected games. The third participant is a researcher,

studying social behavior on Twitter.

To create a familiar, real-world data experience with

sampleAction, we collected sample data from each of the

expert teams; they provided us with recent selections of

their datasets. We asked them to provide us around a

million rows of data in order to have a reasonably large

dataset. We wished to ensure that the session asked real

questions that the analysts might have encountered.

Therefore, in preparation for the session, we asked them to

recall a recent data exploration session, or to think of the

sorts of questions that they frequently ask of their data.

Because of the iterative query services facilitated by our

interface, we expected our sessions to diverge from their

usual queries, but this structure allowed us to start from a

familiar place.

After introducing the system to the teams, we had the

experts reconstruct the questions that they had encountered

in the past. During this series, we asked them to think aloud

through the charts they were seeing on screen, and asked

them to describe points at which they would be able to

make a decision. Periodically, we paused computation to

ask them about how they would interpret the interrupted

session. While the session with the Twitter researcher took

place in person, the other sessions were carried out by

remote conversation with a shared desktop session running

the application. Voice and screen interactions for all

sessions were recorded.

Bob: Server Operations

Bob is on a team that manages operations for a handful of

servers. Their group has a logging infrastructure that is

periodically uploaded into an SQL server; nightly, the

server’s results are produced into a static report, generated

by Microsoft SQL Reporting Services. Bob’s team both

monitors the performance of a set of servers, and diagnoses

error conditions that may occur. The report is not

interactive; as a result, the team has created an interactive

custom application that shows some results that the report

cannot. However, they complain that the custom application

has a very limited set of queries.

Bob was able to provide 200,000 rows in each of two

tables: one that was oriented around error conditions; the

other around successful interactions. Bob’s dataset is fairly

uniform: the back-end server behaves reliably, and the

range of data is small. Therefore, he was able to get rapid

and accurate estimates, and the confidence intervals

converged very rapidly.

Bob started off by looking at number of errors divided by

datacenter. After seeing the first set of results, he realized

that the errors he was investigating were all in one

datacenter: “Ok, we’ll stop that, and we’ll change over to

the right variable this time.”

Figure 4. Consistent error behavior across three servers of one

type, and two other servers of another.

After changing to a display by server, he let it run for a

moment (Figure 4). “What we’re not seeing is any

particular outliers. What this is telling me is that all the

machines are performing about the same. The errors are

high, but consistent. The pile of errors we’re seeing is a

site-wide issue, not a machine issue.”

He then wished to drill down into the types of errors. He

filtered down to just two servers and added the error type as

a measure along the X axis. In these machines, most records

were of the same error type. A very small number of rows

were of other error types; these other types had few

samples, and so displayed very wide confidence intervals.

Bob was interested in incremental visualization as an

alternative to their current, index-heavy implementation of

data management. As his team has attempted to scale

upward, they have spent a great deal of effort optimizing

their data, queries, and indices to be able to diagnose errors

within a few minutes of their occurring. Finding these rare

errors will not be helped by sample-based methods:

sampling cannot find outliers.

Bob’s team currently archives all data after a day in order to

focus on new data—and infrequently carries out the costly

queries that would be required to access their archive. He

felt that incremental systems might help them explore their

archives, understanding how system performance is

gradually changing over time.

Allan: Online Game Reporting

Allan is in charge of maintaining the database reporting

system for a large online gaming system. The core database

records every session by every player logged into the

system, as well as their purchasing history. Allan is

regularly asked to prepare tremendously varying reports for

a variety of stakeholders, ranging from marketing teams as

well as game designers. In order to present these reports,

Allan often creates an OLAP cube which summarizes

relevant answers. Allan, therefore, is accustomed to having

to clearly specify queries and is unused to exploring his

data.

Allan suggested that we examine player session

information. The player session table has the locations of

players (on a national level), statistics about the players

(such as their age), and which games they played on any

given day. Allan provided two billion player records.

Allan had recently run an interesting statistic: the average

age of a game player on the system. He began by looking at

the sum of ages. After a moment, he realized that he wanted

to see the average age, and stopped the query in order to

correct it and issue a new one. Reassured that the data was

showing the same result he had seen before, he terminated

the query after a few seconds (looking at just thirty

thousand rows) and began to explore new queries.

He looked at average age by country, before deciding that

the many categories caused the error values to converge too

slowly; cancelled the query, and instead looked at average

age by region. For some regions where there are fairly few

players, the system found few examples, and so generated

very broad confidence intervals for those regions. Other

regions, such as the United States and the UK, had very

precise error bars due to the high number of players. In the

current sampleAction implementation, the scale broadened

to show the large confidence intervals which swamped the

values. Consequently Allan turned off confidence intervals,

feeling he now knew which columns he could trust.

He then wanted to see whether sports games have a

different distribution then war games. He added a filter to

the previous query, specifying only war games, and started

it. He changed the filter again, and started another query,

specifying only sports games. He scrolled back and forth,

comparing the results to each other. A few moments later,

he added another query, comparing the numbers of war-

gamers to sports players by region.

Allan, accustomed to running reports, had not been able to

explore his dataset before; he enjoyed exploring the dataset

in ways that had not been accessible to him before.

Sam: Twitter Analytics

Sam is analyzing Twitter data to understand relationships

between the use of vocabulary and sentiment. He works

with Twitter data that is saved to a high-capacity distributed

system. New data constantly streams into its ever-growing

archive, which has stored several years’ worth of data.

Sam’s queries require several sets of keyword filters, which

he frequently tunes. Sam provided us with a single day

worth of data, with annotations labeling which filters would

have affected which tweets. The result was approximately

10 million records.

Sam sometimes uses visualization: “I’ve generated my own

charts in R, but it’s based on small samples.”

During Sam’s interview, he created a series of bar charts,

tweaking variables. He frequently made small errors,

realizing that he had placed the wrong variable in the query

or had failed to filter out ‘null’ values. In each of those

cases, he observed this within the first few iterations, when

we had seen less than 0.1% of the full dataset. Using his

usual batch tools, he would not have caught this error until

after the computation was done, several hours later.

In using sampleAction, Sam moved rapidly from query to

query, exploring and testing different variations. Once, for

example, he wanted to compare the relative frequency of

keywords having to deal with emotions. When he generated

the column chart, he was able to stop the iteration after

150,000 samples (about 30 seconds) and explore it. By the

time he was at that phase, the differences were vivid. For

this keyword, at least, the error margins were tight: “I didn’t

actually know before that ‘hate’ was so dominant.”

He was aware of the limitations of looking at a sample: “the

statistician in me is saying, I want to let this run a little

longer before I make a total judgment call on these two

sets.” Nonetheless, the partial result was enough for him to

continue to explore.

He decided to figure out why the keyword was so large. To

do so, he needed to compare the word list under two

different conditions. He created two filters—one for each

condition—and started two queries. He compared the two

runs to each other: “See how much bigger ‘angry’ was in

the other one? These are hugely different.”

Because his X axis had so many different keywords, some

of which were rare, the results were distributed across a

very large confidence interval. As happened for Allan, this

large confidence interval distorted the scale on the rest of

the image. He found the distortion to be too large to

interpret the chart, and often distracting; he would turn

them off to examine the values, then turn them back on to

check how confident he could be in any value.

ANALYSIS

In this section, we collect some of the major insights from

the three different user studies.

The value of seeing a first record fast

In all three studies, users found value in getting a quick

response to their queries. Sam and Allan realized they had

entered an incorrect query, and were able to repair it

quickly by adding appropriate filters. Ordinarily,

discovering and repairing these errors would have been a

costly, even overnight process. Allan also realized that his

X axis would be wider than he wanted, and changed his

query to narrow his results. Bob’s data was uniform enough

that even the first view had a good confidence interval, and

so he was able to draw conclusions from it.

New Behaviors around Data

All three of our analysts were accustomed to seeing their

data in a static, non-interactive form: they formulate a query

(or cube), wait a period of time, and can explore the results.

Most visibly with Sam, the opportunity to interact with the

data without waiting was freeing: it changed the sorts of

queries that he was able to make, as well as the results of

those queries. Allan was excited to have the opportunity to

ask new questions of his dataset without delay.

We observed real exploration of the dataset using our

system. Sam was able to play with a hypothesis that he had

not previously explored, in part because it required several

different permutations of his query in order to find the

interesting result. Allan was able to try a handful of

different variations, exploring questions in depth. Bob was

able to clean his queries on the fly, removing special cases

and exploring the types of results returned. None of these

were possible in the non-interactive case.

At the same time, the incremental aspects were helpful to

the analysts. If the first few samples had not converged,

they would decide whether it was worth the trade-off of

waiting longer, sometimes checking the convergence view

(Figure 2) to decide. In cases where the system seemed

unlikely to converge, they would decide which columns of

data to regard.

Difficulties with Error Bar Convergence

We did not anticipate the tremendous variance in

confidence interval sizes. While Bob never saw a

confidence interval much larger than his largest data point,

Allan often could not see his data without hiding the

confidence intervals. Past literature on visualizing

uncertainty [11] has emphasized visualizations that fit the

entire uncertainty range on screen; these were not sufficient

for some of these preliminary bounds. It would be

worthwhile investigating visualizations that can show the

size of the interval even past screen borders.

In Allan’s sample, some data points had noisy values: for

example, the minimum ‘age’ listed was -100, while the

oldest was 284. This threw off the “minimum” and

“maximum” values; as the computation we used included

these values, the bounds converged slowly. Incremental

systems can be slowed by datasets that are not clean. Using

additional domain knowledge during the execution—such

as discarding values that fall outside meaningful

constraints—would improve convergence, and would show

more meaningful results.

Non-Expert Views of Confidence Intervals

While error bars are familiar indications of confidence,

some of the users found them confusing. It was not initially

obvious to Allan, for example, that the interval would

shrink toward a converged value.

The confidence interval is a complex indicator: it carries

information about both the number of samples seen so far,

and the variance of a column. As a result, two very different

adjacent columns might have identical confidence intervals:

one has a small variance but is fairly rare in the database;

the one next to it is common, but has a high variance.

Helping users distinguish these would be useful.

In all three cases, users had data that was unevenly

distributed across the X-axis, with some categories having a

great many entries, and others having very few. For

example, in Allan’s situation, countries with few players

converged very slowly, causing estimates to be very large.

Sam and Allan were able to adapt to the error bars,

regarding the numbers that converged faster as more certain

than the ones that took longer.

Implications

Our work shows both that users seem to be able to interpret

confidence intervals, and that this finding opens

opportunities for using uncertainty visualization tied to

probabilistic datasets. Creating sampleAction has allowed

us to have a concrete feel for the experience of watching

bounds shrink at different rates, which in turn is

illuminating for visualization design of confidence

intervals.

The major step that stands between simulators like

sampleAction and true interactive techniques are limitations

to databases. Currently, Big Data systems do not support

the callbacks or partial results that would allow incremental

results to be computed. Similarly, SQL tables allow

sampling, but do not allow the user to progressively

increase the size of their sample. Allowing these is a

necessary back-end for future interactions.

Limitations of Incremental Visualization

sampleAction has helped us interpret how users interact

with incomplete and incremental data. Even in a complete

incremental system, however, there some genres of queries

that are structurally going to be difficult. These are not

limitations of our prototype, but are fundamental to the

approach.

Outlier Values

This system only works for meaningful, aggregate queries.

Thus, operations that depend on single items, such as

outlier queries, cannot be supported. There is no

probabilistic answer to “which item has the highest value”.

However, there might be ways to rephrase queries: for

example, it might be possible to use order statistics in this

context.

Table Joins

Joins are an important part of database interaction; past

database projects like CONTROL [4] and others [6] have

looked at the statistical and technical issues involved in

incremental joins. As with outliers, some types of joins can

be very difficult for incremental sampling techniques; in

some cases, such as joins against a rare or unique key, using

samples from joining tables may not work at all.

Future Work

The experience of exposing users to incremental queries

and approximate visualizations motivates several lines of

future work. First, it has highlighted the importance of

exploring representations of confidence. While error bars

are conventional, they are not necessarily easily

comprehensible. In addition, they can only highlight one

probability value at a time. The downsides of error bars,

such as the difficulties they raise with scaling, argue that

there could be an opportunity to find new ways to represent

confidence intervals.

Our users also asked for more types of visualizations:

clustered bar charts showing more than one measure; a line

chart; and two-dimensional histograms. Each of these

visualizations will raise new issues in presenting confidence

intervals. It is worthwhile to explore new visualizations in

order to enable rapid refinement for these more

sophisticated query types.

Last, we would like to explore more types of data analysis,

such as machine learning techniques. We believe that

applying incremental techniques to a broad range of

algorithms might help users anticipate their algorithm’s

progress before it comes out with its final result.

Conclusions

While the concept of approximate queries has been known

for some time, the visualization implications have not been

explored with users. In particular, it has been an open

question whether data analysts would be comfortable

interacting with confidence intervals. We hope that showing

the utility of these approximations will encourage further

research on both the front- and back-ends of these systems.

HCI researchers have also been limited in their ability to

explore these concepts; our model for simulating large data

systems may help them explore realistic front-ends without

needing to build full-scale computation back-ends.

We have shown that it is both tractable and desirable to

support incremental query interactions for data analysts.

With such mechanisms in place, analysts can take

advantage of the immediate feedback afforded by

incremental queries by rapidly refining their queries, and

more importantly, exploring new avenues which they would

not have done before.

Our approach has validated the concept of incremental

queries. We have shown that it is possible to use interaction

strategies that analysts have desired, but not been able to

pursue given the time required to complete queries of large

scale databases. As our interviews show, even relatively

simple representations of uncertainty using error bars

progressively updating over time, allowed analysts to trust

their decision points, potentially saving days or weeks of

effort, and exploring unimagined routes through their data

for new discoveries and insights.

ACKNOWLEDGEMENTS

We thank our participants for their time and enthusiasm in

working with our prototype. This project has benefitted

from the expert advice of Christian Konig, who has

provided us with valuable references, design, and sanity;

and from the comments of the anonymous reviewers.

REFERENCES

1. S. Chaudhuri and U. Dayal. An overview of data

warehousing and OLAP technology. SIGMOD Record.

26(1):65-74. March 1997.

2. D. Fisher. Incremental, Approximate Database Queries

and Uncertainty for Exploratory Visualization. In

Proceedings of 1st IEEE Symposium on Large-Scale

Data Analysis and Visualization. 2011.

3. P. Haas, J. Hellerstein. Ripple Joins for Online

Aggregation. In Proceedings of ACM SIGMOD

International Conference on Management of Data.

1999.

4. J. Hellerstein, R. Avnur, A. Chou, C. Olston, V. Raman,

T. Roth, C. Hidber, P. Haas. Interactive Data Analysis

with CONTROL. IEEE Computer, 32(8). August, 1999.

5. J. Hellerstein, P. Haas, and H. Wang. Online

aggregation. In Proceedings of the 1997 ACM SIGMOD

International Conference on Management of data

(SIGMOD '97), J. Peckman, S. Ram, and M. Franklin

(Eds.). ACM, New York, NY, USA, 171-182.

6. C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A.

Pol. The Sort-Merge-Shrink Join. ACM Transactions on

Database Systems 31(4): 1382-1416. December 2006.

7. S. Joshi and C. Jermaine. Materialized Sample Views

for Database Approximation. IEEE Transactions on

Knowledge and Data Engineering. 20(3): 337-351.

March 2008.

8. R. Kosara, S. Miksch, and H. Hauser. Semantic Depth

of Field. In Proceedings of the IEEE Symposium on

Information Visualization 2001 (INFOVIS'01). IEEE

Computer Society. 2001.

9. S. Melnik, A. Gubarev, J. Long, G. Romer, S.

Shivakumar, M. Tolton, and T. Vassilakis. 2010.

Dremel: interactive analysis of web-scale datasets. Proc.

VLDB Endow. 3, 1-2 (September 2010), 330-339.

10. F. Olken and D. Rotem. 1990. Random sampling from

database files: a survey. In Proc.of the 5th international

conference on Statistical and Scientific Database

Management (SSDBM'1990), Zbigniew Michalewicz

(Ed.). Springer-Verlag, London, UK, 92-111. 1990.

11. C. Olston and J. Mackinlay. Visualizing data with

bounded uncertainty. In Proceedings of IEEE

Symposium on Information Visualization, pp. 37-40.

2002.

12. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.

Tomkins. Pig Latin: A Not-So-Foreign Language for

Data Processing. In Proceedings of the 2008 ACM

SIGMOD international conference on Management of

data (SIGMOD '08). ACM, New York, NY, USA,

1099-1110.

13. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.

2005. Interpreting the data: Parallel analysis with

Sawzall. Sci. Program. 13, 4 (October 2005), 277-298.

14. J. Sanyal, S. Zhang, G. Bhattacharya, P. Amburn, and R.

Moorhead. 2009. A User Study to Compare Four

Uncertainty Visualization Methods for 1D and 2D

Datasets. IEEE Transactions on Visualization and

Computer Graphics 15(6): 1209-1218. November 2009.

15. M. Skeels, B. Lee, G. Smith, and G. Robertson.

Revealing Uncertainty for Information Visualization. In

Proceedings of the Working Conference on Advanced

Visual Interfaces. ACM, New York, NY, USA. 2008,

376-379

16. D. Ślęzak and M. Kowalski. Towards Approximate SQL

– Infobright’s Approach. In M. Szczuka et al (Eds.):

Rough Sets and Current Trends in Computing (RSCTC).

LNAI 6086, pp. 630-639. Springer-Verlag. 2010.

17. A. Streit, B. Pham, and R. Brown. A Spreadsheet

Approach to Facilitate Visualization of Uncertainty in

Information. IEEE Transactions on Visualization and

Computer Graphics 14(1): 61-72. January 2008.

18. M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M.

Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E.

O'Neil, P. O'Neil, A. Rasin, N. Tran, and S. Zdonik.

2005. C-store: a column-oriented DBMS. In

Proceedings of the 31st International Conference on

Very Large Data Bases (VLDB '05). VLDB Endowment

553-564.

19. J. Thomson, E. Hetzler, A. MacEachren, M. Gahegan

and M. Pavel, A typology for visualizing uncertainty. In

Proceedings of SPIE & IS&T Conference on Electronic

Imaging, Visualization and Data Analysis 2005, 5669:

146-157. 2005.

20. C. Wittenbrink, A. Pang, and S. Lodha. Glyphs for

Visualizing Uncertainty in Vector Fields. IEEE

Transactions on Visualization and Computer Graphics.

2(3):266-279. September 1996.

21. T. Zuk and S. Carpendale. Visualization of Uncertainty

and Reasoning. In Proceedings of the 8th international

symposium on Smart Graphics (SG '07). Springer-

Verlag, Berlin, Heidelberg. 2007.

	Trust Me, I’m Partially Right: Incremental Visualization Lets Analysts Explore Large Datasets Faster
	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	Introduction
	Background and Related Work
	Background on Handling Large Data for Visualization
	Incremental Visualization
	Uncertainty Visualization

	Method
	Experimentation
	System Implementation
	Interface for Formulating Queries
	Visualization of Queries
	Bounded uncertainty based on samples
	The Back-End Database

	User Study
	Bob: Server Operations
	Allan: Online Game Reporting
	Sam: Twitter Analytics
	ANALYSIS
	The value of seeing a first record fast
	New Behaviors around Data
	Difficulties with Error Bar Convergence
	Non-Expert Views of Confidence Intervals

	Implications
	Limitations of Incremental Visualization
	Outlier Values
	Table Joins

	Future Work
	Conclusions

	Acknowledgements
	References

